WO2021255956A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2021255956A1
WO2021255956A1 PCT/JP2020/040671 JP2020040671W WO2021255956A1 WO 2021255956 A1 WO2021255956 A1 WO 2021255956A1 JP 2020040671 W JP2020040671 W JP 2020040671W WO 2021255956 A1 WO2021255956 A1 WO 2021255956A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
control device
motor control
controller
output
Prior art date
Application number
PCT/JP2020/040671
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 武田
裕司 辻
英人 高田
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2021255956A1 publication Critical patent/WO2021255956A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • the present invention relates to a motor control device, for example, to a technique for diagnosing an abnormality.
  • Patent Document 1 describes a method for determining an abnormality in a rotating machine system based on a current supplied to the rotating machine.
  • Patent Document 2 describes a method of estimating a motor speed from a current of a power conversion device and using it for monitoring the speed of the motor within a predetermined safety function operation.
  • Patent Document 1 an abnormality diagnosis of a rotating machine system is performed by methods such as frequency spectrum analysis of motor current, ringing waveform information at the time of switching of a power converter, and Lissajous graphic analysis using a current sensor mainly used for control. Is shown how to do this. Further, in the same document, when the current sensor region used for control is specified, it is described that it is preferable to perform diagnosis based on the output not used for control, but the specific configuration is specified. And the operation is not shown in particular.
  • PWM Pulse Width Modulation
  • Patent Document 1 synchronization with the triangular wave is prioritized as the current detection timing used for control.
  • a ringing waveform or the like it is necessary to capture a finer change than the triangular wave period, and it may be desirable to detect the current asynchronously with the triangular wave. In such a case, the method of Patent Document 1 may make highly accurate abnormality diagnosis difficult.
  • the current supplied to the motor is measured as the speed monitoring of the deceleration stop operation in the safety function (SS1) specified in the functional safety standard IEC6185-5-2.
  • speed monitoring is performed by two diagnostic units, both are performed by the same diagnostic method. For this reason, both diagnostic units may make an erroneous diagnosis at the same time due to common factors such as ambient temperature and electromagnetic noise (that is, cause a so-called common cause failure), which is dangerous for the desired functional safety operation. May cause a malfunction.
  • the present invention has been made in view of the above, and one of the objects thereof is to provide a motor control device capable of realizing highly accurate abnormality diagnosis.
  • a motor control device controls a power converter and a power converter that convert DC power into AC power by switching a plurality of switching elements and supply the AC power to the motor. It is equipped with a controller.
  • the controller includes a PWM controller, a current controller, and a current monitor.
  • the PWM controller controls a plurality of switching elements with PWM signals.
  • the current controller acquires the output current value of the power converter at the first interval, and determines the duty ratio of the PWM signal based on the error between the acquired output current value and the current command value.
  • the current monitor monitors the output current value by acquiring the output current value of the power converter at a second interval different from the first interval.
  • FIG. 1 It is a block diagram which shows the structural example of the motor control apparatus according to Embodiment 1 of this invention. It is a figure which shows an example of the current acquisition timing of the current controller and the current monitor in FIG. It is a flow chart which shows an example of the processing contents corresponding to the current acquisition timing of FIG. It is a flow chart which shows an example of the processing contents corresponding to the current acquisition timing of FIG. It is a flow chart which shows an example of the processing contents corresponding to the current acquisition timing of FIG. It is a flow chart which shows an example of the processing contents corresponding to the current acquisition timing of FIG. It is a flow chart which shows an example of the processing contents corresponding to the current acquisition timing of FIG. It is a block diagram which shows the configuration example which modified the motor control device of FIG.
  • FIG. 2 It is a block diagram which shows the structural example of the motor control apparatus according to Embodiment 2 of this invention. It is a block diagram which shows the structural example which modified the motor control device of FIG. It is a flow chart which shows the operation example in the case of performing speed monitoring using the control for diagnosis in FIG. It is a block diagram which shows the structural example of the motor control apparatus according to Embodiment 3 of this invention. It is a block diagram which shows the structural example of the motor control apparatus according to Embodiment 4 of this invention. It is a circuit diagram which shows some structural examples in the motor control apparatus according to Embodiment 5 of this invention. It is a circuit diagram which shows some structural examples in the motor control apparatus according to Embodiment 6 of this invention. It is a circuit diagram which shows the configuration example which modified FIG.
  • FIG. 1 is a block diagram showing a configuration example of a motor control device according to the first embodiment of the present invention.
  • the motor control device of FIG. 1 includes a controller 1, a DC power supply 5, a power converter 2, a motor 3, an encoder 4, a control current sensor 7, and a monitoring current sensor 8.
  • the DC power supply 5 converts the AC power from the commercial AC power supply 6 into DC power by using, for example, a diode bridge circuit, a boost converter circuit, or the like.
  • a storage battery or the like may be used as the DC power supply 5, a storage battery or the like (not shown) may be used.
  • the power converter 2 converts the DC power from the DC power source 5 into AC power by switching a plurality of switching elements, and supplies the AC power to the motor 3.
  • the power converter 2 is, for example, a three-phase inverter in which six switching elements are connected by a three-phase full bridge.
  • the switching element is, for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or the like.
  • the encoder 4 measures the rotational state of the motor 3.
  • the controller 1 controls the power converter 2.
  • the controller 1 includes a servo controller 9, a current monitor 10, a current controller 11, a clock generator 12, a carrier wave generator 13, a memory 14, a PWM controller 15, and an encoder communication unit 16. To prepare for.
  • control current sensor 7 is, for example, a CT (Current Transformer) sensor, a Hall element sensor, a resistance element, or the like, and the output current value of the power converter 2 is used as a current feedback signal (for example, an analog voltage signal) Iu1 or Iw1. Detect as.
  • the current controller 11 acquires the output current value (Iu1, Iw1) at a predetermined acquisition interval (first interval) by using, for example, an analog-digital converter or the like.
  • the current controller 11 extracts the current component of the D-axis and Q-axis by converting the acquired output current values (Iu1, Iw1) into coordinates, and the output current value (Id, Iq) of the D-axis and Q-axis. And separately, the error with the current command value of each axis received from the servo controller 9 is calculated.
  • the current controller 11 determines the duty ratio of the PWM signal by using PI (proportional / integral) control or the like based on the calculated error. Further, the current controller 11 converts the D-axis and the Q-axis into the U-axis and the V-axis and the W-axis to generate a three-phase control modulation wave that reflects the determined duty ratio and outputs the three-phase control modulation wave to the PWM controller 15. ..
  • the PWM controller 15 generates a three-phase PWM signal by comparing the triangular or serrated carrier Fc generated by the carrier generator 13 with the three-phase control modulated wave from the current controller 11.
  • the PWM controller 15 controls a plurality of switching elements in the power converter 2 with the generated three-phase PWM signals. As a result, the motor current supplied to the motor 3 is generated, and a series of current feedback control loops are formed.
  • the information of the motor control phase current controller 11 is used in the coordinate conversion and current control, current feedback signals Iu1, Iw1, or obtained from a position feedback signal P FB.
  • the position signal of the motor 3 measured by the encoder 4 is input to the servo controller 9 as a position feedback signal P FB via the encoder communication unit 16.
  • the servo controller 9 calculates the motor speed and the motor acceleration from the amount of change in the position feedback signal PFB , and separately for each command value of the position, speed, and acceleration input from the host device (not shown) or the like. Performs feedback control calculation. Then, the servo controller 9 outputs the current command value obtained from the calculation result to the current controller 11.
  • the motor 3 is driven according to the functions of the current controller 11 and the power converter 2, and the encoder 4 measures the driving result to form a feedback control loop for the motor position, speed, and acceleration.
  • the control current sensor 7 is attached only to two phases, the U phase and the W phase, from the viewpoint of reducing the number of current sensors. Since the three-phase motor is driven by a current in a substantially three-phase equilibrium, the V-phase current can be estimated from the sum of the U-phase and W-phase currents.
  • a position sensorless configuration may be used in which the motor position (and thus the speed and acceleration) is calculated by calculation.
  • the monitoring current sensor 8 is, for example, a CT sensor, a Hall element sensor, a resistance element, or the like.
  • the output current values of all three phases of the power converter 2 are set to a current monitoring signal (for example, an analog voltage signal). ) Detected as Iud, Ivd, Iw1.
  • a current monitoring signal for example, an analog voltage signal.
  • Iud, Ivd, Iw1 Detected as Iud, Ivd, Iw1.
  • the monitoring current sensor 8 does not necessarily have to detect all three phases, and the phase to be detected may be appropriately selected according to the purpose of diagnosis.
  • the current monitor 10 uses, for example, an analog-digital converter or the like to obtain the output current value (Id, Ivd, Iw1) of the power converter 2 obtained via the monitoring current sensor 8 at a predetermined acquisition interval (first).
  • the output current value is monitored by acquiring it at intervals of 2).
  • the acquisition interval (second interval) in the current monitor 10 is different from the acquisition interval (first interval) in the current controller 11.
  • an abnormality diagnosis of the motor control device is performed.
  • diagnostic items for abnormality diagnosis diagnostic items of a motor control device as shown in Patent Document 1 and diagnostic items such as speed associated with a functional safety function as shown in Patent Document 2 can be used. ..
  • the abnormality diagnosis process can be performed by the current monitor 10 or by a higher-level device (not shown) located above the current monitor 10.
  • the controller 1 is typically composed of a microcontroller (abbreviated as a microcomputer) in which each part is integrated into one package of parts, an FPGA (Field Programmable Gate Array), or the like.
  • a microcontroller abbreviated as a microcomputer
  • FPGA Field Programmable Gate Array
  • the present invention is not limited to this, and the controller 1 can be mounted on an integrated printed circuit board or on a plurality of printed circuit boards after each component is an external component in a package separate from the microcomputer or the like. It may be separated and then connected by wiring or wireless communication.
  • the memory 14 is connected to the servo controller 9 and the current controller 11, and is used as a buffer memory for various operations, for example. As the memory 14, a single memory may be shared by both parts, or a plurality of memories may be divided and used by both parts.
  • the clock generator 12 is a circuit that generates a clock that is frequency-converted by frequency division or a phase-locked loop (PLL) using the arithmetic clock, in addition to elements that are the basis of the arithmetic clock such as an oscillator and an oscillator. Etc.
  • a clock generator 12 is built in the microcomputer.
  • the servo controller 9, the current monitor 10, the current controller 11, and the carrier wave generator 13 operate in synchronization with the clock from the clock generator 12. Further, the current controller 11 also operates in synchronization with the carrier wave generated by the carrier wave generator 13.
  • the encoder communication unit 16 is composed of a communication interface circuit built in a microcomputer or the like.
  • the carrier wave generator 13 and the PWM controller 15 are mainly configured by using a timer circuit or the like.
  • the servo controller 9, the current monitor 10, and the current controller 11 are mainly configured by program processing using a CPU (Central Processing Unit) or the like.
  • CPU Central Processing Unit
  • each part is not limited to such a form, and may be appropriately configured by hardware, software, or a combination thereof.
  • FIG. 2 is a diagram showing an example of current acquisition timing of the current controller and the current monitor in FIG. 1.
  • the carrier wave generator 13 generates a triangular wave-shaped carrier wave 13a having a fixed period Tsw by using a counter, a timer, or the like operating at a clock period Tc from the clock generator 12.
  • the counter or the like operates so that the count value repeats rising and falling within a predetermined range (for example, 0x0000 to 0xffff).
  • the carrier wave generator 13 is a triangular wave having the same phase and amplitude as the carrier wave 13a, and generates a carrier wave 13b having an offset with respect to the carrier wave 13a.
