WO2021256311A1 - 超硬合金製切断刃 - Google Patents
超硬合金製切断刃 Download PDFInfo
- Publication number
- WO2021256311A1 WO2021256311A1 PCT/JP2021/021524 JP2021021524W WO2021256311A1 WO 2021256311 A1 WO2021256311 A1 WO 2021256311A1 JP 2021021524 W JP2021021524 W JP 2021021524W WO 2021256311 A1 WO2021256311 A1 WO 2021256311A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blade
- thickness
- base
- cemented carbide
- cutting
- Prior art date
Links
- 238000005520 cutting process Methods 0.000 title claims description 167
- 238000011156 evaluation Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 11
- 238000012937 correction Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 238000012790 confirmation Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000010941 cobalt Substances 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D35/00—Tools for shearing machines or shearing devices; Holders or chucks for shearing tools
- B23D35/001—Tools for shearing machines or shearing devices; Holders or chucks for shearing tools cutting members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D35/00—Tools for shearing machines or shearing devices; Holders or chucks for shearing tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D1/00—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D1/00—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
- B26D1/01—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
- B26D1/04—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G13/00—Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
Definitions
- the cutting blade has been, for example, Japanese Patent Application Laid-Open No. 10-217181 (Patent Document 1), Japanese Patent Application Laid-Open No. 2001-158016 (Patent Document 2), International Publication No. 2014/050883 (Patent Document 3), International Publication No. 2014. / 050884 (Patent Document 4), JP-A-2017-4-2911 (Patent Document 5) and JP-A-2004-17444 (Patent Document 6).
- Patent Document 1 Japanese Patent Application Laid-Open No. 10-217181
- Patent Document 2 Japanese Patent Application Laid-Open No. 2001-158016
- Patent Document 3 International Publication No. 2014/050883
- Patent Document 4 International Publication No. 2014. / 050884
- JP-A-2017-4-2911 Patent Document 5
- JP-A-2004-17444 Patent Document 6
- the cutting blade made of super hard alloy of the present disclosure includes a base portion and a blade portion provided on an extension line of the base portion and having a shape that becomes thinner toward the cutting edge which is the most advanced portion, and is provided from the cutting edge toward the base.
- the thickness of the blade at the position of 3 ⁇ m is 0.26 ⁇ m or more and 7.00 ⁇ m or less, and the thickness of the blade at the position of X ⁇ m (X is an integer of 3 to 25) from the blade edge to the base is TX, and from the blade edge to the base.
- the first blade thickness change amount TX1-TX is 0.08 ⁇ m or more and 1.85 ⁇ m or less for all integers of X from 3 to 25, and the blade crossing direction.
- the outer shape of the blade portion has an outwardly convex portion within a range of 25 ⁇ m from the blade edge to the base, and the convex portion is from the straight line connecting the blade edge and the position of 25 ⁇ m from the blade edge to the base. Is also located on the outside.
- FIG. 1 is a vertical cross-sectional view of a cemented carbide cutting blade 1 according to the first embodiment.
- FIG. 2 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the second embodiment.
- FIG. 3 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the third embodiment.
- FIG. 4 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the fourth embodiment.
- FIG. 5 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the fifth embodiment.
- FIG. 6 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the sixth embodiment.
- FIG. 7 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the seventh embodiment.
- FIG. 1 is a vertical cross-sectional view of a cemented carbide cutting blade 1 according to the first embodiment.
- FIG. 2 is a vertical cross-sectional view of the cemented carbide cutting blade
- FIG. 8 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the eighth embodiment.
- FIG. 9 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the ninth embodiment.
- FIG. 10 is a perspective view of an apparatus for explaining a cutting test.
- FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG.
- FIG. 12 is a microscope observation image showing a chipping of the cutting blade.
- the material used for the cutting blade is a cemented carbide containing tungsten carbide and cobalt as the main components.
- the content of cobalt used in cemented carbide ranges from 3 to 25% by mass.
- the cobalt content is preferably in the range of 5 to 20% by mass.
- the hardness of cemented carbide is in the range of 82 to 95 in HRA (Rockwell hardness).
- the composition of the constituent elements in the cemented carbide is specified by ICP emission spectroscopic analysis and Co titration.
- the main components are tungsten carbide and cobalt.
- elements such as chromium, vanadium, tantalum, and niobium may be contained in order to adjust the characteristics such as particle size.
- the size of the tungsten carbide crystal in the cemented carbide is preferably 0.1 ⁇ m to 4 ⁇ m. It is more preferable that the crystal size is 2 ⁇ m or less.
- the additive for suppressing crystal grain growth may be a compound containing vanadium as a main component or a compound containing chromium as a main component.
- the content of each of the compound containing tantalum as a main component, the compound containing vanadium as a main component, and the compound containing chromium as a main component is 0.1 to 2% by mass.
- the shape of the cutting blade is basically a rectangular plate shape.
- the shortest side of the board is the thickness.
- the cemented carbide cutting blade is provided with a base portion and a blade portion provided on an extension line of the base portion and having a shape that becomes thinner toward the cutting edge, which is the most advanced portion.
- the thickness of the base is constant.
- the base has a thickness of 50 to 6000 ⁇ m, and the required thickness varies depending on the size of the cut piece to be cut.
- the blade portion for cutting is formed on one side extending from the base portion.
- the dimension of the blade portion in the direction from the base portion to the blade portion is expressed as the width of the blade portion (Z-axis direction).
- the length in the blade crossing direction (X-axis direction) and the dimension in the direction perpendicular to the width direction of the blade are expressed as the thickness of the blade (Y-axis direction).
