WO2021258310A1 - 测试设备、测试方法和飞行测试系统 - Google Patents

测试设备、测试方法和飞行测试系统 Download PDF

Info

Publication number
WO2021258310A1
WO2021258310A1 PCT/CN2020/097824 CN2020097824W WO2021258310A1 WO 2021258310 A1 WO2021258310 A1 WO 2021258310A1 CN 2020097824 W CN2020097824 W CN 2020097824W WO 2021258310 A1 WO2021258310 A1 WO 2021258310A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
acceleration
test
rotating arm
device under
Prior art date
Application number
PCT/CN2020/097824
Other languages
English (en)
French (fr)
Inventor
赵阳
方敏
陈凯
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080007180.XA priority Critical patent/CN113365919A/zh
Priority to PCT/CN2020/097824 priority patent/WO2021258310A1/zh
Publication of WO2021258310A1 publication Critical patent/WO2021258310A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B43/00Testing correct operation of photographic apparatus or parts thereof

Definitions

  • This application relates to the technical field of test equipment, and in particular to a test equipment, a test method, and a flight test system.
  • UAVs Due to its good stability, strong anti-interference ability, ability to hover actively, and relatively low requirements for take-off and landing conditions, UAVs have achieved relatively rapid development and applications in civil and military fields. Due to the characteristics of unmanned aerial vehicles, once an accident occurs, it may cause serious damage to the safety of people's lives and property. Various norms and standards for the safety of unmanned aerial vehicles are constantly improving. Higher requirements are put forward for the performance and safety test of UAVs. It is necessary to test the ability of UAVs or structural parts to withstand long-term, multi-directional, high-value translational acceleration. However, there is currently no equipment and method for effective testing for this performance testing requirement.
  • the present application provides a test device, a test method, and a flight test system, which are designed to effectively test the mechanical performance of the device under test under a preset acceleration.
  • the present application provides a test device for testing the mechanical performance of the device under test under a preset acceleration condition, and the test device includes:
  • a rotating shaft, the driving mechanism is connected to the rotating shaft, and the rotating shaft can rotate under the driving of the driving mechanism
  • a rotating arm one end of which is rotatably connected with the rotating shaft and capable of rotating under the drive of the rotating shaft, and the other end of the rotating arm is used to connect with the device under test;
  • the fixing mechanism is arranged at the other end of the rotating arm and is used to fix the equipment under test;
  • control mechanism can control the driving mechanism to rotate at a preset speed to test the mechanical performance of the device under test under the preset acceleration; the preset acceleration is adjusted by adjusting the rotation arm relative to the The preset angle of the rotating shaft and/or the preset speed of the driving mechanism are adjusted.
  • the present application provides a flight test system, including the test equipment of the first aspect of the present application; and an unmanned aerial vehicle installed on the fixing mechanism.
  • the present application provides a test method for testing the mechanical performance of the device under test under a preset acceleration condition.
  • the test method is applicable to the test device of the first aspect of the present application.
  • the test method includes: installing the device under test on the rotating arm; adjusting the rotating arm to a preset angle with the rotating shaft, and positioning the rotating arm through an adjusting mechanism when the rotating arm rotates to the preset angle The rotating arm to keep the rotating arm at the preset angle position; controlling the driving mechanism to rotate at a preset speed to test the mechanical performance of the device under test under the preset acceleration; Wherein, the preset acceleration is adjusted by adjusting the preset angle of the rotating arm relative to the rotating shaft and/or the preset speed of the driving mechanism.
  • the embodiments of the present application provide a test equipment, a test method, and a flight test system, the rotating shaft of which drives the rotating arm to rotate under the preset rotation speed of the driving mechanism, so that the device under test at the other end of the rotating arm has a preset Acceleration, and then test the mechanical performance of the device under test under the preset acceleration, can test the mechanical performance of the device under test under the preset acceleration, accurately simulate the real working conditions of the device under test, and the test equipment has a small footprint.
  • the realization difficulty is low, the application range is wide, the reliability is high, and the cost is low, and it can effectively evaluate the mechanical performance of the device under test under the condition of bearing the preset acceleration.
  • FIG. 1 is a schematic diagram of the structure of a test device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a test device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a test device provided by an embodiment of the present application.
  • Fig. 4 is a partial enlarged schematic diagram of Fig. 3 at A;
  • FIG. 5 is a schematic flowchart of a test method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the relationship between the rotating shaft, the rotating arm, and the adjustment mechanism provided by the embodiment of the present application;
  • FIG. 7 is a schematic diagram of the relationship between preset acceleration, gravitational acceleration, and preset centrifugal acceleration provided by an embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of a testing device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a testing device provided by an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a flight test system provided by an embodiment of the present application.
  • Adjustment mechanism 41. Locking structure; 42, Linear drive structure; 43. Connecting ring; 44. Angle adjustment assembly;
  • FIG. 1 is a schematic structural diagram of a testing device 100 provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a testing device 100 provided by an embodiment of the present application.
  • the testing equipment 100 includes a testing device 101 and a control mechanism 102.
  • the testing device 101 includes a driving mechanism 10, a rotating shaft 20, a rotating arm 30, an adjusting mechanism 40, a fixing mechanism 50 and a control mechanism 102.
  • the driving mechanism 10 is connected to the rotating shaft 20, and the rotating shaft 20 can be rotated by the driving mechanism 10.
  • One end of the rotating arm 30 can be driven by the rotating shaft 20 to rotate.
  • the other end of the rotating arm 30 is used to connect with the device under test 200.
  • the rotating arm 30 can follow the rotating shaft 20 to rotate.
  • the driving mechanism 10 drives the rotating shaft 20 to rotate
  • the rotating arm 30 rotates synchronously with the rotating shaft 20.
  • One end of the rotating arm 30 is rotatably connected with the rotating shaft 20.
  • one end of the rotating arm 30 is hinged with the rotating shaft 20.
  • the adjustment mechanism 40 is used for positioning the rotating arm 30 when the rotating arm 30 rotates to a preset angle relative to the rotating shaft 20, so that the rotating arm 30 is maintained at the preset angle position.
  • the fixing mechanism 50 is provided at the other end of the rotating arm 30 for fixing the device under test 200.
  • the device under test 200 can be installed on the fixing mechanism 50 so that the test device 100 can test the mechanical performance of the device under test 200.
  • the device under test 200 may be an unmanned aerial vehicle.
  • the device under test 200 may also be a handheld pan/tilt, camera, radar, or the like.
  • the control mechanism 102 is used to control the driving mechanism 10 to drive the rotating shaft 20 to rotate.
  • the control mechanism 102 can control the driving mechanism 10 to rotate at a preset speed to test the mechanical performance of the device under test 200 under a preset acceleration.
  • the preset acceleration is adjusted by adjusting the preset angle of the rotating arm 30 relative to the rotating shaft 20 and/or the preset speed of the driving mechanism 10.
  • the testing device 100 further includes a base 103.
  • the driving mechanism 10 is provided on the base 103.
  • the base 103 may belong to a part of the control mechanism 102, and the base 103 and the control mechanism 102 may also be independent physical components.
  • FIG. 5 is a schematic flowchart of a test method provided by an embodiment of the present application.
  • the test method can be applied to the test device 100 to test the mechanical performance of the device under test 200 under a preset acceleration condition.
  • the test method of the embodiment of the present application includes step S101 to step S103.
  • Step S101 Mount the device under test 200 on the rotating arm 30.
  • the device under test 200 is installed on the fixing mechanism 50 provided at the other end of the rotating arm 30.
  • the installation direction of the device under test 200 is such that the front and back direction of the device under test 200 coincides with the radial direction of rotation of the device under test 200, and the width direction of the device under test 200 coincides with the tangential direction of rotation of the device under test 200.
  • the installation direction of the device under test 200 can also be any other suitable direction.
  • the front and back direction of the body of the device under test 200 coincides with the rotation tangential direction of the device under test 200, and the body of the device under test 200
  • the width direction of is coincides with the radial direction of rotation of the device under test 200.
  • Step S102 Adjust the rotating arm 30 to a preset angle with the rotating shaft 20.
  • the rotating arm 30 rotates to the preset angle
  • the rotating arm 30 is positioned by the adjusting mechanism 40, so that the rotating arm 30 is maintained at the preset angle position.
  • the method before adjusting the preset angle between the rotating arm 30 and the rotating shaft 20, the method further includes: inputting preset test information to the control mechanism 102, and the preset test information includes preset acceleration information.
  • the tester inputs the preset acceleration information into the control mechanism 102 according to actual test requirements.
  • the preset acceleration information includes the magnitude of the preset acceleration, the loading time for applying the preset acceleration, and the angle between the direction of the preset acceleration and the coordinate system axis of the device under test 200.
  • the forward direction of the fuselage of the device under test 200 is the X direction
  • the width direction of the fuselage of the device under test 200 is the Y direction
  • the height direction of the fuselage of the device under test 200 is the Z direction
  • the angle between the direction of acceleration and the X direction is ⁇ x
  • the angle between the direction of the preset acceleration and the Y direction is ⁇ y
  • the angle between the direction of the preset acceleration and the Z direction is ⁇ z .
  • adjusting the predetermined angle between the rotating arm 30 and the rotating shaft 20 includes: adjusting the predetermined angle between the rotating arm 30 and the rotating shaft 20 according to a predetermined acceleration and gravitational acceleration.
  • adjusting the angle between the rotating arm 30 and the rotating shaft 20 according to the preset acceleration and gravitational acceleration includes: controlling the adjustment mechanism 40 to adjust the rotating arm 30 and the rotating shaft 20 according to the preset acceleration and gravitational acceleration. There is a preset angle between.
  • control mechanism 102 determines the preset angle between the rotating arm 30 and the rotating shaft 20 according to the preset acceleration and gravitational acceleration. After the control mechanism 102 determines the preset angle, the preset angle between the rotating arm 30 and the rotating shaft 20 can be adjusted by controlling the adjusting mechanism 40 to automatically and accurately adjust the angle between the rotating arm 30 and the rotating shaft 20. It provides a guarantee for reliably evaluating the mechanical performance of the device under test 200 under the condition of bearing the preset acceleration.
  • control mechanism 102 can output adjustment prompt information including the preset angle to prompt the tester to manually adjust the angle between the rotating arm 30 and the rotating shaft 20 to be a preset angle.
  • the adjustment prompt information may be output through at least one of text display or voice broadcast.
  • the distances from the two ends of the adjustment mechanism 40 to the end where the rotating shaft 20 and the rotating arm 30 are connected are a first distance and a second distance, respectively.
  • the distances from the two ends of the adjustment mechanism 40 to the connection between the rotating shaft 20 and the rotating arm 30 are the first distance and the second distance, respectively.
  • the connection between the rotating shaft 20 and the rotating arm 30 is O