  • the PWM controller 15 compares the modulated wave 11o output by the current controller 11 with the carrier waves 13a and 13b, respectively, and switches the toggle output at the time points tnb, tfb, tna, and tfa where the two intersect, so that the PWM signals PH, PL To generate.
  • the PWM signals PH and PL are provided with a predetermined dead time, and this section is adjusted by the above-mentioned offset amount. Further, the PWM signal PH corresponds to the switching element on the upper arm side in the power converter 2, and the PWM signal PL corresponds to the switching element on the lower arm side in the power converter 2.
  • the PWM controller 15 switches and controls the switching element of each arm by the PWM signals PH and PL. As a result, the power converter 2 can output a voltage proportional to the modulated wave 11o.
  • the output current generated in the power converter 2 has a waveform corresponding to the impedance of the load.
  • the output current has a waveform in which a sinusoidal fundamental wave corresponding to the number of revolutions and a harmonic component including a pulse wave component are superimposed.
  • the current used for the control feedback of the power converter 2 it is desirable to use a current in which harmonic noise is removed as much as possible in order to stabilize the control system.
  • the current controller 11 that bears the control system may acquire the current at the time points tp1 and tp2 when the waveforms of the carrier waves 13a and 13b are at the top or bottom. Since these time points are at the center of the on / off width of the PWM signals PH and PL, they are not easily affected by noise originating from the edge of each PWM signal, and can avoid aliasing of the current ripple that occurs in the switching cycle Tsw. can. As described above, the timing at which the current controller 11 acquires the output current values Iu1 and Iw1 may be approximately the timing TA shown in FIG. 2 or the thinning out thereof.
  • Patent Document 1 as a diagnostic method for a rotating machine system, methods such as frequency spectrum analysis of motor current, ringing waveform information at the time of switching of a power converter, and Lissajous graphic analysis are mentioned.
  • time-series noise currents starting from the edges of the PWM signals PH and PL are diagnostic targets. Therefore, the noise component may not be detected by the output current values (Iu1, Iw1) acquired by the interval (period) Tsc associated with the timing TA.
  • the current monitor 10 has a current monitoring signal from the monitoring current sensor 8 at intervals (cycles) Tse and Tsr different from the intervals (period) Tsc. (Output current value) Acquires Iud, Ivd, and Iwd.
  • the current monitor 10 constantly acquires the output current value (Id, Ivd, Iwd) at an interval Tse shorter than the interval Tsc. This makes it possible to diagnose various motor current waveforms including ringing waveforms.
  • the current monitor 10 continuously acquires the output current value (Id, Ivd, Iwd) a predetermined number of times (n) at an interval Tse shorter than the interval Tsc after the predetermined monitoring trigger is established.
  • the monitoring trigger is a rising edge or a falling edge of the PWM signals PH and PL, and in this example, it is a rising edge of the PWM signal PH. In this case, in particular, abnormality diagnosis based on the ringing waveform becomes possible. Further, when the timing TC is used, the calculation load related to the current acquisition can be reduced and the required capacity of the memory 14 can be reduced as compared with the case where the timing TB is used.
  • the current monitor 10 has an interval Tse shorter than the interval Tsc, and the output current value (non-overlapping period) is different from the period in which the current controller 11 acquires the output current value (Iu1, Iw1). Iud, Ivd, Iwd) is acquired. As a result, it is possible to acquire a motor current waveform almost the same as in the case of the timing TB, reduce the calculation load of the current monitor 10 due to the overlapping period, reduce the capacity of the memory 14, and the like.
  • the current monitor 10 acquires the output current value (Id, Ivd, Iwd) at an interval Tsr randomly determined in time series so as not to depend on the acquisition interval of the current controller 11. In this case, in particular, abnormality diagnosis based on Lissajous figure analysis or the like becomes possible.
  • the acquisition interval (Tse, Tsr) in the current monitor 10 is shorter than the acquisition interval (Tsc) in the current controller 11 is mainly taken as an example. However, depending on the diagnostic item, the acquisition interval (Tse, Tsr) may be longer than the acquisition interval (Tsc).
  • the current controller 11 acquires an output current value that does not include noise, as described above. Therefore, for example, the current controller 11 obtains the output current value through a low-pass filter or the like, or performs a process of sampling the output current value a predetermined number of times and then averaging the output current value. As a result, the acquisition period of the current per time is effectively extended. On the other hand, since it is desirable for the current monitor 10 to acquire the output current value including noise, the output current value is acquired without going through a low-pass filter or the like. As a result, the acquisition period of the current per time is effectively shortened.
  • the cutoff frequency of the transfer function of the path in which the current monitor 10 acquires the output current value is higher than the cutoff frequency of the transfer function in the path in which the current controller 11 acquires the output current value.
  • FIG. 2 such a difference in the acquisition period of the current per time is schematically shown.
  • a monitoring system that is, a monitoring current sensor 8 and a current monitor 10.
  • the control system that is, the control current sensor 7 and the current controller 11.
  • FIGS. 3A, 3B, 3C, 3D, and 3E are flow charts showing an example of processing contents corresponding to the current acquisition timing of FIG.
  • the processes of FIGS. 3A, 3B, 3C, 3D, and 3E are repeatedly executed, for example, at the clock period Tc of FIG.
  • FIG. 3A shows an example of the processing content corresponding to the timing TA of FIG.
  • the current controller 11 determines whether the ascending / descending flag is ascending or descending (step S101). If the ascending / descending flag is raised, the current controller 11 increments the counter (13a) (step S102), and then determines whether or not the count value is equal to or higher than the upper limit peak (0xffff) (step S103).
  • step S104 If the count value is equal to or greater than the upper limit peak in step S103, the current controller 11 starts analog-to-digital conversion (step S104), changes the ascending / descending flag to descending, and ends the process (step S105). On the other hand, if the count value is less than the upper limit peak in step S103, the current controller 11 ends the process. By repeatedly executing such processing, current acquisition is performed at the top of the carrier wave 13a. On the other hand, when the ascending / descending flag is lowered in step S101, the current controller 11 executes the same processing as in the case of steps S102 to S105 in steps S106 to S109 in the form of decrementing the counter (13a). As a result, current acquisition is performed at the bottom of the carrier wave 13a.
  • FIG. 3B shows an example of the processing content corresponding to the timing TB of FIG.
  • the current monitor 10 increments the counter (step S201), and whether or not the count value B is equal to or greater than a predetermined upper limit value (B_lim) (that is, the time corresponding to the interval Tse in FIG. 2 has elapsed). Whether or not) is determined (step S202).
  • the current monitor 10 starts analog-to-digital conversion (step S203), resets the count value B to zero, and ends the process (step S204).
  • the count value B is less than the upper limit value (B_lim) in step S202, the current monitor 10 ends the process.
  • FIG. 3C shows an example of the processing content corresponding to the timing TC of FIG.
  • the initial monitoring flag is set to '0', and the current monitor 10 waits for the monitoring trigger to be established (steps S301 and S302).
  • the current monitor 10 determines whether or not the monitoring trigger is established based on, for example, the PWM signals PH and PL from the PWM controller 15.
  • the monitoring flag is '1'
  • the current monitor 10 proceeds to the process of step S305 as it is (step S301).
  • step S305 when i is n or less, the current monitor 10 performs analog-to-digital conversion at each interval Tse using the same processing as in the case of FIG. 3B (steps S201 to S204). However, unlike the case of FIG. 3B, the current monitor 10 increments i each time the analog-to-digital conversion is performed (step S307). On the other hand, when i exceeds n in step S305, the current monitor 10 returns the monitoring flag to '0' and ends the process (step S306).
  • FIG. 3D shows an example of the processing content corresponding to the timing TD of FIG.
  • FIG. 3D shows the same processing content as in the case of FIG. 3A.
  • the processes of steps S104 and S108 are not performed.
  • the current monitor 10 is shown in FIG.
  • the process of 3B is executed (step S401).
  • the current controller 11 stores the output current values (Iu1, Iw1) after analog-to-digital conversion in the memory 14, and in step S401 of FIG. 3D, the current monitor 10 May store the output current values (Id, Ivd, Iwd) after analog-to-digital conversion in the memory 14.
  • the current monitor 10 can obtain a continuous output current value based on the output current value stored in the memory 14. Further, since the time-duplicate data does not have to be stored in the memory 14, it is possible to contribute to the reduction of the capacity of the memory 14.
  • FIG. 3E shows an example of the processing content corresponding to the timing TE of FIG.
  • the current monitor 10 increments the counter (step S501), and whether or not the count value C is equal to or greater than a predetermined upper limit value (C_lim) (that is, the time corresponding to the interval Tsr in FIG. 2 has elapsed). Whether or not) is determined (step S502).
  • the current monitor 10 starts analog-digital conversion (step S503), updates the upper limit value (C_lim) using a random number generator or the like, and ends the process. (Step S504).
  • step S502 when the count value C is less than the upper limit value (C_lim) in step S502, the current monitor 10 ends the process.
  • the number of measurements per unit time is smaller than that when FIG. 3B is used, so that the capacity of the memory 14 can be reduced.
  • the start of analog-digital conversion in FIGS. 3A to 3E corresponds to, for example, the sampling timing of the analog-digital converter.
  • a form in which the current sensor (7, 8) outputs analog information via a ⁇ - ⁇ conversion element instead of an analog signal can be considered.
  • the analog information is sequentially stored in the memory 14 via the serial communication driver (not shown) in the controller 1.
  • the start of the analog-to-digital conversion in FIGS. 3A to 3E corresponds to the access timing to the memory 14 by the current monitor 10 and the current controller 11.
  • the access timings of the current monitor 10 and the current controller 11 are set to different multiples of the communication cycle of the ⁇ — ⁇ conversion element, respectively.
  • FIG. 4 is a block diagram showing a configuration example in which the motor control device of FIG. 1 is modified.
  • the motor control device shown in FIG. 4 is not provided with the monitoring current sensor 8 as compared with the configuration example of FIG. 1, and the control current sensor 7 is shared by the current monitor 10 and the current controller 11. ing.
  • the current monitoring signals (output current value) Iud and Iwd and the current feedback signals (output current value) Iu1 and Iw1 have the same signal source, but the current monitoring device 10 and the current controller 11 have output currents. The intervals at which the values are obtained are different.
  • the current acquisition interval for control and the current acquisition interval for abnormality diagnosis can be separated, and the timing suitable for each of control and abnormality diagnosis can be set. It will be possible to determine individually. As a result, typically, highly accurate abnormality diagnosis can be realized. Further, by separately providing the current monitor 10 and the current controller 11, and further separately providing the control current sensor 7 and the monitoring current sensor 8, it is possible to obtain a configuration that contributes to functional safety. For example, it is possible to determine the presence or absence of an abnormality by comparing the output current values acquired by the two systems.
  • FIG. 5 is a block diagram showing a configuration example of the motor control device according to the second embodiment of the present invention.
  • FIG. 5 shows a configuration example in which the motor 3 has a plurality of windings (two systems in this example).
  • two systems of controllers 1A and 1B, power converters 2A and 2B, and control current sensors 7A and 7B are provided according to the winding of two systems.
  • the DC power sources 5 connected to the power converters 2A and 2B may be independent or common. In this example, a common method is used, and the DC sides of the power converters 2A and 2B are connected in parallel to the DC power supply 5, respectively.
  • the controller 1A is a master for control, and has all the parts in the controller 1 shown in FIG.
  • the controller 1B is a slave device, and in this example, the servo controller 9, the current monitor 10, and the encoder communication unit 16 are deleted from each unit in the controller 1 shown in FIG. ..
