WO2021256011A1 - シンチレータパネル及び放射線検出器 - Google Patents

シンチレータパネル及び放射線検出器 Download PDF

Info

Publication number
WO2021256011A1
WO2021256011A1 PCT/JP2021/007443 JP2021007443W WO2021256011A1 WO 2021256011 A1 WO2021256011 A1 WO 2021256011A1 JP 2021007443 W JP2021007443 W JP 2021007443W WO 2021256011 A1 WO2021256011 A1 WO 2021256011A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator
scintillator layer
emission
radiation detector
cerium
Prior art date
Application number
PCT/JP2021/007443
Other languages
English (en)
French (fr)
Inventor
祐輔 南
弘武 大澤
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to US17/925,898 priority Critical patent/US20230184967A1/en
Priority to JP2022532292A priority patent/JPWO2021256011A1/ja
Priority to CN202180042839.XA priority patent/CN115769312A/zh
Priority to EP21825514.9A priority patent/EP4144815A4/en
Publication of WO2021256011A1 publication Critical patent/WO2021256011A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7719Halogenides
    • C09K11/772Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20185Coupling means between the photodiode and the scintillator, e.g. optical couplings using adhesives with wavelength-shifting fibres

Definitions

  • One aspect of the present invention relates to a scintillator panel and a radiation detector, and particularly to a scintillator panel and a radiation detector used for imaging an irradiated object using X-rays or gamma rays.
  • Patent Document 1 describes a radiation detector including a photoelectric conversion substrate in which a photodiode is arranged and a phosphor layer (scintillator layer) formed on the photoelectric conversion substrate.
  • the scintillator layer contains cesium iodide as a base material and thallium as an activator.
  • the light emission life is about 1000 ns, and it is difficult to obtain a faster light emission life, so that it may be difficult to obtain excellent high-speed response.
  • One aspect of the present invention is to provide a scintillator panel and a radiation detector capable of obtaining excellent high-speed response.
  • the scintillator panel according to one aspect of the present invention includes a support, a scintillator layer formed on the support and composed of columnar crystals, and a protective film that at least covers the scintillator layer. It contains cesium iodide as a base material and cerium as an activator.
  • the scintillator layer contains cesium iodide as a base material and cerium as an activator. As described above, by constructing the scintillator layer based on the above findings, a fast light emission lifetime can be obtained, and as a result, excellent high-speed response can be obtained.
  • the concentration of cerium may be 300 to 6000 ppm. In this case, it is possible to obtain high-intensity scintillation light.
  • the emission wavelength characteristics of the scintillator layer are the first emission peak at the first emission wavelength and the second emission peak at the second emission wavelength on the longer wavelength side than the first emission wavelength.
  • the first emission peak may be larger than the second emission peak. In this case, it is possible to obtain scintillation light with high light intensity.
  • the protective film may include a first organic film, an inorganic film and a second organic film.
  • the inorganic film may have a laminated structure. In this case, deterioration of characteristics due to deliquescent of the scintillator layer can be suppressed more reliably.
  • the support may be a substrate formed of at least one of aluminum, glass, amorphous carbon and polyethylene terephthalate resin, or a fiber optic plate.
  • the scintillator panel can be specifically configured.
  • the radiation detector according to one aspect of the present invention includes the scintillator panel and a sensor panel bonded to the scintillator panel and having a photoelectric conversion element. Since this radiation detector is also provided with the scintillator panel, it has an effect that excellent high-speed response can be obtained.
  • the radiation detector includes a sensor panel having a photoelectric conversion element, a scintillator layer formed on the sensor panel and composed of columnar crystals, and a protective film that at least covers the scintillator layer.
  • the scintillator layer contains cesium iodide as a base material and cerium as an activator.
  • the concentration of cerium may be 300 to 6000 ppm. In this case, it is possible to obtain high-luminance light emission.
  • the emission wavelength characteristics of the scintillator layer are the first emission peak at the first emission wavelength and the second emission peak at the second emission wavelength on the longer wavelength side than the first emission wavelength.
  • the first emission peak may be larger than the second emission peak. In this case, it is possible to obtain scintillation light with high light intensity.
  • the protective film may include a first organic film, an inorganic film and a second organic film.
  • the inorganic film may have a laminated structure. In this case, deterioration of characteristics due to deliquescent of the scintillator layer can be suppressed more reliably.
  • the radiation detector according to one aspect of the present invention may be a photon counting type detector.
  • the radiation detector is a photon counting type detector, the above effect of obtaining excellent high-speed response is particularly effective.
  • FIG. 1 is a diagram schematically showing a cross section of a radiation detector according to the first embodiment.
  • FIG. 2 is a diagram showing an SEM image of a cross section of the scintillator layer.
  • FIG. 3 is a graph showing the emission lifetime characteristics of the scintillator layer.
  • FIG. 4 is a graph showing the emission wavelength characteristics of the scintillator layer.
  • FIG. 5A is a graph showing the results of a high temperature and high humidity test of the scintillator panel.
  • FIG. 5B is a graph showing other results of the high temperature and high humidity test of the scintillator panel.
  • FIG. 6 is a graph showing the relationship between the concentration of cerium in the scintillator layer and the brightness.
  • FIG. 7 is a graph showing the relationship between the concentration of cerium in the scintillator layer and the emission peak luminance.
  • FIG. 8 is a diagram schematically showing a cross section of the radiation detector according to the second embodiment.
  • FIG. 9 is a diagram schematically showing a cross section of the radiation detector according to the third embodiment.
  • the radiation detector 100 is a photon counting type detector. That is, the radiation detector 100 is not an energy integral type collection type (current mode measurement method) detector, but a photon counting type detector.
  • the radiation detector 100 is used for imaging an irradiated object using, for example, X-rays or gamma rays.
  • the radiation detector 100 includes a scintillator panel 10 and a sensor panel 20.
