WO2021256644A1 - System and method for supplying fuel for liquefied gas carrier - Google Patents

System and method for supplying fuel for liquefied gas carrier Download PDF

Info

Publication number
WO2021256644A1
WO2021256644A1 PCT/KR2020/018576 KR2020018576W WO2021256644A1 WO 2021256644 A1 WO2021256644 A1 WO 2021256644A1 KR 2020018576 W KR2020018576 W KR 2020018576W WO 2021256644 A1 WO2021256644 A1 WO 2021256644A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied gas
fuel supply
pressure
pump
engine
Prior art date
Application number
PCT/KR2020/018576
Other languages
French (fr)
Korean (ko)
Inventor
김두혁
최안철
박성호
태혁준
이규성
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200074179A external-priority patent/KR102327410B1/en
Priority claimed from KR1020200118376A external-priority patent/KR20220036446A/en
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to CN202080101981.2A priority Critical patent/CN115697836A/en
Priority to JP2022575940A priority patent/JP7485796B2/en
Publication of WO2021256644A1 publication Critical patent/WO2021256644A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • B63J2/14Heating; Cooling of liquid-freight-carrying tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel supply system and method for a liquefied gas carrier, and more particularly, to a fuel supply for a liquefied gas carrier that recovers and recirculates the remaining LPG from a ship using a liquefied gas such as LPG as a fuel to an engine in excess. It relates to systems and methods.
  • Liquefied gas such as LNG (Liquefied Natural Gas) or LPG (Liquefied Petroleum Gas)
  • LNG Liquefied Natural Gas
  • LPG Liquefied Petroleum Gas
  • Liquefied gas is transported in a gaseous state through a gas pipeline on land or offshore, or stored in a liquefied gas carrier in a liquefied state and transported to a remote consumer.
  • Liquefied gas such as LNG or LPG is obtained by cooling natural gas or petroleum gas to cryogenic temperatures (approximately -163°C in the case of LNG).
  • the liquefaction temperature of petroleum gas is a low temperature of about -42°C under normal pressure, and can be stored in a liquid state up to a temperature of about 45°C at 18 bar and 20°C at 7 bar. Since LPG evaporates when the atmospheric pressure is higher than -42°C, the LPG storage tank of the ship is insulated. However, since external heat is continuously transferred to the LPG, the LPG is continuously vaporized in the LPG storage tank during the LPG transportation process, thereby generating boil-off gas in the LPG storage tank.
  • LPG is easier to store than LNG, which is liquefied at cryogenic temperatures, and it does not significantly fall in SPECIFIC ENERGY and ENERGY DENSITY compared to conventional HFO, and has an excellent effect in reducing SOX, NOX, CO2, PM, etc. compared to conventional HFO.
  • FIG. 1 An example of a fuel supply system from a ship using LPG as a fuel to a conventional engine is schematically shown in FIG. 1 .
  • LPG to be supplied as fuel to the engine E is supplied from the fuel supply tank according to the fuel supply conditions of the engine through a fuel supply system including a compression pump and a heater. It is supplied to the engine of the ship via line L1.
  • LPG an incompressible fluid
  • LPG can be supplied in excess of the fuel required by the engine to respond immediately to changes in engine load. It is withdrawn from the engine upstream of the engine via line L2.
  • An object of the present invention is to provide a system capable of efficiently supplying fuel while effectively processing LPG recovered from an engine by solving this problem.
  • a fuel supply line through which liquefied gas is supplied from a fuel supply tank provided on the deck of a ship to an onboard engine
  • a compression unit provided in the fuel supply line and compressing the liquefied gas to be supplied to the onboard engine to a pressure required for the engine;
  • the liquefied gas recirculated through the return line is cooled by the reduced pressure in the decompression unit, and there is provided a fuel supply system for a liquefied gas carrier, characterized in that it is introduced into the separator.
  • the compression unit comprises: a first pump for pumping and transferring liquefied gas from the fuel supply tank; and a second pump for pumping the liquefied gas transferred from the first pump to increase the pressure to a required pressure in the engine, wherein the liquid liquefied gas separated from the separator is a fuel between the first pump and the second pump It can be supplied to the supply line and recycled.
  • a vapor line for recovering the gas separated from the separator to the fuel supply tank; and a pressure control valve provided in the vapor line.
  • the pressure of the rear end of the first pump is sensed, and the opening degree of the pressure control valve is adjusted according to the sensed pressure to maintain the pressure of the separator 0.5 to 2 bar higher than the pressure at the rear end of the first pump. have.
  • a fuel heater provided at the rear end of the compression unit in the fuel supply line and heating the compressed liquefied gas to a temperature required by the engine; may further include.
  • the return line includes: a first return line connected from the engine to the separator; and a second return line connected to the separator from a fuel supply line between the second pump and the fuel heater.
  • the pressure reducing unit includes: a first pressure reducing device provided in the first return line; and a second pressure reducing device provided on the second return line.
  • the pump speed of the second pump is lowered first, and if it is still higher than the set value, the second pressure reducing device is opened to increase the pressure of the second pump.
  • the back pressure can be lowered.
  • the re-liquefaction unit for receiving the boil-off gas generated from the cargo tank for storing the liquefied gas to be transported provided on the ship and re-liquefied; and a cooling line connected from the reliquefaction unit to the cargo tank via the fuel supply tank, wherein the liquefied gas reliquefied in the reliquefaction unit cools the fuel supply tank along the cooling line and the cargo tank can be transferred to
  • a fuel tank provided in the ship to store the liquefied gas to be supplied to the onboard engine may further include, wherein the liquefied gas is transferred from the fuel tank to the fuel supply tank to cool the fuel supply tank .
  • a discharge pipe provided at the bottom of the separator for separating and discharging the lubricating oil mixed in the liquefied gas returned to the separator; and a re-liquefaction unit for re-liquefying boil-off gas generated from a cargo tank for storing liquefied gas to be transported and provided on the ship, wherein the liquefied gas re-liquefied in the re-liquefaction unit passes through the fuel supply tank to the cargo tank By transport, it is possible to cool the fuel supply tank.
  • the liquefied gas is compressed in the compression unit along the fuel supply line from the fuel supply tank provided on the deck of the ship and supplied as fuel to the onboard engine,
  • a decompression unit is provided in a return line for recirculating liquefied gas not consumed by the engine among the liquefied gas compressed in the compression unit to an upstream side of the engine to reduce the pressure of the liquefied gas to be recirculated, and the recirculated liquefied gas cooled by the reduced pressure in the separator
  • a fuel supply method for a liquefied gas carrier characterized in that gas-liquid separation.
  • the compression unit comprises: a first pump for pumping and transferring liquefied gas from the fuel supply tank; and a second pump for pumping the liquefied gas transferred from the first pump to increase the pressure to a required pressure in the engine, wherein the liquid liquefied gas separated from the separator is a fuel between the first pump and the second pump It can be supplied to the supply line and recycled.
  • the gas separated from the separator is recovered to the fuel supply tank, by detecting a rear end pressure of the first pump, and adjusting the amount of gas recovered to the fuel supply tank according to the sensed pressure,
  • the pressure of the separator may be maintained 0.5 to 2 bar higher than the pressure at the rear end of the first pump.
  • the pressure at the rear end of the second pump may be lowered by reducing the pressure and discharging it to the separator.
  • the boil-off gas generated from the cargo tank for storing the liquefied gas to be transported provided in the ship is reliquefied in the reliquefaction unit, and the liquefied gas reliquefied in the reliquefaction unit passes through the fuel supply tank to the fuel supply tank It can be cooled and transferred to the cargo tank.
  • the fuel supply tank can be cooled by transferring the liquefied gas to the fuel supply tank from a fuel tank that is provided in the ship to store the liquefied gas to be supplied to the onboard engine.
  • a discharge pipe for separating and discharging the lubricant mixed in the liquefied gas returned to the separator may be provided at the bottom of the separator.
  • the boil-off gas generated from the cargo tank for storing the liquefied gas to be transported provided in the ship is reliquefied in the reliquefaction unit, and the liquefied gas reliquefied in the reliquefaction unit is passed through the fuel supply tank to the cargo tank. It can be transferred to cool the fuel supply tank.
  • the liquefied gas not consumed in the engine is recirculated through the return line among the compressed liquefied gas for fuel supply to the engine, and the compressed liquefied gas is cooled in the return line at reduced pressure and separated from the gas-liquid through a separator to liquefy the liquid. Only gas is supplied to the fuel supply line to be recirculated. In this way, by recirculating the remaining liquefied gas that is oversupplied to the engine and consumed as fuel, it is possible to prevent lubricating oil from being mixed into the fuel, thereby preventing incomplete combustion of the engine and the generation of pollutants in the exhaust due to the incomplete combustion of the engine. It can prevent LPG contamination and crystallization of lubricating oil in the fuel supply tank.
  • the second pump suction of the compression unit It is possible to reduce the risk of vapor generation and prevent device failure of the compression unit without installing additional equipment to remove it.
  • the gas separated from the separator is transferred to the fuel supply tank, and the boil-off gas generated in the cargo tank is reliquefied and transferred to the cargo tank through the fuel supply tank through the cooling line. By cooling, the pressure and temperature of the tank can be safely maintained.
  • FIG. 1 schematically shows a fuel supply system from a ship equipped with an engine using LPG as a fuel to a conventional engine.
  • FIG. 2 schematically shows a fuel supply system for a liquefied gas carrier according to a first embodiment of the present invention.
  • FIG. 3 schematically shows a fuel supply system for a liquefied gas carrier according to a second embodiment of the present invention.
  • FIG. 4 schematically shows the configuration of a discharge unit for discharging lubricant oil from a separator in a fuel supply system of a liquefied gas carrier according to a second embodiment of the present invention.
  • the vessel may be any type of vessel in which an engine capable of using liquefied petroleum gas as a fuel for a propulsion engine or a fuel for a power generation engine is installed.
  • Typical examples include ships with self-propelled capabilities such as LPG carriers, LNG carriers, liquid hydrogen carriers, and LNG RVs (Regasification Vessels), LNG Floating Production Storage Offloading (FPSO), and LNG FSRU (Floating Storage Regasification Unit). It may also include offshore structures that do not have propulsion capabilities, but are floating in the sea.
  • this embodiment can be transported by being liquefied at a low temperature, and BOG is generated in a stored state and can be applied to a fuel supply system of all kinds of liquefied gas that can be supplied as fuel of an engine.
  • liquefied gas is, for example, liquefied petrochemicals such as LNG (Liquefied Natural Gas), LEG (Liquefied Ethane Gas), LPG (Liquefied Petroleum Gas), Liquefied Ethylene Gas, Liquefied Propylene Gas, etc. gas and ammonia, and the like.
  • LNG Liquefied Natural Gas
  • LEG Liquefied Ethane Gas
  • LPG Liquefied Petroleum Gas
  • Liquefied Ethylene Gas Liquefied Propylene Gas
  • ammonia and the like.
  • LPG which is one of representative liquefied gases
  • FIG. 2 schematically shows a fuel supply system for a liquefied gas carrier according to a first embodiment of the present invention.
  • the fuel supply system of the first embodiment includes a fuel supply line (SL) through which liquefied gas is supplied from a fuel supply tank (DT) provided on the deck of the ship to the in-board engine (E), and a fuel supply line Compression units 110 and 120 for compressing the liquefied gas to be supplied to the onboard engine to the pressure required for the engine, and a return line RL1 for recirculating the liquefied gas not consumed in the engine among the liquefied gas to the upstream of the engine.
  • RL2 a separator 210 provided in the return line for gas-liquid separation of the recirculated liquefied gas
  • pressure reducing units 220 and 230 provided upstream of the separator in the return line.
  • the liquefied gas recirculated through the return line is decompressed through the decompression unit, and the liquefied gas is cooled by the Joule-Thomson effect in the decompression process and introduced into the separator.
  • the compression unit includes a first pump 110 for pumping and transferring the liquefied gas from the fuel supply tank, and a second pump 120 for pumping the liquefied gas transferred from the first pump and boosting the pressure to the pressure required by the engine. It consists of two pumps.
  • the first pump 110 is a low-pressure pump for transporting liquefied gas and is a centrifugal pump
  • the second pump 120 is a high-pressure pump that compresses the fuel supply pressure required by the engine, and is a diaphragm pump.
  • the liquefied gas passing through the first and second pumps is heated to a temperature required by the engine in the fuel heater 130 provided at the rear end of the compression unit in the fuel supply line and supplied to the engine.
  • the compressed and heated liquefied gas through the compression unit and the fuel heater is supplied to the engine E through the filter 140 that filters out foreign substances in the fuel and the service valve unit SVT.
  • the service valve part while supplying LPG to the engine, when LPG fuel supply is stopped due to engine fuel oil switching, LPG mode stop, trip, etc., each pipe is double-blocked through the valve to relieve pressure in the pipe.
  • An engine receiving such compressed and heated LPG as fuel may be, for example, a ME-LGIP engine of MAN Diesel & Turbo.
  • LPG is supplied to the engine in a high-pressure liquid state of around 54 bar and 35° C. through the compression unit and the fuel heater, and the engine is operated by being hydraulically injected into the nozzle at a pressure of 600 to 700 bar.
  • compressed and heated fuel is supplied to the engine in a liquid state, and unlike the engine to which a compressible fluid having a large volume change according to a change in pressure, that is, gas fuel is supplied, the volume changes even when pressure is applied.
  • a compressible fluid having a large volume change according to a change in pressure that is, gas fuel is supplied
  • sufficient fuel is supplied to respond immediately to changes in engine load and excess LPG is supplied to the engine to prevent cavitation.
  • the remaining LPG consumed as fuel is discharged from the engine through the return line and recirculated. ), and may pose a threat to tank and ship safety by increasing the pressure and temperature in the fuel supply tank.
  • the decompression units 220 and 230 for decompressing the liquefied gas are provided in the return line, so that the liquefied gas discharged from the engine can be recirculated by decompressing the liquefied gas.
  • the compressed liquefied gas is cooled by the Joule-Thomson effect while undergoing adiabatic or isentropic expansion during the decompression process.
  • the compressed liquefied gas recirculated from the engine E through the return line RL1 is reduced in pressure through the decompression unit 220 and cooled, introduced into the separator 210 for gas-liquid separation, and the liquid liquefied gas separated from the separator is It is supplied to the fuel supply line SL between the first pump 110 and the second pump 120 through the liquid line LL and recirculated, and the gas separated from the separator is supplied to the fuel supply tank through the vapor line VL. (DT) is recovered.
  • the vapor line is provided with a pressure control valve 250 for controlling the gas transferred to the fuel supply tank (DT).
  • the liquefied gas cooled through decompression is introduced into the separator, and the liquid liquefied gas after gas-liquid separation is supplied from the fuel supply tank through the first pump of the compression unit through the first pump of the compression unit and the second pump 120 together with the subcooled LPG. ), it is possible to reduce the risk of vapor generation in the suction part of the second pump and not configure a separate device for vapor removal.
  • the fuel heater when the temperature of the recirculated liquefied gas is high, the fuel heater must have a cooling function as well as a heating function in order to meet the fuel requirements of the engine.
  • the gas in the decompressed recirculation liquefied gas is recovered to the fuel supply tank, and the mass flow of the high-temperature recirculated liquefied gas sucked into the second pump is reduced, so that fuel at an appropriate temperature can be supplied to the engine without additional cooling. Since the fuel heater only needs to have a heating function, the equipment cost can be reduced and operation is easy.
  • the return line includes a first return line RL1 connected from the engine E to the separator 210 and a separator ( and a second return line RL2 connected to 210 .
  • the decompression unit may include a first decompression device 220 provided in the first return line and a second decompression device 230 provided in the second return line.
  • the first and second pressure reducing devices may include an expander for cooling the compressed liquefied gas by adiabatic or isentropic expansion or an expansion valve such as a Joule-Thomson valve.
  • a return valve unit (RVT) and a filter 240 are provided upstream of the first pressure reducing device in the first return line, and the liquefied gas discharged from the engine is introduced into the first pressure reducing device through the return valve unit and the filter.
  • the filter can filter lubricating oil mixed in the liquefied gas discharged from the engine.
  • the first return line and the first pressure reducing device depressurize the liquefied gas discharged from the engine, and the second return line and the second pressure reducing device decompress the compressed liquefied gas through the compression units of the first and second pumps from upstream of the fuel heater to form a separator. transfer to
  • the LPG remaining in the engine and fuel supply line can also be cooled under reduced pressure and transferred to the separator when the LPG fuel supply is interrupted, such as when the engine is stopped in LPG mode or when tripping.
  • the LPG fuel supply is stopped, it is not necessary to recirculate the LPG from the separator to the fuel supply line, so it can be sent to the fuel supply tank, and for this, a transfer line (not shown) from the separator to the fuel supply tank may be provided.
  • a plurality of pressure sensing units are provided to control the operating pressure.
  • a first pressure sensing unit PC1 that senses the pressure between the second pump and the fuel heater and sends a pressure signal
  • a second pressure sensing unit that senses the pressure between the filter and the first pressure reducing device in the first return line and sends a pressure signal