- the length in the blade length direction is often 30 mm to 500 mm, and the width is often 10 to 30 mm.
- the thickness of the blade at a position 3 ⁇ m from the blade edge to the base is 0.26 ⁇ m or more and 7.00 ⁇ m or less. If the thickness of the blade portion at this position is less than 0.26 ⁇ m, it becomes difficult to maintain the strength of the blade portion. Or it is too thin to be manufactured. If the thickness of the blade at this position exceeds 7.00 ⁇ m, the cutting resistance increases.
- the first blade when the thickness of the blade at the position of X ⁇ m (X is an integer of 3 to 25) from the blade edge to the base is TX and the thickness of the blade at the position of X + 1 ⁇ m from the blade edge to the base is TX1.
- the thickness change amount TX1-TX is 0.08 ⁇ m or more and 1.85 ⁇ m or less for all integers in which X is 3 to 25. If the amount of change in the blade thickness is less than 0.08 ⁇ m, sufficient strength of the blade cannot be obtained and the blade is chipped. When the amount of change in blade thickness exceeds 1.85 ⁇ m, the cutting resistance increases.
- the outer shape of the blade has an outwardly convex portion within a range of 25 ⁇ m from the blade edge to the base, and the convex portion connects the position of 25 ⁇ m from the blade edge and the blade edge to the base. It is located outside the straight line. Due to the presence of the convex portion, the strength of the blade portion can be increased as compared with the straight-shaped cutting blade in which the convex portion does not exist.
- FIG. 1 is a vertical cross-sectional view of a cemented carbide cutting blade 1 according to the first embodiment. As shown in FIG. 1, the cemented carbide cutting blade 1 has a cutting edge 121t extending in the blade crossing direction. FIG. 1 is a cross section in a direction orthogonal to the blade crossing direction.
- the cemented carbide cutting blade 1 has a base 110 and a blade 120 connected to the base 110.
- the blade portion 120 has a first portion 121.
- the cutting edge portion of the first portion 121 is the cutting edge 121t.
- the thickness (Y-axis direction) of the blade portion 120 gradually decreases from the base portion 110 toward the blade edge 121t.
- the thickness at the point 203 whose dimension in the length direction (Z-axis direction) from the cutting edge 121t is 3 ⁇ m is T1.
- the thickness at the point 225 where the dimension in the length direction from the cutting edge 121t is 25 ⁇ m is T2.
- the thickness at the point 20X where the dimension in the length direction from the cutting edge 121t is X ⁇ m is TX.
- the thickness at the point 20X1 where the dimension in the length direction from the cutting edge 121t is X + 1 ⁇ m is TX1.
- a convex 120t is located outside the straight line S connecting the point 225 and the cutting edge 121t.
- the convex 120t is provided on the outer surface 121s.
- a straight line 325 is drawn on the outer surface 121s at the point 225, and the angle formed by the two straight lines 325 is defined as ⁇ .
- the slope of the straight line 325 is a value of 1/2 of the amount of change in the blade thickness at the point 225.
- the direction orthogonal to the Y-axis and Z-axis directions is the blade crossing direction.
- the outer surface 121s has a curved shape.
- the angle formed by the tangents on the outer surface 121s increases as it approaches the cutting edge 121t.
- the outer surface 121s is symmetrical with respect to the center line C.
- the outer surface 121s may be asymmetrical with respect to the center line C.
- the outer surface 121s is gently curved to connect the cutting edge 121t and the base 110.
- the angle between the outer surface 121s and the center line C increases as the cutting edge approaches 121t.
- the base portion 110 side may have a linear shape with respect to the curved portion.
- the object to be cut by the cemented carbide cutting blade 1 is, for example, ceramic or glass before firing such as a laminated capacitor or a laminated inductor, a metal green sheet, metal foil, paper, fiber, or hard resin.
- the cemented carbide cutting blade 1 includes a base 110 and a blade 120 that is provided on an extension of the base 110 and has a shape that becomes thinner toward the cutting edge 121t, which is the most advanced portion.
- the following relationships (1), (2) and (3) hold.
- the thickness T1 of the blade portion 120 at a position 3 ⁇ m from the blade tip 121t toward the base 110 is 0.26 ⁇ m or more and 7.00 ⁇ m or less.
- the thickness of the blade at the position of X ⁇ m (X is an integer of 3 to 25) from the cutting edge 121t toward the base 110 is TX
- the thickness of the blade 120 at the position of X + 1 ⁇ m from the cutting edge 121t toward the base 110 is TX1.
- the first blade thickness change amount TX1-TX is 0.08 ⁇ m or more and 1.85 ⁇ m or less for all integers in which X is 3 to 25.
- the outer shape of the blade portion 120 has a portion having a convex shape of 120 t in the outward direction within a range of 25 ⁇ m from the blade tip 121t toward the base 110, and the convex 120t portion has a blade tip 121t and a blade tip 121t. It is located outside the straight line S connecting the positions of 25 ⁇ m from the base 110 to the base 110.
- the amount of change in the first blade thickness when X is 3 is 0.26 ⁇ m or more and 0.93 ⁇ m or less.
- FIG. 2 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the second embodiment.
- the outer surface 121s is curved at the point where the outer surfaces 121s, 122s, and 123s are stepped. It is different from the cemented carbide cutting blade 1 according to Form 1.
- the outer surfaces 121s, 122s, and 123s of the three-stage blade portion 120 all have a linear shape.
- the angle formed by the outer surfaces 121s, 122s, 123s with respect to the center line C is the largest on the outer surface 121s near the cutting edge 121t and the smallest on the outer surface 123s near the base 110.