  • the scintillator panel 10 includes a support 11, a scintillator layer 12, and a protective film 13.
  • the support 11 is a substrate made of at least one of aluminum, glass, amorphous carbon, and polyethylene terephthalate resin.
  • the scintillator layer 12 is formed on the support 11.
  • the scintillator layer 12 produces (emits) scintillation light in response to the incident of radiation.
  • the scintillator layer 12 of the present embodiment is a high-speed scintillator having a high-speed response that produces scintillation light having a short emission life.
  • the scintillator layer 12 produces scintillation light having a fast emission lifetime of about 100 ns or less, as will be described later.
  • the emission lifetime is also referred to as fluorescence lifetime or emission time constant.
  • the emission lifetime is, for example, the time until the intensity of the generated scintillation light reaches about 36.8% of the initial emission peak.
  • the scintillator layer 12 is composed of a plurality of columnar crystals (see FIG. 2).
  • the columnar crystals of the scintillator layer 12 are arranged with the support 11 side as the root side.
  • the scintillator layer 12 contains cesium iodide (CsI) as a base material and cerium (Ce) as an activator.
  • CsI cesium iodide
  • CeI cerium
  • the scintillator layer 12 here is manufactured by a vacuum vapor deposition method using cesium iodide as a base material and cerium iodide (CeI 3) as a dopant.
  • the light emission of the scintillator layer 12 is caused by cerium.
  • Cerium chloride or cerium bromide may be used instead of cerium iodide.
  • the concentration of cerium in the scintillator layer 12 is 300 to 6000 ppm.
  • the concentration of cerium in the scintillator layer 12 is 500 to 5000 ppm. That is, the concentration of the cerium may be 300 ppm or more, 500 ppm or more, 5000 ppm or less, 6000 ppm or less, or at least one of these. It may be a combination.
  • the emission wavelength characteristic of the scintillator layer 12 has a plurality of emission peaks. Specifically, the emission wavelength characteristic of the scintillator layer 12 has a first emission peak at the first emission wavelength and a second emission peak at the second emission wavelength on the longer wavelength side than the first emission wavelength. The first emission peak is larger than the second emission peak.
  • the wavelength region where the emission peak is emitted is 400 to 600 nm
  • the first emission wavelength is 430 to 470 nm
  • the second emission wavelength is 470 to 510 nm.
  • the emission peak exists in the wavelength region of 400 to 600 nm
  • the first emission peak exists in 430 to 470 nm
  • the second emission peak exists in 470 to 510 nm.
  • the protective film 13 is a film that at least covers the scintillator layer 12.
  • the protective film 13 includes a first organic film 14, an inorganic film 15, and a second organic film 16.
  • the first organic film 14 is a protective layer that protects the entire support 11 and the scintillator layer 12.
  • the first organic film 14 is formed so as to cover the support 11 and the scintillator layer 12.
  • the inorganic film 15 is a protective layer provided for the purpose of improving moisture resistance.
  • the inorganic film 15 is formed so as to cover the first organic film 14.
  • the inorganic film 15 has a laminated structure.
  • the inorganic film 15 is formed by laminating a film of aluminum, titanium, or an oxide thereof.
  • the inorganic film 15 includes an aluminum oxide film and a titanium oxide film.
  • the second organic film 16 is a protective layer that protects the entire scintillator panel 10.
  • the second organic film 16 is formed so as to cover the inorganic film 15.
  • polyparaxylylene is used as the second organic film 16.
  • the thickness of the inorganic film 15 is thinner than that of the first organic film 14 and the second organic film 16, for example, 30 nm.
  • the thicknesses of the first organic film 14 and the second organic film 16 are equal to each other, for example, 10 ⁇ m.
  • the scintillator panel 10 configured as described above may be annealed to remove internal strain (residual stress).
  • the sensor panel 20 is attached to the scintillator panel 10.
  • the sensor panel 20 is attached to the tip end side of the columnar crystal of the scintillator layer 12 in the scintillator panel 10.
  • the sensor panel 20 has a photoelectric conversion element.
  • the sensor panel 20 detects the light emission (scintillation light) of the scintillator layer 12.
  • MPPC multi-pixel photon counter, manufactured by Hamamatsu Photonics Co., Ltd., registered trademark
  • FIG. 3 is a graph showing the emission lifetime characteristics of the scintillator layer 12.
  • the vertical axis is the light intensity (%) of the scintillation light
  • the horizontal axis is the time (ns).
  • the light intensity here is expressed as a relative value with respect to the peak emission time.
  • the scintillator layer 12 can generate scintillation light having a light emission lifetime of about 100 ns and a very short emission lifetime.
  • the scintillator layer 12 has a light emission lifetime of about 1/10 of that of a general scintillator layer containing cesium iodide as a base material and thallium as an activator.
  • FIG. 4 is a graph showing the emission wavelength characteristics of the scintillator layer 12.
  • the vertical axis is the light intensity (%) of the scintillation light
  • the horizontal axis is the wavelength (nm) of the scintillation light.
  • the light intensity here is expressed as a relative value with respect to the maximum value.
  • the emission wavelength characteristics (emission spectrum) of the scintillator layer 12 are the first emission peak P1 at the first emission wavelength on the low wavelength side and the second emission peak at the second emission wavelength on the long wavelength side. It has P2 and.
  • the first emission peak P1 has a higher light intensity than the second emission peak.
  • the emission wavelength that becomes the emission peak is 400 to 600 nm
  • the first emission wavelength is 430 to 470 nm (440 nm in the illustrated example)
  • the second emission wavelength is 470 to 510 nm (not shown). In the example, it is 490 nm).
  • FIGS. 5 (A) and 5 (B) are graphs showing the results of the high temperature and high humidity test of the scintillator panel 10.
  • the vertical axis is the optical output (%) of the scintillator panel 10, and the horizontal axis is the time (hour).
  • the vertical axis is the contrast transfer function (CTF) (%) of the scintillator panel 10, and the horizontal axis is time (hour).
  • CTF contrast transfer function
  • the light output and the contrast transfer function here are expressed as relative values with respect to the start of the test.
  • D1 and D2 are the results according to the examples
  • D3 and D4 are the results according to the comparative example.
  • the comparative example is different from the examples in that the protective film 13 having a single-layer structure is provided instead of the protective film 13 having a laminated structure, which is composed only of an organic film made of polyparaxylylene.