  • a unit PC2 a third pressure sensing unit PC3 sensing the pressure of the rear end of the first pump, and a fourth pressure sensing unit PC4 sensing the pressure of the separator are provided, respectively.
  • the operating pressure in the system of the present embodiment may be controlled as follows, for example.
  • the operating pressure range of the fuel supply tank is 1 to 8 barg. Assuming that the operating pressure is 4 barg, the differential pressure of the first pump is about 2 bar, and the rear end pressure of the first pump is 6 barg.
  • the operating pressure of the separator 210 is maintained at about 0.5 to 2 bar, more preferably 0.5 to 1 bar higher than the pressure at the rear end of the first pump, so that the liquid recirculation gas separated from the separator is smoothly transferred to the rear end of the first pump.
  • the fourth pressure sensing unit PC4 receives the pressure signal from the third pressure sensing unit PC3, and the fourth pressure sensing unit PC4 sets the set value to the pressure control valve 250 of the vapor line VL.
  • the pressure of the separator is maintained at 6.5 to 7 barg.
  • the liquid separated from the separator is supplied to the front end of the second pump along the liquid line LL, and is pumped from the second pump and pressurized to 54 barg.
  • the first return line RL1 returning from the engine controls the first pressure reducing device 220 from the second pressure sensing unit to maintain the pressure upstream of the first pressure reducing device at 22 barg, and the pressure at the rear end of the first pressure reducing device is Maintain at 6.5 to 7 barg equal to the separator pressure.
  • the pressure is sensed by the first pressure sensing unit PC1 and is higher than the set value (54 barg) of the first pressure sensing unit.
  • the pump speed is lowered by adjusting the VFD, and if the pressure is still increased from 54 barg or more to 55 barg, the second pressure reducing device 230 of the second return line is opened to lower the pressure.
  • the ship of this embodiment is provided with a cargo tank (not shown) for storing and transporting liquefied gas as a liquefied gas carrier, and the boil-off gas generated from the liquefied gas stored in the cargo tank is supplied to the re-liquefaction unit (RS) and re-liquefied. .
  • a cargo tank (not shown) for storing and transporting liquefied gas as a liquefied gas carrier, and the boil-off gas generated from the liquefied gas stored in the cargo tank is supplied to the re-liquefaction unit (RS) and re-liquefied.
  • the temperature of the fuel supply tank may be increased by the gas separated from the separator and introduced.
  • the liquefied gas reliquefied from the reliquefaction unit RS passes through the fuel supply tank DT to the cargo tank (not shown).
  • a cooling line CL is provided so as to be connected, so that the fuel supply tank can be cooled by using the cooling heat of the liquefied gas reliquefied in the reliquefaction unit.
  • fuel tanks FT1 and FT2 for supplying liquefied gas to be supplied as fuel of the onboard engine to the fuel supply tank DT disposed on the deck are additionally provided. It is also possible to supply liquefied gas from the fuel supply tank to the fuel supply tank to cool the fuel supply tank by the low-temperature liquefied gas.
  • FIG. 3 schematically shows a fuel supply system for a liquefied gas carrier according to a second embodiment of the present invention.
  • the fuel supply system of the second embodiment also includes a fuel supply line SL through which liquefied gas is supplied from the fuel supply tank DT provided on the deck of the ship to the in-board engine E, and the fuel supply A first pump 110 provided in the line and transferring liquefied gas to be supplied from the fuel supply tank to the engine, a second pump 120 provided in the fuel supply line and compressing the liquefied gas to the pressure required for the engine, among the liquefied gas Return lines RL1 and RL2 for recirculating the liquefied gas not consumed in the engine to the upstream of the engine, the separator 210 provided in the return line and receiving the recirculated liquefied gas to gas-liquid separation, the liquid liquefied gas separated from the separator It includes a liquid line LL for supplying to the rear end of the first pump of the fuel supply line, and a vapor line VL for recovering the gas separated from the separator to the fuel supply tank DT.
  • a liquid line LL for supplying to the rear end of
  • a pressure reducing unit for reducing the recirculated liquefied gas is provided upstream of the separator in the return line, and a pressure regulating valve 250 for controlling the gas transferred to the fuel supply tank DT is provided in the vapor line connected from the separator to the fuel supply tank.
  • Amount of gas recovered from the separator to the fuel supply tank by sensing the pressure at the rear end of the first pump of the fuel supply line to which the liquefied gas separated from the separator and recirculated through the liquid line is supplied, and by controlling the pressure control valve according to the sensed pressure by adjusting the pressure of the separator to be maintained higher than the pressure sensed in the fuel supply line.
  • the fuel supply from the fuel supply tank to the engine includes a first pump 110 for pumping and transferring the liquefied gas, and a second pump 120 for pumping the transferred liquefied gas and boosting the pressure to the pressure required by the engine. It is made by two pumps.
  • the first pump 110 is a low-pressure pump for transporting liquefied gas, for example, a centrifugal pump
  • the second pump 120 is a high-pressure pump that compresses the fuel supply pressure required by the engine.
  • the diaphragm pump ( diaphragm pump), and the liquefied gas passing through the first pump and the second pump is heated to a temperature required by the engine in the fuel heater 130 provided at the rear end of the second pump and supplied to the engine.
  • the compressed and heated liquefied gas through the second pump and the fuel heater is supplied to the engine E through the filter 140 that filters out foreign substances in the fuel and the service valve unit SVT.
  • the service valve part while supplying LPG to the engine, when LPG fuel supply is stopped due to engine fuel oil switching, LPG mode stop, trip, etc., each pipe is double-blocked through the valve to relieve pressure in the pipe.
  • An engine receiving such compressed and heated LPG as fuel may be, for example, a ME-LGIP engine of MAN Diesel & Turbo.
  • LPG is supplied to the engine in a high-pressure liquid state of around 54 bar and 35° C. through the compression unit and the fuel heater, and the engine is operated by being hydraulically injected into the nozzle at a pressure of 600 to 700 bar.
  • compressed and heated fuel is supplied to the engine in a liquid state, and unlike the engine to which a compressible fluid having a large volume change according to a change in pressure, that is, gas fuel is supplied, the volume changes even when pressure is applied.
  • a compressible fluid having a large volume change according to a change in pressure that is, gas fuel is supplied
  • sufficient fuel is supplied to respond immediately to changes in engine load and excess LPG is supplied to the engine to prevent cavitation.
  • the remaining LPG consumed as fuel is discharged from the engine through the return line and recirculated.
  • the compressed and heated LPG is recirculated as it is or sent to the fuel supply tank, the vapor), and it may increase the pressure and temperature in the fuel supply tank, which may threaten the safety of the tank and ship.
  • the decompression units 220 and 230 for decompressing the liquefied gas are provided in the return line, so that the liquefied gas discharged from the engine can be recirculated by decompressing the liquefied gas.
  • the compressed liquefied gas is cooled by the Joule-Thomson effect while undergoing adiabatic or isentropic expansion during the decompression process.
  • the compressed liquefied gas recirculated from the engine E through the return line RL1 is reduced in pressure through the decompression unit 220 and cooled, introduced into the separator 210 for gas-liquid separation, and the liquid liquefied gas separated from the separator is It is supplied to the fuel supply line SL between the first pump 110 and the second pump 120 through the liquid line LL and recirculated, and the gas separated from the separator is supplied to the fuel supply tank through the vapor line VL. (DT) is recovered.
  • liquefied gas cooled through decompression is introduced into the separator, and after gas-liquid separation, the liquid liquefied gas is supplied from the fuel supply tank through the first pump to the second pump 120 together with subcooled LPG. Since it is introduced, it is possible to reduce the risk of vapor generation in the suction part of the second pump, and thus a separate device for removing vapor may not be configured.
  • the fuel heater when the temperature of the recirculated liquefied gas is high, the fuel heater must have a cooling function as well as a heating function in order to meet the fuel requirements of the engine.
  • the gas in the decompressed recirculation liquefied gas is recovered to the fuel supply tank, and the mass flow of the high-temperature recirculated liquefied gas sucked into the second pump is reduced, so that fuel at an appropriate temperature can be supplied to the engine without additional cooling. Since the fuel heater only needs to have a heating function, the equipment cost can be reduced and operation is easy.
  • the return line includes a first return line RL1 connected from the engine E to the separator 210 and a separator ( and a second return line RL2 connected to 210 .
  • the decompression unit may include a first decompression device 220 provided in the first return line and a second decompression device 230 provided in the second return line.
  • the first and second pressure reducing devices may include an expander for cooling the compressed liquefied gas by adiabatic or isentropic expansion or an expansion valve such as a Joule-Thomson valve.
  • a return valve unit (RVT) and a filter 240 are provided upstream of the first pressure reducing device in the first return line, and the liquefied gas discharged from the engine is introduced into the first pressure reducing device through the return valve unit and the filter.
  • the filter can filter lubricating oil mixed in the liquefied gas discharged from the engine.
  • the first return line and the first pressure reducing device depressurize the liquefied gas discharged from the engine, and the second return line and the second pressure reducing device reduce the liquefied gas compressed by the second pump to the fuel supply pressure of the engine from upstream of the fuel heater to form a separator. transfer to
  • the LPG remaining in the engine and fuel supply line can also be cooled under reduced pressure and transferred to the separator when the LPG fuel supply is interrupted, such as when the engine is stopped in LPG mode or when tripping.
  • the LPG fuel supply is stopped, it is not necessary to recirculate the LPG from the separator to the fuel supply line, so it can be sent to the fuel supply tank, and for this, a transfer line (not shown) from the separator to the fuel supply tank may be provided.
  • a plurality of pressure sensing units are provided to control the operating pressure.
  • a first pressure sensing unit PC1 that senses the pressure between the second pump and the fuel heater and sends a pressure signal
  • a second pressure sensing unit that senses the pressure between the filter and the first pressure reducing device in the first return line and sends a pressure signal
  • a unit PC2 a third pressure sensing unit PC3 sensing the pressure of the rear end of the first pump, and a fourth pressure sensing unit PC4 sensing the pressure of the separator are provided, respectively.
  • the operating pressure in the system of the present embodiment may be controlled as follows, for example.
  • the operating pressure range of the fuel supply tank is 1 to 8 barg. Assuming that the operating pressure is 4 barg, the differential pressure of the first pump is about 2 bar, and the rear end pressure of the first pump is 6 barg.
  • the operating pressure of the separator 210 is maintained at about 0.5 to 2 bar, more preferably 0.5 to 1 bar higher than the pressure at the rear end of the first pump, so that the liquid recirculation gas separated from the separator is smoothly transferred to the rear end of the first pump.
  • the fourth pressure sensing unit PC4 receives the pressure signal from the third pressure sensing unit PC3, and the fourth pressure sensing unit PC4 sets the set value to the pressure control valve 250 of the vapor line VL.
  • the pressure of the separator is maintained at 6.5 to 7 barg.
  • the liquid separated from the separator is supplied to the front end of the second pump along the liquid line LL, and is pumped from the second pump and pressurized to 54 barg.
  • the separator is provided with a level sensor (LC) that detects the liquid level of the separator, and controls the valve (V1) according to the liquid level of the separator detected by the level sensor to adjust the flow rate of the liquefied gas transferred to the fuel supply line.
  • LC level sensor
  • V1 valve
  • the first return line RL1 returning from the engine controls the first pressure reducing device 220 from the second pressure sensing unit to maintain the pressure upstream of the first pressure reducing device at 22 barg, and the pressure at the rear end of the first pressure reducing device is Maintain at 6.5 to 7 barg equal to the separator pressure.
  • the first pressure sensing unit PC1 detects the pressure and, if it is higher than the set value (54 barg) of the first pressure sensing unit, first of the second pump The pump speed is lowered by adjusting the VFD, and if the pressure is still increased from 54 barg or more to 55 barg, the second pressure reducing device 230 of the second return line is opened to lower the pressure.
  • a discharge pipe DL is provided at the bottom of the separator 210 .
  • Lubricating oil separated from the separator is discharged to a discharge unit including a discharge pipe (DL).
  • 4 schematically shows a configuration of a discharge unit for discharging lubricant oil from a separator in a fuel supply system of a liquefied gas carrier according to the second embodiment.
  • the liquefied gas recovered from the engine may contain, in addition to liquid LPG, gas such as boil-off gas generated through compression and heating for fuel supply and sealing oil introduced from the engine. If it is supplied as a fuel of Also, when lubricating oil flows into the fuel supply tank, there is a risk of crystallization in the tank. In the present embodiment, this can be prevented by separating and discharging the lubricant mixed in the liquefied gas from the separator through the discharge pipe DL provided at the bottom of the separator.
  • LPG is mainly composed of propane (C 3 H 8 ) and butane (C 4 H 10 ). Although there is a difference depending on the ratio of propane and butane, the specific gravity is about 0.5, and the specific gravity of the lubricant is about 0.9. Therefore, in the separator, the gas is separated to the upper part, and the lubricating oil heavier than LPG is layered at the bottom due to the difference in specific gravity. For smoother separation and discharge of lubricating oil, a floating buoyancy body capable of sinking in LNG and floating in lubricating oil may be provided in the separator.
  • the pressure of the separator is maintained at 10 barg or less, the separation and discharge of the lubricant due to the difference in viscosity and specific gravity can be easily achieved.
  • the discharge part includes a discharge pipe (DL) connected from the bottom of the separator 210 and a lubricant discharge tank (SDT) where the discharged lubricant is collected, and a retention pot (retention pot, 300) between the separator and the lubricant discharge tank in the discharge pipe. ) is provided.
  • a magnetic float level gauge 310 is provided in the retention pot to check the liquid level, and between the separator and the retention pot in the discharge pipe, as shown in FIG. 4 , a first discharge valve DV1 And a second discharge valve (DV2) is provided.
  • a third discharge valve (DV3) is provided between the retention pod and the lubricant discharge tank to discharge the separated lubricant to the lubricant discharge tank.
  • the first and second discharge valves (DV1, DV2) are opened, the third discharge valve (DV3) is closed, and the retention time in the pipe is increased by the retention pot provided in the discharge pipe to separate the lubricant efficiency can be increased.
  • a fourth discharge valve that opens and closes the piping branched from the discharge pipe and connected to the lubricant discharge tank in order to relieve the pressure of the discharge pipe between the second discharge valve and the retention pod and to relieve the vacuum state when the lubricant is drained.
  • DV4 is provided.
  • the level gauge 320 for measuring the liquid level is provided in the lubricant discharge tank SDT, and a fifth discharge valve DV5 is provided to discharge the lubricant from the lubricant discharge tank, and the discharged lubricant is in the engine room. It can be sent to the oil tank for reuse or disposal.
  • the ship of this embodiment is provided with a cargo tank (not shown) for storing and transporting liquefied gas as a liquefied gas carrier, and in this embodiment, boil off gas generated from the liquefied gas stored in the cargo tank (not shown) is liquid
  • a cooling line CL is provided so that the liquefied gas re-liquefied by sending it to the re-liquefaction unit RS is connected to the cargo tank (not shown) through the fuel supply tank DT, and the re-liquefaction unit It was configured to cool the fuel supply tank by using the cooling heat of the liquefied gas re-liquefied in the
  • the fuel supply tank supplies fuel to the onboard engine while storing LPG at a pressure of 8 barg or less. Since it is provided on the deck of the ship, the temperature in the tank increases due to external air or gas introduced from the separator.
  • the pressure may rise, in this embodiment by configuring the cooling line CL to re-liquefy the boil-off gas generated from the liquefied gas cargo stored in the cargo tank and then to return to the cargo tank via the fuel supply tank DT, It is possible to cool the fuel supply tank by using the cooling heat of the reliquefied liquefied gas.
  • fuel tanks FT1 and FT2 for supplying liquefied gas to be supplied as fuel of the onboard engine to the fuel supply tank DT disposed on the deck are additionally provided. It is also possible to supply liquefied gas from the fuel supply tank to the fuel supply tank to cool the fuel supply tank by the low-temperature liquefied gas.
  • the temperature and pressure of the fuel supply tank can be adjusted by re-liquefying the boil-off gas generated from the cargo in the cargo tank and cooling the fuel supply tank with the cooling heat of the re-liquefied gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Disclosed are a system and a method for supplying fuel for a liquefied gas carrier. The system for supplying fuel for a liquefied gas carrier of the present invention comprises: a fuel supply line through which liquefied gas is supplied from a fuel supply tank provided on the deck of a vessel to an engine inside the vessel; a compression part which is provided in the fuel supply line and compresses the liquefied gas to be supplied to the engine inside the vessel to a pressure required for the engine; a return line which recirculates liquefied gas that has not been consumed by the engine from among the liquefied gas to an upstream of the engine; a separator which is provided in the return line and performs gas-liquid separation of the recirculated liquefied gas; and a decompression part which is provided in an upstream of the separator in the return line, wherein the liquefied gas recirculated through the return line is cooled under reduced pressure in the decompression part and introduced into the separator.