  • the controllers 1A and 1B are driven by different clock generators 12A and 12B, respectively. By mounting a clock generator in each controller in this way, for example, when the power converter 2A and the power converter 2B are arranged at positions separated to some extent, a long clock signal wiring becomes unnecessary and the clock is clocked. It is possible to prevent malfunctions caused by signals.
  • controller 1A and the controller 1B are configured so that information can be transmitted and received via a communication unit (not shown).
  • the current controller 11 in the controller 1B operates by receiving a signal (specifically, a current command value) from the servo controller 9 in the controller 1A. That is, each current controller 11 in the controllers 1A and 1B operates based on the same command from the servo controller 9 in the controller 1A. As a result, the power converters 2A and 2B are controlled to output currents having the same phase and amplitude.
  • the U-phase output wiring from the power converter 2A and the U-phase output wiring from the power converter 2B are connected to the two U-phase input terminals of the motor 3, respectively.
  • the monitoring current sensor 8 is provided in a form common to the master device and the slave device.
  • the monitoring current sensor 8 is a through-type current sensor having a through hole formed therein, and a CT (Current Transformer) sensor, a Hall element sensor, or the like is generally known.
  • the monitoring current sensor 8 is provided in each of the three phases in this example.
  • the U-phase monitoring current sensor 8 is installed so that the U-phase output wirings from the two power converters 2A and 2B penetrate through their own through holes.
  • the U-phase monitoring current sensor 8 uses the combined current value obtained by synthesizing the U-phase output current values of the two power converters 2A and 2B as the U-phase current monitoring signal (for example, an analog voltage signal) Iud2. Detect as.
  • the V phase and the W phase is the combined current value obtained by synthesizing the U-phase output current values of the two power converters 2A and 2B as the U-phase current monitoring signal (for example, an analog voltage signal) Iud2.
  • the V-phase and W-phase monitoring current sensor 8 obtains the combined current values of the V-phase and W-phase, which are the combined output current values of the V-phase and W-phase of the two power converters 2A and 2B, respectively. It is detected as V-phase and W-phase current monitoring signals Ivd2 and Iwd2, respectively.
  • the current monitor 10 is mounted on the master device which is one of the plurality of controllers 1A and 1B.
  • the current monitor 10 monitors the combined current value by acquiring the combined current value (Id2, Ivd2, Iwd2) detected by the monitoring current sensor 8 at a predetermined interval (second interval). Further, the current monitor 10 determines the output current value (Iu1A, Iv1A, Iw1A) detected by the control current sensor 7A and the output current value (Iu1B, Iv1B, Iw1B) detected by the control current sensor 7B. By acquiring at a predetermined interval (second interval), the output current values of the two power converters 2A and 2B are monitored.
  • the slave device can be simplified by providing the current monitor 10 only in the master device instead of providing it in the slave device. Further, as compared with the case where the current monitor 10 of the master unit directly monitors the output current value from the control current sensor 7B of the slave unit and the slave unit transmits the monitoring result to the master unit. The amount of communication between the controller 1B and the controller 1A can be reduced. As a result, it becomes possible to reduce the processing load of the motor control device.
  • the power converters 2A and 2B are controlled to have the same phase and the same amplitude.
  • the combined current values (Id2, Ivd2, Iwd2) acquired by the current monitor 10 are the output current values (Iu1A, Iv1A, Iw1A) based on the control current sensor 7A unless there is a disturbance or abnormality in the control system. ), And also doubles the output current value (Iu1B, Iv1B, Iw1B) based on the control current sensor 7B. Therefore, it is possible to perform an abnormality diagnosis based on whether or not such consistency can be obtained.
  • the abnormality extracted in the abnormality diagnosis is derived from an individual power converter or a motor.
  • the output current values from the control current sensors 7A and 7B are both normal and the current from the monitoring current sensor 8 is abnormal, it is highly possible that the abnormality is derived from the motor.
  • the system abnormality is derived from the load device. Is likely to be.
  • the output current value from the monitoring current sensor 8 may be transmitted to a higher-level device (not shown) provided above the motor control device, and the higher-level device may perform detailed abnormality diagnosis.
  • the host device is a device that controls the motor control device and the load device, and issues a speed command or the like to the motor control device according to the control sequence of the load device or the like.
  • the host device can perform abnormality diagnosis by collating, for example, the output current value from the monitoring current sensor 8 with the control sequence of the load device.
  • controller 1A and the controller 1B are each realized by different microcomputers and the like. However, in some cases, the controller 1A and the controller 1B can be mounted in one microcomputer. Alternatively, it is also possible to configure the PWM controller 15 in the controller 1A to switch and control the power converter 2B with a PWM signal common to the power converter 2A without providing the controller 1B. Further, in the current monitor 10 of FIG. 5, the interval for acquiring the output current value (Iu1A, Iv1A, Iw1A) and the interval for acquiring the output current value (Iu1B, Iv1B, Iw1B) may be different. It is possible.
  • FIG. 6 is a block diagram showing a configuration example in which the motor control device of FIG. 5 is modified.
  • the control current sensors 7A and 7B and the monitoring current sensor 8 all detect two phases of U phase and W phase. However, the number of phases to be detected can be appropriately changed depending on the application.
  • the major difference from FIG. 5 is that the current monitor 10 is provided in the diagnostic controller 1C, which is different from the plurality of controllers 1A and 1B. In other words, the current monitor 10 is commonly provided outside the plurality of controllers 1A and 1B.
  • the controller 1A has substantially the same configuration as the controller 1B in FIG.
  • controllers 1A, 1B, and 1C are realized by, for example, individual microcomputers and the like. However, depending on the case, it is possible to realize the controllers 1A and 1B excluding the diagnostic controller 1C with one microcomputer or the like.
  • the controllers 1A, 1B, 1C can communicate with each other, for example, a current command value, a current feedback signal Iu1A, Iw1A, Iu1B, Iw1B, etc. via a communication unit.
  • a communication insulation unit 17 that performs communication in a state of being electrically isolated by using an optical type, a magnetic type, or the like may be provided.
  • the diagnostic controller 1C may be used for speed monitoring in functional safety.
  • the diagnostic controller 1C may be used for speed monitoring in functional safety.
  • the speed monitor by the controllers 1A and 1B and the speed monitor by the diagnostic controller 1C can be independently provided.
  • the controllers 1A and 1B and the diagnostic controller 1C can be electrically separated by the communication insulation unit 17. As a result, a more reliable functional safety system can be constructed.
  • FIG. 7 is a flow chart showing an operation example when speed monitoring is performed using the diagnostic controller in FIG.
  • the diagnostic controller 1C acquires current feedback signals (output current values) Iu1A, Iw1A, Iu1B, Iw1B (steps S601 and S603), and has a velocity ( ⁇ 1A) based on the output current values (Iu1A, Iw1A). ) And the speed ( ⁇ 1B) based on the output current values (Iu1B, Iw1B) (steps S602 and S604).
  • the diagnostic controller 1C calculates the combined current value of the U phase (Iu1A + Iu1B) and the combined current value of the W phase (Iw1A + Iw1B) based on the current feedback signal (step S605), and the speed based on the combined current value. ( ⁇ 1) is calculated (step S606). Further, the diagnostic controller 1C acquires the current monitoring signals (output current values) Iud2 and Iwd2 (step S607), and calculates the speed ( ⁇ 1d) based on the current monitoring signals (step S607).
  • the diagnostic controller 1C determines whether or not the respective velocities ( ⁇ 1A, ⁇ 1B, ⁇ 1, ⁇ 1d) calculated in steps S602, S604, S606, and S608 are equivalent (step S609). If the speeds of the diagnostic controller 1C are the same in step S609 and the speeds are within a predetermined range, the process is terminated with no abnormality (step S610). On the other hand, the diagnostic controller 1C stops the motor 3 as having an abnormality when the speeds in step S609 are not the same or when the speeds are the same but out of the predetermined range (steps S610 and S611). ..
  • FIG. 8 is a block diagram showing a configuration example of the motor control device according to the third embodiment of the present invention.
  • the motor control device shown in FIG. 8 has a different configuration of the monitoring current sensor 8 as compared with the configuration example of FIG. That is, each of the control current sensors 7A and 7B detects the output current values of two of the three phases (U phase and W phase in this example) as in the case of FIG. 6, and the monitoring current sensor 8 detects the output current values. , Unlike the case of FIG. 6, the combined current value of the remaining 1 phase (V phase) in the 3 phases is detected.
  • the total of the output current values (Iu1A, Iw1A, Iu1B, Iw1B) detected by the control current sensors 7A and 7B is the monitoring current unless there is a particular abnormality. It matches the output current value (Ivd2) detected by the sensor 8. Therefore, even by using such a configuration, it is possible to realize an abnormality diagnosis based on the consistency of the current values and an abnormality diagnosis based on the matching of the speeds, as in the case of the second embodiment. Then, such an abnormality diagnosis can be realized after reducing the number of phases of the monitoring current sensor 8.
  • FIG. 9 is a block diagram showing a configuration example of the motor control device according to the fourth embodiment of the present invention.
  • the motor control device shown in FIG. 9 is not provided with the monitoring current sensor 8 as compared with the configuration example of FIG. 6, and the current monitoring device 10 in the controller 1C is from the control current sensors 7A and 7B. It differs from the point that the output current value (Iu1A, Iu1B) of the U phase is directly acquired.
  • the controller 1C of FIG. 9 has a speed based on the U-phase output current value (Iu1A) from the control current sensor 7A and a U-phase output current value (Iu1B) from the control current sensor 7B. Can be compared with the speed based on.
  • FIG. 10 is a circuit diagram showing a part of a configuration example in the motor control device according to the fifth embodiment of the present invention.
  • a current collecting unit 18 is provided so as to straddle the controllers 1A and 1B.
  • the current consolidating unit 18 includes an adder composed of an operational amplifier circuit.
  • the adder adds the current feedback signals (for example, analog voltage signals) Iu1A, Iw1A, Iu1B, and Iw1B, which are the detection signals from the plurality of current sensors 7A and 7B, in analog for each phase, and the current monitoring signal for each phase (combined current). Value) Output to the current monitor 10 as Iud and Iwd.
  • each detection signal (Iu1A, Iw1A, Iu1B, Iw1B) from the plurality of current sensors 7A and 7B is composed of a series resistor Rf and a capacitor Cf in the subsequent stage in a path different from that on the current aggregation unit 18 side. It is output to the current controllers 11A and 11B via the low-pass filter. At this time, the low-pass filter filters the detection signal and outputs it to the current controllers 11A and 11B, such as removing a high-frequency switching noise component from the detection signal (Iu1A, Iw1A, Iu1B, Iw1B).
  • the adder in the current aggregation unit 18 is composed of operational amplifiers OPu and OPw, an input resistor R1 and a feedback resistor R2.
  • the U-phase detection signals (Iu1A, Iu1B) from the control current sensors 7A and 7B are wired or connected via the input resistors R1 provided in each and are input to the operational amplifier OPu.
  • the W phase detection signals (Iw1A, Iw1B) from the control current sensors 7A and 7B are wired or connected via different input resistors R1 and input to the operational amplifier OPw.
  • the two common mode current waveforms are added in analog for each phase.
  • the output of the operational amplifier also has a substantially sinusoidal waveform having the same phase as the input.
  • the path through which the current monitor 10 acquires the output current value is called a monitoring path
  • the path through which the current controllers 11A and 11B acquire the output current value is called a control path.
  • the cutoff frequency of the transfer function of the monitoring path that is, the cutoff frequency of the current aggregation unit 18
  • the cutoff frequency of the transfer function of the control path that is, the cutoff frequency of the low-pass filter.
  • each input resistor R1 and the control current sensors 7A and 7B may be directly connected to each other via a circuit having an insulating / amplifying function such as an insulating amplifier. May be connected to.