  • the connection between one end of the adjusting mechanism 40 and the rotating shaft 20 is E
  • the other end of the adjusting mechanism 40 is connected with the rotating arm 30.
  • Is F the length of the line segment OE is the first distance
  • the length of the line segment OF is the second distance.
  • controlling the adjustment mechanism 40 to adjust a preset angle between the rotating arm 30 and the rotation axis 20 includes: according to the first distance, the second distance, the preset acceleration and the gravitational acceleration , Determine the preset length of the adjustment mechanism 40; control the operation of the adjustment mechanism 40 to adjust the length of the adjustment mechanism 40 to the preset length, so that the rotation arm 30 and the rotation shaft 20 have a preset angle.
  • the two ends of the adjusting mechanism 40 are respectively fixed to the rotating shaft 20 and the rotating arm 30.
  • the control mechanism 102 can determine the preset length of the adjustment mechanism 40 according to the first distance, the second distance, the preset acceleration, and the gravitational acceleration. After the control mechanism 102 determines the preset length, it sends the preset length to the adjustment mechanism 40.
  • the adjustment mechanism 40 receives the preset length sent by the control mechanism 102 and adjusts its own length to the preset length according to the preset length, so that the rotation arm 30 and the rotation shaft 20 have a preset angle.
  • control mechanism 102 can also directly control the adjustment mechanism 40 to adjust the length of the adjustment mechanism 40 to the preset length, so that the rotation arm 30 and the rotation shaft 20 are in a preset length. Set the angle.
  • determining the preset length of the adjustment mechanism 40 according to the first distance, the second distance, the preset acceleration, and the gravity acceleration includes: according to the magnitude and direction of the preset acceleration, and the magnitude and direction of the gravity acceleration, Determine the preset angle; determine the preset length of the adjustment mechanism 40 according to the first distance, the second distance, and the preset angle, so that the device under test 200 rotates at the radius of rotation defined by the preset length.
  • a preset acceleration of the device under test 200 exceeding 100 m/s 2 can be provided.
  • the direction of the preset acceleration coincides with the central axis of the rotating arm 30. In other embodiments, the direction of the preset acceleration does not coincide with the central axis of the rotating arm 30.
  • the direction of the preset acceleration coincides with the central axis of the rotating arm 30, and the gravitational acceleration is equal to the cosine value of the preset acceleration multiplied by the preset angle.
  • determining the preset angle according to the magnitude and direction of the preset acceleration and the magnitude and direction of the gravitational acceleration includes: determining the magnitude and direction of the preset acceleration according to the magnitude and direction of the preset acceleration, and the magnitude and direction of the gravitational acceleration based on the angle calculation formula
  • the preset angle; the angle calculation formula is:
  • g is the gravitational acceleration of the device under test 200
  • a is the preset acceleration
  • determining the preset length of the adjustment mechanism 40 according to the first distance, the second distance, and the preset angle includes: according to the square sum of the first distance and the second distance, and the first distance and the second distance Two times the product of the cosine value of the preset angle determines the preset length of the adjustment mechanism 40.
  • determining the preset length of the adjustment mechanism 40 according to the first distance, the second distance, and the preset angle includes: determining the adjustment based on the length calculation formula according to the first distance, the second distance, and the preset angle
  • the preset length of the mechanism 40; the length calculation formula is:
  • L 3 is the preset length of the adjustment mechanism 40
  • L 1 is the first distance
  • L 2 is the second distance
  • It is the preset angle.
  • the preset angle I 60°
  • the adjustment mechanism 40 includes a locking structure 41.
  • the locking structure 41 can lock the rotating arm 30 so that the rotating arm 30 maintains a preset angle.
  • the locking structure 41 may include at least one of a hydraulic self-locking structure, a ratchet tooth self-locking structure, a buckle locking structure, a screw locking structure, and the like.
  • the adjustment mechanism 40 includes a linear drive structure 42, which is connected to the middle of the rotating arm 30, and is used to drive the rotating arm 30 to rotate relative to the rotating shaft 20, so that there is a gap between the rotating arm 30 and the rotating shaft 20.
  • the included angle of makes the rotating arm 30 rotate relative to the rotating shaft 20 to a preset angle.
  • the linear drive structure 42 includes at least one of the following: a telescopic cylinder, a linear motor, and a rotary motor.
  • the adjustment mechanism 40 includes a connecting ring 43 and an angle adjustment assembly 44.
  • the connecting ring 43 is sleeved on the rotating shaft 20.
  • the two ends of the angle adjusting assembly 44 are respectively connected to the connecting ring 43 and the rotating arm 30.
  • the rotating shaft 20 is provided with a connecting ring 43, and the connecting ring 43 is fixed on the rotating shaft 20.
  • One end of the angle adjusting component 44 is fixedly connected to the connecting ring 43, and the other end of the angle adjusting component 44 is fixedly connected to the rotating arm 30.
  • the angle adjusting component 44 can adjust its own length, so that the rotating arm 30 is at a preset angle relative to the rotating shaft 20.
  • the connecting ring 43 is a slip ring.
  • the angle adjustment assembly 44 includes an electric push rod
  • positioning the rotating arm 30 through the adjustment mechanism 40 includes: supporting the rotating arm 30 through the electric push rod to position the rotating arm 30. After the angle between the rotating arm 30 and the rotating shaft 20 is adjusted to a preset angle, the rotating arm 30 is supported by an electric push rod, so that the rotating arm 30 can be maintained at a preset angle relative to the rotating shaft 20. Understandably, an electric push rod is also a linear drive.
  • Step S103 Control the driving mechanism 10 to rotate at a preset speed to test the mechanical performance of the device under test 200 at a preset acceleration; wherein the preset acceleration is adjusted by adjusting the preset angle of the rotating arm 30 relative to the rotating shaft 20 and /Or the preset rotation speed of the driving mechanism 10 is adjusted.
  • the device under test 200 is an unmanned aerial vehicle.
  • the test method of the embodiment of the present application is used to simulate the unmanned aerial vehicle flying around a point at a preset acceleration, and to test the mechanical performance of the unmanned aerial vehicle flying at the preset acceleration.
  • the UAV has centrifugal acceleration and gravity acceleration.
  • the mechanical performance of the unmanned aerial vehicle under the conditions of bearing centrifugal acceleration and gravitational acceleration is tested through the test method of the embodiment of the present application, which has high reliability and can quickly and effectively evaluate the equipment under test 200 The mechanical performance under the condition of withstand the preset acceleration.
  • control mechanism 102 is communicatively connected with the driving mechanism 10 through a wired connection or a wireless connection, so that the control mechanism 102 can control the driving mechanism 10 to rotate at a preset speed to drive the rotating shaft 20 to rotate.
  • the driving mechanism 10 drives the rotating shaft 20 to rotate through the transmission mechanism 60.
  • the driving mechanism 10 is in transmission connection with the transmission mechanism 60
  • the transmission mechanism 60 is in transmission connection with the rotation shaft 20, and the transmission mechanism 60 can drive the rotation shaft 20 to rotate under the action of the driving mechanism 10.
  • the transmission mechanism 60 includes at least one of a gear transmission structure, a belt transmission structure, a chain transmission structure, a worm gear transmission structure, and the like.
  • the driving shaft of the driving mechanism 10 and the rotating shaft 20 are fixedly connected coaxially.
  • the axis of the drive shaft of the drive mechanism 10 and the axis of the rotation shaft 20 are on the same straight line.
  • the driving shaft of the driving mechanism 10 and the rotating shaft 20 are fixedly connected non-coaxially.
  • the axis of the drive shaft of the drive mechanism 10 and the axis of the rotation shaft 20 are not on the same straight line.
  • the rotating arm 30 has a preset arm length. Controlling the driving mechanism 10 to rotate at the preset speed includes: determining the preset speed according to the preset acceleration, gravitational acceleration, and preset arm length; controlling the driving mechanism 10 to rotate at the preset speed.
  • determining the preset rotation speed according to the preset acceleration, gravitational acceleration, and preset arm length includes: determining the preset angle according to the magnitude and direction of the gravitational acceleration, and the magnitude and direction of the preset acceleration; Set the angle, gravitational acceleration, preset acceleration, and preset arm length to determine the preset speed.
  • the direction of the preset acceleration coincides with the central axis of the rotating arm 30, and the process of determining the preset angle refers to the process of determining the preset angle in any embodiment of step S102, which will not be repeated here.
  • the control mechanism 102 determines the preset angle, it determines the preset speed according to the preset angle, gravitational acceleration, preset acceleration, and preset arm length, so as to control the driving mechanism 10 to rotate at the preset speed.
  • the driving mechanism 10 includes a motor 11 and a gearbox 12.
  • the motor 11 is drivingly connected to the rotating shaft 20 through the gearbox 12.
  • the gearbox 12 can change the torque and rotation speed of the motor 11, and expand the range of variation of the torque and rotation speed of the motor 11.
  • the input end of the gearbox 12 is drivingly connected to the electric motor 11, and the output end of the gearbox 12 is drivingly connected to the rotating shaft 20.
  • the torque and/or rotation speed of the motor 11 is changed through the gearbox 12 to expand the range of variation of the torque and rotation speed of the motor 11.
  • the preset speed is inversely proportional to the sine value of the preset angle.
  • the preset acceleration is the preset combined acceleration of the preset centrifugal acceleration and the gravitational acceleration of the device under test 200.
  • determining the preset speed of the motor 11 according to the preset angle, preset arm length, transmission ratio of the gearbox 12, gravitational acceleration, and preset centrifugal acceleration includes: based on a rotational speed calculation formula, according to the preset angle , The preset arm length, the transmission ratio of the gearbox 12, the acceleration of gravity and the preset centrifugal acceleration determine the preset speed of the motor 11; the speed calculation formula is:
  • a r is the preset centrifugal acceleration of the device under test 200
  • a is the preset acceleration of the device under test 200
  • g is the gravitational acceleration of the device under test 200
  • L 0 is the preset length of the rotating arm 30
  • n is the motor
  • s is the transmission ratio of the gearbox 12, It is the preset angle.
  • the fixing mechanism 50 is directly connected or indirectly connected to the other end of the rotating arm 30.
  • the testing device 100 further includes an attitude adjustment mechanism 70, which is provided at the other end of the rotating arm 30, and the device under test 200 is connected to the attitude adjustment mechanism 70 to be installed on the rotating arm. 30.
  • the test method of the embodiment of the present application further includes: controlling the work of the attitude adjustment mechanism 70 to adjust the device under test 200 to a preset attitude.
  • the device under test 200 is mounted on the fixing mechanism 50, and the fixing mechanism 50 is connected to the attitude adjustment mechanism 70, so that the device under test 200 is mounted on the other end of the rotating arm 30.
  • control mechanism 102 is communicatively connected with the attitude adjustment mechanism 70.
  • the control mechanism 102 can send an attitude adjustment instruction to the attitude adjustment mechanism 70.
  • the attitude adjustment mechanism 70 receives the attitude adjustment instruction, it controls the attitude adjustment mechanism 70 to work to adjust the device under test 200 to a preset attitude.
  • the posture adjustment instruction includes target posture information.
  • control mechanism 102 may also directly control the operation of the attitude adjustment mechanism 70, so as to adjust the device under test 200 to a preset attitude.