Description

[규칙 제26조에 의한 보정 29.12.2020] 액화가스 운반선의 연료공급시스템 및 방법[Amended by Rule 26 29.12.2020] Liquefied gas carrier fuel supply system and method
본 발명은 액화가스 운반선의 연료공급시스템 및 방법에 관한 것으로, 더욱 상세하게는 LPG와 같은 액화가스를 연료로 사용하는 선박에서 엔진으로 초과공급되어 남은 LPG를 회수하여 재순환시키는 액화가스 운반선의 연료공급시스템 및 방법에 관한 것이다. The present invention relates to a fuel supply system and method for a liquefied gas carrier, and more particularly, to a fuel supply for a liquefied gas carrier that recovers and recirculates the remaining LPG from a ship using a liquefied gas such as LPG as a fuel to an engine in excess. It relates to systems and methods.
LNG(Liquefied Natural Gas)나 LPG(Liquefied Petroleum Gas) 등의 액화가스의 소비량이 전 세계적으로 급증하고 있다. 액화가스는, 육상 또는 해상의 가스배관을 통해 가스 상태로 운반되거나, 또는, 액화된 상태로 액화가스 운반선에 저장된 채 원거리의 소비처로 운반된다. LNG나 LPG 등의 액화가스는 천연가스 혹은 석유가스를 극저온(LNG의 경우 대략 -163℃)으로 냉각하여 얻어지는 것으로 가스 상태일 때보다 그 부피가 대폭 감소하므로 해상을 통한 원거리 운반에 매우 적합하다.The consumption of liquefied gas such as LNG (Liquefied Natural Gas) or LPG (Liquefied Petroleum Gas) is rapidly increasing worldwide. Liquefied gas is transported in a gaseous state through a gas pipeline on land or offshore, or stored in a liquefied gas carrier in a liquefied state and transported to a remote consumer. Liquefied gas such as LNG or LPG is obtained by cooling natural gas or petroleum gas to cryogenic temperatures (approximately -163°C in the case of LNG).
석유가스의 액화 온도는 상압 약 -42℃의 저온이고, 18 bar에서는 약 45℃의 온도까지, 7 bar에서는 20℃까지 액체 상태로 저장가능하다. LPG는 상압 -42℃보다 높으면 증발되므로, 선박의 LPG 저장탱크에는 단열처리가 되어있다. 그러나 외부의 열이 지속적으로 LPG에 전달되므로, LPG 수송 과정에서 LPG 저장탱크 내에서 지속적으로 LPG가 기화되어 LPG 저장탱크 내에 증발가스(Boil-Off Gas)가 발생한다.The liquefaction temperature of petroleum gas is a low temperature of about -42°C under normal pressure, and can be stored in a liquid state up to a temperature of about 45°C at 18 bar and 20°C at 7 bar. Since LPG evaporates when the atmospheric pressure is higher than -42℃, the LPG storage tank of the ship is insulated. However, since external heat is continuously transferred to the LPG, the LPG is continuously vaporized in the LPG storage tank during the LPG transportation process, thereby generating boil-off gas in the LPG storage tank.
LPG 운반선에서는 LPG 저장탱크 내에 증발가스가 축적되면 LPG 저장탱크 내의 압력이 과도하게 상승하므로, LPG 저장탱크에 내압구조를 갖추는 한편 탱크 내에서 발생하는 증발가스를 처리하기 위해 증발가스 재액화 장치를 사용한다.In LPG carriers, when BOG accumulates in the LPG storage tank, the pressure in the LPG storage tank rises excessively. do.
한편, 종래의 LPG 운반선 등에는 선박의 추진 연료로서 상대적으로 가격이 저렴한 벙커C유 등의 중유를 사용하는 연료 공급 시스템을 채용하고 있는데, 이러한 중유 연료 공급 시스템은 중유 연료 사용에 대한 국제적인 배기가스 배출규제 강화로 황 성분이 적은 중유 연료 탱크(LSHFO tank)를 별도로 설치해야 했고, 국제적인 환경규제 기준에 적합한 친환경적인 연료 공급 시스템의 요구가 커졌다.On the other hand, conventional LPG carriers employ a fuel supply system using heavy oil such as bunker C oil, which is relatively inexpensive as a propulsion fuel for ships. Due to the strengthening of regulations, a LSHFO tank with low sulfur content had to be installed separately, and the demand for an eco-friendly fuel supply system that meets international environmental regulations has grown.
최근에는 LPG 또는 LNG 운반선에서 LPG 또는 LNG 및 그로부터 발생하는 증발가스를 추진 연료로 사용하는 연료공급시스템의 적용이 늘어나고 있고, 국제적인 배기가스 배출규제 강화에 따라 LPG 또는 LNG 운반선 외에 일반 선박에서도 LNG 등을 추진 연료로 사용하는 선박이 증가하고 있다.Recently, the application of a fuel supply system that uses LPG or LNG and boil-off gas generated therefrom as a propulsion fuel is increasing in LPG or LNG carriers. The number of ships used as propulsion fuel is increasing.
특히 LPG는 극저온에서 액화되는 LNG보다 저장이 용이하고 기존 HFO에 견주어 SPECIFIC ENERGY와 ENERGY DENSITY에서 크게 떨어지지 않으면서 기존 HFO 대비 SOX, NOX, CO2, PM등의 절감 효과가 탁월한 장점이 있다.In particular, LPG is easier to store than LNG, which is liquefied at cryogenic temperatures, and it does not significantly fall in SPECIFIC ENERGY and ENERGY DENSITY compared to conventional HFO, and has an excellent effect in reducing SOX, NOX, CO2, PM, etc. compared to conventional HFO.
LPG를 연료로 사용하는 선박에서 종래 엔진으로의 연료공급시스템의 일 예를 도 1에 개략적으로 도시하였다. An example of a fuel supply system from a ship using LPG as a fuel to a conventional engine is schematically shown in FIG. 1 .
도 1에 도시된 바와 같이, 엔진(E)에 연료로 공급될 LPG는 연료공급탱크로부터 압축용 펌프, 히터 등을 포함하는 연료공급부(Fuel Supply System)를 거치면서 엔진의 연료공급조건에 맞추어 공급라인(L1)을 통해 선박의 엔진에 공급된다. As shown in FIG. 1, LPG to be supplied as fuel to the engine E is supplied from the fuel supply tank according to the fuel supply conditions of the engine through a fuel supply system including a compression pump and a heater. It is supplied to the engine of the ship via line L1.
비압축성 유체인 LPG는 엔진의 로드 변화에 즉각 대응할 수 있도록 엔진에서 필요로 하는 연료보다 초과공급될 수 있으며, 초과공급되어 연료로 소비되고 남는 LPG나 엔진 로드 변화에 따른 연료소모율 변화로 남는 LPG는 회수라인(L2)을 통해 엔진으로부터 엔진의 상류로 회수한다. LPG, an incompressible fluid, can be supplied in excess of the fuel required by the engine to respond immediately to changes in engine load. It is withdrawn from the engine upstream of the engine via line L2.
그런데, 회수라인을 통해 회수되는 LPG는 엔진의 연료공급조건에 맞추어 압축 및 가열되어 고온 고압 상태이므로 이를 연료공급탱크로 보내면 탱크 내 압력 및 온도를 높이는 문제가 있고, 엔진에서 유입된 윤활유(sealing oil)로 인한 LPG 오염 우려가 있으며, 연료공급탱크의 온도가 -10℃ 이하로 떨어지면 결정화될 우려도 있다. 한편, 회수되는 LPG를 그대로 배출시켜 태워 없애면 연료를 낭비하는 문제가 있다. However, since LPG recovered through the recovery line is compressed and heated according to the fuel supply conditions of the engine and is in a high temperature and high pressure state, there is a problem in that the pressure and temperature in the tank increase when it is sent to the fuel supply tank, and the sealing oil introduced from the engine ), and there is a risk of crystallization when the temperature of the fuel supply tank falls below -10℃. On the other hand, there is a problem of wasting fuel if the recovered LPG is discharged and burned as it is.
본 발명은 이러한 문제를 해결하여, 엔진에서 회수되는 LPG를 효과적으로 처리하면서 효율적으로 연료를 공급할 수 있는 시스템을 제공하고자 한다.An object of the present invention is to provide a system capable of efficiently supplying fuel while effectively processing LPG recovered from an engine by solving this problem.
상술한 과제를 해결하기 위한 본 발명의 일 측면에 따르면, 선박의 데크에 마련된 연료공급탱크로부터 선내 엔진으로 액화가스가 공급되는 연료공급라인; According to one aspect of the present invention for solving the above-described problems, a fuel supply line through which liquefied gas is supplied from a fuel supply tank provided on the deck of a ship to an onboard engine;
상기 연료공급라인에 마련되며 상기 선내 엔진으로 공급될 액화가스를 상기 엔진에 필요한 압력으로 압축하는 압축부;a compression unit provided in the fuel supply line and compressing the liquefied gas to be supplied to the onboard engine to a pressure required for the engine;
상기 액화가스 중 엔진에서 소비되지 않은 액화가스를 상기 엔진의 상류로 재순환시키는 리턴라인;a return line for recirculating the liquefied gas not consumed by the engine among the liquefied gas to an upstream of the engine;
상기 리턴라인에 마련되어 재순환되는 상기 액화가스를 기액분리하는 세퍼레이터; 및a separator for gas-liquid separation of the recirculated liquefied gas provided in the return line; and
상기 리턴라인에서 상기 세퍼레이터 상류에 마련되는 감압부;를 포함하며, and a pressure reducing unit provided upstream of the separator in the return line;
상기 리턴라인을 통해 재순환되는 상기 액화가스는 상기 감압부에서 감압으로 냉각되어 상기 세퍼레이터로 도입되는 것을 특징으로 하는 액화가스 운반선의 연료공급시스템이 제공된다. The liquefied gas recirculated through the return line is cooled by the reduced pressure in the decompression unit, and there is provided a fuel supply system for a liquefied gas carrier, characterized in that it is introduced into the separator.
바람직하게는 상기 압축부는, 상기 연료공급탱크로부터 액화가스를 펌핑하여 이송하는 제1 펌프; 및 상기 제1 펌프에서 이송된 액화가스를 펌핑하여 상기 엔진에서 필요한 압력으로 승압하는 제2 펌프:를 포함하고, 상기 세퍼레이터에서 분리된 액상의 액화가스는 상기 제1 펌프와 제2 펌프 사이의 연료공급라인으로 공급되어 재순환될 수 있다. Preferably, the compression unit comprises: a first pump for pumping and transferring liquefied gas from the fuel supply tank; and a second pump for pumping the liquefied gas transferred from the first pump to increase the pressure to a required pressure in the engine, wherein the liquid liquefied gas separated from the separator is a fuel between the first pump and the second pump It can be supplied to the supply line and recycled.
바람직하게는, 상기 세퍼레이터에서 분리된 기체는 상기 연료공급탱크로 회수하는 베이퍼라인; 및 상기 베이퍼라인에 마련되는 압력조절밸브;를 더 포함할 수 있다. Preferably, a vapor line for recovering the gas separated from the separator to the fuel supply tank; and a pressure control valve provided in the vapor line.
바람직하게는, 상기 제1 펌프의 후단 압력을 감지하고, 감지된 압력에 따라 상기 압력조절밸브의 개도를 조절하여, 상기 세퍼레이터의 압력을 상기 제1 펌프의 후단 압력보다 0.5 내지 2 bar 높게 유지할 수 있다. Preferably, the pressure of the rear end of the first pump is sensed, and the opening degree of the pressure control valve is adjusted according to the sensed pressure to maintain the pressure of the separator 0.5 to 2 bar higher than the pressure at the rear end of the first pump. have.
바람직하게는, 상기 연료공급라인에서 상기 압축부의 후단에 마련되며 압축된 액화가스를 상기 엔진에서 필요로 하는 온도로 가열하는 연료히터;를 더 포함할 수 있다. Preferably, a fuel heater provided at the rear end of the compression unit in the fuel supply line and heating the compressed liquefied gas to a temperature required by the engine; may further include.
바람직하게는 상기 리턴라인은, 상기 엔진으로부터 상기 세퍼레이터로 연결되는 제1 리턴라인; 및 상기 제2 펌프와 연료히터 사이의 연료공급라인으로부터 상기 세퍼레이터로 연결되는 제2 리턴라인:을 포함할 수 있다. Preferably, the return line includes: a first return line connected from the engine to the separator; and a second return line connected to the separator from a fuel supply line between the second pump and the fuel heater.
바람직하게는 상기 감압부는, 상기 제1 리턴라인에 마련되는 제1 감압장치; 및 상기 제2 리턴라인에 마련되는 제2 감압장치:를 포함할 수 있다. Preferably, the pressure reducing unit includes: a first pressure reducing device provided in the first return line; and a second pressure reducing device provided on the second return line.
바람직하게는, 상기 제2 펌프의 후단 압력을 감지하여, 감지된 압력이 설정값보다 높아지면 먼저 제2 펌프의 펌프 스피드를 낮추고, 여전히 설정값보다 높으면 상기 제2 감압장치를 열어 제2 펌프의 후단 압력을 낮출 수 있다.Preferably, by sensing the rear end pressure of the second pump, when the sensed pressure is higher than the set value, the pump speed of the second pump is lowered first, and if it is still higher than the set value, the second pressure reducing device is opened to increase the pressure of the second pump. The back pressure can be lowered.
바람직하게는, 상기 선박에 마련되어 운송될 액화가스를 저장하는 카고탱크로부터 발생하는 증발가스를 공급받아 재액화하는 재액화부; 및 상기 재액화부로부터 상기 연료공급탱크를 거쳐 상기 카고탱크로 연결되는 냉각라인:를 더 포함하며, 상기 재액화부에서 재액화된 액화가스는 상기 냉각라인을 따라 상기 연료공급탱크를 냉각시키고 상기 카고탱크로 이송할 수 있다.Preferably, the re-liquefaction unit for receiving the boil-off gas generated from the cargo tank for storing the liquefied gas to be transported provided on the ship and re-liquefied; and a cooling line connected from the reliquefaction unit to the cargo tank via the fuel supply tank, wherein the liquefied gas reliquefied in the reliquefaction unit cools the fuel supply tank along the cooling line and the cargo tank can be transferred to
바람직하게는, 상기 선박에 마련되어 선내 엔진으로 공급될 액화가스를 저장하는 연료탱크:를 더 포함하며, 상기 연료탱크로부터 상기 연료공급탱크로 상기 액화가스를 이송하여 상기 연료공급탱크를 냉각시킬 수 있다. Preferably, a fuel tank provided in the ship to store the liquefied gas to be supplied to the onboard engine: may further include, wherein the liquefied gas is transferred from the fuel tank to the fuel supply tank to cool the fuel supply tank .
바람직하게는, 상기 세퍼레이터의 바닥부에 마련되어 상기 세퍼레이터로 회수되는 액화가스에 혼입된 윤활유를 분리하여 배출시키는 배출배관; 및 상기 선박에 마련되어 운송될 액화가스를 저장하는 카고탱크로부터 발생하는 증발가스를 재액화시키는 재액화부:를 더 포함하고, 상기 재액화부에서 재액화된 액화가스를 상기 연료공급탱크를 거쳐 상기 카고탱크로 이송하여, 상기 연료공급탱크를 냉각시킬 수 있다. Preferably, a discharge pipe provided at the bottom of the separator for separating and discharging the lubricating oil mixed in the liquefied gas returned to the separator; and a re-liquefaction unit for re-liquefying boil-off gas generated from a cargo tank for storing liquefied gas to be transported and provided on the ship, wherein the liquefied gas re-liquefied in the re-liquefaction unit passes through the fuel supply tank to the cargo tank By transport, it is possible to cool the fuel supply tank.
본 발명의 다른 측면에 따르면, 선박의 데크에 마련된 연료공급탱크로부터 연료공급라인을 따라 액화가스를 압축부에서 압축하여 선내 엔진에 연료로 공급하고, According to another aspect of the present invention, the liquefied gas is compressed in the compression unit along the fuel supply line from the fuel supply tank provided on the deck of the ship and supplied as fuel to the onboard engine,
상기 압축부에서 압축된 상기 액화가스 중 엔진에서 소비되지 않은 액화가스를 상기 엔진의 상류로 재순환시키는 리턴라인에 감압부를 마련하여 재순환될 액화가스를 감압하고, 감압으로 냉각된 재순환 액화가스는 세퍼레이터에서 기액분리되는 것을 특징으로 하는 액화가스 운반선의 연료공급방법이 제공된다. A decompression unit is provided in a return line for recirculating liquefied gas not consumed by the engine among the liquefied gas compressed in the compression unit to an upstream side of the engine to reduce the pressure of the liquefied gas to be recirculated, and the recirculated liquefied gas cooled by the reduced pressure in the separator There is provided a fuel supply method for a liquefied gas carrier, characterized in that gas-liquid separation.
바람직하게는 상기 압축부는, 상기 연료공급탱크로부터 액화가스를 펌핑하여 이송하는 제1 펌프; 및 상기 제1 펌프에서 이송된 액화가스를 펌핑하여 상기 엔진에서 필요한 압력으로 승압하는 제2 펌프:를 포함하고, 상기 세퍼레이터에서 분리된 액상의 액화가스는 상기 제1 펌프와 제2 펌프 사이의 연료공급라인으로 공급되어 재순환될 수 있다. Preferably, the compression unit comprises: a first pump for pumping and transferring liquefied gas from the fuel supply tank; and a second pump for pumping the liquefied gas transferred from the first pump to increase the pressure to a required pressure in the engine, wherein the liquid liquefied gas separated from the separator is a fuel between the first pump and the second pump It can be supplied to the supply line and recycled.
바람직하게는, 상기 세퍼레이터에서 분리된 기체는 상기 연료공급탱크로 회수하되, 상기 제1 펌프의 후단 압력을 감지하고, 감지된 압력에 따라 상기 연료공급탱크로 회수되는 기체의 양을 조절하여, 상기 세퍼레이터의 압력을 상기 제1 펌프의 후단 압력보다 0.5 내지 2 bar 높게 유지될 수 있다. Preferably, the gas separated from the separator is recovered to the fuel supply tank, by detecting a rear end pressure of the first pump, and adjusting the amount of gas recovered to the fuel supply tank according to the sensed pressure, The pressure of the separator may be maintained 0.5 to 2 bar higher than the pressure at the rear end of the first pump.
바람직하게는, 상기 제2 펌프의 후단 압력을 감지하여, 감지된 압력이 설정값보다 높아지면 먼저 제2 펌프의 펌프 스피드를 낮추고, 여전히 설정값보다 높으면 상기 제2 펌프의 후단에서 액화가스 일부를 감압하여 상기 세퍼레이터로 배출시켜 제2 펌프의 후단 압력을 낮출 수 있다. Preferably, by sensing the pressure at the rear end of the second pump, if the detected pressure is higher than the set value, first lower the pump speed of the second pump, and if still higher than the set value, a part of the liquefied gas at the rear end of the second pump The pressure at the rear end of the second pump may be lowered by reducing the pressure and discharging it to the separator.
바람직하게는, 상기 선박에 마련되어 운송될 액화가스를 저장하는 카고탱크로부터 발생하는 증발가스를 재액화부에서 재액화하고, 상기 재액화부에서 재액화된 액화가스는 상기 연료공급탱크를 거쳐 상기 연료공급탱크를 냉각시키고 상기 카고탱크로 이송될 수 있다. Preferably, the boil-off gas generated from the cargo tank for storing the liquefied gas to be transported provided in the ship is reliquefied in the reliquefaction unit, and the liquefied gas reliquefied in the reliquefaction unit passes through the fuel supply tank to the fuel supply tank It can be cooled and transferred to the cargo tank.
바람직하게는, 상기 선박에 마련되어 선내 엔진으로 공급될 액화가스를 저장하는 연료탱크로부터 상기 연료공급탱크로 상기 액화가스를 이송하여 상기 연료공급탱크를 냉각시킬 수 있다. Preferably, the fuel supply tank can be cooled by transferring the liquefied gas to the fuel supply tank from a fuel tank that is provided in the ship to store the liquefied gas to be supplied to the onboard engine.
바람직하게는, 상기 세퍼레이터의 바닥부에는 상기 세퍼레이터로 회수되는 액화가스에 혼입된 윤활유를 분리하여 배출시키는 배출배관이 마련될 수 있다. Preferably, a discharge pipe for separating and discharging the lubricant mixed in the liquefied gas returned to the separator may be provided at the bottom of the separator.