  • the high temperature and high humidity test is, for example, an environmental test at a temperature of 40 ° C. and a humidity of 90% (40 ° C. 90% RH environmental test), and is performed in accordance with known test conditions such as JIS.
  • FIGS. 5 (A) and 5 (B) due to the deliquescent property of the scintillator layer 12, in the comparative example, the characteristics deteriorate with the passage of time.
  • the characteristics are not deteriorated with the passage of time, and it can be seen that the characteristics can be maintained.
  • FIG. 6 is a graph showing the relationship between the concentration of cerium in the scintillator layer 12 and the brightness.
  • the vertical axis is the luminance (%) of the scintillation light
  • the horizontal axis is the concentration (ppm) of cerium in the scintillator layer 12.
  • the brightness here is expressed as a relative value based on KODAK's Lanex regular screens.
  • the horizontal axis is displayed on a logarithmic scale.
  • the black rhombus in the figure is the data of the scintillator panel 10 in a state where the internal strain (residual stress) is removed by the annealing treatment.
  • ⁇ in the figure is the data of the scintillator panel 10 in the state where the annealing treatment is not performed.
  • the concentration of cerium can be obtained by quantitative analysis of three elements, cesium, iodine and cerium.
  • the brightness increases as the concentration of cerium increases, and the brightness decreases due to the concentration quenching at a concentration above a certain level.
  • concentration of cerium in the scintillator layer 12 is 300 to 6000 ppm, it can be seen that high-intensity scintillation light can be generated (see the left and right arrows in the figure).
  • concentration of cerium in the scintillator layer 12 is 500 to 5000 ppm, it can be seen that more high-intensity scintillation light can be generated.
  • the scintillator panel 10 when the scintillator panel 10 is annealed, it can be seen that higher brightness scintillation light can be generated.
  • the annealing treatment when the annealing treatment is performed, it can be seen that high-luminance scintillation light can be generated when the concentration of cerium in the scintillator layer 12 is 500 to 6000 ppm.
  • the cerium concentration in the scintillator layer 12 is 300 to 3500 ppm, high-intensity scintillation light can be generated without the annealing treatment.
  • FIG. 7 is a graph showing the relationship between the concentration of cerium in the scintillator layer 12 and the emission peak brightness.
  • the vertical axis is the intensity (%) of the scintillation light
  • the horizontal axis is the wavelength (nm) of the scintillation light.
  • the data when the concentration of cerium in the scintillator layer 12 is 8490 ppm, 4190 ppm, 1670 ppm, 1040 ppm, 590 ppm and 220 ppm are shown, respectively.
  • the luminance here is expressed as a relative value with respect to the maximum value of the luminance when the concentration of cerium in the scintillator layer 12 is 1670 ppm. As shown in FIG.
  • the scintillator layer 12 contains cesium iodide as a base material and cerium as an activator.
  • the general emission lifetime is on the order of microseconds
  • a fast emission lifetime of about 100 ns can be obtained. As a result, it is possible to obtain excellent high-speed response.
  • the concentration of cerium in the scintillator layer 12 is 300 to 6000 ppm. In this case, it is possible to obtain high-intensity scintillation light.
  • the emission wavelength characteristic of the scintillator layer 12 has a first emission peak at the first emission wavelength and a second emission peak at the second emission wavelength on the longer wavelength side than the first emission wavelength.
  • the first emission peak is larger than the second emission peak. In this case, it is possible to obtain scintillation light with high light intensity.
  • the protective film 13 includes a first organic film 14, an inorganic film 15, and a second organic film 16.
  • the inorganic film 15 has a laminated structure. In this case, the deterioration of the characteristics of the scintillator layer 12 due to the deliquescent property can be suppressed more reliably.
  • the support 11 is a substrate made of at least one of aluminum, glass, amorphous carbon, and polyethylene terephthalate resin.
  • the scintillator panel 10 can be specifically configured.
  • the radiation detector 100 is a photon counting type detector.
  • the above effect of obtaining excellent high-speed response is particularly effective. For example, even in photo counting under a high dose, it is possible to suppress the pile-up of the signal and measure without counting.
  • the radiation detector 100 and the scintillator panel 10 have excellent spatial resolution and are excellent in use for imaging applications. No correlation is found between the magnitude of the cerium concentration in the scintillator layer 12 and the emission lifetime.
  • the radiation detector 200 of the second embodiment includes a scintillator panel 210 in place of the scintillator panel 10 (see FIG. 1).
  • the scintillator panel 210 has a support 211 instead of the support 11 (see FIG. 1).
  • the support 211 is a Fiber Optic Plate.
  • a fiber optic plate is an optical device composed of a bundle of a plurality of (for example, millions) optical fibers, for example, a plurality of core glasses, a clad glass covering the core glass, and a plurality of cores. Includes absorptive glass placed between the glasses.
  • the sensor panel 20 is attached to the support 211 of the scintillator panel 210.
  • the radiation detector 300 of the third embodiment is different from the radiation detector 200 (see FIG. 8) in that it does not include the support 211. That is, the radiation detector 300 includes a sensor panel 20, a scintillator layer 12, and a protective film 13.
  • the scintillator layer 12 is formed on the sensor panel 20. Specifically, the scintillator layer 12 is directly formed on the surface of the sensor panel 20.
  • the columnar crystals of the scintillator layer 12 are arranged with the sensor panel 20 side as the root side.
  • the radiation detectors 100, 200, and 300 are photon counting detectors, but the radiation detectors are not limited thereto.
  • the radiation detectors 100, 200, and 300 may be, for example, energy-integrated collection type detectors.
  • the above-mentioned embodiments and modifications are not limited to the above-mentioned materials and shapes, and various materials and shapes can be applied. Further, each configuration in the above-described embodiment or modification can be arbitrarily applied to each configuration in another embodiment or modification.
  • the sensor panel 20 may be a sensor using a rigid substrate such as a glass substrate, a sensor using a flexible substrate such as a resin substrate, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)