  • the attitude adjustment mechanism 70 includes a three-axis rotation controller, which has a large attitude adjustment range and is highly practical.
  • the attitude adjustment mechanism 70 may also be a two-axis rotation controller or the like, which is not limited here.
  • the attitude adjustment mechanism 70 includes a pan/tilt.
  • controlling the work of the attitude adjustment mechanism 70 to adjust the device under test 200 to a preset attitude includes: determining the preset angle according to the magnitude and direction of the preset acceleration, and the magnitude and direction of the gravitational acceleration; The angle and the initial posture information of the device under test 200 determine the target posture information of the posture adjustment mechanism 70; according to the target posture information, the posture adjustment mechanism 70 is controlled to work to adjust the device under test 200 to a preset posture.
  • the direction of the preset acceleration coincides with the central axis of the rotating arm 30, and the process of determining the preset angle refers to the process of determining the preset angle in any embodiment of step S102, which will not be repeated here.
  • the control mechanism 102 determines the preset angle, it determines the target posture information of the posture adjustment mechanism 70 according to the preset angle and the initial posture information of the device under test 200.
  • the initial posture information includes the angle between the direction of the preset acceleration and the coordinate system axis of the device under test 200.
  • the forward direction of the fuselage of the device under test 200 is the X direction
  • the width direction of the fuselage of the device under test 200 is the Y direction
  • the height direction of the fuselage of the device under test 200 is the Z direction
  • the angle between the direction of acceleration and the X direction is ⁇ x
  • the angle between the direction of the preset acceleration and the Y direction is ⁇ y
  • the angle between the direction of the preset acceleration and the Z direction is ⁇ z
  • the initial posture information is ( ⁇ x , ⁇ y , ⁇ z ).
  • determining the target posture information of the posture adjustment mechanism 70 according to the preset angle and the initial posture information of the device under test 200 includes: based on the posture calculation formula, according to the preset angle and the initial posture information of the device under test 200 , Determine the target posture information of the posture adjustment mechanism 70; the posture calculation formula is:
  • ⁇ x1 , ⁇ y1 and ⁇ z1 are angle information of the three axes of the attitude adjustment mechanism 70 respectively, wherein the Y1 direction is the rotation direction of the device under test 200, and the Z1 direction is the length extension direction of the rotating arm 30.
  • the target attitude information ( ⁇ x1 , ⁇ y1 , ⁇ z1 ) can be determined.
  • the target posture information is sent to the posture adjustment mechanism 70.
  • the posture adjustment mechanism 70 receives the target posture information and controls its own work, thereby adjusting the device under test 200 to a preset posture.
  • control mechanism 102 may also control the work of the posture adjustment mechanism 70 to adjust the device under test 200 to a preset posture.
  • control mechanism 102 can output posture prompt information including the target posture information to prompt the tester to manually adjust the posture of the device under test 200 to a preset posture according to the target posture information.
  • the gesture prompt information can be output by at least one of text display or voice broadcast.
  • the control mechanism 102 can output posture prompt information including the target posture information to prompt the tester to manually adjust the work of the posture adjustment mechanism 70 according to the target posture information, thereby adjusting the device under test 200 Posture to preset posture.
  • the gesture prompt information can be output by at least one of text display or voice broadcast.
  • attitude adjustment mechanism 70 the relative direction of the preset acceleration and the device under test 200 can be adjusted arbitrarily.
  • the preset acceleration is the preset combined acceleration of the preset centrifugal acceleration and the gravitational acceleration of the device under test 200, and the direction of the preset centrifugal acceleration is perpendicular to the direction of the gravitational acceleration.
  • the direction of the preset centrifugal acceleration is parallel to the direction of the gravitational acceleration.
  • the angle between the direction of the preset centrifugal acceleration and the direction of the gravitational acceleration may also be an acute angle or an obtuse angle, which is not limited here.
  • the test method further includes: adjusting the preset rotation speed and/or preset angle according to the real acceleration and the preset acceleration, so as to ensure that the magnitude and direction of the preset acceleration are accurate, in order to reliably evaluate whether the device under test 200 is subjected to the The mechanical performance under the condition of preset acceleration provides guarantee.
  • the testing device 100 further includes an acceleration detection mechanism 80.
  • the testing method further includes: detecting the real acceleration during the rotation movement of the device under test 200 by the acceleration detection mechanism 80, so as to adjust the preset speed and/or the preset angle according to the real acceleration and the preset acceleration.
  • the acceleration detection mechanism 80 is communicatively connected with the control mechanism 102.
  • the acceleration detection mechanism 80 detects the real acceleration during the rotational movement of the device under test 200 and feeds back the real acceleration to the control mechanism 102.
  • the control mechanism 102 receives the real acceleration fed back by the acceleration detection mechanism 80, and adjusts the preset speed and/or the preset angle according to the real acceleration and the preset acceleration, so as to ensure that the magnitude and direction of the preset acceleration are accurate, and can be stable for a long time. Loading a large acceleration provides a guarantee for the reliable evaluation of the mechanical performance of the device under test 200 under the condition of withstanding the preset acceleration.
  • the acceleration detection mechanism 80 detects the real acceleration during the rotation movement of the device under test 200 according to a preset detection method.
  • the preset detection methods include real-time detection, timing detection, and so on.
  • the acceleration detection mechanism 80 detects the real acceleration during the rotation movement of the device under test 200 in real time, and feeds the real acceleration back to the control mechanism 102 in real time.
  • the control mechanism 102 receives the real acceleration fed back by the acceleration detection mechanism 80 in real time, and adjusts the preset speed and/or the preset angle in real time according to the real acceleration and the preset acceleration, thereby further ensuring that the magnitude and direction of the preset acceleration are accurate, which is a reliable evaluation
  • the mechanical performance of the device under test 200 under the condition of withstanding the preset acceleration provides a guarantee.
  • the acceleration detection mechanism 80 is provided on the fixing mechanism 50. In this way, when the fixing mechanism 50 rotates under the driving of the rotating arm 30, the acceleration detection mechanism 80 and the device under test 200 both follow the rotation, which ensures that the acceleration detection mechanism 80 and the device under test 200 are relative to each other during the rotation of the device under test 200. The position remains fixed. Compared with the acceleration detection mechanism 80 being fixed on the ground, the acceleration detection mechanism 80 provided on the fixing mechanism 50 has the characteristics of stability and easy positioning.
  • the acceleration detection mechanism 80 includes an inertial measurement unit.
  • the testing method further includes: after the rotation of the device under test 200 is completed, detaching the device under test 200 from the rotating arm 30; and observing whether the device under test 200 is deformed or cracks are generated.
  • the device under test 200 can be disassembled to observe the mechanical performance information of the device under test 200.
  • the mechanical performance test of the device under test 200 is unqualified. If the device under test 200 is not deformed and the deformation does not produce cracks, it is determined that the mechanical performance test of the device under test 200 is qualified.
  • the testing device 100 further includes a recording mechanism 90, and the recording mechanism 90 is used to record information of the device under test 200 when it is subjected to a preset acceleration.
  • the recording mechanism 90 is provided on the fixing mechanism 50. According to the information recorded by the recording mechanism 90, the test result information during the test of the device under test 200 can be determined.
  • the recording mechanism 90 includes a camera.
  • the testing method further includes: shooting a video or image of the device under test 200 when the device under test 200 is subjected to a preset acceleration through a shooting device; and acquiring mechanical performance information of the device under test 200 when the device under test 200 is rotating under the preset acceleration according to the video or image.
  • the photographing device includes a camera and the like.
  • the number of shooting devices can be designed according to actual needs, such as one, two, three, four or more.
  • the number of shooting devices is four, and the four shooting devices can shoot videos or images of the device under test 200 when the device under test 200 is subjected to a preset acceleration from different angles, so as to obtain the device under test 200 in a preset manner in multiple directions or in all directions. Information on the mechanical properties of the rotating motion under acceleration.
  • acquiring the mechanical performance information of the device under test 200 during a rotational movement at a preset acceleration according to a video or image includes: acquiring information about the mechanical performance of the device under test 200 during a rotational movement at a preset acceleration according to the video or image. Stiffness information and strength information.
  • the stiffness information includes whether the device under test 200 is deformed, and the strength information includes whether the device under test 200 has cracks.
  • the mechanical performance information corresponding to each test moment when the device under test 200 is rotated under a preset acceleration is acquired according to the video or image.
  • the mechanical performance of the device under test 200 during a 5 min rotation under a preset acceleration is tested by the test device 100 and the test method of the embodiment of the present application.
  • the video frame or image corresponding to 4min30S indicates that the device under test 200 is deformed and/or cracked. It can be seen that the device under test 200 can maintain the original when it is subjected to a preset acceleration of less than 4min30S.
  • the mechanical performance of the device under test 200 is qualified; when the preset acceleration is greater than or equal to 4min30S, the mechanical performance of the device under test 200 is unqualified.
  • the rotating shaft 20 drives the rotating arm 30 to rotate under the driving mechanism 10 at a preset speed, so that the device under test 200 at the other end of the rotating arm 30 has a preset acceleration , And then test the mechanical performance of the device under test 200 under the preset acceleration, can test the mechanical performance of the device under test 200 under the preset acceleration for a long time, accurately simulate the real working conditions of the device under test 200, and test the performance of the device under test 200 It occupies a small area, has low difficulty in implementation, has a wide range of applications, can continuously load large accelerations, has high reliability and low cost, and can quickly and effectively evaluate the mechanical performance of the device under test 200 under a preset acceleration.
  • FIG. 10 an embodiment of the present application provides a schematic structural diagram of a flight test system 1000.
  • the flight test system 1000 includes a test equipment 100 and an unmanned aerial vehicle 300.
  • the unmanned aerial vehicle 300 is installed on the fixing mechanism 50.
  • the rotating shaft 20 drives the rotating arm 30 to rotate under the driving mechanism 10 at a preset speed, so that the unmanned aerial vehicle 300 at the other end of the rotating arm 30 has a preset acceleration, and then the test
  • the mechanical performance of the human aircraft 300 under the preset acceleration can test the mechanical performance of the UAV 300 under the preset acceleration for a long time, accurately simulate the real working conditions of the UAV 300, and the test equipment 100 has a small footprint , Low difficulty in realization, wide application range, continuous loading of large acceleration, high reliability, low cost, and can quickly and effectively evaluate the mechanical performance of UAV 300 under the condition of preset acceleration.