바람직하게는, 상기 선박에 마련되어 운송될 액화가스를 저장하는 카고탱크로부터 발생하는 증발가스를 재액화부에서 재액화하고, 상기 재액화부에서 재액화된 액화가스는 상기 연료공급탱크를 거쳐 상기 카고탱크로 이송하여 상기 연료공급탱크를 냉각시킬 수 있다. Preferably, the boil-off gas generated from the cargo tank for storing the liquefied gas to be transported provided in the ship is reliquefied in the reliquefaction unit, and the liquefied gas reliquefied in the reliquefaction unit is passed through the fuel supply tank to the cargo tank. It can be transferred to cool the fuel supply tank.
본 발명에서는 엔진으로 연료 공급을 위해 압축된 액화가스 중 엔진에서 소비되지 않은 액화가스를 리턴라인을 통해 재순환시키되, 압축된 액화가스를 리턴라인에서 감압으로 냉각시키고 세퍼레이터를 통해 기액분리하여 액상의 액화가스만을 연료공급라인으로 공급하여 재순환시키도록 한다. 이와 같이 엔진으로 초과공급되어 연료로 소비되고 남은 액화가스를 재순환시킴으로써, 연료에 윤활유가 혼입되는 것을 방지하여 엔진의 불완전 연소 및 그로 인한 배기 내 오염 물질 생성을 방지할 수 있고, 윤활유(sealing oil)로 인한 연료공급탱크 내 LPG 오염 및 윤활유의 결정화를 막을 수 있다.In the present invention, the liquefied gas not consumed in the engine is recirculated through the return line among the compressed liquefied gas for fuel supply to the engine, and the compressed liquefied gas is cooled in the return line at reduced pressure and separated from the gas-liquid through a separator to liquefy the liquid. Only gas is supplied to the fuel supply line to be recirculated. In this way, by recirculating the remaining liquefied gas that is oversupplied to the engine and consumed as fuel, it is possible to prevent lubricating oil from being mixed into the fuel, thereby preventing incomplete combustion of the engine and the generation of pollutants in the exhaust due to the incomplete combustion of the engine. It can prevent LPG contamination and crystallization of lubricating oil in the fuel supply tank.
또한, 재순환되는 액화가스를 냉각시키고 기액분리하여, 연료공급탱크로부터 압축부의 제1 펌프를 거쳐 공급되는 과냉각(subcooled) LPG와 함께 제2 펌프로 도입시킴으로써, 압축부의 제2 펌프 흡입부(suction)에서 베이퍼(vapor) 발생 위험을 낮추어 이를 제거하기 위한 별도의 장비를 설치하지 않고도 압축부의 장치 이상을 방지할 수 있다. In addition, by cooling the recirculated liquefied gas, separating the gas and liquid, and introducing it into the second pump together with the subcooled LPG supplied from the fuel supply tank through the first pump of the compression unit, the second pump suction of the compression unit It is possible to reduce the risk of vapor generation and prevent device failure of the compression unit without installing additional equipment to remove it.
세퍼레이터에서 분리된 기체는 연료공급탱크로 이송하고, 카고탱크에서 발생한 증발가스를 재액화하여 이를 냉각라인을 통해 연료공급탱크를 거쳐 카고탱크로 이송함으로써, 재액화된 액화가스를 통해 연료공급탱크를 냉각시켜 탱크의 압력과 온도를 안전하게 유지할 수 있다. The gas separated from the separator is transferred to the fuel supply tank, and the boil-off gas generated in the cargo tank is reliquefied and transferred to the cargo tank through the fuel supply tank through the cooling line. By cooling, the pressure and temperature of the tank can be safely maintained.
도 1은 LPG를 연료로 사용하는 엔진이 마련된 선박에서 종래 엔진으로의 연료공급시스템을 개략적으로 도시한다. 1 schematically shows a fuel supply system from a ship equipped with an engine using LPG as a fuel to a conventional engine.
도 2는 본 발명의 제1 실시예에 따른 액화가스 운반선의 연료공급시스템을 개략적으로 도시한다. 2 schematically shows a fuel supply system for a liquefied gas carrier according to a first embodiment of the present invention.
도 3은 본 발명의 제2 실시예에 따른 액화가스 운반선의 연료공급시스템을 개략적으로 도시한다. 3 schematically shows a fuel supply system for a liquefied gas carrier according to a second embodiment of the present invention.
도 4는 본 발명의 제2 실시예에 따른 액화가스 운반선의 연료공급시스템에서 세퍼레이터로부터 윤활유를 배출시키는 배출부의 구성을 개략적으로 도시한다. 4 schematically shows the configuration of a discharge unit for discharging lubricant oil from a separator in a fuel supply system of a liquefied gas carrier according to a second embodiment of the present invention.
본 발명의 동작상 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부도면 및 첨부도면에 기재된 내용을 참조하여야만 한다.In order to fully understand the operational advantages of the present invention and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings illustrating preferred embodiments of the present invention and the contents described in the accompanying drawings.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 구성 및 작용을 상세히 설명하면 다음과 같다. 여기서 각 도면의 구성요소들에 대해 참조 부호를 부가함에 있어 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표기되었음에 유의하여야 한다.Hereinafter, the configuration and operation of the preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. Here, it should be noted that in adding reference signs to the elements of each drawing, the same elements are indicated with the same reference numerals as much as possible even though they are indicated on different drawings.
후술하는 본 발명의 실시예에서 선박은, 액화석유가스를 추진용 엔진의 연료 또는 발전용 엔진의 연료로 사용할 수 있는 엔진이 설치되는 모든 종류의 선박일 수 있다. 대표적으로 LPG 운반선, LNG 운반선(LNG Carrier), 액체수소 운반선, LNG RV(Regasification Vessel)와 같은 자체 추진 능력을 갖춘 선박을 비롯하여, LNG FPSO(Floating Production Storage Offloading), LNG FSRU(Floating Storage Regasification Unit)와 같이 추진 능력을 갖추지는 않지만 해상에 부유하고 있는 해상 구조물도 포함될 수 있다. In an embodiment of the present invention to be described later, the vessel may be any type of vessel in which an engine capable of using liquefied petroleum gas as a fuel for a propulsion engine or a fuel for a power generation engine is installed. Typical examples include ships with self-propelled capabilities such as LPG carriers, LNG carriers, liquid hydrogen carriers, and LNG RVs (Regasification Vessels), LNG Floating Production Storage Offloading (FPSO), and LNG FSRU (Floating Storage Regasification Unit). It may also include offshore structures that do not have propulsion capabilities, but are floating in the sea.
또한, 본 실시예는 저온으로 액화시켜 수송될 수 있고, 저장된 상태에서 증발가스가 발생하며 엔진의 연료로 공급될 수 있는 모든 종류의 액화가스의 연료공급시스템에 적용될 수 있다. 이러한 액화가스는 예를 들어 LNG(Liquefied Natural Gas), LEG(Liquefied Ethane Gas), LPG(Liquefied Petroleum Gas), 액화에틸렌가스(Liquefied Ethylene Gas), 액화프로필렌가스(Liquefied Propylene Gas) 등과 같은 액화석유화학가스 및 암모니아 등일 수 있다. 다만, 후술하는 실시예에서는 대표적인 액화가스 중 하나인 LPG가 적용되는 것을 예로 들어 설명하기로 한다. In addition, this embodiment can be transported by being liquefied at a low temperature, and BOG is generated in a stored state and can be applied to a fuel supply system of all kinds of liquefied gas that can be supplied as fuel of an engine. Such liquefied gas is, for example, liquefied petrochemicals such as LNG (Liquefied Natural Gas), LEG (Liquefied Ethane Gas), LPG (Liquefied Petroleum Gas), Liquefied Ethylene Gas, Liquefied Propylene Gas, etc. gas and ammonia, and the like. However, in the embodiments to be described later, an example in which LPG, which is one of representative liquefied gases, is applied will be described.
도 2에는 본 발명의 제1 실시예에 따른 액화가스 운반선의 연료공급시스템을 개략적으로 도시하였다. 2 schematically shows a fuel supply system for a liquefied gas carrier according to a first embodiment of the present invention.
도 2에 도시된 바와 같이 제1 실시예의 연료공급시스템은, 선박의 데크에 마련된 연료공급탱크(DT)로부터 선내 엔진(E)으로 액화가스가 공급되는 연료공급라인(SL)과, 연료공급라인에 마련되며 선내 엔진으로 공급될 액화가스를 상기 엔진에 필요한 압력으로 압축하는 압축부(110, 120), 액화가스 중 엔진에서 소비되지 않은 액화가스를 상기 엔진의 상류로 재순환시키는 리턴라인(RL1, RL2), 리턴라인에 마련되어 재순환되는 액화가스를 기액분리하는 세퍼레이터(210), 리턴라인에서 세퍼레이터 상류에 마련되는 감압부(220, 230)를 포함한다. As shown in FIG. 2, the fuel supply system of the first embodiment includes a fuel supply line (SL) through which liquefied gas is supplied from a fuel supply tank (DT) provided on the deck of the ship to the in-board engine (E), and a fuel supply line Compression units 110 and 120 for compressing the liquefied gas to be supplied to the onboard engine to the pressure required for the engine, and a return line RL1 for recirculating the liquefied gas not consumed in the engine among the liquefied gas to the upstream of the engine. RL2), a separator 210 provided in the return line for gas-liquid separation of the recirculated liquefied gas, and pressure reducing units 220 and 230 provided upstream of the separator in the return line.
본 실시예에서 리턴라인을 통해 재순환되는 액화가스는 감압부를 거쳐 감압되며, 액화가스는 감압 과정에서 줄-톰슨 효과에 의해 냉각되어 세퍼레이터로 도입되는 것을 특징으로 한다. In this embodiment, the liquefied gas recirculated through the return line is decompressed through the decompression unit, and the liquefied gas is cooled by the Joule-Thomson effect in the decompression process and introduced into the separator.
압축부는, 연료공급탱크로부터 액화가스를 펌핑하여 이송하는 제1 펌프(110)와, 제1 펌프에서 이송된 액화가스를 펌핑하여 상기 엔진에서 필요한 압력으로 승압하는 제2 펌프(120)를 포함하는 두 개의 펌프로 이루어진다. The compression unit includes a first pump 110 for pumping and transferring the liquefied gas from the fuel supply tank, and a second pump 120 for pumping the liquefied gas transferred from the first pump and boosting the pressure to the pressure required by the engine. It consists of two pumps.
제1 펌프(110)는 액화가스를 이송하기 위한 저압 펌프로 원심 펌프(centrifugal pump)로, 제2 펌프(120)는 엔진에서 요구하는 연료공급압력으로 압축하는 고압 펌프로 다이아프램 펌프(diaphragm pump)로 이루어질 수 있고, 제1 및 제2 펌프를 거친 액화가스는 연료공급라인에서 압축부의 후단에 마련된 연료히터(130)에서 엔진에서 필요로 하는 온도로 가열되어 엔진으로 공급된다. The first pump 110 is a low-pressure pump for transporting liquefied gas and is a centrifugal pump, and the second pump 120 is a high-pressure pump that compresses the fuel supply pressure required by the engine, and is a diaphragm pump. ), and the liquefied gas passing through the first and second pumps is heated to a temperature required by the engine in the fuel heater 130 provided at the rear end of the compression unit in the fuel supply line and supplied to the engine.
연료공급라인에서 압축부 및 연료히터를 거쳐 압축 및 가열된 액화가스는 연료 중의 이물질을 걸러주는 필터(140)와 서비스밸브부(SVT)를 거쳐 엔진(E)으로 공급된다. 서비스밸브부에서는 엔진으로 LPG를 공급하면서 엔진의 연료유 전환이나 LPG 모드 정지, 트립 등으로 LPG 연료 공급이 중단될 때 밸브를 통해 각 배관을 이중 차단하며 배관 내 압력을 해소한다. In the fuel supply line, the compressed and heated liquefied gas through the compression unit and the fuel heater is supplied to the engine E through the filter 140 that filters out foreign substances in the fuel and the service valve unit SVT. In the service valve part, while supplying LPG to the engine, when LPG fuel supply is stopped due to engine fuel oil switching, LPG mode stop, trip, etc., each pipe is double-blocked through the valve to relieve pressure in the pipe.
이러한 압축 및 가열된 LPG를 연료로 공급받는 엔진은 일 예로 MAN Diesel & Turbo사(社)의 ME-LGIP 엔진일 수 있다. 이 경우 LPG는 압축부 및 연료히터를 거쳐 54 bar, 35℃ 내외의 고압 액체 상태로 엔진에 공급되며, 엔진에서 유압으로 600 내지 700 bar의 압력으로 노즐에 분사되어 엔진이 가동된다. An engine receiving such compressed and heated LPG as fuel may be, for example, a ME-LGIP engine of MAN Diesel & Turbo. In this case, LPG is supplied to the engine in a high-pressure liquid state of around 54 bar and 35° C. through the compression unit and the fuel heater, and the engine is operated by being hydraulically injected into the nozzle at a pressure of 600 to 700 bar.
즉, 본 실시예의 엔진에서는 압축 및 가열된 연료가 액체 상태로 엔진으로 공급되는데, 압력 변화에 따라 부피변화가 큰 압축성 유체, 즉 가스 연료가 공급되는 엔진과는 달리, 압력을 가하여도 부피의 변화가 없거나 적은 비압축성 유체, 액체 상태의 LPG가 엔진 연료로 공급되는 경우 엔진의 부하 변동에도 충분한 연료를 공급하여 즉각적으로 대응하며 캐비테이션을 방지하기 위해서 과잉의 LPG를 엔진으로 공급한다. 엔진에 공급된 LPG 중 연료로 소비되고 남은 LPG는 엔진에서 리턴라인을 통해 배출하여 재순환시키는데, 압축 및 가열된 LPG를 그대로 재순환시키거나 연료공급탱크로 보내면 압축부 흡입부(suction)에서 베이퍼(vapor) 발생 위험이 있고, 연료공급탱크 내 압력 및 온도를 상승시켜 탱크 및 선박 안전에 위협이 될 수 있다. That is, in the engine of this embodiment, compressed and heated fuel is supplied to the engine in a liquid state, and unlike the engine to which a compressible fluid having a large volume change according to a change in pressure, that is, gas fuel is supplied, the volume changes even when pressure is applied. When there is no or little incompressible fluid or liquid LPG as engine fuel, sufficient fuel is supplied to respond immediately to changes in engine load and excess LPG is supplied to the engine to prevent cavitation. Among the LPG supplied to the engine, the remaining LPG consumed as fuel is discharged from the engine through the return line and recirculated. ), and may pose a threat to tank and ship safety by increasing the pressure and temperature in the fuel supply tank.
본 실시예에서는 이러한 문제의 해결을 위해 리턴라인에 액화가스를 감압하는 감압부(220, 230)를 마련하여, 엔진으로부터 배출되는 액화가스를 감압하여 재순환될 수 있도록 구성한다. 압축된 액화가스는 감압 과정에서 단열팽창 또는 등엔트로피 팽창하면서 줄-톰슨 효과에 의해 냉각된다. In this embodiment, in order to solve this problem, the decompression units 220 and 230 for decompressing the liquefied gas are provided in the return line, so that the liquefied gas discharged from the engine can be recirculated by decompressing the liquefied gas. The compressed liquefied gas is cooled by the Joule-Thomson effect while undergoing adiabatic or isentropic expansion during the decompression process.
엔진(E)으로부터 리턴라인(RL1)을 통해 재순환되는 압축된 액화가스는 감압부(220)를 거쳐 감압되며 냉각되어 세퍼레이터(210)로 도입되어 기액분리되고, 세퍼레이터에서 분리된 액상의 액화가스는 리퀴드라인(LL)을 통해 제1 펌프(110)와 제2 펌프(120) 사이의 연료공급라인(SL)으로 공급되어 재순환되며, 세퍼레이터에서 분리된 기체는 베이퍼라인(VL)을 통해 연료공급탱크(DT)로 회수된다. 베이퍼라인에는 연료공급탱크(DT)로 이송되는 기체를 조절하기 위한 압력조절밸브(250)가 마련된다. The compressed liquefied gas recirculated from the engine E through the return line RL1 is reduced in pressure through the decompression unit 220 and cooled, introduced into the separator 210 for gas-liquid separation, and the liquid liquefied gas separated from the separator is It is supplied to the fuel supply line SL between the first pump 110 and the second pump 120 through the liquid line LL and recirculated, and the gas separated from the separator is supplied to the fuel supply tank through the vapor line VL. (DT) is recovered. The vapor line is provided with a pressure control valve 250 for controlling the gas transferred to the fuel supply tank (DT).
본 실시예에서는 감압을 통해 냉각된 액화가스가 세퍼레이터로 도입되고, 기액분리 후 액상의 액화가스가 연료공급탱크로부터 압축부의 제1 펌프를 거쳐 공급되는 과냉각(subcooled) LPG와 함께 제2 펌프(120)로 도입되므로, 제2 펌프 흡입부에서의 베이퍼 발생 위험을 낮춰 베이퍼 제거를 위한 별도의 장치를 구성하지 않을 수 있다. In this embodiment, the liquefied gas cooled through decompression is introduced into the separator, and the liquid liquefied gas after gas-liquid separation is supplied from the fuel supply tank through the first pump of the compression unit through the first pump of the compression unit and the second pump 120 together with the subcooled LPG. ), it is possible to reduce the risk of vapor generation in the suction part of the second pump and not configure a separate device for vapor removal.
또한, 재순환되는 액화가스의 온도가 높은 경우에는 엔진의 연료 요구 조건에 맞추기 위해 연료히터에서 가열기능과 함께 냉각기능도 갖추어야 하지만, 본 실시예에서는 감압부를 거쳐 재순환 액화가스가 냉각되고, 세퍼레이터를 통해 감압된 재순환 액화가스 중의 기체는 연료공급탱크로 회수되어, 제2 펌프로 흡입되는 고온의 재순환 액화가스의 질량유량(mass flow)를 줄여, 추가 냉각없이도 적절한 온도의 연료를 엔진으로 공급할 수 있어, 연료히터는 가열기능만 갖추어도 되므로 장치 비용을 절감할 수 있고, 운전이 용이하다. In addition, when the temperature of the recirculated liquefied gas is high, the fuel heater must have a cooling function as well as a heating function in order to meet the fuel requirements of the engine. The gas in the decompressed recirculation liquefied gas is recovered to the fuel supply tank, and the mass flow of the high-temperature recirculated liquefied gas sucked into the second pump is reduced, so that fuel at an appropriate temperature can be supplied to the engine without additional cooling. Since the fuel heater only needs to have a heating function, the equipment cost can be reduced and operation is easy.
한편 리턴라인은, 엔진(E)으로부터 세퍼레이터(210)로 연결되는 제1 리턴라인(RL1)과, 상기 제2 펌프(120)와 연료히터(130) 사이의 연료공급라인(SL)으로부터 세퍼레이터(210)로 연결되는 제2 리턴라인(RL2)을 포함한다. 또한 감압부는, 제1 리턴라인에 마련되는 제1 감압장치(220)와, 제2 리턴라인에 마련되는 제2 감압장치(230)를 포함하여 구성될 수 있다. 제1 및 제2 감압장치는 압축된 액화가스를 단열팽창 또는 등엔트로피 팽창시켜 냉각하는 팽창기 또는 줄-톰슨 밸브 등의 팽창밸브로 구성될 수 있다.On the other hand, the return line includes a first return line RL1 connected from the engine E to the separator 210 and a separator ( and a second return line RL2 connected to 210 . In addition, the decompression unit may include a first decompression device 220 provided in the first return line and a second decompression device 230 provided in the second return line. The first and second pressure reducing devices may include an expander for cooling the compressed liquefied gas by adiabatic or isentropic expansion or an expansion valve such as a Joule-Thomson valve.