- the point 225 having a distance of 25 ⁇ m in the Z-axis direction from the cutting edge 121t exists in the first portion 121.
- the convex 120t has a square shape, but the convex 120t may have a curved shape.
- FIG. 3 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the third embodiment.
- the outer surfaces 121s, 122s and 123s have three stages in that the outer surfaces 121s and 122s have two stages. It is different from the cemented carbide cutting blade 1 according to the second embodiment.
- the blade portion 120 has a first portion 121 and a second portion 122 from the tip side.
- the outer surface 121s has a convex 120t.
- the convex 120t is located outside the straight line S.
- the angle formed by the outer surfaces 121s and 122s with respect to the center line C is the largest on the outer surface 121s near the cutting edge 121t and the smallest on the outer surface 122s near the base 110.
- FIG. 4 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the fourth embodiment.
- the outer surface 122s has a linear shape in that the outer surface 122s has a concave shape. It is different from the following cemented carbide cutting blade 1.
- a point 225 having a distance of 25 ⁇ m in the Z-axis direction from the cutting edge 121t exists in the first portion 121.
- the blade portion 120 has a first portion 121 and a second portion 122 from the tip side.
- a convex 120t exists in the first portion 121.
- the convex 120t is located outside the straight line S.
- the outer surface 122s of the second portion 122 of the blade portion 120 is curved so that the angle formed with the center line C becomes smaller as the blade edge 121t approaches.
- FIG. 5 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the fifth embodiment.
- the cemented carbide cutting blade 1 according to the first embodiment is different from the cemented carbide cutting blade 1 in that the cutting edge 121t has a flat shape. different.
- the flat surface constituting the cutting edge 121t may be perpendicular to the center line C or may be inclined with respect to the center line C.
- FIG. 6 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the sixth embodiment.
- the cemented carbide according to the first embodiment has a point where the cutting edge 121t is rounded. It is different from the manufacturing cutting blade 1.
- the radius of curvature of the cutting edge 121t may be single, or there may be a plurality of radii of curvature of the cutting edge 121t, and the so-called composite R shape may be formed.
- FIG. 7 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the seventh embodiment.
- the outer surface 121s of the first portion 121 near the cutting edge 121t has an outwardly convex shape, and the first portion 121 is separated from the cutting edge 121t.
- the outer surface 122s has a concave shape.
- a point 225 having a distance of 25 ⁇ m in the Z-axis direction from the cutting edge 121t exists in the first portion 121.
- FIG. 8 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the eighth embodiment.
- the blade portion at the point 20Y of Y ⁇ m (Y is an integer from 26 to 100) from the cutting edge 121t toward the base 110.
- the second blade thickness change amount TY1-TY is Y from 26 to 100.
- the integer is 0.01 ⁇ m or more and 1.85 ⁇ m or less.
- T11 be the thickness of the blade portion 120 at the point 226 where the distance from the blade tip 121t in the Z-axis direction is 26 ⁇ m.
- T12 be the thickness of the blade portion 120 at the point 2100 where the distance from the blade tip 121t in the Z-axis direction is 100 ⁇ m.
- the outer shape of the blade portion 120 has a convex portion 120t in the outward direction in the range of 100 ⁇ m from the cutting edge 121t, and the convex 120t portion is a straight line S connecting the positions of the cutting edge 121t and the cutting edge 121t to 100 ⁇ m. Located outside.
- FIG. 9 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the ninth embodiment.
- the blade portion at the point 20Z of Z ⁇ m (Y is an integer of 101 to 3000) from the cutting edge 121t toward the base 110.
- the third blade thickness change amount TZ1-TZ is Z of 101 to 3000.
- the integer is 0.01 ⁇ m or more and 1.85 ⁇ m or less.
- T21 be the thickness of the blade portion 120 at the point 2101 where the distance from the blade tip 121t in the Z-axis direction is 101 ⁇ m.
- T22 be the thickness of the blade portion 120 at the point 2300 where the distance from the blade tip 121t in the Z-axis direction is 3000 ⁇ m.
- the outer shape of the blade portion 120 has a convex portion 120t in the outward direction in the range of 100 ⁇ m from the cutting edge 121t, and the convex 120t portion is a straight line S connecting the positions of the cutting edge 121t and the cutting edge 121t to 3000 ⁇ m. Located outside.
- Example 1 The characteristics of the base 110 were confirmed using a cemented carbide cutting blade 1 having a thickness of 100 ⁇ m, a width of 20 mm, and a length of 40 mm in the blade crossing direction.
- the sintered body used for the cutting blade is a cemented carbide containing tungsten carbide and cobalt as main components.
- the content of cobalt used in cemented carbide is 10% by mass.
- the hardness of cemented carbide is 92 in HRA (Rockwell hardness).
- the manufactured sintered body was machined into a plate shape having a thickness of 100 ⁇ m, a width of 20 mm, and a length of 40 mm by a grindstone using a diamond grindstone, and used as a material for processing the tip blade.
- the tip blade portion was formed using the above material.
- the material was fixed to a dedicated work rest whose angle could be adjusted using a dedicated grinder using a diamond cylindrical grindstone.
- the processing is performed on the first blade having the tip angle at the tip with respect to one side in the direction of the long side length of the material, and the tip angle connected to it and continuous with the base 110.
- the blades having different tip angles of the second blades were formed on both sides.
- ⁇ Convex curved outer surface molding> In order to form the outer surface 121s which is a convex curved surface as shown in FIG. 1, a cylindrical grindstone having a concave curved surface was used to perform convex processing on both sides of the most advanced portion. Since it is a very precise process to form a convex shape, it is very important to set the grinding conditions such as the depth of cut and the work rest angle.