Abstract

一种测试设备(100)、飞行测试系统(1000)和飞行测试方法,测试设备(100)包括驱动机构(10)、旋转轴(20)、旋转臂(30)、调节机构(40)、固定机构(50)以及控制机构(102),调节机构(40)用于在旋转臂(30)相对旋转轴(20)转动至预设角度时定位旋转臂(30),使得旋转臂(30)保持在预设角度的位置;控制机构(102)能够控制驱动机构(10)以预设转速旋转,以测试待测设备(200)在预设加速度下的机械性能;预设加速度通过调节旋转臂(30)相对于旋转轴(20)的预设角度和/或预设转速进行调节;固定机构(50)设置于旋转臂(30)的一端,用于固定待测设备(200),待测设备(200)安装在固定机构(50)上,以使测试设备(100)测试待测设备(200)的机械性能。

Description

测试设备、测试方法和飞行测试系统 技术领域
本申请涉及测试设备技术领域,尤其涉及一种测试设备、测试方法和飞行测试系统。
背景技术
无人机由于其稳定性好、抗干扰能力强、能够主动悬停并且对于起飞和降落的条件要求相对较低,在民用和军事等领域取得了较为迅速的发展和应用。由于无人机的特性,一旦发生事故可能对于人民生命财产安全造成严重损害,针对无人机安全的各类规范标准也在不断完善。对于无人机的性能安全测试提出了更高的要求,需要测试无人机或结构件整体承受长时间、多方向、高数值的平动加速度的承受能力。然而,目前还没有针对这种性能测试需求进行有效测试的设备和方法。
发明内容
基于此,本申请提供了一种测试设备、测试方法和飞行测试系统,旨在有效地测试待测设备在承受预设加速度情况下的机械性能。
根据本申请的第一方面,本申请提供了一种测试设备,用于测试待测设备在预设加速度情况下的机械性能,所述测试设备包括:
驱动机构;
旋转轴,所述驱动机构与所述旋转轴连接,所述旋转轴能够在所述驱动机构的驱动下旋转;
旋转臂,一端与所述旋转轴可转动连接,并能够在所述旋转轴的带动下旋转,所述旋转臂的另一端用于与所述待测设备连接;
调节机构,用于在所述旋转臂相对所述旋转轴转动至预设角度时定位所述旋转臂,使得所述旋转臂保持在所述预设角度的位置;
固定机构,设于所述旋转臂的另一端,用于固定待测设备;
控制机构,用于控制所述驱动机构驱动所述旋转轴旋转,
其中,所述控制机构能够控制所述驱动机构以预设转速旋转,以测试所述待测设备在所述预设加速度下的机械性能;所述预设加速度通过调节所述旋转臂相对于所述旋转轴的预设角度和/或所述驱动机构的预设转速进行调节。
根据本申请的第二方面,本申请提供了一种飞行测试系统,包括本申请第一方面的的测试设备;以及无人飞行器,所述无人飞行器安装于所述固定机构上。
根据本申请的第三方面,本申请提供了一种测试方法,用于测试待测设备在预设加速度情况下的机械性能,所述测试方法适用于本申请第一方面的测试设备,所述测试方法包括:将所述待测设备安装于所述旋转臂上;调节所述旋转臂与所述旋转轴之间呈预设角度,在所述旋转臂转动至预设角度时通过调节机构定位所述旋转臂,以使所述旋转臂保持在所述预设角度的位置;控制所述驱动机构以预设转速旋转,以测试所述待测设备在所述预设加速度下的机械性能;其中,所述预设加速度通过调节所述旋转臂相对于所述旋转轴的预设角度和/或所述驱动机构的预设转速进行调节。
本申请实施例提供了一种测试设备、测试方法和飞行测试系统,其旋转轴在驱动机构的预设转速带动下带动旋转臂旋转,从而使得位于旋转臂的另一端的待测设备具有预设加速度,进而测试待测设备在该预设加速度下的机械性能,能够测试待测设备在预设加速度情况下的机械性能,准确模拟待测设备的真实工况,测试设备的占地面积小,实现难度低,适用范围广,可靠性高,成本低,能够有效地评估待测设备在承受预设加速度的情况下的机械性能。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的测试设备的结构示意图;
图2是本申请一实施例提供的测试设备的结构示意图;
图3是本申请一实施例提供的测试设备的结构示意图;
图4是图3在A处的局部放大示意图;
图5是本申请实施例提供的一种测试方法的流程示意图;
图6是本申请实施例提供的旋转轴、旋转臂、调节机构之间的关系示意图;
图7是本申请实施例提供的预设加速度、重力加速度和预设离心加速度之间的关系示意图;
图8是本申请一实施例提供的测试装置的结构示意图;
图9是本申请一实施例提供的测试装置的结构示意图;
图10是本申请一实施例提供的飞行测试系统的结构示意图。
附图标记说明:
1000、飞行测试系统;
100、测试设备;
101、测试装置;
10、驱动机构;11、电机;12、变速箱;20、旋转轴;30、旋转臂;
40、调节机构;41、锁定结构;42、直线驱动结构;43、连接环;44、角度调节组件;
50、固定机构;60、传动机构;70、姿态调节机构;80、加速度检测机构;90、记录机构;
102、控制机构;103、底座;
200、待测设备;300、无人飞行器。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
还应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个” 及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本申请实施例提供的一种测试设备100的结构示意图。
请参阅图2,图2是本申请实施例提供的一种测试设备100的结构示意图。
如图1至图4所示,测试设备100包括测试装置101和控制机构102。测试装置101包括驱动机构10、旋转轴20、旋转臂30、调节机构40、固定机构50和控制机构102。
在一些实施方式中,驱动机构10与旋转轴20连接,旋转轴20能够在驱动机构10的驱动下旋转。
旋转臂30的一端能够在旋转轴20的带动下旋转。旋转臂30的另一端用于与待测设备200连接。示例性地,旋转轴20在驱动机构10的驱动下旋转时,旋转臂30能够跟随旋转轴20旋转。具体地,驱动机构10驱动旋转轴20旋转时,旋转臂30与旋转轴20同步旋转。
旋转臂30的一端与旋转轴20可转动连接。示例性地,旋转臂30的一端与旋转轴20铰接。调节机构40用于在旋转臂30相对旋转轴20转动至预设角度时定位旋转臂30,使得旋转臂30保持在预设角度的位置。
固定机构50设于旋转臂30的另一端,用于固定待测设备200。待测设备200能够安装在固定机构50上,以使测试设备100测试待测设备200的机械性能。
在一些实施方式中,待测设备200可以为无人飞行器。
在另一些实施方式中,待测设备200也可以为手持云台、相机、雷达等。
控制机构102用于控制驱动机构10驱动旋转轴20旋转。其中,控制机构102能够控制驱动机构10以预设转速旋转,以测试待测设备200在预设加速度下的机械性能。预设加速度通过调节旋转臂30相对于旋转轴20的预设角度和/或驱动机构10的预设转速进行调节。
在一些实施方式中,测试设备100还包括底座103。驱动机构10设于底座 103上。示例性地,底座103可以属于控制机构102的一部分,底座103与控制机构102也可以为相互独立的实体部件。
请参阅图5,图5是本申请实施例提供的一种测试方法的流程示意图。该测试方法可以应用在测试设备100中,用于测试待测设备200在预设加速度情况下的机械性能。
如图5所示,本申请实施例的测试方法包括步骤S101至步骤S103。
步骤S101、将待测设备200安装于旋转臂30上。
在一些实施方式中,将待测设备200安装于设于旋转臂30的另一端的固定机构50上。
示例性地,待测设备200的安装方向为待测设备200的前后方向与待测设备200的旋转径向方向重合,待测设备200的宽度方向与待测设备200的旋转切向方向重合。
可以理解地,待测设备200的安装方向也可以是其他任意合适的方向,比如待测设备200的机身的前后方向与待测设备200的旋转切向方向重合,待测设备200的机身的宽度方向与待测设备200的旋转径向方向重合。
步骤S102、调节旋转臂30与旋转轴20之间呈预设角度,在旋转臂30转动至预设角度时通过调节机构40定位旋转臂30,以使旋转臂30保持在预设角度的位置。
在一些实施方式中,调节旋转臂30与旋转轴20之间呈预设角度之前还包括:输入预设测试信息至控制机构102,预设测试信息包括预设加速度信息。
具体地,测试人员根据实际测试需求将预设加速度信息输入至控制机构102。该预设加速度信息包括预设加速度的大小,施加预设加速度的加载时间,以及预设加速度的方向与待测设备200的坐标系轴之间的夹角。
示例性地,假设待测设备200的机身的朝前方向为X方向,待测设备200的机身的宽度方向为Y方向,待测设备200的机身的高度方向为Z方向,则预设加速度的方向与X方向之间的夹角为θ x,预设加速度的方向与Y方向之间的夹角为θ y,预设加速度的方向与Z方向之间的夹角为θ z
在一些实施方式中,调节旋转臂30与旋转轴20之间呈预设角度,包括:根据预设加速度和重力加速度,调节旋转臂30与旋转轴20之间呈预设角度。
在一些实施方式中,根据预设加速度和重力加速度调节旋转臂30与旋转轴 20之间呈预设角度,包括:根据预设加速度和重力加速度,控制调节机构40调节旋转臂30与旋转轴20之间呈预设角度。
具体地,控制机构102根据预设加速度和重力加速度,确定旋转臂30与旋转轴20之间的预设角度。控制机构102确定该预设角度后,可以通过控制调节机构40调节旋转臂30与旋转轴20之间呈预设角度,以自动并准确地调节旋转臂30与旋转轴20之间的夹角,为可靠评估待测设备200在承受该预设加速度的情况下的机械性能提供了保障。
可以理解地,控制机构102确定该预设角度后,可以输出包括该预设角度的调节提示信息以提示测试人员手动调节旋转臂30与旋转轴20之间的夹角呈预设角度。调节提示信息可以通过文字显示或者语音播报等中的至少一种方式输出。