Abstract

シンチレータパネルは、支持体と、支持体上に形成され、柱状結晶により構成されたシンチレータ層と、シンチレータ層を少なくとも覆う保護膜と、を備える。シンチレータ層は、母材としてヨウ化セシウムを含み且つ賦活剤としてセリウムを含む。

Description

シンチレータパネル及び放射線検出器
 本発明の一側面は、シンチレータパネル及び放射線検出器に関し、特にX線又はガンマ線を用いた被照射体のイメージングに用いられるシンチレータパネル及び放射線検出器に関する。
 特許文献1には、フォトダイオードが配列された光電変換基板と、光電変換基板上に形成された蛍光体層(シンチレータ層)と、を備える放射線検出器が記載されている。特許文献1に記載された放射線検出器では、シンチレータ層は、母材としてヨウ化セシウムを含み、賦活剤としてタリウムを含んでいる。
特開2006-20820号公報
 上述した技術では、発光寿命が約1000nsであり、それ以上の速い発光寿命を得ることが難しいことから、優れた高速応答性を得ることが困難な場合がある。
 本発明の一側面は、優れた高速応答性を得ることができるシンチレータパネル及び放射線検出器を提供することを目的とする。
 本発明者らは鋭意検討を重ねた結果、シンチレータ層において母材としてヨウ化セシウムを含ませると共に賦活剤としてセリウムを含ませることで、発光寿命を速めることができるという知見を得て、本発明を完成するに至った。すなわち、本発明の一側面に係るシンチレータパネルは、支持体と、支持体上に形成され、柱状結晶により構成されたシンチレータ層と、シンチレータ層を少なくとも覆う保護膜と、を備え、シンチレータ層は、母材としてヨウ化セシウムを含み且つ賦活剤としてセリウムを含む。
 このシンチレータパネルでは、シンチレータ層は、母材としてヨウ化セシウムを含み且つ賦活剤としてセリウムを含む。このように、上記知見に基づきシンチレータ層を構成することで、速い発光寿命を得ることができ、その結果、優れた高速応答性を得ることが可能となる。
 本発明の一側面に係るシンチレータパネルでは、セリウムの濃度は、300~6000ppmであってもよい。この場合、高輝度のシンチレーション光を得ることが可能となる。
 本発明の一側面に係るシンチレータパネルでは、シンチレータ層の発光波長特性は、第1発光波長における第1発光ピークと、第1発光波長よりも長波長側の第2発光波長における第2発光ピークと、を有し、第1発光ピークは、第2発光ピークよりも大きくてもよい。この場合、高い光強度のシンチレーション光を得ることが可能となる。
 本発明の一側面に係るシンチレータパネルでは、保護膜は、第1有機膜、無機膜及び第2有機膜を含んでいてもよい。これにより、シンチレータ層の潮解性に起因した特性劣化を確実に抑制することができる。
 本発明の一側面に係るシンチレータパネルでは、無機膜は、積層構造を有していてもよい。この場合、シンチレータ層の潮解性に起因した特性劣化を一層確実に抑制することができる。
 本発明の一側面に係るシンチレータパネルでは、支持体は、アルミニウム、ガラス、アモルファスカーボン及びポリエチレンテレフタレート樹脂の少なくとも何れかで形成された基板、又は、ファイバーオプティックプレートであってもよい。このような支持体を採用することで、シンチレータパネルを具体的に構成することができる。
 本発明の一側面に係る放射線検出器は、上記シンチレータパネルと、シンチレータパネルと貼り合わされ、光電変換素子を有するセンサパネルと、を備える。この放射線検出器においても、上記シンチレータパネルを備えるため、優れた高速応答性を得ることができるという効果を奏する。
 本発明の一側面に係る放射線検出器は、光電変換素子を有するセンサパネルと、センサパネル上に形成され、柱状結晶により構成されるシンチレータ層と、シンチレータ層を少なくとも覆う保護膜と、を備え、シンチレータ層は、母材としてヨウ化セシウムを含み且つ賦活剤としてセリウムを含む。
 この放射線検出器においても、上記知見に基づきシンチレータ層を構成することで、速い発光寿命を得ることができ、優れた高速応答性を得ることが可能となる。
 本発明の一側面に係る放射線検出器では、セリウムの濃度は、300~6000ppmであってもよい。この場合、高輝度の発光を得ることが可能となる。
 本発明の一側面に係る放射線検出器では、シンチレータ層の発光波長特性は、第1発光波長における第1発光ピークと、第1発光波長よりも長波長側の第2発光波長における第2発光ピークと、を有し、第1発光ピークは、第2発光ピークよりも大きくてもよい。この場合、高い光強度のシンチレーション光を得ることが可能となる。
 本発明の一側面に係る放射線検出器では、保護膜は、第1有機膜、無機膜及び第2有機膜を含んでいてもよい。これにより、シンチレータ層の潮解性に起因した特性劣化を確実に抑制することができる。
 本発明の一側面に係る放射線検出器では、無機膜は、積層構造を有していてもよい。この場合、シンチレータ層の潮解性に起因した特性劣化を一層確実に抑制することができる。
 本発明の一側面に係る放射線検出器は、フォトンカウンティング型検出器であってもよい。放射線検出器がフォトンカウンティング型検出器の場合、優れた高速応答性を得る上記効果は特に有効となる。
 本発明の一側面によれば、優れた高速応答性を得ることができるシンチレータパネル及び放射線検出器を提供することが可能となる。
図1は、第1実施形態に係る放射線検出器の断面を模式的に示す図である。 図2は、シンチレータ層の断面のSEM画像を示す図である。 図3は、シンチレータ層の発光寿命特性を示すグラフである。 図4は、シンチレータ層の発光波長特性を示すグラフである。 図5(A)は、シンチレータパネルの高温高湿試験の結果を示すグラフである。図5(B)は、シンチレータパネルの高温高湿試験の他の結果を示すグラフである。 図6は、シンチレータ層におけるセリウムの濃度と輝度との関係を示すグラフである。 図7は、シンチレータ層におけるセリウムの濃度と発光ピーク輝度との関係を示すグラフである。 図8は、第2実施形態に係る放射線検出器の断面を模式的に示す図である。 図9は、第3実施形態に係る放射線検出器の断面を模式的に示す図である。
 以下、実施形態について、図面を参照して詳細に説明する。各図の説明において、同一の要素又は相当する要素には同一の符号を付し、重複する説明を省略する場合がある。
[第1実施形態]
 図1に示されるように、第1実施形態に係る放射線検出器100は、フォトンカウンティング型検出器である。すなわち、放射線検出器100は、エネルギー積分型収集方式(電流モード計測方式)の検出器ではなく、フォトンカウンティング(Photon Counting)方式の検出器である。放射線検出器100は、例えばX線又はガンマ線を用いた被照射体のイメージングに用いられる。放射線検出器100は、シンチレータパネル10及びセンサパネル20を備える。
 シンチレータパネル10は、支持体11と、シンチレータ層12と、保護膜13と、を備える。支持体11は、アルミニウム、ガラス、アモルファスカーボン及びポリエチレンテレフタレート樹脂の少なくとも何れかで形成された基板である。