- ⁇ Plane outer surface molding> In order to form the flat outer surface 121s as shown in FIG. 3, a cylindrical grindstone was used to perform convex shape processing on both sides of the cutting edge portion. In the case of a three-step blade as shown in FIG. 2, the third portion 123 is provided at the time of blade attachment.
- ⁇ Cross section confirmation> The cross section was imaged at 3,000 times using the JEOL Shotkey field emission scanning electron microscope JSM-7900F, and the machine coordinates and length measurement function were utilized to make 3, 4, 5, 6 from the cutting edge. , ..., The blade thickness (thickness of the blade portion 120) of the portion of 26 ⁇ m was measured. The amount of change in blade thickness was calculated from the blade thickness. The results are shown in Tables 1-5.
- the “25 ⁇ m angle [°]” means that in the vertical cross section shown in FIG. The angle formed by the two straight lines 325.
- the inclination of the straight line 325 is a value of 1/2 of the amount of change in the blade thickness at the point 225.
- the “3 ⁇ m angle [°]” means that in the vertical cross section shown in FIG. The angle to make.
- the inclination of the two straight lines is the amount of change in blade thickness at point 203.
- “N” means that the convexity 120t protruding outward from the straight line S does not exist on the outer surface 121s.
- Y means that a convex 120t protruding outward from the straight line S exists on the outer surface 121s.
- the "3 ⁇ m portion” is a value obtained by subtracting the blade thickness at the blade edge 121t to 3 ⁇ m from the blade thickness at the blade edge 121t to 4 ⁇ m.
- the “25 ⁇ m portion” is a value obtained by subtracting the blade thickness at the 25 ⁇ m portion from the cutting edge 121t from the blade thickness at the cutting edge 121t to 26 ⁇ m.
- the “figure” shows a drawing corresponding to the shape of each sample. “Max / min” indicates the maximum value and the minimum value of the amount of change in the blade thickness on the outer surface 121s in the range of 3 ⁇ m to 25 ⁇ m in the Z-axis direction from the blade edge 121t.
- FIG. 10 is a perspective view of an apparatus for explaining a cutting test.
- FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG. As shown in FIGS. 10 and 11, the cemented carbide cutting blade 1 was held by the chucks 3001 and 3002.
- Cutting conditions Cutting speed 300 mm / s, pushing amount 0.55 mm, longitudinal workpiece and blade angle ⁇ 0.5 °, workpiece and blade cross-sectional angle 90 ° ⁇ 0.5 °, number of cutting 100 times, cutting interval (pitch) ) 2.5mm Items to be confirmed: Chipping (depth 5 ⁇ m or more and width 10 ⁇ m or more), cross-section quality (cross-section state due to chipping, cross-section roughness) The results of repeating the cutting test for each sample number are shown in Tables 1 to 5.
- the number of chippings (depth 5 ⁇ m or more, width 10 ⁇ m or more) is counted, and if the number of chippings is 0 to 3, the evaluation is A, if 4 to 10, the evaluation is B, and 11 or more. If so, the evaluation was C.
- the chipping occurrence evaluation was performed by observing the cutting edge after the cutting test described above.
- a measuring microscope was used as a method for measuring the chipping. Specifically, a 50x eyepiece and a 20x objective lens are attached to an Olympus measuring microscope (STM6-LM), and the cutting blade (XZ surface) is placed on a flat surface.
- FIG. 12 is a microscope observation image showing a chipping of the cutting blade. Care should be taken so that the cutting edge 121t of the cutting blade shown in FIG. 12 and the measuring stage are parallel to each other.
- the evaluation if there is no scratch, the evaluation is A, if there is a scratch but it is acceptable (scratch length 10 ⁇ m or less), the evaluation is B, and if there is a scratch and it is unacceptable (scratch length over 10 ⁇ m). ) In this case, the evaluation was C.
- the length of the scratch was measured by imaging at 3,000 times using a Schottky field emission scanning electron microscope JSM-7900F manufactured by JEOL Ltd.
- the surface roughness Sa of the cross section if the surface roughness Sa of the cross section (arithmetic mean height ISO25178) is 0.05 ⁇ m or less, the evaluation is A, and if the surface roughness Sa of the cross section is larger than 0.05 ⁇ m and 0.15 ⁇ m or less, the evaluation is B. If the surface roughness Sa exceeds 0.15 ⁇ m, the evaluation is C.
- the surface roughness Sa is measured using a non-contact type surface roughness measuring device using a white interferometer. Specifically, the measurement was performed using a non-contact three-dimensional roughness measuring device (Nexview (registered trademark)) manufactured by Zygo Corporation.
- the evaluation of the cross-section quality when the evaluation was A in both the cross-section state and the cross-section roughness caused by chipping, the evaluation of the cross-section quality was set to A.
- the evaluation of the cross-sectional quality was set to C.
- Other evaluations were B.
- the comprehensive evaluation if the evaluation was A in both chipping and cross-sectional quality, the comprehensive evaluation was set to A. If the evaluation was C or non-manufacturable in either chipping or cross-sectional quality, the overall evaluation was C. Other evaluations were B.
- the thickness of the blade at the position of 3 ⁇ m is 0.26 ⁇ m or more and 7.00 ⁇ m or less, and the amount of change in blade thickness from 3 ⁇ m to 25 ⁇ m is 0.08 ⁇ m or more and 1.85 ⁇ m or less. It can be seen that if there is a convex 120t, the overall evaluation will be A or B.
- the overall evaluation is A, which is more preferable.