在一些实施方式中,调节机构40的两端到旋转轴20与旋转臂30连接的一端的距离分别为第一距离和第二距离。示例性地,调节机构40的两端到旋转轴20与旋转臂30的连接处的距离分别为第一距离和第二距离。例如,如图6所示,旋转轴20中与旋转臂30的连接处为O,调节机构40的一端与旋转轴20的连接处为E,调节机构40的另一端与旋转臂30的连接处为F,线段OE的长度即为第一距离,线段OF的长度即为即为第二距离。
在一些实施方式中,根据预设加速度和重力加速度,控制调节机构40调节旋转臂30与旋转轴20之间呈预设角度,包括:根据第一距离、第二距离、预设加速度和重力加速度,确定调节机构40的预设长度;控制调节机构40工作以调节调节机构40的长度至预设长度,以使旋转臂30与旋转轴20之间呈预设角度。
调节机构40的两端分别与旋转轴20和旋转臂30固定,调节机构40自身的长度变化时,旋转轴20与旋转臂30之间的夹角也随之发生改变。因而,控制机构102可以根据第一距离、第二距离、预设加速度和重力加速度,确定调节机构40的预设长度。控制机构102确定预设长度后,将预设长度发送至调节机构40。调节机构40接收控制机构102发送的预设长度并根据该预设长度调节自身的长度至该预设长度,从而使得旋转臂30与旋转轴20之间呈预设角度。
在另一些实施方式中,控制机构102确定预设长度后,控制机构102也可以直接控制调节机构40调节调节机构40的长度至预设长度,从而使得旋转臂 30与旋转轴20之间呈预设角度。
在一些实施方式中,根据第一距离、第二距离、预设加速度和重力加速度,确定调节机构40的预设长度,包括:根据预设加速度的大小和方向,以及重力加速度的大小和方向,确定预设角度;根据第一距离、第二距离和预设角度,确定调节机构40的预设长度,以使待测设备200在预设长度限定的旋转半径旋转。
示例性地,待测设备200的旋转半径为1m并以10rad/s旋转时,即可提供待测设备200超过100m/s 2的预设加速度。
在一些实施方式中,预设加速度的方向与旋转臂30的中心轴线重合。在其他实施方式中,预设加速度的方向与旋转臂30的中心轴线不重合。
示例性地,预设加速度的方向与旋转臂30的中心轴线重合,重力加速度等于预设加速度乘以预设角度的余弦值。具体地,根据预设加速度的大小和方向,以及重力加速度的大小和方向,确定预设角度,包括:基于角度计算公式,根据预设加速度的大小和方向,以及重力加速度的大小和方向,确定该预设角度;角度计算公式为:
Figure PCTCN2020097824-appb-000001
其中,
Figure PCTCN2020097824-appb-000002
为预设角度,g为待测设备200的重力加速度,a为预设加速度。
比如,如图7所示,若g=9.8m/s 2,a=19.6m/s 2,则预设角度
Figure PCTCN2020097824-appb-000003
在一些实施方式中,根据第一距离、第二距离和预设角度,确定调节机构40的预设长度,包括:根据第一距离与第二距离的平方和,以及第一距离、第二距离与预设角度的余弦值的乘积的两倍,确定调节机构40的预设长度。
在一些实施方式中,根据第一距离、第二距离和预设角度,确定调节机构40的预设长度,包括:基于长度计算公式,根据第一距离、第二距离和预设角度,确定调节机构40的预设长度;长度计算公式为:
Figure PCTCN2020097824-appb-000004
其中,L 3为调节机构40的预设长度,L 1为第一距离,L 2为第二距离,
Figure PCTCN2020097824-appb-000005
为预设角度。
比如,若第一距离L 1=2m,第二距离L 2=1m,预设角度
Figure PCTCN2020097824-appb-000006
为60°,则
Figure PCTCN2020097824-appb-000007
如图8所示,在一些实施方式中,调节机构40包括锁定结构41,当旋转臂30转动至预设角度时,锁定结构41能够锁定旋转臂30,以使旋转臂30保持预设角度的位置。示例性地,锁定结构41可以包括液压自锁结构、棘轮齿自锁结构、卡扣锁定结构、螺丝锁定结构等中的至少一种。
在一些实施方式中,调节机构40包括直线驱动结构42,直线驱动结构42与旋转臂30的中部连接,用于带动旋转臂30相对于旋转轴20转动,从而旋转臂30与旋转轴20之间的夹角,使得旋转臂30相对旋转轴20转动至预设角度。示例性地,直线驱动结构42包括如下至少一种:伸缩气缸,直线电机,旋转电机。
如图2和图3所示,在一些实施方式中,调节机构40包括连接环43和角度调节组件44。连接环43套设于旋转轴20上。角度调节组件44的两端分别连接于连接环43和旋转臂30。
示例性地,旋转轴20穿设连接环43,连接环43固定于旋转轴20上。角度调节组件44的一端固定连接于连接环43,角度调节组件44的另一端固定连接于旋转臂30。角度调节组件44能够调节自身的长度,从而使旋转臂30相对旋转轴20呈预设角度。
在一些实施方式中,连接环43为滑环。
在一些实施方式中,角度调节组件44包括电动推杆,通过调节机构40定位旋转臂30,包括:通过电动推杆顶持旋转臂30以定位旋转臂30。当旋转臂30与旋转轴20之间的夹角调节至预设角度后,通过电动推杆顶持旋转臂30,以使得旋转臂30能够相对旋转轴20保持在预设角度的位置。可以理解地,电动推杆亦即直线驱动器。
步骤S103、控制驱动机构10以预设转速旋转,以测试待测设备200在预设加速度下的机械性能;其中,预设加速度通过调节旋转臂30相对于所述旋转轴20的预设角度和/或驱动机构10的预设转速进行调节。
在一些实施方式中,待测设备200为无人飞行器。本申请实施例的测试方法用于模拟无人飞行器在预设加速度下绕点飞行,并测试无人飞行器在预设加速度下飞行的机械性能。
具体地,在无人飞行器对一些兴趣点(比如事故发生点、灾难频发点、输电线路故障点)等进行绕点飞行监控过程中,无人飞行器具有离心加速度和重 力加速度。为了准确模拟测试无人飞行器的真实工况,通过本申请实施例的测试方法测试无人飞行器在承载离心加速度和重力加速度情况下的机械性能,可靠性高,能够快速有效地评估待测设备200在承受预设加速度的情况下的机械性能。
示例性地,控制机构102通过有线连接方式或无线连接方式与驱动机构10通信连接,使得控制机构102能够控制驱动机构10以预设转速旋转以带动旋转轴20旋转。
如图9所示,在一些实施方式中,驱动机构10通过传动机构60带动旋转轴20转动。具体地,驱动机构10与传动机构60传动连接,传动机构60与旋转轴20传动连接,传动机构60在驱动机构10的作用下能够带动旋转轴20旋转。示例性地,传动机构60包括齿轮传动结构、带传动结构、链传动结构、涡轮蜗杆传动结构等中的至少一种。
在一些实施方式中,驱动机构10的驱动轴与旋转轴20共轴固定连接。示例性地,驱动机构10的驱动轴的轴线与旋转轴20的轴线在同一直线上。
在另一些实施方式中,驱动机构10的驱动轴与旋转轴20非共轴固定连接。示例性地,驱动机构10的驱动轴的轴线与旋转轴20的轴线不在同一直线上。
在一些实施方式中,旋转臂30具有预设臂长。控制驱动机构10以预设转速旋转,包括:根据预设加速度、重力加速度和预设臂长,确定预设转速;控制驱动机构10以预设转速旋转。
在一些实施方式中,根据预设加速度、重力加速度和预设臂长,确定预设转速,包括:根据重力加速度的大小和方向,以及预设加速度的大小和方向,确定预设角度;根据预设角度、重力加速度、预设加速度以及预设臂长,确定预设转速。
示例性地,预设加速度的方向与旋转臂30的中心轴线重合,预设角度的确定过程参照步骤S102中任一实施方式中的预设角度的确定过程,在此不再赘述。控制机构102确定预设角度后,根据该预设角度、重力加速度、预设加速度和预设臂长,确定预设转速,以控制驱动机构10以该预设转速旋转。
如图2和图3所示,在一些实施方式中,驱动机构10包括电机11和变速箱12。电机11通过变速箱12与旋转轴20传动连接。变速箱12能够改变电机11的转矩和转速,扩大电机11的转矩和转速的变化范围。示例性地,变速箱 12的输入端传动连接于电机11,变速箱12的输出端传动连接于旋转轴20。通过变速箱12改变电机11的转矩和/或转速,扩大电机11的转矩和转速的变化范围。
根据预设角度、重力加速度、预设加速度以及预设臂长,确定预设转速,包括:根据预设角度、预设臂长、变速箱12的传动比、重力加速度以及预设离心加速度,确定电机11的预设转速。
示例性地,预设离心加速度一定时,预设转速与预设角度的正弦值成反比。预设加速度为待测设备200的预设离心加速度和重力加速度的预设合加速度。
在一些实施方式中,根据预设角度、预设臂长、变速箱12的传动比、重力加速度以及预设离心加速度,确定电机11的预设转速,包括:基于转速计算公式,根据预设角度、预设臂长、变速箱12的传动比、重力加速度以及预设离心加速度,确定电机11的预设转速;转速计算公式为:
Figure PCTCN2020097824-appb-000008
其中,a r为待测设备200的预设离心加速度,a为待测设备200的预设加速度,g为待测设备200的重力加速度,L 0为旋转臂30的预设长度,n为电机11的预设转速,s为变速箱12的传动比,
Figure PCTCN2020097824-appb-000009
为预设角度。
在一些实施方式中,固定机构50直接连接或者间接连接于旋转臂30的另一端。
如图9所示,在一些实施方式中,测试设备100还包括姿态调节机构70,姿态调节机构70设于旋转臂30的另一端,待测设备200与姿态调节机构70连接以安装于旋转臂30。本申请实施方式的测试方法还包括:控制姿态调节机构70工作以调节待测设备200至预设姿态。