제1 리턴라인의 제1 감압장치 상류에는 리턴밸브부(RVT) 및 필터(240)가 마련되어, 엔진으로부터 배출되는 액화가스는 리턴밸브부 및 필터를 거쳐 제1 감압장치로 도입된다. 필터에서는 엔진에서 배출되는 액화가스에 혼입된 윤활유 등을 걸러낼 수 있다. A return valve unit (RVT) and a filter 240 are provided upstream of the first pressure reducing device in the first return line, and the liquefied gas discharged from the engine is introduced into the first pressure reducing device through the return valve unit and the filter. The filter can filter lubricating oil mixed in the liquefied gas discharged from the engine.
제1 리턴라인 및 제1 감압장치는 엔진에서 배출되는 액화가스를, 제2 리턴라인 및 제2 감압장치는 제1 및 제2 펌프의 압축부를 거쳐 압축된 액화가스를 연료히터 상류로부터 감압하여 세퍼레이터로 이송한다. The first return line and the first pressure reducing device depressurize the liquefied gas discharged from the engine, and the second return line and the second pressure reducing device decompress the compressed liquefied gas through the compression units of the first and second pumps from upstream of the fuel heater to form a separator. transfer to
이를 통해 엔진의 LPG 모드 정지 시나 트립 등 LPG 연료 공급이 중단될 때 엔진 및 연료공급라인에 잔존하는 LPG도 감압으로 냉각하여 세퍼레이터로 이송할 수 있다. LPG 연료 공급 중단 시에는 세퍼레이터로부터 LPG를 연료공급라인으로 재순환시킬 필요가 없으므로 이를 연료공급탱크로 보낼 수 있고, 이를 위해 세퍼레이터로부터 연료공급탱크로 이송라인(미도시)이 마련될 수 있다. Through this, the LPG remaining in the engine and fuel supply line can also be cooled under reduced pressure and transferred to the separator when the LPG fuel supply is interrupted, such as when the engine is stopped in LPG mode or when tripping. When the LPG fuel supply is stopped, it is not necessary to recirculate the LPG from the separator to the fuel supply line, so it can be sent to the fuel supply tank, and for this, a transfer line (not shown) from the separator to the fuel supply tank may be provided.
본 실시예 시스템에는 운전압력을 제어하기 위해, 복수의 압력감지부가 마련된다. 제2 펌프와 연료히터 사이의 압력을 감지하고 압력 신호를 보내는 제1 압력감지부(PC1), 제1 리턴라인에서 필터와 제1 감압장치 사이의 압력을 감지하고 압력 신호를 보내는 제2 압력감지부(PC2), 제1 펌프 후단의 압력을 감지하는 제3 압력감지부(PC3), 세퍼레이터의 압력을 감지하는 제4 압력감지부(PC4)가 각각 마련된다. In the present embodiment system, a plurality of pressure sensing units are provided to control the operating pressure. A first pressure sensing unit PC1 that senses the pressure between the second pump and the fuel heater and sends a pressure signal, a second pressure sensing unit that senses the pressure between the filter and the first pressure reducing device in the first return line and sends a pressure signal A unit PC2, a third pressure sensing unit PC3 sensing the pressure of the rear end of the first pump, and a fourth pressure sensing unit PC4 sensing the pressure of the separator are provided, respectively.
본 실시예 시스템에서의 운전압력은 일 예로 다음과 같이 제어될 수 있다. The operating pressure in the system of the present embodiment may be controlled as follows, for example.
연료공급탱크의 운전압력 범위는 1 내지 8 barg인데, 운전압력을 4barg로 가정하면, 제1 펌프의 디퍼렌셜(Differential) 압력은 약 2 bar, 제1 펌프 후단 압력은 6 barg이다. 세퍼레이터(210)의 운전압력은 제1 펌프 후단 압력보다 약 0.5 내지 2 bar, 보다 바람직하게는 0.5 내지 1 bar 높게 유지됨으로써, 세퍼레이터에서 분리된 액상의 재순환가스가 제1 펌프 후단으로 원활하게 이송될 수 있다. The operating pressure range of the fuel supply tank is 1 to 8 barg. Assuming that the operating pressure is 4 barg, the differential pressure of the first pump is about 2 bar, and the rear end pressure of the first pump is 6 barg. The operating pressure of the separator 210 is maintained at about 0.5 to 2 bar, more preferably 0.5 to 1 bar higher than the pressure at the rear end of the first pump, so that the liquid recirculation gas separated from the separator is smoothly transferred to the rear end of the first pump. can
이를 위해 제3 압력감지부(PC3)에서의 압력 신호를 제4 압력감지부(PC4)가 받아, 제4 압력감지부(PC4)에서 베이퍼라인(VL)의 압력조절밸브(250)에 설정값 신호를 보내고, 압력조절밸브의 개도를 조절하여 세퍼레이터의 압력이 6.5 내지 7 barg로 유지된다. To this end, the fourth pressure sensing unit PC4 receives the pressure signal from the third pressure sensing unit PC3, and the fourth pressure sensing unit PC4 sets the set value to the pressure control valve 250 of the vapor line VL. By sending a signal and adjusting the opening degree of the pressure control valve, the pressure of the separator is maintained at 6.5 to 7 barg.
세퍼레이터에서 분리된 액체는 리퀴드라인(LL)을 따라 제2 펌프 전단으로 공급되며 제2 펌프에서 펌핑되어 54barg로 가압된다. The liquid separated from the separator is supplied to the front end of the second pump along the liquid line LL, and is pumped from the second pump and pressurized to 54 barg.
엔진에서 돌아오는 제1 리턴라인(RL1)은 제2 압력감지부에서 제1 감압장치(220)를 제어하여 제1 감압장치 상류의 압력을 22barg로 유지하고, 제1 감압장치 후단에서의 압력은 세퍼레이터 압력과 같은 6.5 내지 7 barg로 유지한다. The first return line RL1 returning from the engine controls the first pressure reducing device 220 from the second pressure sensing unit to maintain the pressure upstream of the first pressure reducing device at 22 barg, and the pressure at the rear end of the first pressure reducing device is Maintain at 6.5 to 7 barg equal to the separator pressure.
엔진에서의 로드 변화로 연료 소모량이 변화하여 제2 펌프의 후단 압력이 변할 때는 제1 압력감지부(PC1)에서 압력을 감지하여 제1 압력감지부의 설정값(54barg) 이상이면 먼저 제2 펌프의 VFD를 조절하여 펌프 스피드를 낮추고, 여전히 압력이 54barg 이상에서 55barg까지 올라가면 제2 리턴라인의 제2 감압장치(230)를 열어 압력을 낮춘다.When the rear end pressure of the second pump changes due to a change in fuel consumption due to a change in the load in the engine, the pressure is sensed by the first pressure sensing unit PC1 and is higher than the set value (54 barg) of the first pressure sensing unit. The pump speed is lowered by adjusting the VFD, and if the pressure is still increased from 54 barg or more to 55 barg, the second pressure reducing device 230 of the second return line is opened to lower the pressure.
본 실시예의 선박은 액화가스 운반선으로 액화가스를 저장하여 운송하기 위한 카고탱크(미도시)가 마련되는데, 카고탱크에 저장된 액화가스에서 발생하는 증발가스는 재액화부(RS)로 공급되어 재액화된다. The ship of this embodiment is provided with a cargo tank (not shown) for storing and transporting liquefied gas as a liquefied gas carrier, and the boil-off gas generated from the liquefied gas stored in the cargo tank is supplied to the re-liquefaction unit (RS) and re-liquefied. .
세퍼레이터에서 분리되어 도입되는 가스에 의해 연료공급탱크의 온도가 높아질 수 있는데, 본 실시예에서는 재액화부(RS)로부터 재액화된 액화가스가 연료공급탱크(DT)를 거쳐 카고탱크(미도시)로 연결되도록 냉각라인(CL)을 마련하여, 재액화부에서 재액화된 액화가스의 냉열을 이용해 연료공급탱크를 냉각시킬 수 있도록 한다. The temperature of the fuel supply tank may be increased by the gas separated from the separator and introduced. In this embodiment, the liquefied gas reliquefied from the reliquefaction unit RS passes through the fuel supply tank DT to the cargo tank (not shown). A cooling line CL is provided so as to be connected, so that the fuel supply tank can be cooled by using the cooling heat of the liquefied gas reliquefied in the reliquefaction unit.
한편, 선내에는 데크에 배치된 연료공급탱크(DT)로 선내 엔진의 연료로 공급될 액화가스를 공급하기 위한 연료탱크(FT1, FT2)가 추가로 마련되는데, 재액화부를 가동하지 않을 때에는 연료탱크로부터 액화가스를 연료공급탱크로 공급하여 저온의 액화가스에 의해 연료공급탱크를 냉각시킬 수도 있다. Meanwhile, in the ship, fuel tanks FT1 and FT2 for supplying liquefied gas to be supplied as fuel of the onboard engine to the fuel supply tank DT disposed on the deck are additionally provided. It is also possible to supply liquefied gas from the fuel supply tank to the fuel supply tank to cool the fuel supply tank by the low-temperature liquefied gas.
도 3에는 본 발명의 제2 실시예에 따른 액화가스 운반선의 연료공급시스템을 개략적으로 도시하였다. 3 schematically shows a fuel supply system for a liquefied gas carrier according to a second embodiment of the present invention.
도 3에 도시된 바와 같이 본 제2 실시예의 연료공급시스템 역시, 선박의 데크에 마련된 연료공급탱크(DT)로부터 선내 엔진(E)으로 액화가스가 공급되는 연료공급라인(SL)과, 연료공급라인에 마련되며 연료공급탱크로부터 엔진으로 공급될 액화가스를 이송하는 제1 펌프(110), 연료공급라인에 마련되며 액화가스를 엔진에 필요한 압력으로 압축하는 제2 펌프(120), 액화가스 중 엔진에서 소비되지 않은 액화가스를 엔진의 상류로 재순환시키는 리턴라인(RL1, RL2), 리턴라인에 마련되며 재순환되는 액화가스를 공급받아 기액분리하는 세퍼레이터(210), 세퍼레이터에서 분리된 액상의 액화가스를 연료공급라인의 제1 펌프 후단으로 공급하는 리퀴드라인(LL), 세퍼레이터에서 분리된 기체를 연료공급탱크(DT)로 회수하는 베이퍼라인(VL)을 포함한다. As shown in FIG. 3, the fuel supply system of the second embodiment also includes a fuel supply line SL through which liquefied gas is supplied from the fuel supply tank DT provided on the deck of the ship to the in-board engine E, and the fuel supply A first pump 110 provided in the line and transferring liquefied gas to be supplied from the fuel supply tank to the engine, a second pump 120 provided in the fuel supply line and compressing the liquefied gas to the pressure required for the engine, among the liquefied gas Return lines RL1 and RL2 for recirculating the liquefied gas not consumed in the engine to the upstream of the engine, the separator 210 provided in the return line and receiving the recirculated liquefied gas to gas-liquid separation, the liquid liquefied gas separated from the separator It includes a liquid line LL for supplying to the rear end of the first pump of the fuel supply line, and a vapor line VL for recovering the gas separated from the separator to the fuel supply tank DT.
리턴라인에서 세퍼레이터의 상류에는 재순환되는 액화가스를 감압하는 감압부가 마련되고, 세퍼레이터로부터 연료공급탱크로 연결된 베이퍼라인에는 연료공급탱크(DT)로 이송되는 기체를 조절하기 위한 압력조절밸브(250)가 마련된다. A pressure reducing unit for reducing the recirculated liquefied gas is provided upstream of the separator in the return line, and a pressure regulating valve 250 for controlling the gas transferred to the fuel supply tank DT is provided in the vapor line connected from the separator to the fuel supply tank. will be prepared
세퍼레이터에서 분리되어 리퀴드라인을 통해 재순환될 액화가스가 공급되는 연료공급라인의 제1 펌프 후단 압력을 감지하여, 감지된 압력에 따라 압력조절밸브를 제어하여 세퍼레이터로부터 연료공급탱크로 회수되는 기체의 양을 조절하여, 세퍼레이터의 압력을 연료공급라인에서 감지된 압력보다 높게 유지하는 것을 특징으로 한다. Amount of gas recovered from the separator to the fuel supply tank by sensing the pressure at the rear end of the first pump of the fuel supply line to which the liquefied gas separated from the separator and recirculated through the liquid line is supplied, and by controlling the pressure control valve according to the sensed pressure by adjusting the pressure of the separator to be maintained higher than the pressure sensed in the fuel supply line.
본 제2 실시예 시스템에서 엔진으로의 연료 공급 과정을 보다 상세히 살펴보면 다음과 같이 이루어진다. The process of supplying fuel to the engine in the system of the second embodiment is described in more detail as follows.
연료공급탱크로부터 엔진으로의 연료 공급은, 액화가스를 펌핑하여 이송하는 제1 펌프(110)와, 이송된 액화가스를 펌핑하여 상기 엔진에서 필요한 압력으로 승압하는 제2 펌프(120)를 포함하는 두 개의 펌프에 의해 이루어진다. The fuel supply from the fuel supply tank to the engine includes a first pump 110 for pumping and transferring the liquefied gas, and a second pump 120 for pumping the transferred liquefied gas and boosting the pressure to the pressure required by the engine. It is made by two pumps.
제1 펌프(110)는 액화가스를 이송하기 위한 저압 펌프로 일 예로 원심 펌프(centrifugal pump)로, 제2 펌프(120)는 엔진에서 요구하는 연료공급압력으로 압축하는 고압 펌프로 다이아프램 펌프(diaphragm pump)로 구성될 수 있고, 제1 펌프 및 제2 펌프를 거친 액화가스는 제2 펌프 후단에 마련된 연료히터(130)에서 엔진에서 필요로 하는 온도로 가열되어 엔진으로 공급된다. The first pump 110 is a low-pressure pump for transporting liquefied gas, for example, a centrifugal pump, and the second pump 120 is a high-pressure pump that compresses the fuel supply pressure required by the engine. The diaphragm pump ( diaphragm pump), and the liquefied gas passing through the first pump and the second pump is heated to a temperature required by the engine in the fuel heater 130 provided at the rear end of the second pump and supplied to the engine.
연료공급라인에서 제2 펌프 및 연료히터를 거쳐 압축 및 가열된 액화가스는 연료 중의 이물질을 걸러주는 필터(140)와 서비스밸브부(SVT)를 거쳐 엔진(E)으로 공급된다. 서비스밸브부에서는 엔진으로 LPG를 공급하면서 엔진의 연료유 전환이나 LPG 모드 정지, 트립 등으로 LPG 연료 공급이 중단될 때 밸브를 통해 각 배관을 이중 차단하며 배관 내 압력을 해소한다. In the fuel supply line, the compressed and heated liquefied gas through the second pump and the fuel heater is supplied to the engine E through the filter 140 that filters out foreign substances in the fuel and the service valve unit SVT. In the service valve part, while supplying LPG to the engine, when LPG fuel supply is stopped due to engine fuel oil switching, LPG mode stop, trip, etc., each pipe is double-blocked through the valve to relieve pressure in the pipe.
이러한 압축 및 가열된 LPG를 연료로 공급받는 엔진은 일 예로 MAN Diesel & Turbo사(社)의 ME-LGIP 엔진일 수 있다. 이 경우 LPG는 압축부 및 연료히터를 거쳐 54 bar, 35℃ 내외의 고압 액체 상태로 엔진에 공급되며, 엔진에서 유압으로 600 내지 700 bar의 압력으로 노즐에 분사되어 엔진이 가동된다. An engine receiving such compressed and heated LPG as fuel may be, for example, a ME-LGIP engine of MAN Diesel & Turbo. In this case, LPG is supplied to the engine in a high-pressure liquid state of around 54 bar and 35° C. through the compression unit and the fuel heater, and the engine is operated by being hydraulically injected into the nozzle at a pressure of 600 to 700 bar.
즉, 본 실시예의 엔진에서는 압축 및 가열된 연료가 액체 상태로 엔진으로 공급되는데, 압력 변화에 따라 부피변화가 큰 압축성 유체, 즉 가스 연료가 공급되는 엔진과는 달리, 압력을 가하여도 부피의 변화가 없거나 적은 비압축성 유체, 액체 상태의 LPG가 엔진 연료로 공급되는 경우 엔진의 부하 변동에도 충분한 연료를 공급하여 즉각적으로 대응하며 캐비테이션을 방지하기 위해서 과잉의 LPG를 엔진으로 공급한다. 엔진에 공급된 LPG 중 연료로 소비되고 남은 LPG는 엔진에서 리턴라인을 통해 배출하여 재순환시키는데, 압축 및 가열된 LPG를 그대로 재순환시키거나 연료공급탱크로 보내면 제2 펌프 흡입부(suction)에서 베이퍼(vapor) 발생 위험이 있고, 연료공급탱크 내 압력 및 온도를 상승시켜 탱크 및 선박 안전에 위협이 될 수 있다. That is, in the engine of this embodiment, compressed and heated fuel is supplied to the engine in a liquid state, and unlike the engine to which a compressible fluid having a large volume change according to a change in pressure, that is, gas fuel is supplied, the volume changes even when pressure is applied. When there is no or little incompressible fluid or liquid LPG as engine fuel, sufficient fuel is supplied to respond immediately to changes in engine load and excess LPG is supplied to the engine to prevent cavitation. Among the LPG supplied to the engine, the remaining LPG consumed as fuel is discharged from the engine through the return line and recirculated. When the compressed and heated LPG is recirculated as it is or sent to the fuel supply tank, the vapor), and it may increase the pressure and temperature in the fuel supply tank, which may threaten the safety of the tank and ship.
본 실시예에서는 이러한 문제의 해결을 위해 리턴라인에 액화가스를 감압하는 감압부(220, 230)를 마련하여, 엔진으로부터 배출되는 액화가스를 감압하여 재순환될 수 있도록 구성한다. 압축된 액화가스는 감압 과정에서 단열팽창 또는 등엔트로피 팽창하면서 줄-톰슨 효과에 의해 냉각된다. In this embodiment, in order to solve this problem, the decompression units 220 and 230 for decompressing the liquefied gas are provided in the return line, so that the liquefied gas discharged from the engine can be recirculated by decompressing the liquefied gas. The compressed liquefied gas is cooled by the Joule-Thomson effect while undergoing adiabatic or isentropic expansion during the decompression process.
엔진(E)으로부터 리턴라인(RL1)을 통해 재순환되는 압축된 액화가스는 감압부(220)를 거쳐 감압되며 냉각되어 세퍼레이터(210)로 도입되어 기액분리되고, 세퍼레이터에서 분리된 액상의 액화가스는 리퀴드라인(LL)을 통해 제1 펌프(110)와 제2 펌프(120) 사이의 연료공급라인(SL)으로 공급되어 재순환되며, 세퍼레이터에서 분리된 기체는 베이퍼라인(VL)을 통해 연료공급탱크(DT)로 회수된다. The compressed liquefied gas recirculated from the engine E through the return line RL1 is reduced in pressure through the decompression unit 220 and cooled, introduced into the separator 210 for gas-liquid separation, and the liquid liquefied gas separated from the separator is It is supplied to the fuel supply line SL between the first pump 110 and the second pump 120 through the liquid line LL and recirculated, and the gas separated from the separator is supplied to the fuel supply tank through the vapor line VL. (DT) is recovered.
본 실시예에서는 감압을 통해 냉각된 액화가스가 세퍼레이터로 도입되고, 기액분리 후 액상의 액화가스가 연료공급탱크로부터 제1 펌프를 거쳐 공급되는 과냉각(subcooled) LPG와 함께 제2 펌프(120)로 도입되므로, 제2 펌프 흡입부에서의 베이퍼 발생 위험을 낮춰 베이퍼 제거를 위한 별도의 장치를 구성하지 않을 수 있다. In this embodiment, liquefied gas cooled through decompression is introduced into the separator, and after gas-liquid separation, the liquid liquefied gas is supplied from the fuel supply tank through the first pump to the second pump 120 together with subcooled LPG. Since it is introduced, it is possible to reduce the risk of vapor generation in the suction part of the second pump, and thus a separate device for removing vapor may not be configured.