- Example 2 Cutting blades having the shapes shown in FIGS. 1, 2, 4, and 7 (sample numbers 97-100, 109-112, 121-124, 133-136) were manufactured. The following additional machining was performed on these cutting blades and the cutting edge portion of the cutting blade manufactured in Example 1 above to produce a cutting blade.
- the cutting blade was fixed on a fixed base and processed using a diamond flat grindstone with a particle size of # 10000 so that the tip angle was perpendicular to the base 110.
- the cross-section confirmation method was the same as in Example 1.
- cemented carbide cutting blades with sample numbers 89-92, 101-104, 113-116, 125-128, and 137-140 were prepared.
- Example 2 Using the same material as in Example 1, a grindstone having a particle size of # 10000 was grooved with an R0.25 ⁇ m, and the tip of the cutting blade was R-processed using the groove. Alternatively, fine diamond or tungsten carbide particles (1 ⁇ m or less recommended) were suspended in a liquid such as water, and the suspension was subjected to R processing by adjusting the flow velocity, injection angle, and time to collide with the blade. .. The cross-section confirmation method was the same as in Example 1. As a result, cemented carbide cutting blades with sample numbers 93-96, 105-108, 117-120, 129-132, 141-144 were prepared. Details of these are shown in Tables 6-10.
- Example 3 A cutting blade (sample number 145-160) having the shape shown in FIG. 8 was manufactured.
- the thickness of the base 110 was 100 ⁇ m to 400 ⁇ m.
- Other material sizes, blade attachment, and outer surface formation are in accordance with Example 1.
- the cutting edge of these cutting blades was machined so that the tip angle was perpendicular to the base 110.
- the cross-section confirmation method was the same as in Example 1.
- a cemented carbide cutting blade having sample number 161-176 was prepared. Further, as in Example 2, the cutting edge portion was subjected to R processing.
- the cross-section confirmation method was the same as in Example 1.
- the imaging magnification of the Schottky field emission scanning electron microscope was set so that the cross section could be observed in one field of view. This can also be replaced by a microscope with a length measuring function. As a result, a cemented carbide cutting blade of sample number 177-192 was prepared. Details of these are shown in Tables 11 to 13.
- Example 4 A cutting blade (sample number 193-208) having the shape shown in FIG. 9 was manufactured.
- the thickness of the base 110 was 100 ⁇ m to 6000 ⁇ m.
- Other material sizes, blade attachment, and outer surface formation are in accordance with Example 1. Similar to Example 2, the cutting edge of these cutting blades was machined so that the tip angle was perpendicular to the base 110.
- the cross-section confirmation method was the same as in Example 1.
- a cemented carbide cutting blade having sample number 209-224 was prepared.
- the cutting edge portion was subjected to R processing.
- the cross-section confirmation method was the same as in Example 3.
- a cemented carbide cutting blade having sample number 225-240 was prepared. Details of these are shown in Tables 14-16.