  • the operational amplifiers OPu and OPw are mounted only on the controller 1A which is a master device, and the controller 1B which is a slave device mounts only the input resistor R1.
  • each input resistor R1 is connected to each other by a parallel bus connection (wired or connection) by wiring between a master and a slave. This can contribute to the miniaturization of the slave device. Further, by providing two or more connectors for each slave unit, it is possible to connect a large number of slave units in parallel bus wiring.
  • Embodiment 5 As described above, by using the motor control device of the fifth embodiment, the same effect as that of the second embodiment can be obtained without using the penetration type current sensor (monitoring current sensor 8) as shown in FIG. 5 and the like. can get. That is, it can contribute to the miniaturization and cost reduction of the system. Further, the cutoff frequency of the current aggregation unit 18 is higher than the cutoff frequency of the low-pass filter. This makes it possible for the current monitor 10 to acquire a current value including a high frequency component, which is required for, for example, analysis of a ringing waveform or Lissajous analysis. As a result, more accurate abnormality diagnosis can be realized without damaging the high frequency component.
  • FIG. 11 is a circuit diagram showing a part of a configuration example in the motor control device according to the sixth embodiment of the present invention.
  • FIG. 11 shows that the configuration of the current collecting unit 18 is slightly different from that of the configuration example of FIG.
  • the current aggregation unit 18 of FIG. 11 includes a plurality of rectifiers (DH1, DL1, DH2, DL2) and an amplifier circuit (in this example, operational amplifiers OPu and OPw).
  • Each of the plurality of rectifiers is composed of a diode bridge including four diodes DH1, DL1, DH2, DL2.
  • the plurality of (here, four) rectifiers rectify the detection signals (Iu1A, Iw1A, Iu1B, Iw1B) of each phase from the plurality of control current sensors 7A and 7B, respectively.
  • the control current sensors 7A and 7B output a substantially sinusoidal detection signal proportional to the current value
  • each of the plurality of rectifiers performs full-wave rectification by a diode bridge.
  • the positive terminal and the negative terminal are commonly connected to each other for each phase.
  • the operational amplifier OPu receives the signal from the U-phase common output node in the plurality of rectifiers as the non-inverting input and the inverting input, and outputs the U-phase current monitoring signal Iud to the current monitor 10.
  • the operational amplifier OPw receives the signal from the common output node of the W phase in the plurality of rectifiers as the non-inverting input and the inverting input, and outputs the W-phase current monitoring signal Iwd to the current monitor 10.
  • the diode bridge Due to the action of the diode bridge, only the signal having the largest instantaneous amplitude among the positive and negative detection signals from the control current sensors 7A and 7B is typically applied to the inputs of the operational amplifiers OPu and OPw. Become. As described above, since the power converters 2A and 2B (not shown) of multiple systems operate according to the current command values having the same amplitude phase, the outputs of the operational amplifiers OPu and OPw are substantially sinusoidal full-wave rectified waveforms. Become.
  • the instantaneous values of the current monitoring signals Iud and Iwd obtained by the above configuration are representative values of each current sensor, they may be inferior to the configuration example of FIG. 10 from the viewpoint of obtaining the amplitude information of the motor current.
  • the speed of the motor 3 can be obtained by detecting the zero cross of the current monitoring signals Iud and Iwd. Therefore, for example, it can be applied when performing speed monitoring or the like in functional safety as described in FIG. 7. Further, since the maximum worst value of the amplitude can be obtained as the amplitude information of the motor current, it is possible to perform an abnormality diagnosis based on the current value depending on the diagnosis item.
  • FIG. 12 is a circuit diagram showing a configuration example obtained by modifying FIG. 11.
  • FIG. 12 shows a configuration example in which the reference common potential side of the in-phase current sensor is connected in parallel to the plurality of rectifiers (diode bridges) in FIG. 11 and connected to the midpoint of the common diode trains DH2 and DL2. ..
  • the signal potential side of the current sensor is connected to the midpoint of the diode trains DH1 and DL1 provided for each current sensor, and the potentials across the diode trains DH1 and DL1 are input to the operational amplifiers OPu and OPw provided for each phase.
  • the point that they are commonly connected in parallel is the same as in FIG.
  • the current monitoring signals Iud and Iwd have a full-wave rectified waveform in the configuration example of FIG. 11, whereas they have a substantially sinusoidal waveform with positive and negative peaks in the configuration example of FIG. 12.
  • Embodiment 6 As described above, even by using the motor control device of the sixth embodiment, the same effect as that of the fifth embodiment can be obtained. That is, the penetration type current sensor (monitoring current sensor 8) becomes unnecessary, which can contribute to the miniaturization and cost reduction of the system. Further, the cutoff frequency of the current aggregation unit 18 is higher than the cutoff frequency of the low-pass filter. This makes it possible for the current monitor 10 to acquire a current value including a high frequency component, which is required for, for example, analysis of a ringing waveform or Lissajous analysis. As a result, more accurate abnormality diagnosis can be realized without damaging the high frequency component.
  • the present invention is not limited to the above embodiment and can be variously modified without departing from the gist thereof.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. ..

Abstract

Provided is a motor control device capable of realizing highly accurate abnormality diagnosis. A PWM controller 15 controls a plurality of switching elements in a power converter 2 on the basis of a PWM signal. A current controller 11 acquires an output current value of the power converter 2 at a first interval, and sets a duty ratio of the PWM signal on the basis of a difference between the acquired output current value and a current command value. A current monitor 10 monitors the output current value of the power converter 2 by acquiring the output current value at a second interval different from the first interval.

Description

モータ制御装置Motor control device
 本発明は、モータ制御装置に関し、例えば、異常診断の技術に関する。 The present invention relates to a motor control device, for example, to a technique for diagnosing an abnormality.
 特開2019-20278号公報(特許文献1)には、回転機に給電される電流に基づいて回転機システムの異常を判定する方法が記されている。特開2019-191928号公報(特許文献2)には、電力変換装置の電流からモータ速度を推定し、所定の安全機能動作のなかでモータの速度監視に用いる方法が記されている。 Japanese Unexamined Patent Publication No. 2019-20278 (Patent Document 1) describes a method for determining an abnormality in a rotating machine system based on a current supplied to the rotating machine. Japanese Unexamined Patent Publication No. 2019-191928 (Patent Document 2) describes a method of estimating a motor speed from a current of a power conversion device and using it for monitoring the speed of the motor within a predetermined safety function operation.
特開2019-20278号公報Japanese Unexamined Patent Publication No. 2019-20278 特開2019-191928号公報JP-A-2019-191928
 特許文献1では、主に制御用に使用される電流センサを用いて、モータ電流の周波数スペクトル解析、電力変換器のスイッチング時のリンギング波形情報、およびリサージュ図形解析といった手法により回転機システムの異常診断を行う方法が示されている。また、同文献では、制御用に使用される電流センサ領域が特定されている場合には、制御に使用されていない出力に基づき診断を行うことが好ましい旨の記載があるものの、具体的な構成および動作については特に示されていない。 In Patent Document 1, an abnormality diagnosis of a rotating machine system is performed by methods such as frequency spectrum analysis of motor current, ringing waveform information at the time of switching of a power converter, and Lissajous graphic analysis using a current sensor mainly used for control. Is shown how to do this. Further, in the same document, when the current sensor region used for control is specified, it is described that it is preferable to perform diagnosis based on the output not used for control, but the specific configuration is specified. And the operation is not shown in particular.
 電力変換器は、例えば、三角波状の搬送波と制御用の変調波とを比較してスイッチング用の制御パルスを得るPWM(Pulse Width Modulation)を制御演算に組み込むことが一般的である。このとき、制御フィードバック値としてモータ電流を検出するタイミングを三角波に同期させることでスイッチングにより生じる電流リップル成分やノイズ等による検出誤差を低減できることが知られている。 In a power converter, for example, it is common to incorporate PWM (Pulse Width Modulation), which obtains a control pulse for switching by comparing a triangular wave-shaped carrier wave with a modulation wave for control, into a control calculation. At this time, it is known that the detection error due to the current ripple component and noise caused by switching can be reduced by synchronizing the timing of detecting the motor current as the control feedback value with the triangular wave.
 このため、特許文献1において、制御用に使用される電流検出タイミングは、三角波への同期が優先される。しかし、リンギング波形などを診断する際には、三角波周期に比べてより細かい変化を捉える必要があり、三角波と非同期に電流を検出することが望ましい場合がある。このような場合、特許文献1の方法では、高精度な異常診断が困難となる恐れがある。 Therefore, in Patent Document 1, synchronization with the triangular wave is prioritized as the current detection timing used for control. However, when diagnosing a ringing waveform or the like, it is necessary to capture a finer change than the triangular wave period, and it may be desirable to detect the current asynchronously with the triangular wave. In such a case, the method of Patent Document 1 may make highly accurate abnormality diagnosis difficult.
 また、特許文献2では、機能安全規格IEC61800-5-2に規定されている安全機能(SS1)における減速停止動作の速度監視として、モータに供給される電流を測定している。速度監視を2つの診断部で実行しているものの、両者は同じ診断手法で実行している。このため、両診断部は、例えば周囲温度や電磁ノイズなど共通の要因により同時に誤った診断を行う(すなわち、所謂、共通原因故障を引き起こす)可能性があり、所望の機能安全動作に危険側の故障を引き起こす可能性がある。 Further, in Patent Document 2, the current supplied to the motor is measured as the speed monitoring of the deceleration stop operation in the safety function (SS1) specified in the functional safety standard IEC6185-5-2. Although speed monitoring is performed by two diagnostic units, both are performed by the same diagnostic method. For this reason, both diagnostic units may make an erroneous diagnosis at the same time due to common factors such as ambient temperature and electromagnetic noise (that is, cause a so-called common cause failure), which is dangerous for the desired functional safety operation. May cause a malfunction.
 本発明は、このようなことに鑑みてなされたものであり、その目的の一つは、高精度な異常診断を実現可能なモータ制御装置を提供することにある。 The present invention has been made in view of the above, and one of the objects thereof is to provide a motor control device capable of realizing highly accurate abnormality diagnosis.
 本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will become apparent from the description and accompanying drawings herein.
 本願において開示される実施の形態のうち代表的なものの概要を簡単に説明すれば下記の通りである。 The outline of typical embodiments disclosed in the present application is as follows.
 本発明の代表的な実施の形態によるモータ制御装置は、直流電力を複数のスイッチング素子のスイッチングによって交流電力に変換し、当該交流電力をモータに供給する電力変換器と、電力変換器を制御する制御器と、を備える。制御器は、PWM制御器と、電流制御器と、電流監視器と、を有する。PWM制御器は、複数のスイッチング素子をPWM信号で制御する。電流制御器は、電力変換器の出力電流値を第1の間隔で取得し、取得した出力電流値と、電流指令値との誤差に基づいてPWM信号のデューティ比を定める。電流監視器は、電力変換器の出力電流値を、第1の間隔とは異なる第2の間隔で取得することで出力電流値を監視する。 A motor control device according to a typical embodiment of the present invention controls a power converter and a power converter that convert DC power into AC power by switching a plurality of switching elements and supply the AC power to the motor. It is equipped with a controller. The controller includes a PWM controller, a current controller, and a current monitor. The PWM controller controls a plurality of switching elements with PWM signals. The current controller acquires the output current value of the power converter at the first interval, and determines the duty ratio of the PWM signal based on the error between the acquired output current value and the current command value. The current monitor monitors the output current value by acquiring the output current value of the power converter at a second interval different from the first interval.