또한, 재순환되는 액화가스의 온도가 높은 경우에는 엔진의 연료 요구 조건에 맞추기 위해 연료히터에서 가열기능과 함께 냉각기능도 갖추어야 하지만, 본 실시예에서는 감압부를 거쳐 재순환 액화가스가 냉각되고, 세퍼레이터를 통해 감압된 재순환 액화가스 중의 기체는 연료공급탱크로 회수되어, 제2 펌프로 흡입되는 고온의 재순환 액화가스의 질량유량(mass flow)를 줄여, 추가 냉각없이도 적절한 온도의 연료를 엔진으로 공급할 수 있어, 연료히터는 가열기능만 갖추어도 되므로 장치 비용을 절감할 수 있고, 운전이 용이하다. In addition, when the temperature of the recirculated liquefied gas is high, the fuel heater must have a cooling function as well as a heating function in order to meet the fuel requirements of the engine. The gas in the decompressed recirculation liquefied gas is recovered to the fuel supply tank, and the mass flow of the high-temperature recirculated liquefied gas sucked into the second pump is reduced, so that fuel at an appropriate temperature can be supplied to the engine without additional cooling. Since the fuel heater only needs to have a heating function, the equipment cost can be reduced and operation is easy.
한편 리턴라인은, 엔진(E)으로부터 세퍼레이터(210)로 연결되는 제1 리턴라인(RL1)과, 상기 제2 펌프(120)와 연료히터(130) 사이의 연료공급라인(SL)으로부터 세퍼레이터(210)로 연결되는 제2 리턴라인(RL2)을 포함한다. 또한 감압부는, 제1 리턴라인에 마련되는 제1 감압장치(220)와, 제2 리턴라인에 마련되는 제2 감압장치(230)를 포함하여 구성될 수 있다. 제1 및 제2 감압장치는 압축된 액화가스를 단열팽창 또는 등엔트로피 팽창시켜 냉각하는 팽창기 또는 줄-톰슨 밸브 등의 팽창밸브로 구성될 수 있다.On the other hand, the return line includes a first return line RL1 connected from the engine E to the separator 210 and a separator ( and a second return line RL2 connected to 210 . In addition, the decompression unit may include a first decompression device 220 provided in the first return line and a second decompression device 230 provided in the second return line. The first and second pressure reducing devices may include an expander for cooling the compressed liquefied gas by adiabatic or isentropic expansion or an expansion valve such as a Joule-Thomson valve.
제1 리턴라인의 제1 감압장치 상류에는 리턴밸브부(RVT) 및 필터(240)가 마련되어, 엔진으로부터 배출되는 액화가스는 리턴밸브부 및 필터를 거쳐 제1 감압장치로 도입된다. 필터에서는 엔진에서 배출되는 액화가스에 혼입된 윤활유 등을 걸러낼 수 있다. A return valve unit (RVT) and a filter 240 are provided upstream of the first pressure reducing device in the first return line, and the liquefied gas discharged from the engine is introduced into the first pressure reducing device through the return valve unit and the filter. The filter can filter lubricating oil mixed in the liquefied gas discharged from the engine.
제1 리턴라인 및 제1 감압장치는 엔진에서 배출되는 액화가스를, 제2 리턴라인 및 제2 감압장치는 제2 펌프에서 엔진의 연료 공급 압력으로 압축된 액화가스를 연료히터 상류로부터 감압하여 세퍼레이터로 이송한다. The first return line and the first pressure reducing device depressurize the liquefied gas discharged from the engine, and the second return line and the second pressure reducing device reduce the liquefied gas compressed by the second pump to the fuel supply pressure of the engine from upstream of the fuel heater to form a separator. transfer to
이를 통해 엔진의 LPG 모드 정지 시나 트립 등 LPG 연료 공급이 중단될 때 엔진 및 연료공급라인에 잔존하는 LPG도 감압으로 냉각하여 세퍼레이터로 이송할 수 있다. LPG 연료 공급 중단 시에는 세퍼레이터로부터 LPG를 연료공급라인으로 재순환시킬 필요가 없으므로 이를 연료공급탱크로 보낼 수 있고, 이를 위해 세퍼레이터로부터 연료공급탱크로 이송라인(미도시)이 마련될 수 있다. Through this, the LPG remaining in the engine and fuel supply line can also be cooled under reduced pressure and transferred to the separator when the LPG fuel supply is interrupted, such as when the engine is stopped in LPG mode or when tripping. When the LPG fuel supply is stopped, it is not necessary to recirculate the LPG from the separator to the fuel supply line, so it can be sent to the fuel supply tank, and for this, a transfer line (not shown) from the separator to the fuel supply tank may be provided.
본 실시예 시스템에는 운전압력을 제어하기 위해, 복수의 압력감지부가 마련된다. 제2 펌프와 연료히터 사이의 압력을 감지하고 압력 신호를 보내는 제1 압력감지부(PC1), 제1 리턴라인에서 필터와 제1 감압장치 사이의 압력을 감지하고 압력 신호를 보내는 제2 압력감지부(PC2), 제1 펌프 후단의 압력을 감지하는 제3 압력감지부(PC3), 세퍼레이터의 압력을 감지하는 제4 압력감지부(PC4)가 각각 마련된다. In the present embodiment system, a plurality of pressure sensing units are provided to control the operating pressure. A first pressure sensing unit PC1 that senses the pressure between the second pump and the fuel heater and sends a pressure signal, a second pressure sensing unit that senses the pressure between the filter and the first pressure reducing device in the first return line and sends a pressure signal A unit PC2, a third pressure sensing unit PC3 sensing the pressure of the rear end of the first pump, and a fourth pressure sensing unit PC4 sensing the pressure of the separator are provided, respectively.
본 실시예 시스템에서의 운전압력은 일 예로 다음과 같이 제어될 수 있다. The operating pressure in the system of the present embodiment may be controlled as follows, for example.
연료공급탱크의 운전압력 범위는 1 내지 8 barg인데, 운전압력을 4barg로 가정하면, 제1 펌프의 디퍼렌셜(Differential) 압력은 약 2 bar, 제1 펌프 후단 압력은 6 barg이다. 세퍼레이터(210)의 운전압력은 제1 펌프 후단 압력보다 약 0.5 내지 2 bar, 보다 바람직하게는 0.5 내지 1 bar 높게 유지됨으로써, 세퍼레이터에서 분리된 액상의 재순환가스가 제1 펌프 후단으로 원활하게 이송될 수 있다. The operating pressure range of the fuel supply tank is 1 to 8 barg. Assuming that the operating pressure is 4 barg, the differential pressure of the first pump is about 2 bar, and the rear end pressure of the first pump is 6 barg. The operating pressure of the separator 210 is maintained at about 0.5 to 2 bar, more preferably 0.5 to 1 bar higher than the pressure at the rear end of the first pump, so that the liquid recirculation gas separated from the separator is smoothly transferred to the rear end of the first pump. can
이를 위해 제3 압력감지부(PC3)에서의 압력 신호를 제4 압력감지부(PC4)가 받아, 제4 압력감지부(PC4)에서 베이퍼라인(VL)의 압력조절밸브(250)에 설정값 신호를 보내고, 압력조절밸브의 개도를 조절하여 세퍼레이터의 압력이 6.5 내지 7 barg로 유지된다. To this end, the fourth pressure sensing unit PC4 receives the pressure signal from the third pressure sensing unit PC3, and the fourth pressure sensing unit PC4 sets the set value to the pressure control valve 250 of the vapor line VL. By sending a signal and adjusting the opening degree of the pressure control valve, the pressure of the separator is maintained at 6.5 to 7 barg.
세퍼레이터에서 분리된 액체는 리퀴드라인(LL)을 따라 제2 펌프 전단으로 공급되며 제2 펌프에서 펌핑되어 54 barg로 가압된다. The liquid separated from the separator is supplied to the front end of the second pump along the liquid line LL, and is pumped from the second pump and pressurized to 54 barg.
세퍼레이터에는 세퍼레이터의 액위(liquid level)를 감지하는 레벨센서(LC)가 마련되고, 레벨센서에서 감지된 세퍼레이터의 액위에 따라 밸브(V1)를 제어하여 연료공급라인으로 이송되는 액화가스의 유량을 조절할 수 있다.The separator is provided with a level sensor (LC) that detects the liquid level of the separator, and controls the valve (V1) according to the liquid level of the separator detected by the level sensor to adjust the flow rate of the liquefied gas transferred to the fuel supply line. can
엔진에서 돌아오는 제1 리턴라인(RL1)은 제2 압력감지부에서 제1 감압장치(220)를 제어하여 제1 감압장치 상류의 압력을 22barg로 유지하고, 제1 감압장치 후단에서의 압력은 세퍼레이터 압력과 같은 6.5 내지 7 barg로 유지한다. The first return line RL1 returning from the engine controls the first pressure reducing device 220 from the second pressure sensing unit to maintain the pressure upstream of the first pressure reducing device at 22 barg, and the pressure at the rear end of the first pressure reducing device is Maintain at 6.5 to 7 barg equal to the separator pressure.
엔진에서의 로드 변화로 연료 소모량이 변화하여 제2 펌프의 후단 압력이 변할 때는 제1 압력감지부(PC1)에서 압력을 감지하여 제1 압력감지부의 설정값(54barg) 이상이면 먼저 제2 펌프의 VFD를 조절하여 펌프 스피드를 낮추고, 여전히 압력이 54barg 이상에서 55barg까지 올라가면 제2 리턴라인의 제2 감압장치(230)를 열어 압력을 낮춘다.When the rear end pressure of the second pump changes due to a change in fuel consumption due to a change in the load in the engine, the first pressure sensing unit PC1 detects the pressure and, if it is higher than the set value (54 barg) of the first pressure sensing unit, first of the second pump The pump speed is lowered by adjusting the VFD, and if the pressure is still increased from 54 barg or more to 55 barg, the second pressure reducing device 230 of the second return line is opened to lower the pressure.
한편, 세퍼레이터(210)의 바닥부에는 배출배관(DL)이 마련된다. 세퍼레이터로부터 분리된 윤활유는 배출배관(DL)을 포함한 배출부로 배출된다. 도 4에는 본 제2 실시예에 따른 액화가스 운반선의 연료공급시스템에서 세퍼레이터로부터 윤활유를 배출시키는 배출부의 구성을 개략적으로 도시하였다. Meanwhile, a discharge pipe DL is provided at the bottom of the separator 210 . Lubricating oil separated from the separator is discharged to a discharge unit including a discharge pipe (DL). 4 schematically shows a configuration of a discharge unit for discharging lubricant oil from a separator in a fuel supply system of a liquefied gas carrier according to the second embodiment.
엔진으로부터 회수되는 액화가스에는 액상의 LPG 외에도, 연료 공급을 위한 압축 및 가열을 통해 발생하게 된 증발가스 등의 기체와 함께 엔진에서 유입된 윤활유(sealing oil)가 섞여 있을 수 있는데, 이러한 윤활유가 엔진의 연료로 공급되면 불완전 연소되어 배기 중 대기 오염 물질이 발생할 수 있고 연료 효율에도 악영향을 줄 수 있다. 또한 연료공급탱크로 윤활유가 유입되면 탱크 내에서 결정화될 우려도 있다. 본 실시예에서는 세퍼레이터 바닥부에 마련된 배출배관(DL)을 통해 액화가스에 혼입된 윤활유를 세퍼레이터에서 분리하여 배출시킴으로써 이를 방지할 수 있다. The liquefied gas recovered from the engine may contain, in addition to liquid LPG, gas such as boil-off gas generated through compression and heating for fuel supply and sealing oil introduced from the engine. If it is supplied as a fuel of Also, when lubricating oil flows into the fuel supply tank, there is a risk of crystallization in the tank. In the present embodiment, this can be prevented by separating and discharging the lubricant mixed in the liquefied gas from the separator through the discharge pipe DL provided at the bottom of the separator.
LPG는 프로판(C 3H 8)과 부탄(C 4H 10)이 주성분으로, 프로판과 부탄의 비율에 따라 차이가 있으나 비중이 약 0.5이고, 윤활유의 비중은 약 0.9 내외이다. 따라서 세퍼레이터에서 가스는 상부로 분리되고, 비중 차이에 의해 LPG보다 무거운 윤활유가 바닥으로 층 분리되므로, 세퍼레이터 바닥부에 배출배관을 마련하여 층 분리된 윤활유를 배출시킬 수 있다. 보다 원활한 윤활유의 분리 배출을 위해, LNG에서는 가라앉고 윤활유에서는 부유할 수 있는 부유식 부력체를 세퍼레이터 내에 마련할 수 있다.LPG is mainly composed of propane (C 3 H 8 ) and butane (C 4 H 10 ). Although there is a difference depending on the ratio of propane and butane, the specific gravity is about 0.5, and the specific gravity of the lubricant is about 0.9. Therefore, in the separator, the gas is separated to the upper part, and the lubricating oil heavier than LPG is layered at the bottom due to the difference in specific gravity. For smoother separation and discharge of lubricating oil, a floating buoyancy body capable of sinking in LNG and floating in lubricating oil may be provided in the separator.
세퍼레이터의 압력을 10 barg 이하로 유지하면 점성 및 비중 차이에 의한 윤활유의 분리 배출이 수월하게 이루어질 수 있다.If the pressure of the separator is maintained at 10 barg or less, the separation and discharge of the lubricant due to the difference in viscosity and specific gravity can be easily achieved.
배출부는 세퍼레이터(210) 바닥부에서 연결되는 배출배관(DL)과 배출된 윤활유가 모이는 윤활유배출탱크(SDT)를 포함하고, 배출배관에서 세퍼레이터와 윤활유배출탱크 사이에 리텐션 팟(retention pot, 300)이 마련된다. 리텐션 팟에는 액위를 확인할 수 있도록 자기 부유식 레벨 게이지(magnetic float level gauge, 310)가 마련되고, 배출배관에서 세퍼레이터와 리텐션 팟 사이에는 도 4에 도시된 바와 같이 제1 배출밸브(DV1) 및 제2 배출밸브(DV2)가 마련된다. 리텐션 팟과 윤활유배출탱크 사이에는 분리된 윤활유를 윤활유배출탱크로 배출시킬 수 있도록 제3 배출밸브(DV3)가 마련된다. 정상 배출 모드 작동 시, 제1 및 제2 배출밸브(DV1, DV2)는 열고, 제3 배출밸브(DV3)는 닫게 되며, 배출배관에 마련된 리텐션 팟에 의해 관내 정체 시간을 늘림으로써 윤활유의 분리 효율을 높일 수 있다. The discharge part includes a discharge pipe (DL) connected from the bottom of the separator 210 and a lubricant discharge tank (SDT) where the discharged lubricant is collected, and a retention pot (retention pot, 300) between the separator and the lubricant discharge tank in the discharge pipe. ) is provided. A magnetic float level gauge 310 is provided in the retention pot to check the liquid level, and between the separator and the retention pot in the discharge pipe, as shown in FIG. 4 , a first discharge valve DV1 And a second discharge valve (DV2) is provided. A third discharge valve (DV3) is provided between the retention pod and the lubricant discharge tank to discharge the separated lubricant to the lubricant discharge tank. During normal discharge mode operation, the first and second discharge valves (DV1, DV2) are opened, the third discharge valve (DV3) is closed, and the retention time in the pipe is increased by the retention pot provided in the discharge pipe to separate the lubricant efficiency can be increased.
제2 배출밸브와 리텐션 팟 사이에서 배출배관의 압력을 해소하고 윤활유 배출(drain) 시 진공 상태를 해소하기 위해 배출배관에서 분기되어 윤활유배출탱크로 연결되는 배관과 배관을 개폐하는 제4 배출밸브(DV4)가 마련된다. 또한, 윤활유배출탱크(SDT)에는 액위 측정을 위한 레벨 게이지(320)가 마련되고, 윤활유배출탱크로부터 윤활유를 배출시킬 수 있도록 제5 배출밸브(DV5)가 마련되고, 배출시킨 윤활유는 엔진룸의 오일 탱크로 보내 재사용하거나 폐기할 수 있다. A fourth discharge valve that opens and closes the piping branched from the discharge pipe and connected to the lubricant discharge tank in order to relieve the pressure of the discharge pipe between the second discharge valve and the retention pod and to relieve the vacuum state when the lubricant is drained. (DV4) is provided. In addition, the level gauge 320 for measuring the liquid level is provided in the lubricant discharge tank SDT, and a fifth discharge valve DV5 is provided to discharge the lubricant from the lubricant discharge tank, and the discharged lubricant is in the engine room. It can be sent to the oil tank for reuse or disposal.
한편, 본 실시예의 선박은 액화가스 운반선으로 액화가스를 저장하여 운송하기 위한 카고탱크(미도시)가 마련되는데, 본 실시예에서는 카고탱크(미도시)에 저장된 액화가스에서 발생하는 증발가스를 재액화부(RS)로 보내 재액화하고, 재액화부(RS)로부터 재액화된 액화가스가 연료공급탱크(DT)를 거쳐 카고탱크(미도시)로 연결되도록 냉각라인(CL)을 마련하여, 재액화부에서 재액화된 액화가스의 냉열을 이용해 연료공급탱크를 냉각시킬 수 있도록 구성하였다. On the other hand, the ship of this embodiment is provided with a cargo tank (not shown) for storing and transporting liquefied gas as a liquefied gas carrier, and in this embodiment, boil off gas generated from the liquefied gas stored in the cargo tank (not shown) is liquid A cooling line CL is provided so that the liquefied gas re-liquefied by sending it to the re-liquefaction unit RS is connected to the cargo tank (not shown) through the fuel supply tank DT, and the re-liquefaction unit It was configured to cool the fuel supply tank by using the cooling heat of the liquefied gas re-liquefied in the
즉, 연료공급탱크는 LPG를 8 barg 이하 압력으로 저장하면서 선내 엔진으로 연료를 공급하는데, 선박에서 데크(deck) 상에 마련되므로 외기에 의해서나, 세퍼레이터로부터 도입되는 가스 등에 의해 탱크 내 온도가 높아지고 압력이 상승할 수 있는데, 본 실시예에서는 카고탱크에서 저장된 액화가스 화물에서 발생하는 증발가스를 재액화시킨 후 연료공급탱크(DT)를 거쳐 카고탱크로 복귀되도록 냉각라인(CL)을 구성함으로써, 재액화된 액화가스의 냉열을 이용해 연료공급탱크를 냉각시킬 수 있도록 한다. That is, the fuel supply tank supplies fuel to the onboard engine while storing LPG at a pressure of 8 barg or less. Since it is provided on the deck of the ship, the temperature in the tank increases due to external air or gas introduced from the separator. The pressure may rise, in this embodiment by configuring the cooling line CL to re-liquefy the boil-off gas generated from the liquefied gas cargo stored in the cargo tank and then to return to the cargo tank via the fuel supply tank DT, It is possible to cool the fuel supply tank by using the cooling heat of the reliquefied liquefied gas.
한편, 선내에는 데크에 배치된 연료공급탱크(DT)로 선내 엔진의 연료로 공급될 액화가스를 공급하기 위한 연료탱크(FT1, FT2)가 추가로 마련되는데, 재액화부를 가동하지 않을 때에는 연료탱크로부터 액화가스를 연료공급탱크로 공급하여 저온의 액화가스에 의해 연료공급탱크를 냉각시킬 수도 있다.Meanwhile, in the ship, fuel tanks FT1 and FT2 for supplying liquefied gas to be supplied as fuel of the onboard engine to the fuel supply tank DT disposed on the deck are additionally provided. It is also possible to supply liquefied gas from the fuel supply tank to the fuel supply tank to cool the fuel supply tank by the low-temperature liquefied gas.
이와 같이 카고탱크 내 화물에서 발생하는 증발가스를 재액화하여 재액화가스의 냉열로 연료공급탱크를 냉각시킴으로써 연료공급탱크의 온도 및 압력을 조절할 수 있고, 재액화가스의 냉열만 이용하고 카고탱크로 복귀시켜 저장함으로써 연료와 이송 화물이 섞이는 것을 방지할 수 있다. In this way, the temperature and pressure of the fuel supply tank can be adjusted by re-liquefying the boil-off gas generated from the cargo in the cargo tank and cooling the fuel supply tank with the cooling heat of the re-liquefied gas. By returning and storing, it is possible to prevent mixing of fuel and transported cargo.
본 발명은 상기 실시예들에 한정되지 않고, 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명한 것이다.The present invention is not limited to the above embodiments, and it is to those of ordinary skill in the art that various modifications or variations can be implemented without departing from the technical gist of the present invention. it is self-evident