 シンチレータ層12は、支持体11上に形成されている。シンチレータ層12は、放射線の入射に応じて、シンチレーション光を生じさせる(発光する)。本実施形態のシンチレータ層12は、発光寿命の速いシンチレーション光を生じさせる高速応答性を有する高速シンチレータである。例えばシンチレータ層12は、後述するように、100ns程度ないしそれを下回る速い発光寿命のシンチレーション光を生じさせる。発光寿命は、蛍光寿命又は発光時定数とも称される。発光寿命は、例えば、生じたシンチレーション光の強度が最初の発光ピーク時の約36.8%になるまでの時間である。
 シンチレータ層12は、複数の柱状結晶により構成されている(図2参照)。シンチレータ層12の柱状結晶は、支持体11側を根本側として配列されている。シンチレータ層12は、母材としてヨウ化セシウム(CsI)を含み且つ賦活剤としてセリウム(Ce)を含む。ここでのシンチレータ層12は、ヨウ化セシウムを母材としヨウ化セリウム(CeI)をドーパントとして真空蒸着法により作製されている。シンチレータ層12の発光は、セリウムが起因となって生じる。ヨウ化セリウムに代えて、塩化セリウム又は臭化セリウムを用いてもよい。
 シンチレータ層12におけるセリウムの濃度は、300~6000ppmである。シンチレータ層12におけるセリウムの濃度は、500~5000ppmである。つまり、当該セリウムの濃度は、300ppm以上であってもよいし、500ppm以上であってもよいし、5000ppm以下であってもよいし、6000ppm以下であってもよいし、これらの少なくとも何れかの組合せであってもよい。
 シンチレータ層12の発光波長特性は、複数の発光ピークを有する。具体的には、シンチレータ層12の発光波長特性は、第1発光波長における第1発光ピークと、第1発光波長よりも長波長側の第2発光波長における第2発光ピークと、を有する。第1発光ピークは、第2発光ピークよりも大きい。例えば、シンチレータ層12では、発光ピークとなる波長領域は400~600nmであり、第1発光波長は430~470nmに存在し、第2発光波長は470~510nmに存在する。換言すると、発光ピークは400~600nmの波長領域に存在し、第1発光ピークは430~470nmに存在し、第2発光ピークは470~510nmに存在する。
 保護膜13は、シンチレータ層12を少なくとも覆う膜である。保護膜13は、第1有機膜14、無機膜15及び第2有機膜16を含む。第1有機膜14は、支持体11及びシンチレータ層12全体を保護する保護層である。第1有機膜14は、支持体11及びシンチレータ層12を覆うように成膜されて成る。第1有機膜14としては、例えばポリパラキシリレンが用いられている。無機膜15は、耐湿性の向上を目的として設けられた保護層である。無機膜15は、第1有機膜14を覆うように成膜されて成る。無機膜15は、積層構造を有する。無機膜15は、アルミニウム、チタン又はそれらの酸化物の何れかの膜が積層されて構成されている。例えば無機膜15は、酸化アルミニウム膜と酸化チタン膜とを含む。
 第2有機膜16は、シンチレータパネル10全体を保護する保護層である。第2有機膜16は、無機膜15を覆うように成膜されて成る。例えば第2有機膜16としては、ポリパラキシリレンが用いられている。無機膜15の厚さは、第1有機膜14及び第2有機膜16よりも薄く、例えば30nmである。第1有機膜14及び第2有機膜16の厚さは、互いに等しく、例えば10μmである。以上のように構成されたシンチレータパネル10は、アニール処理が施されて、内部歪(残留応力)が除去されていてもよい。
 センサパネル20は、シンチレータパネル10と貼り合わされている。センサパネル20は、シンチレータパネル10においてシンチレータ層12の柱状結晶の先端側に張り合わされている。センサパネル20は、光電変換素子を有する。センサパネル20は、シンチレータ層12の発光(シンチレーション光)を検出する。センサパネル20としては、例えばMPPC(マルチピクセルフォトンカウンター、浜松ホトニクス社製、登録商標)を用いることができる。
 図3は、シンチレータ層12の発光寿命特性を示すグラフである。図3において、縦軸は、シンチレーション光の光強度(%)であり、横軸は、時間(ns)である。ここでの光強度は、発光ピーク時を基準とした相対値として表されている。図3に示されるように、シンチレータ層12では、その発光寿命が100ns程度であり、発光寿命が非常に速いシンチレーション光を生じ得ることがわかる。シンチレータ層12では、母材としてヨウ化セシウムを含み且つ賦活剤としてタリウムを含むような一般的なシンチレータ層に比べて、その発光寿命が約1/10である。
 図4は、シンチレータ層12の発光波長特性を示すグラフである。図4において、縦軸は、シンチレーション光の光強度(%)であり、横軸は、シンチレーション光の波長(nm)である。ここでの光強度は、その最大値を基準とした相対値として表されている。図4に示されるように、シンチレータ層12の発光波長特性(発光スペクトル)は、低波長側の第1発光波長における第1発光ピークP1と、長波長側の第2発光波長における第2発光ピークP2と、を有する。第1発光ピークP1は、第2発光ピークよりも光強度が大きい。シンチレータ層12において、発光ピークとなる波長である発光波長は400~600nmであり、第1発光波長は430~470nm(図示する例では、440nm)であり、第2発光波長は470~510nm(図示する例では、490nm)である。
 図5(A)及び図5(B)は、シンチレータパネル10の高温高湿試験の結果を示すグラフである。図5(A)において、縦軸は、シンチレータパネル10の光出力(%)であり、横軸は、時間(hour)である。図5(B)において、縦軸は、シンチレータパネル10のコントラスト伝達関数(CTF)(%)であり、横軸は、時間(hour)である。ここでの光出力及びコントラスト伝達関数は、試験開始時を基準とした相対値として表されている。図5(A)及び図5(B)において、D1及びD2が実施例に係る結果であり、D3及びD4が比較例に係る結果である。
 実施例は、シンチレータパネル10である。比較例は、積層構造の保護膜13に代えて、ポリパラキシリレンから成る有機膜のみで構成された単層構造の保護膜を備える点で実施例と異なる。高温高湿試験は、例えば温度40℃で湿度90%の環境試験(40℃90%RH環境試験)であって、JIS等の公知の試験条件に準拠して行われる。図5(A)及び図5(B)に示されるように、シンチレータ層12の潮解性に起因し、比較例では、時間経過に伴い特性が劣化している。これに対し、実施例では、時間経過による特性劣化は見られず、特性を維持できることがわかる。
 図6は、シンチレータ層12におけるセリウムの濃度と輝度との関係を示すグラフである。図6において、縦軸は、シンチレーション光の輝度(%)であり、横軸は、シンチレータ層12のセリウムの濃度(ppm)である。ここでの輝度は、KODAK社のLanex regular screensを基準とした相対値として表されている。横軸は、対数目盛で表示されている。図中の黒色ひし形は、アニール処理が施されて内部歪(残量応力)が除去された状態のシンチレータパネル10のデータである。図中の○は、アニール処理が施されていない状態のシンチレータパネル10のデータである。セリウムの濃度は、セシウム、ヨウ素及びセリウムの3つの元素を定量分析して取得することができる。