- Alloy cutting blade 100 vinyl chloride plate, 110 base, 120 blade, 120t convex, 121 first part, 121k chipped, 121s, 122s, 123s outer surface, 121t cutting edge, 122 second part, 203,225 points, 325 Tangent, 2001 double-sided adhesive sheet, 2002 acrylic plate, 2003 cutting power meter, 2004 stage, 3001,3002 chuck.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Crushing And Pulverization Processes (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
刃厚が薄いと、カット衝撃に刃先が耐えられず、チッピングが発生するという問題があった。刃厚が厚いと、切断抵抗が高く、断面品質悪くなり断面が荒れるという問題があった。
最初に本開示の実施態様を列記して説明する。
[本開示の実施形態の詳細]
(材質)
切断刃に用いた材質はタングステンカーバイドとコバルトを主成分とした超硬合金である。超硬合金に使用されるコバルトの含有率は3~25質量%の範囲である。コバルトの含有率は5~20質量%の範囲であることが好ましい。
切断刃の形状は基本的に矩形の板形状である。板の最も短い辺を厚さとする。
刃渡り方向に直交する縦断面において刃先から基部に向けて25μmの範囲において刃部の外形が外方向に凸の部分を有し、凸の部分は刃先および刃先から基部に向けて25μmの位置を結ぶ直線よりも外側に位置する。凸の部分が存在することで凸の部分が存在しないストレート形状の切断刃と比較して刃部の強度を高くすることができる。
図1は、実施の形態1に従った超硬合金製切断刃1の縦断面図である。図1で示すように、超硬合金製切断刃1は刃渡り方向に延びる刃先121tを有する。図1は、刃渡り方向に直交する方向の断面である。
(3)刃渡り方向に直交する縦断面において刃先121tから基部110に向けて25μmの範囲において刃部120の外形が外方向に凸120tの部分を有し、凸120tの部分は刃先121tおよび刃先121tから基部110に向けて25μmの位置を結ぶ直線Sよりも外側に位置する。
図2は、実施の形態2に従った超硬合金製切断刃1の縦断面図である。図2で示すように、実施の形態2に従った超硬合金製切断刃1においては、外表面121s、122s、123sが段形状となっている点において、外表面121sが湾曲している実施の形態1に従った超硬合金製切断刃1と異なる。3段の刃部120の外表面121s、122s、123sは、いずれも直線形状である。外表面121s,122s,123sが中心線Cに対してなす角度は、刃先121tに近い外表面121sにおいて最も大きく、基部110に近い外表面123sにおいて最も小さい。
図3は、実施の形態3に従った超硬合金製切断刃1の縦断面図である。図3で示すように、実施の形態3に従った超硬合金製切断刃1においては、外表面121s、122sが2段である点において、外表面121s、122s、123sが3段となっている実施の形態2に従った超硬合金製切断刃1と異なる。
図4は、実施の形態4に従った超硬合金製切断刃1の縦断面図である。図4で示すように、実施の形態4に従った超硬合金製切断刃1においては、外表面122sが凹面形状である点において、外表面122sが直線形状となっている実施の形態3に従った超硬合金製切断刃1と異なる。刃先121tからZ軸方向の距離が25μmの点225は第一部分121に存在する。
図5は、実施の形態5に従った超硬合金製切断刃1の縦断面図である。図5で示すように、実施の形態5に従った超硬合金製切断刃1においては、刃先121tが平坦な形状である点において、実施の形態1に従った超硬合金製切断刃1と異なる。刃先121tを構成する平坦面は、中心線Cに対して垂直であってもよく、中心線Cに対して傾斜していてもよい。
図6は、実施の形態6に従った超硬合金製切断刃1の縦断面図である。図6で示すように、実施の形態6に従った超硬合金製切断刃1においては、刃先121tが丸められている点において、刃先121tが尖っている実施の形態1に従った超硬合金製切断刃1と異なる。刃先121tの曲率半径は単一であってもよい、刃先121tの曲率半径は複数存在して、いわゆる複合R形状とされていてもよい。
図7は、実施の形態7に従った超硬合金製切断刃1の縦断面図である。図7で示すように、実施の形態7に従った超硬合金製切断刃1においては、刃先121t近傍の第一部分121では外表面121sが外に凸の形状であり、刃先121tから離れた第二部分122では外表面122sが凹面形状である。刃先121tからZ軸方向の距離が25μmの点225は第一部分121に存在する。
図8は、実施の形態8に従った超硬合金製切断刃1の縦断面図である。図8で示すように、実施の形態8に従った超硬合金製切断刃1においては、刃先121tから基部110に向けてYμm(Yは26から100の整数)の点20Yの位置の刃部の厚みをTY、刃先121tから基部110に向けてY+1μmの点20Y1の位置の刃部120の厚みをTY1としたとき、第2の刃厚変化量TY1-TYがYが26から100のすべての整数において0.01μm以上1.85μm以下である。
図9は、実施の形態9に従った超硬合金製切断刃1の縦断面図である。図9で示すように、実施の形態9に従った超硬合金製切断刃1においては、刃先121tから基部110に向けてZμm(Yは101から3000の整数)の点20Zの位置の刃部の厚みをTZ、刃先121tから基部110に向けてZ+1μmの位置の点20Z1の刃部120の厚みをTZ1としたとき、第3の刃厚変化量TZ1-TZがZが101から3000のすべての整数において0.01μm以上1.85μm以下である。
刃渡り方向に直交する縦断面において刃先121tから100μmの範囲において刃部120の外形が外方向に凸120tの部分を有し、凸120tの部分は刃先121tおよび刃先121tから3000μmの位置を結ぶ直線Sよりも外側に位置する。
基部110の厚み100μm、幅20mm、刃渡り方向の長さ40mmの超硬合金製切断刃1を用いてその特性を確認した。
切断刃に用いた焼結体はタングステンカーバイドとコバルトを主成分とした超硬合金である。超硬合金に使用されるコバルトの含有率は10質量%である。超硬合金の硬度はHRA(ロックウェル硬度)で92である。
製造された焼結体はダイヤモンド砥石を用いた研削機により厚さ100μm、幅20mm、長さ40mmの板形状に削り出し先端刃部加工用の素材とした。
続いて上記素材を用いて先端刃部の形成加工行った。形成加工に於いてはダイヤモンド円筒砥石を使用した専用の研削機を用い角度調整可能な専用のワークレストに素材を固定して加工を行った。刃部が2段である場合には、加工は素材長辺長さ40mm方向の一辺に対して最も先端にある先端角を持つ第一刃部、それに連なり配置され基部110に連続する先端角を持つ第二刃部の異なった先端角を有する刃部を両面に形成した。
図1で示すような凸湾曲面である外表面121sを形成するためには、凹曲面を有する円筒砥石を用いて最先端部に対して凸形状加工を両面に施した。凸形状の形成にあたっては非常に精密な加工である為、切込み量やワークレスト角度等の研削条件の設定が非常に肝要である。
図3で示すような平面の外表面121sを形成するためには、円筒砥石を用いて最先端部に対して凸形状加工を両面に施した。図2のような3段刃の場合は刃付けの時点で第三部分123を設ける。
図4で示すような凹湾曲面である外表面122sを形成するためには、凸曲面を有する円筒砥石を用いて最先端部に対して凹形状加工を両面に施した。