Claims (19)

  1. 선박의 데크에 마련된 연료공급탱크로부터 선내 엔진으로 액화가스가 공급되는 연료공급라인; a fuel supply line through which liquefied gas is supplied from the fuel supply tank provided on the deck of the ship to the onboard engine;
    상기 연료공급라인에 마련되며 상기 선내 엔진으로 공급될 액화가스를 상기 엔진에 필요한 압력으로 압축하는 압축부;a compression unit provided in the fuel supply line and compressing the liquefied gas to be supplied to the onboard engine to a pressure required for the engine;
    상기 액화가스 중 엔진에서 소비되지 않은 액화가스를 상기 엔진의 상류로 재순환시키는 리턴라인;a return line for recirculating the liquefied gas not consumed by the engine among the liquefied gas to an upstream of the engine;
    상기 리턴라인에 마련되어 재순환되는 상기 액화가스를 기액분리하는 세퍼레이터; 및a separator for gas-liquid separation of the recirculated liquefied gas provided in the return line; and
    상기 리턴라인에서 상기 세퍼레이터 상류에 마련되는 감압부;를 포함하며, and a pressure reducing unit provided upstream of the separator in the return line;
    상기 리턴라인을 통해 재순환되는 상기 액화가스는 상기 감압부에서 감압으로 냉각되어 상기 세퍼레이터로 도입되는 것을 특징으로 하는 액화가스 운반선의 연료공급시스템. The liquefied gas recirculated through the return line is cooled under reduced pressure in the decompression unit and introduced into the separator.
  2. 제 1항에 있어서, 상기 압축부는, According to claim 1, wherein the compression unit,
    상기 연료공급탱크로부터 액화가스를 펌핑하여 이송하는 제1 펌프; 및a first pump for pumping and transferring liquefied gas from the fuel supply tank; and
    상기 제1 펌프에서 이송된 액화가스를 펌핑하여 상기 엔진에서 필요한 압력으로 승압하는 제2 펌프:를 포함하고, A second pump for pumping the liquefied gas transferred from the first pump to increase the pressure to the required pressure in the engine: Containing,
    상기 세퍼레이터에서 분리된 액상의 액화가스는 상기 제1 펌프와 제2 펌프 사이의 연료공급라인으로 공급되어 재순환되는 것을 특징으로 하는 액화가스 운반선의 연료공급시스템. The liquid gas separated from the separator is supplied to a fuel supply line between the first pump and the second pump and recirculated.
  3. 제 2항에 있어서, 3. The method of claim 2,
    상기 세퍼레이터에서 분리된 기체를 상기 연료공급탱크로 회수하는 베이퍼라인; 및 a vapor line for recovering the gas separated from the separator to the fuel supply tank; and
    상기 베이퍼라인에 마련되는 압력조절밸브;를 더 포함하는 것을 특징으로 하는 액화가스 운반선의 연료공급시스템. A fuel supply system for a liquefied gas carrier, characterized in that it further comprises; a pressure regulating valve provided in the vapor line.
  4. 제 3항에 있어서, 4. The method of claim 3,
    상기 제1 펌프의 후단 압력을 감지하고, 감지된 압력에 따라 상기 압력조절밸브의 개도를 조절하여, 상기 세퍼레이터의 압력을 상기 제1 펌프의 후단 압력보다 0.5 내지 2 bar 높게 유지하는 것을 특징으로 하는 액화가스 운반선의 연료공급시스템. By sensing the pressure at the rear end of the first pump and adjusting the opening degree of the pressure control valve according to the sensed pressure, the pressure of the separator is maintained 0.5 to 2 bar higher than the pressure at the end of the first pump, characterized in that Fuel supply system for liquefied gas carriers.
  5. 제 3항에 있어서, 4. The method of claim 3,
    상기 연료공급라인에서 상기 압축부의 후단에 마련되며 압축된 액화가스를 상기 엔진에서 필요로 하는 온도로 가열하는 연료히터;를 더 포함하는 액화가스 운반선의 연료공급시스템.A fuel supply system for a liquefied gas carrier further comprising a; provided at the rear end of the compression unit in the fuel supply line and heating the compressed liquefied gas to a temperature required by the engine.
  6. 제 5항에 있어서, 상기 리턴라인은, The method of claim 5, wherein the return line,
    상기 엔진으로부터 상기 세퍼레이터로 연결되는 제1 리턴라인; 및 a first return line connected from the engine to the separator; and
    상기 제2 펌프와 연료히터 사이의 연료공급라인으로부터 상기 세퍼레이터로 연결되는 제2 리턴라인:을 포함하는 액화가스 운반선의 연료공급시스템. A fuel supply system for a liquefied gas carrier including: a second return line connected to the separator from a fuel supply line between the second pump and the fuel heater.
  7. 제 6항에 있어서, 상기 감압부는, The method of claim 6, wherein the pressure reducing unit,
    상기 제1 리턴라인에 마련되는 제1 감압장치; 및a first pressure reducing device provided on the first return line; and
    상기 제2 리턴라인에 마련되는 제2 감압장치:를 포함하는 액화가스 운반선의 연료공급시스템. A fuel supply system for a liquefied gas carrier comprising: a second pressure reducing device provided in the second return line.
  8. 제 7항에 있어서, 8. The method of claim 7,
    상기 제2 펌프의 후단 압력을 감지하여, 감지된 압력이 설정값보다 높아지면 먼저 제2 펌프의 펌프 스피드를 낮추고, By sensing the pressure at the rear end of the second pump, if the sensed pressure is higher than the set value, first lower the pump speed of the second pump,
    여전히 설정값보다 높으면 상기 제2 감압장치를 열어 제2 펌프의 후단 압력을 낮추는 것을 특징으로 하는 액화가스 운반선의 연료공급시스템. If still higher than the set value, the fuel supply system of the liquefied gas carrier, characterized in that lowering the rear end pressure of the second pump by opening the second pressure reducing device.
  9. 제 1항 내지 8항 중 어느 한 항에 있어서, 9. The method according to any one of claims 1 to 8,
    상기 선박에 마련되어 운송될 액화가스를 저장하는 카고탱크로부터 발생하는 증발가스를 공급받아 재액화하는 재액화부; 및 a re-liquefaction unit provided on the ship and receiving boil-off gas generated from a cargo tank storing liquefied gas to be transported and re-liquefied; and
    상기 재액화부로부터 상기 연료공급탱크를 거쳐 상기 카고탱크로 연결되는 냉각라인:를 더 포함하며, Further comprising: a cooling line connected to the cargo tank from the reliquefaction unit through the fuel supply tank,
    상기 재액화부에서 재액화된 액화가스는 상기 냉각라인을 따라 상기 연료공급탱크를 냉각시키고 상기 카고탱크로 이송되는 것을 특징으로 하는 액화가스 운반선의 연료공급시스템. The liquefied gas reliquefied in the reliquefaction unit cools the fuel supply tank along the cooling line and is transferred to the cargo tank.
  10. 제 9항에 있어서, 10. The method of claim 9,
    상기 선박에 마련되어 선내 엔진으로 공급될 액화가스를 저장하는 연료탱크:를 더 포함하며, Further comprising: a fuel tank for storing liquefied gas to be supplied to the onboard engine provided in the ship,
    상기 연료탱크로부터 상기 연료공급탱크로 상기 액화가스를 이송하여 상기 연료공급탱크를 냉각시킬 수 있는 것을 특징으로 하는 액화가스 운반선의 연료공급시스템.A fuel supply system for a liquefied gas carrier, characterized in that it can cool the fuel supply tank by transferring the liquefied gas from the fuel tank to the fuel supply tank.
  11. 제 1항 내지 8항 중 어느 한 항에 있어서, 9. The method according to any one of claims 1 to 8,
    상기 세퍼레이터의 바닥부에 마련되어 상기 세퍼레이터로 회수되는 액화가스에 혼입된 윤활유를 분리하여 배출시키는 배출배관; 및a discharge pipe provided at the bottom of the separator to separate and discharge the lubricating oil mixed in the liquefied gas returned to the separator; and
    상기 선박에 마련되어 운송될 액화가스를 저장하는 카고탱크로부터 발생하는 증발가스를 재액화시키는 재액화부:를 더 포함하고, Further comprising: a re-liquefaction unit for re-liquefying boil-off gas generated from a cargo tank for storing liquefied gas to be transported provided in the ship;
    상기 재액화부에서 재액화된 액화가스를 상기 연료공급탱크를 거쳐 상기 카고탱크로 이송하여, 상기 연료공급탱크를 냉각시키는 것을 특징으로 하는 액화가스 운반선의 연료공급시스템. A fuel supply system for a liquefied gas carrier, characterized in that by transferring the liquefied gas reliquefied in the reliquefaction unit to the cargo tank through the fuel supply tank, and cooling the fuel supply tank.
  12. 선박의 데크에 마련된 연료공급탱크로부터 연료공급라인을 따라 액화가스를 압축부에서 압축하여 선내 엔진에 연료로 공급하고, From the fuel supply tank provided on the deck of the ship, the liquefied gas is compressed in the compression unit along the fuel supply line and supplied as fuel to the onboard engine,
    상기 압축부에서 압축된 상기 액화가스 중 엔진에서 소비되지 않은 액화가스를 상기 엔진의 상류로 재순환시키는 리턴라인에 감압부를 마련하여 재순환될 액화가스를 감압하고, 감압으로 냉각된 재순환 액화가스는 세퍼레이터에서 기액분리되는 것을 특징으로 하는 액화가스 운반선의 연료공급방법.A decompression unit is provided in a return line for recirculating liquefied gas not consumed by the engine among the liquefied gas compressed in the compression unit to an upstream side of the engine to decompress the liquefied gas to be recirculated, and the recirculated liquefied gas cooled by reduced pressure in the separator A fuel supply method for a liquefied gas carrier, characterized in that gas-liquid separation.
  13. 제 12항에 있어서, 13. The method of claim 12,
    상기 압축부는, 상기 연료공급탱크로부터 액화가스를 펌핑하여 이송하는 제1 펌프; 및 상기 제1 펌프에서 이송된 액화가스를 펌핑하여 상기 엔진에서 필요한 압력으로 승압하는 제2 펌프:를 포함하고, The compression unit may include: a first pump for pumping and transferring liquefied gas from the fuel supply tank; and a second pump for pumping the liquefied gas transferred from the first pump to increase the pressure to the required pressure in the engine:
    상기 세퍼레이터에서 분리된 액상의 액화가스는 상기 제1 펌프와 제2 펌프 사이의 연료공급라인으로 공급되어 재순환되는 것을 특징으로 하는 액화가스 운반선의 연료공급방법. The liquid gas separated from the separator is supplied to a fuel supply line between the first pump and the second pump and recirculated.
  14. 제 13항에 있어서, 14. The method of claim 13,
    상기 세퍼레이터에서 분리된 기체는 상기 연료공급탱크로 회수하되, The gas separated from the separator is recovered to the fuel supply tank,
    상기 제1 펌프의 후단 압력을 감지하고, 감지된 압력에 따라 상기 연료공급탱크로 회수되는 기체의 양을 조절하여, 상기 세퍼레이터의 압력을 상기 제1 펌프의 후단 압력보다 0.5 내지 2 bar 높게 유지하는 것을 특징으로 하는 액화가스 운반선의 연료공급방법. By sensing the pressure at the rear end of the first pump and adjusting the amount of gas returned to the fuel supply tank according to the sensed pressure, the pressure of the separator is maintained 0.5 to 2 bar higher than the pressure at the end of the first pump A fuel supply method for a liquefied gas carrier, characterized in that.
  15. 제 14항에 있어서, 15. The method of claim 14,
    상기 제2 펌프의 후단 압력을 감지하여, 감지된 압력이 설정값보다 높아지면 먼저 제2 펌프의 펌프 스피드를 낮추고, By sensing the pressure at the rear end of the second pump, if the sensed pressure is higher than the set value, first lower the pump speed of the second pump,
    여전히 설정값보다 높으면 상기 제2 펌프의 후단에서 액화가스 일부를 감압하여 상기 세퍼레이터로 배출시켜 제2 펌프의 후단 압력을 낮추는 것을 특징으로 하는 액화가스 운반선의 연료공급방법.If it is still higher than the set value, a portion of the liquefied gas at the rear end of the second pump is decompressed and discharged to the separator to lower the rear end pressure of the second pump.
  16. 제 12항 내지 15항 중 어느 한 항에 있어서, 16. The method according to any one of claims 12 to 15,
    상기 선박에 마련되어 운송될 액화가스를 저장하는 카고탱크로부터 발생하는 증발가스를 재액화부에서 재액화하고, Re-liquefying boil-off gas generated from a cargo tank for storing liquefied gas to be transported and provided on the ship in a re-liquefaction unit,
    상기 재액화부에서 재액화된 액화가스는 상기 연료공급탱크를 거쳐 상기 연료공급탱크를 냉각시키고 상기 카고탱크로 이송되는 것을 특징으로 하는 액화가스 운반선의 연료공급방법.The liquefied gas re-liquefied in the re-liquefaction unit cools the fuel supply tank through the fuel supply tank, and the fuel supply method of a liquefied gas carrier, characterized in that it is transferred to the cargo tank.
  17. 제 16항에 있어서, 17. The method of claim 16,
    상기 선박에 마련되어 선내 엔진으로 공급될 액화가스를 저장하는 연료탱크로부터 상기 연료공급탱크로 상기 액화가스를 이송하여 상기 연료공급탱크를 냉각시킬 수 있는 것을 특징으로 하는 액화가스 운반선의 연료공급방법. The fuel supply method of a liquefied gas carrier, characterized in that it is possible to cool the fuel supply tank by transferring the liquefied gas from a fuel tank for storing liquefied gas to be supplied to the onboard engine provided in the ship to the fuel supply tank.
  18. 제 12항 내지 15항 중 어느 한 항에 있어서, 16. The method according to any one of claims 12 to 15,
    상기 세퍼레이터의 바닥부에는 상기 세퍼레이터로 회수되는 액화가스에 혼입된 윤활유를 분리하여 배출시키는 배출배관이 마련되는 것을 특징으로 하는 액화가스 운반선의 연료공급방법.A fuel supply method for a liquefied gas carrier, characterized in that a discharge pipe for separating and discharging lubricating oil mixed in the liquefied gas returned to the separator is provided at the bottom of the separator.
  19. 제 18항에 있어서, 19. The method of claim 18,
    상기 선박에 마련되어 운송될 액화가스를 저장하는 카고탱크로부터 발생하는 증발가스를 재액화부에서 재액화하고, Re-liquefying boil-off gas generated from a cargo tank for storing liquefied gas to be transported and provided on the ship in a re-liquefaction unit,
    상기 재액화부에서 재액화된 액화가스는 상기 연료공급탱크를 거쳐 상기 카고탱크로 이송하여 상기 연료공급탱크를 냉각시키는 것을 특징으로 하는 액화가스 운반선의 연료공급방법.The liquefied gas reliquefied in the reliquefaction unit is transferred to the cargo tank through the fuel supply tank to cool the fuel supply tank.
PCT/KR2020/018576 2020-06-18 2020-12-17 System and method for supplying fuel for liquefied gas carrier WO2021256644A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080101981.2A CN115697836A (en) 2020-06-18 2020-12-17 Fuel supply system and method for liquefied gas carrier
JP2022575940A JP7485796B2 (en) 2020-06-18 2020-12-17 Fuel supply system and fuel supply method for liquefied gas carrier