示例性地,待测设备200安装于固定机构50上,固定机构50与姿态调节机构70连接,从而使得待测设备200安装于旋转臂30的另一端。
具体地,控制机构102与姿态调节机构70通信连接。控制机构102能够发送姿态调节指令至姿态调节机构70。姿态调节机构70接收到该姿态调节指令时,控制姿态调节机构70工作以调节待测设备200至预设姿态。示例性地,姿态调节指令包括目标姿态信息。
在其他实施方式中,控制机构102也可以直接控制姿态调节机构70工作,从而调节待测设备200至预设姿态。
示例性地,姿态调节机构70包括三轴转动控制器,三轴转动控制器具有姿态调节范围大,实用性强。示例性地,姿态调节机构70也可以是二轴转动控制器等,在此不作限制。
在一些实施方式中,姿态调节机构70包括云台。
在一些实施方式中,控制姿态调节机构70工作以调节待测设备200至预设姿态,包括:根据预设加速度的大小和方向,以及重力加速度的大小和方向,确定预设角度;根据预设角度和待测设备200的初始姿态信息,确定姿态调节机构70的目标姿态信息;根据目标姿态信息,控制姿态调节机构70工作以调节待测设备200至预设姿态。
示例性地,预设加速度的方向与旋转臂30的中心轴线重合,预设角度的确定过程参照步骤S102中任一实施方式中的预设角度的确定过程,在此不再赘述。控制机构102确定该预设角度后,根据预设角度和待测设备200的初始姿态信息,确定姿态调节机构70的目标姿态信息。
具体地,初始姿态信息包括预设加速度的方向与待测设备200的坐标系轴之间的夹角。
示例性地,假设待测设备200的机身的朝前方向为X方向,待测设备200的机身的宽度方向为Y方向,待测设备200的机身的高度方向为Z方向,则预设加速度的方向与X方向之间的夹角为θ x,预设加速度的方向与Y方向之间的夹角为θ y,预设加速度的方向与Z方向之间的夹角为θ z。示例性地,初始姿态信息为(θ xyz)。
在一些实施方式中,根据预设角度和待测设备200的初始姿态信息,确定姿态调节机构70的目标姿态信息,包括:基于姿态计算公式,根据预设角度和待测设备200的初始姿态信息,确定姿态调节机构70的目标姿态信息;姿态计算公式为:
Figure PCTCN2020097824-appb-000010
其中,θ x1、θ y1和θ z1分别为姿态调节机构70的三个轴的角度信息,其中Y1方向为待测设备200的旋转方向,Z1方向为旋转臂30的长度延伸方向。
基于上述姿态计算公式,可以确定目标姿态信息(θ x1y1z1)。
在确定目标姿态信息后,将该目标姿态信息发送至姿态调节机构70。姿态调节机构70接收该目标姿态信息,控制自身工作,从而调节待测设备200至预 设姿态。
在另一些实施方式中,控制机构102确定目标姿态信息后,也可以由控制机构102控制姿态调节机构70工作,从而调节待测设备200至预设姿态。
在一些实施方式中,控制机构102确定目标姿态信息后,可以输出包括目标姿态信息的姿态提示信息,以提示测试人员根据该目标姿态信息手动调节待测设备200的姿态至预设姿态。姿态提示信息可以通过文字显示或者语音播报等中的至少一种方式输出。
在一些实施方式中,控制机构102确定目标姿态信息后,可以输出包括目标姿态信息的姿态提示信息,以提示测试人员根据该目标姿态信息手动调节姿态调节机构70工作,从而调节待测设备200的姿态至预设姿态。姿态提示信息可以通过文字显示或者语音播报等中的至少一种方式输出。
可以理解地,通过姿态调节机构70,能够实现预设加速度的方向与待测设备200的相对方向任意可调。
在一些实施方式中,预设加速度为待测设备200的预设离心加速度和重力加速度的预设合加速度,预设离心加速度的方向与重力加速度的方向垂直。
在另一些实施方式中,预设离心加速度的方向与重力加速度的方向平行。在又一些实施方式中,预设离心加速度的方向与重力加速度的方向之间的夹角也可以为锐角或者钝角,在此不作限定。
在一些实施方式中,测试方法还包括:根据真实加速度和预设加速度调节预设转速和/或预设角度,从而确保预设加速度的大小和方向准确,为可靠评估待测设备200在承受该预设加速度的情况下的机械性能提供了保障。
如图9所示,在一些实施方式中,测试设备100还包括加速度检测机构80。测试方法还包括:通过加速度检测机构80检测待测设备200旋转运动过程中的真实加速度,以根据真实加速度和预设加速度调节预设转速和/或预设角度。
具体地,加速度检测机构80与控制机构102通信连接。加速度检测机构80检测待测设备200旋转运动过程中的真实加速度,并将真实加速度反馈至控制机构102。控制机构102接收加速度检测机构80反馈的真实加速度,并根据该真实加速度和预设加速度调节预设转速和/或预设角度,从而确保预设加速度的大小和方向准确,能够长时间并稳定地加载大加速度,为可靠评估待测设备200在承受该预设加速度的情况下的机械性能提供了保障。
示例性地,加速度检测机构80按照预设检测方式检测待测设备200旋转运动过程中的真实加速度。该预设检测方式包括实时检测、定时检测等。
比如,加速度检测机构80实时检测待测设备200旋转运动过程中的真实加速度,并将真实加速度实时反馈至控制机构102。控制机构102实时接收加速度检测机构80反馈的真实加速度,并根据该真实加速度和预设加速度实时调节预设转速和/或预设角度,从而进一步确保预设加速度的大小和方向准确,为可靠评估待测设备200在承受该预设加速度的情况下的机械性能提供了保障。
在一些实施方式中,加速度检测机构80设于固定机构50上。如此,在固定机构50在旋转臂30的带动下旋转时,加速度检测机构80和待测设备200均跟随旋转,保证了在待测设备200旋转过程中加速度检测机构80与待测设备200的相对位置保持固定。与加速度检测机构80固定在地面上相比,设于固定机构50上的加速度检测机构80具有稳定且便于定位等特点。
在一些实施方式中,加速度检测机构80包括惯性测量单元。
在一些实施方式中,测试方法还包括:当待测设备200旋转结束后,将待测设备200从旋转臂30上拆卸下来;观察待测设备200是否发生形变或者是否产生裂缝。
具体地,当待测设备200旋转结束后或者测试结束后,可以将待测设备200拆卸下来观察待测设备200的机械性能信息。
示例性地,当待测设备200旋转结束后,若待测设备200发生形变和/或形变产生裂缝,则确定待测设备200的机械性能测试不合格。若待测设备200未发生形变且形变未产生裂缝,则确定待测设备200的机械性能测试合格。
如图9所示,在一些实施方式中,测试设备100还包括记录机构90,记录机构90用于记录待测设备200在承受预设加速度时的信息。示例性地,记录机构90设置在固定机构50上。根据该记录机构90记录的信息,可以确定待测设备200测试过程中的测试结果信息。
在一些实施方式中,记录机构90包括拍摄装置。测试方法还包括:通过拍摄装置拍摄待测设备200在承受预设加速度时的视频或图像;根据视频或图像获取待测设备200在预设加速度下进行旋转运动时的机械性能信息。
具体地,拍摄装置包括摄像头等。拍摄装置的数量可以根据实际需求进行设计,比如一个、两个、三个、四个或者更多。示例性地,拍摄装置的数量为 四个,四个拍摄装置可以从不同角度拍摄待测设备200在承受预设加速度时的视频或图像,以多方位或者全方位获取待测设备200在预设加速度下进行旋转运动时的机械性能信息。
在一些实施方式中,根据视频或图像获取待测设备200在预设加速度下进行旋转运动时的机械性能信息,包括:根据视频或图像获取待测设备200在预设加速度下进行旋转运动时的刚度信息和强度信息。
在一些实施方式中,刚度信息包括待测设备200是否形变,强度信息包括待测设备200是否产生裂缝。
具体地,根据视频或图像获取待测设备200在预设加速度下进行旋转运动时各个测试时刻下对应的机械性能信息。
示例性地,假设通过本申请实施例的测试设备100和测试方法测试待测设备200在预设加速度下旋转5min的过程中机械性能。拍摄装置拍摄的视频或图像中,4min30S所对应的视频帧或者图像表示待测设备200发生形变和/或产生裂缝,则可知,待测设备200在承受预设加速度小于4min30S时,能够保持原有的机械性能,机械性能合格;在承受预设加速度大于或者等于4min30S时,待测设备200的机械性能不合格。
本申请实施例提供的测试设备100和测试方法,旋转轴20在驱动机构10以预设转速带动下带动旋转臂30旋转,从而使得位于旋转臂30的另一端的待测设备200具有预设加速度,进而测试待测设备200在该预设加速度下的机械性能,能够测试待测设备200长时间在预设加速度情况下的机械性能,准确模拟待测设备200的真实工况,测试设备100的占地面积小,实现难度低,适用范围广,可持续加载大加速度,可靠性高、成本低,可快速有效地评估待测设备200在承受预设加速度的情况下的机械性能。
请参阅图10,本申请实施例提供一种飞行测试系统1000的结构示意图。飞行测试系统1000包括测试设备100和无人飞行器300。无人飞行器300安装于固定机构50上。
本申请实施例提供的测试系统,旋转轴20在驱动机构10以预设转速带动下带动旋转臂30旋转,从而使得位于旋转臂30的另一端的无人飞行器300具有预设加速度,进而测试无人飞行器300在该预设加速度下的机械性能,能够测试无人飞行器300长时间在预设加速度情况下的机械性能,准确模拟无人飞 行器300的真实工况,测试设备100的占地面积小,实现难度低,适用范围广,可持续加载大加速度,可靠性高、成本低,可快速有效地评估无人飞行器300在承受预设加速度的情况下的机械性能。
应当理解,在此本申请中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (60)