 本願において開示される発明のうち、代表的な実施の形態によって得られる効果を簡単に説明すると、高精度な異常診断が実現可能になる。 Among the inventions disclosed in the present application, if the effect obtained by a typical embodiment is briefly explained, highly accurate abnormality diagnosis can be realized.
本発明の実施の形態1によるモータ制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the motor control apparatus according to Embodiment 1 of this invention. 図1における電流制御器および電流監視器の電流取得タイミングの一例を示す図である。It is a figure which shows an example of the current acquisition timing of the current controller and the current monitor in FIG. 図2の電流取得タイミングに対応する処理内容の一例を示すフロー図である。It is a flow chart which shows an example of the processing contents corresponding to the current acquisition timing of FIG. 図2の電流取得タイミングに対応する処理内容の一例を示すフロー図である。It is a flow chart which shows an example of the processing contents corresponding to the current acquisition timing of FIG. 図2の電流取得タイミングに対応する処理内容の一例を示すフロー図である。It is a flow chart which shows an example of the processing contents corresponding to the current acquisition timing of FIG. 図2の電流取得タイミングに対応する処理内容の一例を示すフロー図である。It is a flow chart which shows an example of the processing contents corresponding to the current acquisition timing of FIG. 図2の電流取得タイミングに対応する処理内容の一例を示すフロー図である。It is a flow chart which shows an example of the processing contents corresponding to the current acquisition timing of FIG. 図1のモータ制御装置を変形した構成例を示すブロック図である。It is a block diagram which shows the configuration example which modified the motor control device of FIG. 本発明の実施の形態2によるモータ制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the motor control apparatus according to Embodiment 2 of this invention. 図5のモータ制御装置を変形した構成例を示すブロック図である。It is a block diagram which shows the structural example which modified the motor control device of FIG. 図6における診断用の制御器を用いて速度監視を行う場合の動作例を示すフロー図である。It is a flow chart which shows the operation example in the case of performing speed monitoring using the control for diagnosis in FIG. 本発明の実施の形態3によるモータ制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the motor control apparatus according to Embodiment 3 of this invention. 本発明の実施の形態4によるモータ制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the motor control apparatus according to Embodiment 4 of this invention. 本発明の実施の形態5によるモータ制御装置において、一部の構成例を示す回路図である。It is a circuit diagram which shows some structural examples in the motor control apparatus according to Embodiment 5 of this invention. 本発明の実施の形態6によるモータ制御装置において、一部の構成例を示す回路図である。It is a circuit diagram which shows some structural examples in the motor control apparatus according to Embodiment 6 of this invention. 図11を変形した構成例を示す回路図である。It is a circuit diagram which shows the configuration example which modified FIG.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in all the drawings for explaining the embodiment, the same members are designated by the same reference numerals in principle, and the repeated description thereof will be omitted.
 (実施の形態1)
 <モータ制御装置の概略>
 図1は、本発明の実施の形態1によるモータ制御装置の構成例を示すブロック図である。図1のモータ制御装置は、制御器1と、直流電源5と、電力変換器2と、モータ3と、エンコーダ4と、制御用電流センサ7および監視用電流センサ8とを備える。直流電源5は、例えば、例えば、ダイオードブリッジ回路や昇圧コンバータ回路等を用いて、商用交流電源6からの交流電力を直流電力に変換する。ただし、直流電源5は、図示を省略する蓄電池などを用いてもよい。
(Embodiment 1)
<Outline of motor control device>
FIG. 1 is a block diagram showing a configuration example of a motor control device according to the first embodiment of the present invention. The motor control device of FIG. 1 includes a controller 1, a DC power supply 5, a power converter 2, a motor 3, an encoder 4, a control current sensor 7, and a monitoring current sensor 8. The DC power supply 5 converts the AC power from the commercial AC power supply 6 into DC power by using, for example, a diode bridge circuit, a boost converter circuit, or the like. However, as the DC power supply 5, a storage battery or the like (not shown) may be used.
 電力変換器2は、直流電源5からの直流電力を複数のスイッチング素子のスイッチングによって交流電力に変換し、当該交流電力をモータ3に供給する。具体的には、電力変換器2は、例えば、6個のスイッチング素子が3相フルブリッジで接続された3相インバータである。スイッチング素子は、例えば、IGBT(Insulated Gate Bipolar Transistor)またはMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等である。 The power converter 2 converts the DC power from the DC power source 5 into AC power by switching a plurality of switching elements, and supplies the AC power to the motor 3. Specifically, the power converter 2 is, for example, a three-phase inverter in which six switching elements are connected by a three-phase full bridge. The switching element is, for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or the like.
 エンコーダ4は、モータ3の回転状態を計測する。制御器1は、電力変換器2を制御する。制御器1は、サーボ制御器9と、電流監視器10と、電流制御器11と、クロック発生器12と、搬送波生成器13と、メモリ14と、PWM制御器15と、エンコーダ通信部16とを備える。 The encoder 4 measures the rotational state of the motor 3. The controller 1 controls the power converter 2. The controller 1 includes a servo controller 9, a current monitor 10, a current controller 11, a clock generator 12, a carrier wave generator 13, a memory 14, a PWM controller 15, and an encoder communication unit 16. To prepare for.
 電流制御器11に関する詳細を説明する。まず、制御用電流センサ7は、例えば、CT(Current Transformer)センサ、ホール素子センサ、または抵抗素子等であり、電力変換器2の出力電流値を電流フィードバック信号(例えばアナログ電圧信号)Iu1,Iw1として検出する。電流制御器11は、例えば、アナログディジタル変換器等を用いて、当該出力電流値(Iu1,Iw1)を所定の取得間隔(第1の間隔)で取得する。続いて、電流制御器11は、取得した出力電流値(Iu1,Iw1)を座標変換することでD軸Q軸の電流成分を抽出し、当該D軸Q軸の出力電流値(Id,Iq)と、別途、サーボ制御器9から受信した各軸の電流指令値との誤差を算出する。 The details of the current controller 11 will be described. First, the control current sensor 7 is, for example, a CT (Current Transformer) sensor, a Hall element sensor, a resistance element, or the like, and the output current value of the power converter 2 is used as a current feedback signal (for example, an analog voltage signal) Iu1 or Iw1. Detect as. The current controller 11 acquires the output current value (Iu1, Iw1) at a predetermined acquisition interval (first interval) by using, for example, an analog-digital converter or the like. Subsequently, the current controller 11 extracts the current component of the D-axis and Q-axis by converting the acquired output current values (Iu1, Iw1) into coordinates, and the output current value (Id, Iq) of the D-axis and Q-axis. And separately, the error with the current command value of each axis received from the servo controller 9 is calculated.
 その後、電流制御器11は、当該算出した誤差に基づいて、PI(比例・積分)制御等を用いてPWM信号のデューティ比を定める。また、電流制御器11は、D軸Q軸をU軸V軸W軸に変換することで、定めたデューティ比を反映させた3相の制御変調波を生成し、PWM制御器15へ出力する。PWM制御器15は、搬送波生成器13が生成した三角波または鋸波状の搬送波Fcと電流制御器11からの3相の制御変調波とを比較することで、3相のPWM信号を生成する。 After that, the current controller 11 determines the duty ratio of the PWM signal by using PI (proportional / integral) control or the like based on the calculated error. Further, the current controller 11 converts the D-axis and the Q-axis into the U-axis and the V-axis and the W-axis to generate a three-phase control modulation wave that reflects the determined duty ratio and outputs the three-phase control modulation wave to the PWM controller 15. .. The PWM controller 15 generates a three-phase PWM signal by comparing the triangular or serrated carrier Fc generated by the carrier generator 13 with the three-phase control modulated wave from the current controller 11.
 PWM制御器15は、電力変換器2内の複数のスイッチング素子を、生成した3相のPWM信号で制御する。これにより、モータ3へ供給するモータ電流が生成され、一連の電流フィードバック制御ループが形成される。なお、電流制御器11が座標変換ならびに電流制御において利用するモータ制御位相の情報は、電流フィードバック信号Iu1,Iw1、または、位置フィードバック信号PFBから得られる。 The PWM controller 15 controls a plurality of switching elements in the power converter 2 with the generated three-phase PWM signals. As a result, the motor current supplied to the motor 3 is generated, and a series of current feedback control loops are formed. The information of the motor control phase current controller 11 is used in the coordinate conversion and current control, current feedback signals Iu1, Iw1, or obtained from a position feedback signal P FB.
 次に、サーボ制御器9に関する詳細を説明する。エンコーダ4により計測されたモータ3の位置信号は、エンコーダ通信部16を介して位置フィードバック信号PFBとしてサーボ制御器9へ入力される。サーボ制御器9は、位置フィードバック信号PFBの変化量からモータ速度およびモータ加速度を算出し、別途、上位装置(図示せず)等から入力される位置、速度、加速度のそれぞれの指令値に対しフィードバック制御演算を行う。そして、サーボ制御器9、演算結果から得られる電流指令値を電流制御器11へ出力する。 Next, the details of the servo controller 9 will be described. The position signal of the motor 3 measured by the encoder 4 is input to the servo controller 9 as a position feedback signal P FB via the encoder communication unit 16. The servo controller 9 calculates the motor speed and the motor acceleration from the amount of change in the position feedback signal PFB , and separately for each command value of the position, speed, and acceleration input from the host device (not shown) or the like. Performs feedback control calculation. Then, the servo controller 9 outputs the current command value obtained from the calculation result to the current controller 11.
 その後は、上述のとおり、電流制御器11および電力変換器2の機能に従いモータ3が駆動され、駆動の結果をエンコーダ4が計測することにより、モータ位置、速度、加速度のフィードバック制御ループが形成される。制御用電流センサ7は、この例では、電流センサ数を削減する観点から、U相およびW相の2相にのみ取り付けられる。3相モータは、略3相平衡の電流で駆動されるため、V相の電流は、U相およびW相の電流和から推定できる。なお、ここでは、位置センサ(エンコーダ4)を用いた構成例を示したが、モータ位置(ひいては、速度や加速度)を演算によって算出する位置センサレスの構成であってもよい。 After that, as described above, the motor 3 is driven according to the functions of the current controller 11 and the power converter 2, and the encoder 4 measures the driving result to form a feedback control loop for the motor position, speed, and acceleration. To. In this example, the control current sensor 7 is attached only to two phases, the U phase and the W phase, from the viewpoint of reducing the number of current sensors. Since the three-phase motor is driven by a current in a substantially three-phase equilibrium, the V-phase current can be estimated from the sum of the U-phase and W-phase currents. Although a configuration example using a position sensor (encoder 4) is shown here, a position sensorless configuration may be used in which the motor position (and thus the speed and acceleration) is calculated by calculation.
 続いて、電流監視器10に関する詳細を説明する。まず、監視用電流センサ8は、例えば、CTセンサ、ホール素子センサ、または抵抗素子等であり、この例では、電力変換器2の3相全ての出力電流値を電流監視信号(例えばアナログ電圧信号)Iud,Ivd,Iw1として検出する。この場合、例えば、3相全ての和からモータ3以降の機械システムの浮遊容量を介して漏洩する電流を検知し、絶縁不良などを診断すること等が可能となる。ただし、監視用電流センサ8は、必ずしも3相全てを検出する必要性はなく、検出する相は、診断の目的に応じて適宜選定されればよい。 Next, the details of the current monitor 10 will be described. First, the monitoring current sensor 8 is, for example, a CT sensor, a Hall element sensor, a resistance element, or the like. In this example, the output current values of all three phases of the power converter 2 are set to a current monitoring signal (for example, an analog voltage signal). ) Detected as Iud, Ivd, Iw1. In this case, for example, it is possible to detect a current leaking from the sum of all three phases through the stray capacitance of the mechanical system after the motor 3 and diagnose an insulation defect or the like. However, the monitoring current sensor 8 does not necessarily have to detect all three phases, and the phase to be detected may be appropriately selected according to the purpose of diagnosis.