 図6に示されるように、シンチレータ層12では、セリウムの濃度が高くなるにつれて輝度が増加し、一定以上の濃度では濃度消光により輝度が小さくなるという傾向を確認できる。例えばシンチレータ層12におけるセリウムの濃度が300~6000ppmであると、高い輝度のシンチレーション光が生じ得ることがわかる(図中の左右矢印参照)。例えばシンチレータ層12におけるセリウムの濃度が500~5000ppmであると、高い輝度のシンチレーション光が一層生じ得ることがわかる。例えばシンチレータパネル10にアニール処理を施した場合、より高い輝度のシンチレーション光が生じ得ることがわかる。例えば当該アニール処理を施した場合、シンチレータ層12におけるセリウムの濃度が500~6000ppmであると、高い輝度のシンチレーション光が生じ得ることがわかる。例えば当該アニール処理を施していない場合、シンチレータ層12におけるセリウムの濃度が300~3500ppmであると、高い輝度のシンチレーション光が生じ得ることがわかる。
 図7は、シンチレータ層12におけるセリウムの濃度と発光ピーク輝度との関係を示すグラフである。縦軸は、シンチレーション光の強度(%)であり、横軸は、シンチレーション光の波長(nm)である。図中では、シンチレータ層12のセリウムの濃度が8490ppm、4190ppm、1670ppm、1040ppm、590ppm及び220ppmのときのデータをそれぞれ示している。ここでの輝度は、シンチレータ層12のセリウムの濃度が1670ppmのときの輝度の最大値を基準とした相対値として表されている。図7に示されるように、セリウムの濃度が高くなるにつれて強度が増加し、一定以上の濃度では濃度消光により強度が小さくなる傾向を確認できる。また、シンチレータ層12では、波長が450nm及び490nmのときに発光ピークを確認することができる。
 以上、本実施形態に係る放射線検出器100及びシンチレータパネル10では、シンチレータ層12は、母材としてヨウ化セシウムを含み且つ賦活剤としてセリウムを含む。これにより、一般的な発光寿命がマイクロ秒オーダーであるのに対し、本実施形態では、100ns程度の速い発光寿命を得ることができる。その結果、優れた高速応答性を得ることが可能となる。
 本実施形態では、シンチレータ層12のセリウムの濃度は、300~6000ppmである。この場合、高輝度のシンチレーション光を得ることが可能となる。
 本実施形態では、シンチレータ層12の発光波長特性は、第1発光波長における第1発光ピークと、第1発光波長よりも長波長側の第2発光波長における第2発光ピークと、を有し、第1発光ピークは、第2発光ピークよりも大きい。この場合、高い光強度のシンチレーション光を得ることが可能となる。
 本実施形態では、保護膜13は、第1有機膜14、無機膜15及び第2有機膜16を含む。このように保護膜13を構成することにより、シンチレータ層12の潮解性に起因した特性劣化を確実に抑制することができる。
 本実施形態では、無機膜15は、積層構造を有する。この場合、シンチレータ層12の潮解性に起因した特性劣化を一層確実に抑制することができる。
 本実施形態では、支持体11は、アルミニウム、ガラス、アモルファスカーボン及びポリエチレンテレフタレート樹脂の少なくとも何れかで形成された基板である。このような支持体11を採用することで、シンチレータパネル10を具体的に構成することができる。
 本実施形態では、放射線検出器100は、フォトンカウンティング型検出器である。放射線検出器100がフォトンカウンティング型検出器の場合、優れた高速応答性を得る上記効果は特に有効となる。例えば、高線量下のフォトカウンティングにおいても、信号のパイルアップを抑制し、数え落としなく計測することが可能となる。
 なお、放射線検出器100及びシンチレータパネル10は、シンチレータ層12が柱状結晶体であるため、空間分解能に優れ、イメージング用途としての使用に優れる。シンチレータ層12のセリウムの濃度の大小と発光寿命とには、相関はみられない。
[第2実施形態]
 次に、第2実施形態を説明する。第2実施形態の説明では、第1実施形態と異なる点について説明し、重複する説明は省略する。
 図8に示されるように、第2実施形態の放射線検出器200は、シンチレータパネル10(図1参照)に代えてシンチレータパネル210を備える。シンチレータパネル210は、支持体11(図1参照)に代えて支持体211を有する。支持体211は、ファイバーオプティックプレート(Fiber Optic Plate)である。ファイバーオプティックプレートは、複数(例えば数百万本)の光ファイバが束ねられて構成された光学デバイスであって、例えば、複数のコアガラスと、当該コアガラスを被覆するクラッドガラスと、複数のコアガラス間に配置された吸光体ガラスと、を含む。センサパネル20は、シンチレータパネル210の支持体211に張り合わされている。
 このような本実施形態においても、優れた高速応答性を得ることができる等の上記効果を奏する。
[第3実施形態]
 次に、第3実施形態を説明する。第3実施形態の説明では、第2実施形態と異なる点について説明し、重複する説明は省略する。
 図9に示されるように、第3実施形態の放射線検出器300は、支持体211を備えていない点で放射線検出器200(図8参照)と異なる。すなわち、放射線検出器300は、センサパネル20、シンチレータ層12及び保護膜13を備える。シンチレータ層12は、センサパネル20上に形成されている。具体的には、シンチレータ層12は、センサパネル20の表面に直接形成されている。シンチレータ層12の柱状結晶は、センサパネル20側を根本側として配列されている。
 このような本実施形態においても、優れた高速応答性を得ることができる等の上記効果を奏する。
[変形例]
 以上、本発明の一態様は、上述した実施形態に限定されない。
 上述した実施形態では、放射線検出器100,200,300はフォトンカウンティング検出器であるが、これに限定されない。放射線検出器100,200,300は、例えばエネルギー積分型収集方式の検出器であってもよい。
 上述した実施形態及び変形例における各構成には、上述した材料及び形状に限定されず、様々な材料及び形状を適用することができる。また、上述した実施形態又は変形例における各構成は、他の実施形態又は変形例における各構成に任意に適用することができる。センサパネル20としては、ガラス基板等の剛性基板を用いたセンサ、及び、樹脂基板等の可撓性基板を用いたセンサ等であってもよい。
 10,210…シンチレータパネル、11,211…支持体、12…シンチレータ層、13…保護膜、14…第1有機膜、15…無機膜、16…第2有機膜、20…センサパネル、100,200,300…放射線検出器、P1…第1発光ピーク、P2…第2発光ピーク。