  1. 一种测试设备,用于测试待测设备在预设加速度情况下的机械性能,其特征在于,所述测试设备包括:
    驱动机构;
    旋转轴,所述驱动机构与所述旋转轴连接,所述旋转轴能够在所述驱动机构的驱动下旋转;
    旋转臂,一端与所述旋转轴可转动连接,并能够在所述旋转轴的带动下旋转,所述旋转臂的另一端用于与所述待测设备连接;
    调节机构,用于在所述旋转臂相对所述旋转轴转动至预设角度时定位所述旋转臂,使得所述旋转臂保持在所述预设角度的位置;
    固定机构,设于所述旋转臂的另一端,用于固定待测设备;
    控制机构,用于控制所述驱动机构驱动所述旋转轴旋转,
    其中,所述控制机构能够控制所述驱动机构以预设转速旋转,以测试所述待测设备在预设加速度下的机械性能;所述预设加速度通过调节所述旋转臂相对于所述旋转轴的预设角度和/或所述驱动机构的预设转速进行调节。
  2. 根据权利要求1所述的测试设备,其特征在于,所述驱动机构通过传动机构带动所述旋转轴转动。
  3. 根据权利要求1所述的测试设备,其特征在于,所述驱动机构的驱动轴与所述旋转轴共轴固定连接。
  4. 根据权利要求1所述的测试设备,其特征在于,所述驱动机构包括:
    电机;
    变速箱,所述电机通过所述变速箱与所述旋转轴传动连接。
  5. 根据权利要求1所述的测试设备,其特征在于,所述调节机构包括锁定结构,当所述旋转臂转动至预设角度时,所述锁定结构能够锁定所述旋转臂,以使所述旋转臂保持所述预设角度的位置。
  6. 根据权利要求1所述的测试设备,其特征在于,所述调节机构包括直线驱动结构,所述直线驱动结构与所述旋转臂的中部连接,用于带动所述旋转臂相对于所述旋转轴转动。
  7. 根据权利要求6所述的测试设备,其特征在于,所述直线驱动结构包括如下至少一种:伸缩气缸,直线电机,旋转电机。
  8. 根据权利要求1所述的测试设备,其特征在于,所述调节机构包括:
    连接环,套设于所述旋转轴上;
    角度调节组件,两端分别连接于所述连接环和所述旋转臂。
  9. 根据权利要求8所述的测试设备,其特征在于,所述连接环为滑环。
  10. 根据权利要求9所述的测试设备,其特征在于,所述角度调节组件包括电动推杆,所述电动推杆能够顶持所述旋转臂,以使得所述旋转臂能够相对所述旋转轴保持在所述预设角度的位置。
  11. 根据权利要求1所述的测试设备,其特征在于,所述测试设备还包括:
    姿态调节机构,设于所述旋转臂的另一端,所述待测设备与所述姿态调节机构连接以安装于所述旋转臂;所述控制机构与所述姿态调节机构通信连接,以控制所述姿态调节机构调节所述待测设备的姿态。
  12. 根据权利要求11所述的测试设备,其特征在于,所述姿态调节机构包括三轴转动控制器。
  13. 根据权利要求11所述的测试设备,其特征在于,所述姿态调节机构包括云台。
  14. 根据权利要求1所述的测试设备,其特征在于,所述预设加速度的方向与所述旋转臂的中心轴线重合。
  15. 根据权利要求1所述的测试设备,其特征在于,所述预设加速度为待测设备的预设离心加速度和重力加速度的预设合加速度,所述预设离心加速度的方向与所述重力加速度的方向垂直。
  16. 根据权利要求1所述的测试设备,其特征在于,所述测试设备还包括:
    加速度检测机构,与所述控制机构通信连接,用于检测所述待测设备旋转运动过程中的真实加速度,以使所述控制机构根据所述真实加速度和所述预设加速度调节所述预设转速和/或所述预设角度。
  17. 根据权利要求16所述的测试设备,其特征在于,所述加速度检测机构设于所述固定机构上。
  18. 根据权利要求16所述的测试设备,其特征在于,所述加速度检测机构包括惯性测量单元。
  19. 根据权利要求1所述的测试设备,其特征在于,所述测试设备还包括:
    记录机构,设置在所述固定机构上,用于记录所述待测设备在承受所述预设加速度时的信息。
  20. 根据权利要求19所述的测试设备,其特征在于,所述记录机构包括拍摄装置,所述拍摄装置用于拍摄所述待测设备在承受所述预设加速度时的视频或图像,所述视频和图像用于获取所述待测设备在所述预设加速度下进行旋转运动时的机械性能信息。
  21. 根据权利要20所述的测试设备,其特征在于,所述机械性能信息包括刚度信息或者强度信息。
  22. 根据权利要求21所述的测试设备,其特征在于,所述刚度信息包括所述待测设备是否形变,所述强度信息包括所述待测设备是否产生裂缝。
  23. 根据权利要求1所述的测试设备,其特征在于,所述测试设备用于模拟无人飞行器在所述预设加速度下绕点飞行,并测试所述无人飞行器在所述预设加速度下飞行的机械性能。
  24. 一种飞行测试系统,其特征在于,包括:
    权利要求1-23任一所述的测试设备;以及
    无人飞行器,所述无人飞行器安装于所述固定机构上。
  25. 一种测试方法,用于测试待测设备在预设加速度情况下的机械性能,其特征在于,所述测试方法适用于权利要求1-23任一项所述的测试设备,所述测试方法包括:
    将所述待测设备安装于所述旋转臂上;
    调节所述旋转臂与所述旋转轴之间呈预设角度,在所述旋转臂转动至预设角度时通过调节机构定位所述旋转臂,以使所述旋转臂保持在所述预设角度的位置;
    控制所述驱动机构以预设转速旋转,以测试所述待测设备在预设加速度下的机械性能;其中,所述预设加速度通过调节所述旋转臂相对于所述旋转轴的预设角度和/或所述驱动机构的预设转速进行调节。
  26. 根据权利要求25所述的测试方法,其特征在于,所述调节所述旋转臂与所述旋转轴之间呈预设角度,包括:
    根据预设加速度和重力加速度,调节所述旋转臂与所述旋转轴之间呈预设 角度。
  27. 根据权利要求26所述的测试方法,其特征在于,所述根据预设加速度和重力加速度,调节所述旋转臂与所述旋转轴之间呈预设角度,包括:
    根据预设加速度和重力加速度,控制所述调节机构调节所述旋转臂与所述旋转轴之间呈预设角度。
  28. 根据权利要求27所述的测试方法,其特征在于,所述调节机构的两端到所述旋转轴与所述旋转臂连接的一端的距离分别为第一距离和第二距离,所述根据预设加速度和重力加速度,控制所述调节机构调节所述旋转臂与所述旋转轴之间呈预设角度,包括:
    根据所述第一距离、所述第二距离、所述预设加速度和所述重力加速度,确定所述调节机构的预设长度;
    控制所述调节机构工作以调节所述调节机构的长度至所述预设长度,以使所述旋转臂与所述旋转轴之间呈预设角度。
  29. 根据权利要求28所述的测试方法,其特征在于,所述根据所述第一距离、所述第二距离、所述预设加速度和所述重力加速度,确定所述调节机构的预设长度,包括:
    根据所述预设加速度的大小和方向,以及所述重力加速度的大小和方向,确定所述预设角度;
    根据所述第一距离、所述第二距离和所述预设角度,确定所述调节机构的预设长度,以使所述待测设备在所述预设长度限定的旋转半径旋转。
  30. 根据权利要求29所述的测试方法,其特征在于,所述根据所述预设加速度的大小和方向,以及所述重力加速度的大小和方向,确定所述预设角度,包括:
    基于角度计算公式,根据所述预设加速度的大小和方向,以及所述重力加速度的大小和方向,确定所述预设角度;所述角度计算公式为:
    Figure PCTCN2020097824-appb-100001
    其中,
    Figure PCTCN2020097824-appb-100002
    为所述预设角度,g为待测设备的重力加速度,a为所述预设加速度。
  31. 根据权利要求29所述的测试方法,其特征在于,所述根据所述第一距离、所述第二距离和所述预设角度,确定所述调节机构的预设长度,包括:
    基于长度计算公式,根据所述第一距离、所述第二距离和所述预设角度,确定所述调节机构的预设长度;所述长度计算公式为:
    Figure PCTCN2020097824-appb-100003
    其中,L 3为调节机构的预设长度,L 1为所述第一距离,L 2为所述第二距离,
    Figure PCTCN2020097824-appb-100004
    为所述预设角度。
  32. 根据权利要求28所述的测试方法,其特征在于,所述调节机构包括:
    连接环,套设于所述旋转轴上;
    角度调节组件,两端分别连接于所述连接环和所述旋转臂。
  33. 根据权利要求32所述的测试方法,其特征在于,所述连接环为滑环。
  34. 根据权利要求32所述的测试方法,其特征在于,所述角度调节组件包括电动推杆;所述通过调节机构定位所述旋转臂,包括:
    通过所述电动推杆顶持所述旋转臂以定位所述旋转臂。
  35. 根据权利要求25所述的测试方法,其特征在于,所述调节机构包括锁定结构,当所述旋转臂转动至预设角度时,所述锁定结构能够锁定所述旋转臂,以使所述旋转臂保持所述预设角度的位置。
  36. 根据权利要求25所述的测试方法,其特征在于,所述调节机构包括直线驱动结构,所述直线驱动结构与所述旋转臂的中部连接,用于带动所述旋转臂相对于所述旋转轴转动。
  37. 根据权利要求36所述的测试方法,其特征在于,所述直线驱动结构包括如下至少一种:伸缩气缸,直线电机,旋转电机。
  38. 根据权利要求25所述的测试方法,其特征在于,所述驱动机构通过传动机构带动所述旋转轴转动。
  39. 根据权利要求25所述的测试方法,其特征在于,所述驱动机构的驱动轴与所述旋转轴共轴固定连接。
  40. 根据权利要求25所述的测试方法,其特征在于,所述旋转臂具有预设臂长;所述控制所述驱动机构以预设转速旋转,包括:
    根据所述预设加速度、重力加速度和所述预设臂长,确定所述预设转速;
    控制所述驱动机构以所述预设转速旋转。
  41. 根据权利要求40所述的测试方法,其特征在于,所述根据所述预设加速度、重力加速度和所述预设臂长,确定所述预设转速,包括:
    根据重力加速度的大小和方向,以及预设加速度的大小和方向,确定所述预设角度;
    根据所述预设角度、所述重力加速度、所述预设加速度以及所述预设臂长,确定所述预设转速。
  42. 根据权利要求41所述的测试方法,其特征在于,所述驱动机构包括电机和变速箱;所述根据所述预设角度、所述重力加速度、所述预设加速度以及所述预设臂长,确定所述预设转速,包括:
    根据所述预设角度、所述预设臂长、所述变速箱的传动比、所述重力加速度以及所述预设离心加速度,确定所述电机的预设转速。
  43. 根据权利要求42所述的测试方法,其特征在于,所述根据所述预设角度、所述预设臂长、所述变速箱的传动比、所述重力加速度以及所述预设离心加速度,确定所述电机的预设转速,包括:
    基于转速计算公式,根据所述预设角度、所述预设臂长、所述变速箱的传动比、所述重力加速度以及所述预设离心加速度,确定所述电机的预设转速;所述转速计算公式为:
    Figure PCTCN2020097824-appb-100005
    其中,a r为所述待测设备的预设离心加速度,a为所述待测设备的预设加速度,g为待测设备的重力加速度,L 0为旋转臂的预设臂长,n为所述电机的预设转速,s为所述变速箱的传动比,
    Figure PCTCN2020097824-appb-100006
    为所述预设角度。
  44. 根据权利要求25所述的测试方法,其特征在于,所述测试设备还包括姿态调节机构,所述姿态调节机构设于所述旋转臂的另一端,所述待测设备与所述姿态调节机构连接以安装于所述旋转臂;所述测试方法还包括:
    控制所述姿态调节机构工作以调节所述待测设备至预设姿态。
  45. 根据权利要求44所述的测试方法,其特征在于,所述姿态调节机构包括三轴转动控制器。
  46. 根据权利要求44所述的测试方法,其特征在于,所述姿态调节机构包括云台。
  47. 根据权利要求44所述的测试方法,其特征在于,所述控制所述姿态调节机构工作以调节所述待测设备至预设姿态,包括:
    根据所述预设加速度的大小和方向,以及重力加速度的大小和方向,确定 所述预设角度;
    根据所述预设角度和所述待测设备的初始姿态信息,确定所述姿态调节机构的目标姿态信息;
    根据所述目标姿态信息,控制所述姿态调节机构工作以调节所述待测设备至预设姿态。
  48. 根据权利要求25所述的测试方法,其特征在于,所述预设加速度的方向与所述旋转臂的中心轴线重合。
  49. 根据权利要求25所述的测试方法,其特征在于,所述预设加速度为待测设备的预设离心加速度和重力加速度的预设合加速度,所述预设离心加速度的方向与所述重力加速度的方向垂直。
  50. 根据权利要求25所述的测试方法,其特征在于,所述测试方法还包括:
    根据真实加速度和所述预设加速度调节所述预设转速和/或所述预设角度。
  51. 根据权利要求50所述的测试方法,其特征在于,所述测试设备还包括加速度检测机构;所述测试方法还包括:
    通过所述加速度检测机构检测所述待测设备旋转运动过程中的真实加速度,以根据所述真实加速度和所述预设加速度调节所述预设转速和/或所述预设角度。
  52. 根据权利要求50所述的测试方法,其特征在于,所述测试设备包括用于固定所述待测设备的固定机构,所述加速度检测机构设于所述固定机构上。
  53. 根据权利要求52所述的测试方法,其特征在于,所述加速度检测机构包括惯性测量单元。
  54. 根据权利要求25所述的测试方法,其特征在于,所述测试设备还包括记录机构,所述记录机构用于记录所述待测设备在承受所述预设加速度时的信息。
  55. 根据权利要求54所述的测试方法,其特征在于,所述记录机构包括拍摄装置;所述测试方法还包括:
    通过所述拍摄装置拍摄所述待测设备在承受所述预设加速度时的视频或图像;
    根据所述视频或图像获取所述待测设备在所述预设加速度下进行旋转运动时的机械性能信息。
  56. 根据权利要求54所述的测试方法,其特征在于,所述根据所述视频或图像获取所述待测设备在所述预设加速度下进行旋转运动时的机械性能信息,包括:
    根据所述视频或图像获取所述待测设备在所述预设加速度下进行旋转运动时的刚度信息和强度信息。
  57. 根据权利要求56所述的测试方法,其特征在于,所述刚度信息包括所述待测设备是否形变,所述强度信息包括所述待测设备是否产生裂缝。
  58. 根据权利要求25所述的测试方法,其特征在于,所述测试方法还包括:
    当所述待测设备旋转结束后,将所述待测设备从所述旋转臂上拆卸下来;
    观察所述待测设备是否发生形变或者是否产生裂缝。
  59. 根据权利要求25所述的测试方法,其特征在于,所述待测设备为无人飞行器。
  60. 根据权利要求25所述的测试方法,其特征在于,所述测试设备用于模拟无人飞行器在所述预设加速度下绕点飞行,并测试所述无人飞行器在所述预设加速度下飞行的机械性能。
PCT/CN2020/097824 2020-06-23 2020-06-23 测试设备、测试方法和飞行测试系统 WO2021258310A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080007180.XA CN113365919A (zh) 2020-06-23 2020-06-23 测试设备、测试方法和飞行测试系统
PCT/CN2020/097824 WO2021258310A1 (zh) 2020-06-23 2020-06-23 测试设备、测试方法和飞行测试系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097824 WO2021258310A1 (zh) 2020-06-23 2020-06-23 测试设备、测试方法和飞行测试系统