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0074179 2020-06-18
KR1020200074179A KR102327410B1 (en) 2020-06-18 2020-06-18 Fuel Supplying System And Method For Liquefied Gas Carrier
KR10-2020-0118376 2020-09-15
KR1020200118376A KR20220036446A (en) 2020-09-15 2020-09-15 Fuel Supplying System And Method For Liquefied Gas Carrier

Publications (1)

Publication Number Publication Date
WO2021256644A1 true WO2021256644A1 (en) 2021-12-23

Family

ID=79268130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018576 WO2021256644A1 (en) 2020-06-18 2020-12-17 System and method for supplying fuel for liquefied gas carrier

Country Status (3)

Country Link
JP (1) JP7485796B2 (en)
CN (1) CN115697836A (en)
WO (1) WO2021256644A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114852253A (en) * 2022-06-10 2022-08-05 招商局重工(深圳)有限公司 Multipurpose liquid cargo tank pipeline system and control method thereof
CN115092372A (en) * 2022-06-30 2022-09-23 广船国际有限公司 Ship

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708201A (en) * 1996-05-24 1998-01-13 Pierburg Instruments, Inc. Fuel delivery measurement system with automatic pump matching
JPH1019199A (en) * 1996-07-05 1998-01-23 Mitsubishi Heavy Ind Ltd Lng boiloff gas reliquefying method and device therefor
KR20140144969A (en) * 2013-06-12 2014-12-22 현대중공업 주식회사 A treatment System of Liquefied Gas and A Method for the same
KR20150062826A (en) * 2013-11-29 2015-06-08 현대중공업 주식회사 Treatment system of liquefied gas
KR20180087017A (en) * 2017-01-24 2018-08-01 대우조선해양 주식회사 Fuel Supply System and Method for LNG Fueled Vessel
KR20200025039A (en) * 2018-08-29 2020-03-10 대우조선해양 주식회사 Fuel Supplying System And Method For Ship Using Liquefied Gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6941448B2 (en) 2017-02-09 2021-09-29 三菱重工業株式会社 Liquefied gas fuel ship for transporting liquefied gas
DK3640128T3 (en) 2017-06-13 2023-11-27 Hyun Dai Heavy Ind Co Ltd SYSTEM FOR RECONDENSATION OF EVAPORATION GAS AND SHIP
JP6982439B2 (en) 2017-09-08 2021-12-17 川崎重工業株式会社 Ship
KR102601307B1 (en) 2018-11-14 2023-11-13 한화오션 주식회사 Fuel Supply System and Method for Vessel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708201A (en) * 1996-05-24 1998-01-13 Pierburg Instruments, Inc. Fuel delivery measurement system with automatic pump matching
JPH1019199A (en) * 1996-07-05 1998-01-23 Mitsubishi Heavy Ind Ltd Lng boiloff gas reliquefying method and device therefor
KR20140144969A (en) * 2013-06-12 2014-12-22 현대중공업 주식회사 A treatment System of Liquefied Gas and A Method for the same
KR20150062826A (en) * 2013-11-29 2015-06-08 현대중공업 주식회사 Treatment system of liquefied gas
KR20180087017A (en) * 2017-01-24 2018-08-01 대우조선해양 주식회사 Fuel Supply System and Method for LNG Fueled Vessel
KR20200025039A (en) * 2018-08-29 2020-03-10 대우조선해양 주식회사 Fuel Supplying System And Method For Ship Using Liquefied Gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114852253A (en) * 2022-06-10 2022-08-05 招商局重工(深圳)有限公司 Multipurpose liquid cargo tank pipeline system and control method thereof
CN114852253B (en) * 2022-06-10 2023-09-12 招商局重工(深圳)有限公司 Multipurpose cargo tank pipeline system and control method thereof
CN115092372A (en) * 2022-06-30 2022-09-23 广船国际有限公司 Ship

Also Published As

Publication number Publication date
JP2023529204A (en) 2023-07-07
CN115697836A (en) 2023-02-03
JP7485796B2 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
WO2015130122A1 (en) Boil-off gas treatment system
WO2014065618A1 (en) System for processing liquefied gas in ship
WO2021256644A1 (en) System and method for supplying fuel for liquefied gas carrier
WO2014209029A1 (en) System and method for treating boil-off gas in ship
WO2021015399A1 (en) Fuel gas management system for ship
KR102538933B1 (en) Fuel Supplying System And Method For Ship Using Liquefied Gas
WO2015167214A1 (en) Fuel gas supply system of vessel
WO2019132608A1 (en) Device and method for processing boil-off gas in liquefied gas regasification system
US20200386473A1 (en) Apparatus, system and method for reliquefaction of previously regasified lng
WO2021157855A1 (en) System and method for regasifying liquefied gas of ship
KR102327410B1 (en) Fuel Supplying System And Method For Liquefied Gas Carrier
KR102333072B1 (en) Fuel Supplying System And Method For Liquefied Gas Carrier
KR20160139312A (en) LNG Offloading System And Method For FLNG
KR20220036446A (en) Fuel Supplying System And Method For Liquefied Gas Carrier
KR102289314B1 (en) Fuel Gas Recovery System and Method for Vessel
WO2022050513A1 (en) Fuel supply system and method for liquefied gas carrier
KR20160128662A (en) LNG Offloading System And Method For FLNG
WO2023075023A1 (en) Boil-off gas reliquefaction system and method for ship
KR102376278B1 (en) Fuel Supplying System And Method For Liquefied Gas Carrier
WO2024085316A1 (en) Ship boil-off gas reliquefaction system
WO2023017924A1 (en) System and method for reliquefaction of boil-off gas of ship and system and method for treating offgas of reliquefaction apparatus
KR102351600B1 (en) Fuel Supplying System And Method For Liquefied Gas Carrier
KR102535973B1 (en) FSU Bidirectional Mooring And ESD Operation Method
KR102333069B1 (en) FLNG and Method of Bunkering for FLNG
WO2022244941A1 (en) Power-saving type liquefied-gas-fuel ship and method for processing boil-off gas for liquefied-gas-fuel ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575940

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940983

Country of ref document: EP

Kind code of ref document: A1