Claims (13)

  1.  支持体と、
     前記支持体上に形成され、柱状結晶により構成されたシンチレータ層と、
     前記シンチレータ層を少なくとも覆う保護膜と、を備え、
     前記シンチレータ層は、母材としてヨウ化セシウムを含み且つ賦活剤としてセリウムを含む、シンチレータパネル。
  2.  前記セリウムの濃度は、300~6000ppmである、請求項1に記載のシンチレータパネル。
  3.  前記シンチレータ層の発光波長特性は、第1発光波長における第1発光ピークと、前記第1発光波長よりも長波長側の第2発光波長における第2発光ピークと、を有し、
     前記第1発光ピークは、前記第2発光ピークよりも大きい、請求項1又は2に記載のシンチレータパネル。
  4.  前記保護膜は、第1有機膜、無機膜及び第2有機膜を含む、請求項1~3の何れか一項に記載のシンチレータパネル。
  5.  前記無機膜は、積層構造を有する、請求項4に記載のシンチレータパネル。
  6.  前記支持体は、アルミニウム、ガラス、アモルファスカーボン及びポリエチレンテレフタレート樹脂の少なくとも何れかで形成された基板、又は、ファイバーオプティックプレートである、請求項1~5の何れか一項に記載のシンチレータパネル。
  7.  請求項1~6の何れか一項に記載のシンチレータパネルと、
     前記シンチレータパネルと貼り合わされ、光電変換素子を有するセンサパネルと、を備える、放射線検出器。
  8.  光電変換素子を有するセンサパネルと、
     前記センサパネル上に形成され、柱状結晶により構成されるシンチレータ層と、
     前記シンチレータ層を少なくとも覆う保護膜と、を備え、
     前記シンチレータ層は、母材としてヨウ化セシウムを含み且つ賦活剤としてセリウムを含む、放射線検出器。
  9.  前記セリウムの濃度は、300~6000ppmである、請求項8に記載の放射線検出器。
  10.  前記シンチレータ層の発光波長特性は、第1発光波長における第1発光ピークと、前記第1発光波長よりも長波長側の第2発光波長における第2発光ピークと、を有し、
     前記第1発光ピークは、前記第2発光ピークよりも大きい、請求項8又は9に記載の放射線検出器。
  11.  前記保護膜は、第1有機膜、無機膜及び第2有機膜を含む、請求項8~10の何れか一項に記載の放射線検出器。
  12.  前記無機膜は、積層構造を有する、請求項11に記載の放射線検出器。
  13.  フォトンカウンティング型検出器である、請求項7~12の何れか一項に記載の放射線検出器。
PCT/JP2021/007443 2020-06-16 2021-02-26 シンチレータパネル及び放射線検出器 WO2021256011A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/925,898 US20230184967A1 (en) 2020-06-16 2021-02-26 Scintillator panel and radiation detector
JP2022532292A JPWO2021256011A1 (ja) 2020-06-16 2021-02-26
CN202180042839.XA CN115769312A (zh) 2020-06-16 2021-02-26 闪烁体面板和放射线检测器
EP21825514.9A EP4144815A4 (en) 2020-06-16 2021-02-26 SCINTILLATOR PANEL AND RADIATION DETECTOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-103949 2020-06-16
JP2020103949 2020-06-16