 電流監視器10は、例えば、アナログディジタル変換器等を用いて、監視用電流センサ8を介して得られる電力変換器2の出力電流値(Iud,Ivd,Iw1)を、所定の取得間隔(第2の間隔)で取得することで出力電流値を監視する。ここで、詳細は後述するが、電流監視器10における取得間隔(第2の間隔)は、電流制御器11における取得間隔(第1の間隔)とは異なっている。 The current monitor 10 uses, for example, an analog-digital converter or the like to obtain the output current value (Id, Ivd, Iw1) of the power converter 2 obtained via the monitoring current sensor 8 at a predetermined acquisition interval (first). The output current value is monitored by acquiring it at intervals of 2). Here, although details will be described later, the acquisition interval (second interval) in the current monitor 10 is different from the acquisition interval (first interval) in the current controller 11.
 そして、この電流監視器10の監視結果に基づいて、モータ制御装置の異常診断が行われる。異常診断の具体的な診断項目としては、特許文献1に示されるようなモータ制御装置の診断項目や、特許文献2に示されるような機能安全機能に伴う速度等の診断項目を用いることができる。なお、異常診断の処理は、電流監視器10で行うことも、電流監視器10の上位に位置する上位装置(図示せず)で行うことも可能である。 Then, based on the monitoring result of the current monitor 10, an abnormality diagnosis of the motor control device is performed. As specific diagnostic items for abnormality diagnosis, diagnostic items of a motor control device as shown in Patent Document 1 and diagnostic items such as speed associated with a functional safety function as shown in Patent Document 2 can be used. .. The abnormality diagnosis process can be performed by the current monitor 10 or by a higher-level device (not shown) located above the current monitor 10.
 制御器1は、代表的には、各部を1パッケージの部品に集約したマイクロコントローラ(マイコンと略す)、またはFPGA(Field Programmable Gate Array)等で構成される。ただし、これに限らず、制御器1は、個々の部品をマイコン等とは別パッケージの外付け部品としたうえで、一体のプリント基板上に実装される形態や、または、複数のプリント基板に分離したうえで配線や無線通信で接続するなどの形態であっても構わない。メモリ14は、サーボ制御器9と電流制御器11に接続されており、例えば、各種演算に伴うバッファメモリとして活用される。メモリ14は、単一のメモリを両部で共用しても複数のメモリを両部で区分して使用しても構わない。 The controller 1 is typically composed of a microcontroller (abbreviated as a microcomputer) in which each part is integrated into one package of parts, an FPGA (Field Programmable Gate Array), or the like. However, the present invention is not limited to this, and the controller 1 can be mounted on an integrated printed circuit board or on a plurality of printed circuit boards after each component is an external component in a package separate from the microcomputer or the like. It may be separated and then connected by wiring or wireless communication. The memory 14 is connected to the servo controller 9 and the current controller 11, and is used as a buffer memory for various operations, for example. As the memory 14, a single memory may be shared by both parts, or a plurality of memories may be divided and used by both parts.
 具体例として、クロック発生器12は、発振子や振動子など演算クロックの基本となる素子のほか、当該演算クロックを用いて分周または位相ロックループ(PLL)によって周波数変換したクロックを発生する回路等で構成される。通常、マイコンには、このようなクロック発生器12が内蔵されている。サーボ制御器9、電流監視器10、電流制御器11、および搬送波生成器13は、クロック発生器12からのクロックに同期して動作する。また、電流制御器11は、搬送波生成器13が生成する搬送波にも同期して動作する。 As a specific example, the clock generator 12 is a circuit that generates a clock that is frequency-converted by frequency division or a phase-locked loop (PLL) using the arithmetic clock, in addition to elements that are the basis of the arithmetic clock such as an oscillator and an oscillator. Etc. Normally, such a clock generator 12 is built in the microcomputer. The servo controller 9, the current monitor 10, the current controller 11, and the carrier wave generator 13 operate in synchronization with the clock from the clock generator 12. Further, the current controller 11 also operates in synchronization with the carrier wave generated by the carrier wave generator 13.
 エンコーダ通信部16は、マイコン等に内蔵される通信インタフェース回路で構成される。搬送波生成器13やPWM制御器15は、主にタイマ回路等を用いて構成される。サーボ制御器9や、電流監視器10や、電流制御器11は、主に、CPU(Central Processing Unit)等を用いたプログラム処理によって構成される。ただし、各部は、このような形態に限らず、ハードウェア、または、ソフトウェア、あるいはその組み合わせで適宜構成されればよい。 The encoder communication unit 16 is composed of a communication interface circuit built in a microcomputer or the like. The carrier wave generator 13 and the PWM controller 15 are mainly configured by using a timer circuit or the like. The servo controller 9, the current monitor 10, and the current controller 11 are mainly configured by program processing using a CPU (Central Processing Unit) or the like. However, each part is not limited to such a form, and may be appropriately configured by hardware, software, or a combination thereof.
 <電流監視器の詳細>
 図2は、図1における電流制御器および電流監視器の電流取得タイミングの一例を示す図である。図2において、まず、搬送波生成器13は、クロック発生器12からのクロック周期Tcで動作するカウンタやタイマ等を用いて、固定周期Tswの三角波状の搬送波13aを生成する。この例では、カウンタ等は、カウント値が所定の範囲(例えば、0x0000~0xffff)で上昇下降を繰り返すように動作する。
<Details of current monitor>
FIG. 2 is a diagram showing an example of current acquisition timing of the current controller and the current monitor in FIG. 1. In FIG. 2, first, the carrier wave generator 13 generates a triangular wave-shaped carrier wave 13a having a fixed period Tsw by using a counter, a timer, or the like operating at a clock period Tc from the clock generator 12. In this example, the counter or the like operates so that the count value repeats rising and falling within a predetermined range (for example, 0x0000 to 0xffff).
 また、搬送波生成器13は、搬送波13aと同位相同振幅の三角波であり、搬送波13aに対してオフセットが設けられた搬送波13bを生成する。PWM制御器15は、電流制御器11が出力する変調波11oを搬送波13a,13bとそれぞれ比較し、両者の交差する時点tnb,tfb,tna,tfaでトグル出力を切り替えることでPWM信号PH,PLを生成する。 Further, the carrier wave generator 13 is a triangular wave having the same phase and amplitude as the carrier wave 13a, and generates a carrier wave 13b having an offset with respect to the carrier wave 13a. The PWM controller 15 compares the modulated wave 11o output by the current controller 11 with the carrier waves 13a and 13b, respectively, and switches the toggle output at the time points tnb, tfb, tna, and tfa where the two intersect, so that the PWM signals PH, PL To generate.
 PWM信号PH,PLには、所定のデッドタイムが設けられており、この区間は上述のオフセット量で調整される。また、PWM信号PHは、電力変換器2内の上アーム側のスイッチング素子に対応し、PWM信号PLは、電力変換器2内の下アーム側のスイッチング素子に対応する。PWM制御器15は、PWM信号PH,PLにより各アームのスイッチング素子をスイッチング制御する。これにより、電力変換器2は、変調波11oに比例した電圧を出力することができる。 The PWM signals PH and PL are provided with a predetermined dead time, and this section is adjusted by the above-mentioned offset amount. Further, the PWM signal PH corresponds to the switching element on the upper arm side in the power converter 2, and the PWM signal PL corresponds to the switching element on the lower arm side in the power converter 2. The PWM controller 15 switches and controls the switching element of each arm by the PWM signals PH and PL. As a result, the power converter 2 can output a voltage proportional to the modulated wave 11o.
 電力変換器2からのパルス状の電圧が負荷に印加された結果、電力変換器2に生じる出力電流は、負荷のインピーダンスに応じた波形となる。モータ3を負荷とした場合、出力電流は、回転数に応じた正弦波状の基本波とパルス波成分を含む高調波成分とを重畳した波形となることが知られている。一方、電力変換器2の制御フィードバックに用いる電流は、制御系を安定化させるため、可能な限り高調波ノイズを除去した電流を用いることが望ましい。 As a result of the pulsed voltage from the power converter 2 being applied to the load, the output current generated in the power converter 2 has a waveform corresponding to the impedance of the load. When the motor 3 is used as a load, it is known that the output current has a waveform in which a sinusoidal fundamental wave corresponding to the number of revolutions and a harmonic component including a pulse wave component are superimposed. On the other hand, as the current used for the control feedback of the power converter 2, it is desirable to use a current in which harmonic noise is removed as much as possible in order to stabilize the control system.
 そのためには、制御系を担う電流制御器11は、搬送波13a,13bの波形が頂部または底部となる時点tp1,tp2で電流取得を行えばよい。これらの時点は、PWM信号PH,PLのオンオフ幅の中央となるため、各PWM信号のエッジ部を起点とするノイズの影響を受け難く、かつスイッチング周期Tswで生じる電流リップルのエイリアシングを免れることができる。このように、電流制御器11が出力電流値Iu1,Iw1を取得するタイミングは、概ね図2のタイミングTAかそれらの間引きであればよい。 For that purpose, the current controller 11 that bears the control system may acquire the current at the time points tp1 and tp2 when the waveforms of the carrier waves 13a and 13b are at the top or bottom. Since these time points are at the center of the on / off width of the PWM signals PH and PL, they are not easily affected by noise originating from the edge of each PWM signal, and can avoid aliasing of the current ripple that occurs in the switching cycle Tsw. can. As described above, the timing at which the current controller 11 acquires the output current values Iu1 and Iw1 may be approximately the timing TA shown in FIG. 2 or the thinning out thereof.
 ここで、特許文献1では、回転機システムの診断方法として、モータ電流の周波数スペクトル解析、電力変換器のスイッチング時のリンギング波形情報、およびリサージュ図形解析といった手法が挙げられている。例えば、リンギング波形情報については、各PWM信号PH,PLのエッジを起点とした時系列なノイズ電流が診断対象となる。このため、タイミングTAに伴う間隔(周期)Tscで取得した出力電流値(Iu1,Iw1)では、ノイズ成分が検出できない恐れがある。 Here, in Patent Document 1, as a diagnostic method for a rotating machine system, methods such as frequency spectrum analysis of motor current, ringing waveform information at the time of switching of a power converter, and Lissajous graphic analysis are mentioned. For example, for ringing waveform information, time-series noise currents starting from the edges of the PWM signals PH and PL are diagnostic targets. Therefore, the noise component may not be detected by the output current values (Iu1, Iw1) acquired by the interval (period) Tsc associated with the timing TA.
 そこで、実施の形態では、電流監視器10は、タイミングTB~TEに示されるように、間隔(周期)Tscとは異なる間隔(周期)Tse,Tsrで、監視用電流センサ8からの電流監視信号(出力電流値)Iud,Ivd,Iwdを取得する。タイミングTBでは、電流監視器10は、間隔Tscよりも短い間隔Tseで、定常的に出力電流値(Iud,Ivd,Iwd)を取得する。これにより、リンギング波形などを含めて様々なモータ電流波形の診断が可能になる。 Therefore, in the embodiment, as shown in the timings TB to TE, the current monitor 10 has a current monitoring signal from the monitoring current sensor 8 at intervals (cycles) Tse and Tsr different from the intervals (period) Tsc. (Output current value) Acquires Iud, Ivd, and Iwd. In the timing TB, the current monitor 10 constantly acquires the output current value (Id, Ivd, Iwd) at an interval Tse shorter than the interval Tsc. This makes it possible to diagnose various motor current waveforms including ringing waveforms.