Publications (1)

Publication Number Publication Date
WO2021258310A1 true WO2021258310A1 (zh) 2021-12-30

Family

ID=77525202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097824 WO2021258310A1 (zh) 2020-06-23 2020-06-23 测试设备、测试方法和飞行测试系统

Country Status (2)

Country Link
CN (1) CN113365919A (zh)
WO (1) WO2021258310A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE546051C2 (en) * 2021-09-10 2024-04-23 Tech Test Center Sweden Ab Method, control unit and system for evaluating lubrication of lubricant at rotating parts

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU400869A1 (ru) * 1972-03-16 1973-10-01 Панорамный визир
US6542181B1 (en) * 1999-06-04 2003-04-01 Aerial Videocamera Systems, Inc. High performance aerial videocamera system
WO2013084857A1 (ja) * 2011-12-06 2013-06-13 国立大学法人東京海洋大学 横転限界検出システム
CN105915899A (zh) * 2016-07-04 2016-08-31 广东容祺智能科技有限公司 一种无人机机载多轴云台调试平台
CN205738142U (zh) * 2016-04-26 2016-11-30 广东容祺智能科技有限公司 一种多旋翼无人机测试平台
CN106352898A (zh) * 2016-08-29 2017-01-25 中国科学院西安光学精密机械研究所 一种运动目标模拟装置及标定方法
CN106768287A (zh) * 2017-03-20 2017-05-31 哈尔滨理工大学 一种用于多旋翼无人机支架振动情况的测试装置
CN207045785U (zh) * 2017-06-12 2018-02-27 工业和信息化部计算机与微电子发展研究中心(中国软件评测中心) 一种电动无人机动力系统测试试验台及测试系统
CN207510743U (zh) * 2017-11-14 2018-06-19 深圳市科比特航空科技有限公司 无人机测试平台
CN109313439A (zh) * 2017-07-28 2019-02-05 深圳市大疆创新科技有限公司 云台可靠性测试方法与装置
CN110455498A (zh) * 2019-07-04 2019-11-15 湖北航天技术研究院总体设计所 一种复合轴跟瞄系统性能测试装置及测试方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU400869A1 (ru) * 1972-03-16 1973-10-01 Панорамный визир
US6542181B1 (en) * 1999-06-04 2003-04-01 Aerial Videocamera Systems, Inc. High performance aerial videocamera system
WO2013084857A1 (ja) * 2011-12-06 2013-06-13 国立大学法人東京海洋大学 横転限界検出システム
CN205738142U (zh) * 2016-04-26 2016-11-30 广东容祺智能科技有限公司 一种多旋翼无人机测试平台
CN105915899A (zh) * 2016-07-04 2016-08-31 广东容祺智能科技有限公司 一种无人机机载多轴云台调试平台
CN106352898A (zh) * 2016-08-29 2017-01-25 中国科学院西安光学精密机械研究所 一种运动目标模拟装置及标定方法
CN106768287A (zh) * 2017-03-20 2017-05-31 哈尔滨理工大学 一种用于多旋翼无人机支架振动情况的测试装置
CN207045785U (zh) * 2017-06-12 2018-02-27 工业和信息化部计算机与微电子发展研究中心(中国软件评测中心) 一种电动无人机动力系统测试试验台及测试系统
CN109313439A (zh) * 2017-07-28 2019-02-05 深圳市大疆创新科技有限公司 云台可靠性测试方法与装置
CN207510743U (zh) * 2017-11-14 2018-06-19 深圳市科比特航空科技有限公司 无人机测试平台
CN110455498A (zh) * 2019-07-04 2019-11-15 湖北航天技术研究院总体设计所 一种复合轴跟瞄系统性能测试装置及测试方法

Also Published As

Publication number Publication date
CN113365919A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2018107337A1 (zh) 云台及其操作方法、控制方法,及使用其的可移动设备
US20200361629A1 (en) Stabilizing platform
KR101707865B1 (ko) 시설물 근접 촬영용 무인비행체 시스템 및 이를 이용한 촬영 방법
US20210302963A1 (en) Method and system for stabilizing a payload
CN203705964U (zh) 一种机载三自由度云台稳定闭环控制装置
WO2017206073A1 (en) Method and system for adaptive gimbal
EP3549872B1 (en) Dual-axis platform for use in a small unmanned aerial vehicle and tri-axis platform for use in a small unmanned aerial vehicle
KR101843947B1 (ko) 시설물 검사용 표면 부착 이동형 로봇
CN108235702A (zh) 一种云台、无人机及其控制方法
CN111566007B (zh) 飞行器,飞行系统,以及结构物检查系统
US8887587B2 (en) Measurement device
KR102074637B1 (ko) 구조물 점검용 비행 장치
JP6199418B2 (ja) 小型無人飛行機を利用した遠隔構造物の検査システム
JP6949071B2 (ja) マルチコプターを用いた計測器移動補助装置
WO2021258310A1 (zh) 测试设备、测试方法和飞行测试系统
CN108825941A (zh) 一种多轴协同运动的机载相机地面运动测试装置
CN106287126A (zh) 相机固定装置及具有该相机固定装置的视觉识别设备
CN113064447B (zh) 安全检测方法、装置、系统、无人飞行器及其控制设备
CN104765146B (zh) 一种机载光电瞄准系统大角度扫描驱动轴系装置
CN212766812U (zh) 测试设备和飞行测试系统
WO2021097809A1 (en) Method and device for determining abnormally mounted propeller in unmanned aerial vehicle (uav)
CN111703589A (zh) 用于航空相机检测的具有像移补偿的地面模拟平台
CN114486517B (zh) 一种基于工业机器人系统的随动加载装置及方法
CN208217018U (zh) 一种固定翼无人机测绘稳定两轴云台
JP2021020573A (ja) 無人飛行機の状態確認装置および状態確認方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942027

Country of ref document: EP

Kind code of ref document: A1