Publications (1)

Publication Number Publication Date
WO2021256011A1 true WO2021256011A1 (ja) 2021-12-23

Family

ID=79267767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007443 WO2021256011A1 (ja) 2020-06-16 2021-02-26 シンチレータパネル及び放射線検出器

Country Status (5)

Country Link
US (1) US20230184967A1 (ja)
EP (1) EP4144815A4 (ja)
JP (1) JPWO2021256011A1 (ja)
CN (1) CN115769312A (ja)
WO (1) WO2021256011A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020820A (ja) 2004-07-08 2006-01-26 Sri Sports Ltd ゴルフボール
WO2009031574A1 (ja) * 2007-09-06 2009-03-12 Konica Minolta Medical & Graphic, Inc. フラットパネルディテクタ
JP2011022068A (ja) * 2009-07-17 2011-02-03 Konica Minolta Medical & Graphic Inc シンチレータパネル
JP2016042671A (ja) * 2014-08-19 2016-03-31 コニカミノルタ株式会社 X線画像撮影装置
US20190250286A1 (en) * 2018-02-14 2019-08-15 University Of Tennessee Research Foundation Alkali and alkaline earth halides and methods thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020820A (ja) 2004-07-08 2006-01-26 Sri Sports Ltd ゴルフボール
WO2009031574A1 (ja) * 2007-09-06 2009-03-12 Konica Minolta Medical & Graphic, Inc. フラットパネルディテクタ
JP2011022068A (ja) * 2009-07-17 2011-02-03 Konica Minolta Medical & Graphic Inc シンチレータパネル
JP2016042671A (ja) * 2014-08-19 2016-03-31 コニカミノルタ株式会社 X線画像撮影装置
US20190250286A1 (en) * 2018-02-14 2019-08-15 University Of Tennessee Research Foundation Alkali and alkaline earth halides and methods thereof

Also Published As

Publication number Publication date
CN115769312A (zh) 2023-03-07
US20230184967A1 (en) 2023-06-15
EP4144815A1 (en) 2023-03-08
JPWO2021256011A1 (ja) 2021-12-23
EP4144815A4 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
JP5600392B2 (ja) 検出器画素の感度層を有するx線検出器
US6469307B2 (en) Scintillator panel, radiation image sensor, and methods of making the same
US7692152B2 (en) Radiation detecting apparatus, scintillator panel, radiation detecting system, and method for producing scintillator layer
JP4800434B2 (ja) シンチレータパネル、放射線イメージセンサの製造方法
US8841621B2 (en) Radiographic imaging apparatus
KR101726464B1 (ko) 방사선상 변환 패널
JPH11218577A (ja) シンチレーションの検出
US11460590B2 (en) Dual-screen digital radiography with asymmetric reflective screens
US7675039B2 (en) Phosphor sheet for radiation detector, radiation detector and apparatus for radiographic equipment
US20140001367A1 (en) Radiological image detection apparatus and method of manufacturing the same
US10156640B2 (en) Radiation detection apparatus and radiation detection sheet
JP2018036197A (ja) 放射線画像検出器
JP4204344B2 (ja) 放射線画像形成材料および放射線画像形成方法
WO2021256011A1 (ja) シンチレータパネル及び放射線検出器
JP2004317300A (ja) 放射線平面検出器及びその製造方法
JPWO2008117589A1 (ja) 放射線用シンチレータパネル及び放射線画像撮影装置
JP2014016319A (ja) 放射線弁別検出器及びその製造方法
KR20150046624A (ko) 엑스선 검출장치
GB2519326A (en) Scintillating optical fiber
JP2001523383A (ja) 薄膜による光電陰極の保護
JP2656797B2 (ja) 放射線画像変換パネル
JPH11160441A (ja) 放射線検出素子
JP2002286847A (ja) 半導体放射線検出装置
JP2656795B2 (ja) 放射線画像変換パネル
JPWO2008149659A1 (ja) シンチレータパネル及びイメージセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532292

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021825514

Country of ref document: EP

Effective date: 20221128

NENP Non-entry into the national phase

Ref country code: DE