 タイミングTCでは、電流監視器10は、所定の監視トリガ成立後に、間隔Tscよりも短い間隔Tseで、所定回数(n)連続して出力電流値(Iud,Ivd,Iwd)を取得する。監視トリガは、PWM信号PH,PLの立ち上がりエッジまたは立ち下りエッジであり、この例では、PWM信号PHの立ち上がりエッジとなっている。この場合、特に、リンギング波形に基づく異常診断が可能になる。また、タイミングTCを用いると、タイミングTBを用いる場合に比べて、電流取得に関わる演算負荷の軽減や、必要されるメモリ14の容量削減等が可能になる。 In the timing TC, the current monitor 10 continuously acquires the output current value (Id, Ivd, Iwd) a predetermined number of times (n) at an interval Tse shorter than the interval Tsc after the predetermined monitoring trigger is established. The monitoring trigger is a rising edge or a falling edge of the PWM signals PH and PL, and in this example, it is a rising edge of the PWM signal PH. In this case, in particular, abnormality diagnosis based on the ringing waveform becomes possible. Further, when the timing TC is used, the calculation load related to the current acquisition can be reduced and the required capacity of the memory 14 can be reduced as compared with the case where the timing TB is used.
 タイミングTDでは、電流監視器10は、間隔Tscよりも短い間隔Tseで、電流制御器11が出力電流値(Iu1,Iw1)を取得する期間とは異なる期間(重複しない期間)で出力電流値(Iud,Ivd,Iwd)を取得する。これにより、タイミングTBの場合とほぼ同様のモータ電流波形を取得できると共に、重複する期間に伴う電流監視器10の演算負荷の軽減や、メモリ14の容量削減等も可能になる。 In the timing TD, the current monitor 10 has an interval Tse shorter than the interval Tsc, and the output current value (non-overlapping period) is different from the period in which the current controller 11 acquires the output current value (Iu1, Iw1). Iud, Ivd, Iwd) is acquired. As a result, it is possible to acquire a motor current waveform almost the same as in the case of the timing TB, reduce the calculation load of the current monitor 10 due to the overlapping period, reduce the capacity of the memory 14, and the like.
 タイミングTEでは、電流監視器10は、電流制御器11での取得間隔に依存しないよう時系列的にランダムに定められる間隔Tsrで出力電流値(Iud,Ivd,Iwd)を取得する。この場合、特に、リサージュ図形解析等に基づく異常診断が可能になる。なお、タイミングTB~TEでは、主に、電流監視器10での取得間隔(Tse,Tsr)が電流制御器11での取得間隔(Tsc)よりも短い場合を例とした。ただし、診断項目によっては、取得間隔(Tse,Tsr)は、取得間隔(Tsc)よりも長くてもよい。 In the timing TE, the current monitor 10 acquires the output current value (Id, Ivd, Iwd) at an interval Tsr randomly determined in time series so as not to depend on the acquisition interval of the current controller 11. In this case, in particular, abnormality diagnosis based on Lissajous figure analysis or the like becomes possible. In the timing TB to TE, the case where the acquisition interval (Tse, Tsr) in the current monitor 10 is shorter than the acquisition interval (Tsc) in the current controller 11 is mainly taken as an example. However, depending on the diagnostic item, the acquisition interval (Tse, Tsr) may be longer than the acquisition interval (Tsc).
 また、図1において、電流制御器11は、前述したように、ノイズを含まない出力電流値を取得することが望ましい。このため、電流制御器11は、例えば、出力電流値をローパスフィルタ等を介して取得するか、または、出力電流値を所定回数サンプリングしたのち平均化するような処理を行う。その結果、1回あたりの電流の取得期間は、実効的に長くなる。一方、電流監視器10は、ノイズを含んだ出力電流値を取得することが望ましいため、出力電流値をローパスフィルタ等を介さずに取得する。その結果、1回あたりの電流の取得期間は、実効的に短くなる。言い換えれば、電流監視器10が出力電流値を取得する経路の伝達関数の遮断周波数は、電流制御器11が出力電流値を取得する経路の伝達関数の遮断周波数よりも高くなっている。図2では、このような1回あたりの電流の取得期間の違いが模式的に示されている。 Further, in FIG. 1, it is desirable that the current controller 11 acquires an output current value that does not include noise, as described above. Therefore, for example, the current controller 11 obtains the output current value through a low-pass filter or the like, or performs a process of sampling the output current value a predetermined number of times and then averaging the output current value. As a result, the acquisition period of the current per time is effectively extended. On the other hand, since it is desirable for the current monitor 10 to acquire the output current value including noise, the output current value is acquired without going through a low-pass filter or the like. As a result, the acquisition period of the current per time is effectively shortened. In other words, the cutoff frequency of the transfer function of the path in which the current monitor 10 acquires the output current value is higher than the cutoff frequency of the transfer function in the path in which the current controller 11 acquires the output current value. In FIG. 2, such a difference in the acquisition period of the current per time is schematically shown.
 以上のように、制御系とは異なる間隔(周期)で出力電流値を取得する電流監視器10を設けることで、モータ制御装置の異常診断を高精度に実現することが可能になる。また、図1の例では、制御系(すなわち制御用電流センサ7および電流制御器11)とは別に、監視系(すなわち監視用電流センサ8および電流監視器10)が設けられる。このように制御系と監視系とを完全に分離することで、所謂、共通原因故障が生じる可能性が低くなり、機能安全に寄与することができる。 As described above, by providing the current monitor 10 that acquires the output current value at an interval (cycle) different from that of the control system, it becomes possible to realize the abnormality diagnosis of the motor control device with high accuracy. Further, in the example of FIG. 1, a monitoring system (that is, a monitoring current sensor 8 and a current monitor 10) is provided separately from the control system (that is, the control current sensor 7 and the current controller 11). By completely separating the control system and the monitoring system in this way, the possibility of a so-called common cause failure is reduced, and functional safety can be contributed.
 図3A、図3B、図3C、図3D、図3Eは、図2の電流取得タイミングに対応する処理内容の一例を示すフロー図である。図3A、図3B、図3C、図3D、図3Eの各処理は、例えば、図2のクロック周期Tcで繰り返し実行される。図3Aには、図2のタイミングTAに対応する処理内容の一例が示される。図3Aにおいて、電流制御器11は、昇降フラグが上昇または下降かを判定する(ステップS101)。昇降フラグが上昇であれば、電流制御器11は、カウンタ(13a)をインクリメントした後(ステップS102)、カウント値が上限ピーク(0xffff)以上か否かを判定する(ステップS103)。 3A, 3B, 3C, 3D, and 3E are flow charts showing an example of processing contents corresponding to the current acquisition timing of FIG. The processes of FIGS. 3A, 3B, 3C, 3D, and 3E are repeatedly executed, for example, at the clock period Tc of FIG. FIG. 3A shows an example of the processing content corresponding to the timing TA of FIG. In FIG. 3A, the current controller 11 determines whether the ascending / descending flag is ascending or descending (step S101). If the ascending / descending flag is raised, the current controller 11 increments the counter (13a) (step S102), and then determines whether or not the count value is equal to or higher than the upper limit peak (0xffff) (step S103).
 ステップS103で、カウント値が上限ピーク以上の場合、電流制御器11は、アナログディジタル変換を開始し(ステップS104)、昇降フラグを下降に変更して処理を終了する(ステップS105)。一方、ステップS103で、カウント値が上限ピーク未満の場合、電流制御器11は、処理を終了する。このような処理が繰り返し実行されることで、搬送波13aの頂部で電流取得が行われる。一方、ステップS101で、昇降フラグが下降の場合、電流制御器11は、ステップS106~S109において、ステップS102~S105の場合と同様の処理を、カウンタ(13a)をデクリメントする形で実行する。その結果、搬送波13aの底部で電流取得が行われる。 If the count value is equal to or greater than the upper limit peak in step S103, the current controller 11 starts analog-to-digital conversion (step S104), changes the ascending / descending flag to descending, and ends the process (step S105). On the other hand, if the count value is less than the upper limit peak in step S103, the current controller 11 ends the process. By repeatedly executing such processing, current acquisition is performed at the top of the carrier wave 13a. On the other hand, when the ascending / descending flag is lowered in step S101, the current controller 11 executes the same processing as in the case of steps S102 to S105 in steps S106 to S109 in the form of decrementing the counter (13a). As a result, current acquisition is performed at the bottom of the carrier wave 13a.
 図3Bには、図2のタイミングTBに対応する処理内容の一例が示される。図3Bにおいて、電流監視器10は、カウンタをインクリメントし(ステップS201)、カウント値Bが予め定めた上限値(B_lim)以上か否か(すなわち、図2の間隔Tseに対応する時間を経過したか否か)を判定する(ステップS202)。カウント値Bが上限値(B_lim)以上の場合、電流監視器10は、アナログディジタル変換を開始し(ステップS203)、カウント値Bをゼロにリセットして処理を終了する(ステップS204)。一方、ステップS202で、カウント値Bが上限値(B_lim)未満の場合、電流監視器10は、処理を終了する。 FIG. 3B shows an example of the processing content corresponding to the timing TB of FIG. In FIG. 3B, the current monitor 10 increments the counter (step S201), and whether or not the count value B is equal to or greater than a predetermined upper limit value (B_lim) (that is, the time corresponding to the interval Tse in FIG. 2 has elapsed). Whether or not) is determined (step S202). When the count value B is equal to or greater than the upper limit value (B_lim), the current monitor 10 starts analog-to-digital conversion (step S203), resets the count value B to zero, and ends the process (step S204). On the other hand, when the count value B is less than the upper limit value (B_lim) in step S202, the current monitor 10 ends the process.
 図3Cには、図2のタイミングTCに対応する処理内容の一例が示される。図3Bにおいて、初期の監視フラグを'0'として、電流監視器10は、監視トリガが成立するのを待つ(ステップS301,S302)。この際に、電流監視器10は、例えば、PWM制御器15からのPWM信号PH,PLに基づいて監視トリガの成立有無を判定する。監視トリガが成立すると、電流監視器10は、監視フラグを'1'に変更し、i=1を設定してステップS305の処理へ移行する(ステップS303,S304)。また、監視フラグが'1'である場合、電流監視器10は、そのままステップS305の処理へ移行する(ステップS301)。 FIG. 3C shows an example of the processing content corresponding to the timing TC of FIG. In FIG. 3B, the initial monitoring flag is set to '0', and the current monitor 10 waits for the monitoring trigger to be established (steps S301 and S302). At this time, the current monitor 10 determines whether or not the monitoring trigger is established based on, for example, the PWM signals PH and PL from the PWM controller 15. When the monitoring trigger is established, the current monitor 10 changes the monitoring flag to '1', sets i = 1, and proceeds to the process of step S305 (steps S303 and S304). When the monitoring flag is '1', the current monitor 10 proceeds to the process of step S305 as it is (step S301).
 ステップS305において、電流監視器10は、iがn以下の場合、図3Bの場合と同様の処理を用いて、間隔Tse毎にアナログディジタル変換を行う(ステップS201~S204)。ただし、図3Bの場合と異なり、電流監視器10は、アナログディジタル変換を行う毎に、iをインクリメントする(ステップS307)。一方、ステップS305において、iがnを超えた場合、電流監視器10は、監視フラグを'0'に戻して処理を終了する(ステップS306)。 In step S305, when i is n or less, the current monitor 10 performs analog-to-digital conversion at each interval Tse using the same processing as in the case of FIG. 3B (steps S201 to S204). However, unlike the case of FIG. 3B, the current monitor 10 increments i each time the analog-to-digital conversion is performed (step S307). On the other hand, when i exceeds n in step S305, the current monitor 10 returns the monitoring flag to '0' and ends the process (step S306).