断面確認を日本電子社製のショットキー電界放出形走査電子顕微鏡JSM-7900Fを用いて3,000倍にて撮像し、機械座標と測長機能を活用し、刃先から3、4、5、6、・・、26μmの部分の刃厚(刃部120の厚み)を測定した。その刃厚から、刃厚変化量を計算した。それらの結果を表1から5に示す。
また、ここで作成した超硬合金製切断刃を用いてその効果を確認するため、市販されている塩化ビニル板の押切切断を行いその変形、欠陥等の断面切断品質並びに切断刃に発生する欠け(以後チッピング)を観察し超硬合金製切断刃の効果を確認した。図10は切断試験を説明するための装置の斜視図である。図11は図10中のXI-XI線に沿った断面図である。図10および図11で示すように、チャック3001,3002により超硬合金製切断刃1を保持した。
ワーク材質:塩化ビニル板100 厚み0.5mm、幅290mm、長さ30mm
テスト装置:牧野フライス製作所製マシニングセンタV55(ステージ2004)にキスラー製切削動力計9255(切削動力計2003)をセットしたもの
ワークセット:下から厚み10mmのアクリル板2002、厚み1mmの両面粘着シート2001、ワークとしての塩化ビニル板100を積層した。
確認事項:チッピング(深さ5μm以上且つ幅10μm以上)、断面品質(チッピング起因の断面状態、断面荒れ)
切断テストを試料番号ごとに繰り返した結果を表1から表5に記す。
表1から表5で示すように、3μmの位置の前記刃部の厚みが0.26μm以上7.00μm以下であり、3μmから25μmでの刃厚変化量が0.08μm以上1.85μm以下であり、凸120tが存在すると、総合評価がAまたはBになることが分かる。
図1,2,4,7の形状の切断刃(試料番号97-100,109-112,121-124,133-136)を製造した。これらの切断刃、および上記の実施例1で製造した切断刃の最先端部に以下の追加工を行って切断刃を作製した。固定台の上に切断刃を固定し粒度#10000のダイヤモンド平砥石を用い先端角度が基部110に対して垂直になる様に加工した。断面確認方法は実施例1と同じとした。これにより、試料番号89-92,101-104,113-116,125-128,137-140の超硬合金製切断刃を作成した。
実施例1と同じ素材を用いて粒度#10000の砥石にR0.25μmの溝加工を行いその溝を用いて切断刃の最先端部にR加工を施した。又は微小なダイヤモンド又は炭化タングステン粒子(1μm以下推奨)を水等の液体中に懸濁させ、その懸濁液を流速や射出角度や時間を調整して刃に衝突させることによりR加工を施した。断面確認方法は実施例1と同じとした。これにより、試料番号93-96,105-108,117-120,129-132,141-144の超硬合金製切断刃を作成した。これらの詳細を表6から10に示す。
(実施例3)
図8の形状の切断刃(試料番号145-160)を製造した。基部110の厚みは100μm~400μmとした。その他素材サイズや刃付け、外表面形成は実施例1に則る。これらの切断刃の最先端部に実施例2と同様に、先端角度が基部110に対して垂直になる様に加工した。断面確認方法は実施例1と同じとした。これにより、試料番号161-176の超硬合金製切断刃を作成した。また、実施例2と同様に最先端部にR加工を施した。断面確認方法は実施例1と同じとした。この時、ショットキー電解放出形走査電子顕微鏡の撮影倍率は1視野で断面を観察できる倍率とした。また、これは測長機能のあるマイクロスコープでも代用可能である。これにより試料番号177-192の超硬合金製切断刃を作成した。これらの詳細を表11から13に示す。
表11から13においては、表1から6と同様の傾向が現れていることが分かる。
(実施例4)
図9の形状の切断刃(試料番号193-208)を製造した。基部110の厚みは100μm~6000μmとした。その他素材サイズや刃付け、外表面形成は実施例1に則る。これらの切断刃の最先端部に実施例2と同様に、先端角度が基部110に対して垂直になる様に加工した。断面確認方法は実施例1と同じとした。これにより、試料番号209-224の超硬合金製切断刃を作成した。また、実施例2と同様に最先端部にR加工を施した。断面確認方法は実施例3と同じとした。これにより試料番号225-240の超硬合金製切断刃を作成した。これらの詳細を表14から16に示す。
なお、表12等の「図」において「8,5」とは図8の超硬合金製切断刃1において図5のように刃先121tをフラットにしたものを示す。「9,5」も同様に図9の超硬合金製切断刃1において図5のように刃先121tをフラットにしたものを示す。
「8,6」とは図8の超硬合金製切断刃1において図6のように刃先121tを丸めたものを示す。「9,6」も同様に図9の超硬合金製切断刃1において図6のように刃先121tを丸めたものを示す。
Claims (4)
- 基部と、
前記基部の延長線上に設けられ、最先端部である刃先に向けて厚みが薄くなる形状を有する刃部とを備え、
前記刃先から前記基部に向けて3μmの位置の前記刃部の厚みが0.26μm以上7.00μm以下であり、
前記刃先から前記基部に向けてXμm(Xは3から25の整数)の位置の前記刃部の厚みをTX、前記刃先から前記基部に向けてX+1μmの位置の前記刃部の厚みをTX1としたとき、第1の刃厚変化量TX1-TXが前記Xが3から25のすべての整数において0.08μm以上1.85μm以下であり、
刃渡り方向に直交する縦断面において前記刃先から前記基部に向けて25μmの範囲において前記刃部の外形が外方向に凸の部分を有し、前記凸の部分は前記刃先および前記刃先から前記基部に向けて25μmの位置を結ぶ直線よりも外側に位置する、超硬合金製切断刃。 - 前記Xが3である場合の前記第1の刃厚変化量TX1-TXが0.26μm以上0.93μm以下である、請求項1に記載の超硬合金製切断刃。
- 前記刃先から前記基部に向けてYμm(Yは26から100の整数)の位置の前記刃部の厚みをTY、前記刃先から前記基部に向けてY+1μmの位置の前記刃部の厚みをTY1としたとき、第2の刃厚変化量TY1-TYが前記Yが26から100のすべての整数において0.01μm以上1.85μm以下である、請求項1または2に記載の超硬合金製切断刃。
- 前記刃先から前記基部に向けてZμm(Zは101から3000の整数)の位置の前記刃部の厚みをTZ、前記刃先から前記基部に向けてZ+1μmの位置の前記刃部の厚みをTZ1としたとき、第3の刃厚変化量TZ1-TZが前記Zが101から3000のすべての整数において0.01μm以上1.85μm以下である、請求項1から3のいずれか1項に記載の超硬合金製切断刃。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227041122A KR20230003022A (ko) | 2020-06-19 | 2021-06-07 | 초경합금제 절단 블레이드 |
CN202180038874.4A CN115884858A (zh) | 2020-06-19 | 2021-06-07 | 硬质合金制切刀 |
JP2022500074A JP7292487B2 (ja) | 2020-06-19 | 2021-06-07 | 超硬合金製切断刃 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-106058 | 2020-06-19 | ||
JP2020106058 | 2020-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021256311A1 true WO2021256311A1 (ja) | 2021-12-23 |
Family
ID=79267900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/021524 WO2021256311A1 (ja) | 2020-06-19 | 2021-06-07 | 超硬合金製切断刃 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7292487B2 (ja) |
KR (1) | KR20230003022A (ja) |
CN (1) | CN115884858A (ja) |
TW (1) | TWI810585B (ja) |
WO (1) | WO2021256311A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024143062A1 (ja) * | 2022-12-26 | 2024-07-04 | 株式会社アライドマテリアル | 平刃状切断刃 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006082190A (ja) * | 2004-09-16 | 2006-03-30 | Kyocera Chemical Corp | 高分子膜の切断方法 |
JP2007030116A (ja) * | 2005-07-28 | 2007-02-08 | Next I&D株式会社 | 切断装置および切断装置用カッターホルダ |
WO2014050884A1 (ja) * | 2012-09-28 | 2014-04-03 | 株式会社アライドマテリアル | 平刃状切断刃およびグリーンシート切断刃 |
JP2018054326A (ja) * | 2016-09-26 | 2018-04-05 | セイコーインスツル株式会社 | ナイフ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2993899B2 (ja) | 1997-02-05 | 1999-12-27 | ユーエイチティー株式会社 | 切断刃とその成形方法 |
JP4187397B2 (ja) | 2000-10-06 | 2008-11-26 | Uht株式会社 | 切断刃 |
JP4259044B2 (ja) | 2002-06-14 | 2009-04-30 | 株式会社村田製作所 | 切断刃及びその刃面加工方法 |
JP6232825B2 (ja) | 2012-08-09 | 2017-11-22 | 日産自動車株式会社 | 低圧鋳造装置 |
FR2995237B1 (fr) | 2012-09-07 | 2015-05-01 | Airbus Operations Sas | Systeme ameliore de soudage par friction malaxage comprenant un contre-appui mobile. |
MY166204A (en) | 2012-09-28 | 2018-06-14 | Almt Corp | Flat blade-shaped cutting blade and green sheet cutting blade |
-
2021
- 2021-06-07 JP JP2022500074A patent/JP7292487B2/ja active Active
- 2021-06-07 KR KR1020227041122A patent/KR20230003022A/ko unknown
- 2021-06-07 WO PCT/JP2021/021524 patent/WO2021256311A1/ja active Application Filing
- 2021-06-07 CN CN202180038874.4A patent/CN115884858A/zh active Pending
- 2021-06-10 TW TW110121145A patent/TWI810585B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006082190A (ja) * | 2004-09-16 | 2006-03-30 | Kyocera Chemical Corp | 高分子膜の切断方法 |
JP2007030116A (ja) * | 2005-07-28 | 2007-02-08 | Next I&D株式会社 | 切断装置および切断装置用カッターホルダ |
WO2014050884A1 (ja) * | 2012-09-28 | 2014-04-03 | 株式会社アライドマテリアル | 平刃状切断刃およびグリーンシート切断刃 |
JP2018054326A (ja) * | 2016-09-26 | 2018-04-05 | セイコーインスツル株式会社 | ナイフ |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024143062A1 (ja) * | 2022-12-26 | 2024-07-04 | 株式会社アライドマテリアル | 平刃状切断刃 |
Also Published As
Publication number | Publication date |
---|---|
CN115884858A (zh) | 2023-03-31 |
KR20230003022A (ko) | 2023-01-05 |
TWI810585B (zh) | 2023-08-01 |
JP7292487B2 (ja) | 2023-06-16 |
TW202202293A (zh) | 2022-01-16 |
JPWO2021256311A1 (ja) | 2021-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102214373B1 (ko) | 절삭 인서트 | |
KR101773267B1 (ko) | 그린 시트 절단날 | |
KR101599201B1 (ko) | 평날 형상 절단날 및 그린 시트 절단날 | |
WO2021256282A1 (ja) | 超硬合金製切断刃 | |
WO2021256311A1 (ja) | 超硬合金製切断刃 | |
JP2012086303A (ja) | 刃先交換型チップおよびその製造方法 | |
JP6938781B2 (ja) | 平刃状切断刃 | |
WO2021256280A1 (ja) | 超硬合金製切断刃 | |
WO2021256279A1 (ja) | 超硬合金製切断刃 | |
WO2021256281A1 (ja) | 超硬合金製切断刃 | |
JP6896229B2 (ja) | 耐溶着チッピング性にすぐれた切削工具 | |
US11780018B2 (en) | Rotary cutting tool | |
JP5240624B2 (ja) | 刃先交換型チップおよびその製造方法 | |
WO2023176818A1 (ja) | 超硬合金製切断刃 | |
WO2023176819A9 (ja) | 超硬合金製切断刃 | |
KR20180125520A (ko) | 절삭 인서트 및 절삭 공구 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022500074 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21824933 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227041122 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21824933 Country of ref document: EP Kind code of ref document: A1 |