 図3Dには、図2のタイミングTDに対応する処理内容の一例が示される。図3Dには、図3Aの場合と同様の処理内容が示される。ただし、図3Aの場合と異なり、ステップS104,S108の処理は行われない。さらに、図3Aの場合と異なり、ステップS103でカウント値が上限ピーク(0xffff)未満の場合、または、ステップS107でカウント値が下限ピーク(0x0000)よりも大きい場合に、電流監視器10は、図3Bの処理を実行する(ステップS401)。 FIG. 3D shows an example of the processing content corresponding to the timing TD of FIG. FIG. 3D shows the same processing content as in the case of FIG. 3A. However, unlike the case of FIG. 3A, the processes of steps S104 and S108 are not performed. Further, unlike the case of FIG. 3A, when the count value is less than the upper limit peak (0xffff) in step S103, or when the count value is larger than the lower limit peak (0x0000) in step S107, the current monitor 10 is shown in FIG. The process of 3B is executed (step S401).
 ここで、図3AのステップS104,S108おいて、電流制御器11は、アナログディジタル変換後の出力電流値(Iu1,Iw1)をメモリ14に保存し、図3DのステップS401において、電流監視器10は、アナログディジタル変換後の出力電流値(Iud,Ivd,Iwd)をメモリ14に保存するとよい。電流監視器10は、メモリ14に保存された出力電流値に基づいて、絶え間ない出力電流値を得ることができる。また、時間的に重複するデータがメモリ14に保存されずに済むため、メモリ14の容量削減に寄与できる。 Here, in steps S104 and S108 of FIG. 3A, the current controller 11 stores the output current values (Iu1, Iw1) after analog-to-digital conversion in the memory 14, and in step S401 of FIG. 3D, the current monitor 10 May store the output current values (Id, Ivd, Iwd) after analog-to-digital conversion in the memory 14. The current monitor 10 can obtain a continuous output current value based on the output current value stored in the memory 14. Further, since the time-duplicate data does not have to be stored in the memory 14, it is possible to contribute to the reduction of the capacity of the memory 14.
 図3Eには、図2のタイミングTEに対応する処理内容の一例が示される。図3Eにおいて、電流監視器10は、カウンタをインクリメントし(ステップS501)、カウント値Cが予め定めた上限値(C_lim)以上か否か(すなわち、図2の間隔Tsrに対応する時間を経過したか否か)を判定する(ステップS502)。カウント値Cが上限値(C_lim)以上の場合、電流監視器10は、アナログディジタル変換を開始し(ステップS503)、上限値(C_lim)を乱数発生器等を用いて更新して処理を終了する(ステップS504)。一方、ステップS502で、カウント値Cが上限値(C_lim)未満の場合、電流監視器10は、処理を終了する。図3Eを用いる場合、図3Bを用いる場合と比較して、単位時間あたりの計測回数が少なくなるため、メモリ14の容量削減に寄与できる。 FIG. 3E shows an example of the processing content corresponding to the timing TE of FIG. In FIG. 3E, the current monitor 10 increments the counter (step S501), and whether or not the count value C is equal to or greater than a predetermined upper limit value (C_lim) (that is, the time corresponding to the interval Tsr in FIG. 2 has elapsed). Whether or not) is determined (step S502). When the count value C is equal to or greater than the upper limit value (C_lim), the current monitor 10 starts analog-digital conversion (step S503), updates the upper limit value (C_lim) using a random number generator or the like, and ends the process. (Step S504). On the other hand, when the count value C is less than the upper limit value (C_lim) in step S502, the current monitor 10 ends the process. When FIG. 3E is used, the number of measurements per unit time is smaller than that when FIG. 3B is used, so that the capacity of the memory 14 can be reduced.
 なお、図3A~図3Eにおけるアナログディジタル変換の開始は、例えば、アナログディジタル変換器のサンプリングタイミングに相当する。別の形態として、電流センサ(7,8)が、アナログ信号ではなく、Δ-Σ変換素子を介してアナログ情報を出力する形態が考えられる。この場合、アナログ情報は、制御器1内のシリアル通信ドライバ(図示せず)を介してメモリ14に逐次保存される。そして、図3A~図3Eにおけるアナログディジタル変換の開始は、電流監視器10および電流制御器11によるメモリ14へのアクセスタイミングに相当する。この場合、電流監視器10および電流制御器11のアクセスタイミングは、それぞれ、Δ-Σ変換素子の通信周期の互いに異なる倍数等を設定される。 Note that the start of analog-digital conversion in FIGS. 3A to 3E corresponds to, for example, the sampling timing of the analog-digital converter. As another form, a form in which the current sensor (7, 8) outputs analog information via a Δ-Σ conversion element instead of an analog signal can be considered. In this case, the analog information is sequentially stored in the memory 14 via the serial communication driver (not shown) in the controller 1. The start of the analog-to-digital conversion in FIGS. 3A to 3E corresponds to the access timing to the memory 14 by the current monitor 10 and the current controller 11. In this case, the access timings of the current monitor 10 and the current controller 11 are set to different multiples of the communication cycle of the Δ—Σ conversion element, respectively.
 <モータ制御装置の変形例>
 図4は、図1のモータ制御装置を変形した構成例を示すブロック図である。図4に示すモータ制御装置は、図1の構成例と比較して、監視用電流センサ8が設けられず、制御用電流センサ7を電流監視器10および電流制御器11で共用する構成となっている。この場合、電流監視信号(出力電流値)Iud,Iwdと電流フィードバック信号(出力電流値)Iu1,Iw1は、信号源が同一であるが、電流監視器10と電流制御器11とは、出力電流値を取得する間隔が異なっている。
<Modification example of motor control device>
FIG. 4 is a block diagram showing a configuration example in which the motor control device of FIG. 1 is modified. The motor control device shown in FIG. 4 is not provided with the monitoring current sensor 8 as compared with the configuration example of FIG. 1, and the control current sensor 7 is shared by the current monitor 10 and the current controller 11. ing. In this case, the current monitoring signals (output current value) Iud and Iwd and the current feedback signals (output current value) Iu1 and Iw1 have the same signal source, but the current monitoring device 10 and the current controller 11 have output currents. The intervals at which the values are obtained are different.
 このような構成例を用いることでも、図1の構成例を用いる場合と同様に、高精度な異常診断が実現可能になる。また、図1の構成例と比較して、電流センサに伴うコスト等を削減できる。ただし、機能安全の観点からは、電流センサを分離した形態である図1の構成例が有益となる。 By using such a configuration example, highly accurate abnormality diagnosis can be realized as in the case of using the configuration example of FIG. In addition, the cost associated with the current sensor can be reduced as compared with the configuration example of FIG. However, from the viewpoint of functional safety, the configuration example of FIG. 1, which is a form in which the current sensor is separated, is useful.
 <実施の形態1の主要な効果>
 以上、実施の形態1のモータ制御装置を用いることで、制御用の電流取得間隔と、異常診断用の電流取得間隔とを分離でき、制御用と異常診断用とで、それぞれに適したタイミングを個別に定めることが可能になる。その結果、代表的には、高精度な異常診断が実現可能になる。また、電流監視器10と電流制御器11とを個別に設け、さらに、制御用電流センサ7と監視用電流センサ8とを個別に設けることで、機能安全に資する構成を得ることができる。例えば、2系統で取得した出力電流値を比較することで、異常の有無を判定するようなことも可能である。
<Main effect of Embodiment 1>
As described above, by using the motor control device of the first embodiment, the current acquisition interval for control and the current acquisition interval for abnormality diagnosis can be separated, and the timing suitable for each of control and abnormality diagnosis can be set. It will be possible to determine individually. As a result, typically, highly accurate abnormality diagnosis can be realized. Further, by separately providing the current monitor 10 and the current controller 11, and further separately providing the control current sensor 7 and the monitoring current sensor 8, it is possible to obtain a configuration that contributes to functional safety. For example, it is possible to determine the presence or absence of an abnormality by comparing the output current values acquired by the two systems.
 また、例えば、特許文献1の方式において、例えば、制御用で要求される電流取得間隔と、異常診断用で要求される電流取得間隔の公倍数となる間隔で電流取得を行うことが考えられる。ただし、この場合、公倍数となる間隔が短くなる可能性があり、演算負荷の増大や、必要とされるメモリ容量の増大等を招く恐れがある。実施の形態1の方式を用いると、このような演算負荷の増大や、メモリ容量の増大等を抑制した上で、前述したような効果が得られる。 Further, for example, in the method of Patent Document 1, it is conceivable to acquire the current at an interval that is a common multiple of the current acquisition interval required for control and the current acquisition interval required for abnormality diagnosis. However, in this case, the interval of the common multiple may be shortened, which may lead to an increase in the calculation load and an increase in the required memory capacity. When the method of the first embodiment is used, the above-mentioned effects can be obtained while suppressing such an increase in the calculation load and the memory capacity.
 (実施の形態2)
 <モータ制御装置の構成>
 図5は、本発明の実施の形態2によるモータ制御装置の構成例を示すブロック図である。図5は、モータ3が複数(この例では2系統)の巻線を有する場合の構成例となっている。図5では、2系統の巻線に応じて、2系統の制御器1A,1B、電力変換器2A,2B、制御用電流センサ7A,7Bが設けられる。電力変換器2A,2Bに接続される直流電源5は、それぞれ独立のものでも共通のものでもよい。この例では、共通方式が用いられ、電力変換器2A,2Bの直流側は、直流電源5に対してそれぞれ並列接続されている。
(Embodiment 2)
<Structure of motor control device>
FIG. 5 is a block diagram showing a configuration example of the motor control device according to the second embodiment of the present invention. FIG. 5 shows a configuration example in which the motor 3 has a plurality of windings (two systems in this example). In FIG. 5, two systems of controllers 1A and 1B, power converters 2A and 2B, and control current sensors 7A and 7B are provided according to the winding of two systems. The DC power sources 5 connected to the power converters 2A and 2B may be independent or common. In this example, a common method is used, and the DC sides of the power converters 2A and 2B are connected in parallel to the DC power supply 5, respectively.
 制御器1Aは、制御上のマスター器であり、図1に示した制御器1内の各部を全て有する。一方、制御器1Bは、スレーブ器であり、この例では、図1に示した制御器1内の各部の中から、サーボ制御器9、電流監視器10およびエンコーダ通信部16が削除されている。制御器1A,1Bは、互いに異なるクロック発生器12A,12Bによりそれぞれ駆動されている。このように、各制御器にそれぞれクロック発生器を搭載することで、例えば、電力変換器2Aと電力変換器2Bとをある程度離れた位置に配置する際に、長いクロック信号配線が不要となり、クロック信号に起因する誤動作等を防止できる。 The controller 1A is a master for control, and has all the parts in the controller 1 shown in FIG. On the other hand, the controller 1B is a slave device, and in this example, the servo controller 9, the current monitor 10, and the encoder communication unit 16 are deleted from each unit in the controller 1 shown in FIG. .. The controllers 1A and 1B are driven by different clock generators 12A and 12B, respectively. By mounting a clock generator in each controller in this way, for example, when the power converter 2A and the power converter 2B are arranged at positions separated to some extent, a long clock signal wiring becomes unnecessary and the clock is clocked. It is possible to prevent malfunctions caused by signals.
 また、制御器1Aと制御器1Bは、図示しない通信部を介して情報を送受信できるように構成されている。制御器1B内の電流制御器11は、制御器1A内のサーボ制御器9からの信号(具体的には電流指令値)を受けて動作する。すなわち、制御器1A,1B内の各電流制御器11は、制御器1A内のサーボ制御器9からの同じ指令に基づいて動作する。その結果、電力変換器2A,2Bは、同位相同振幅の電流を出力するよう制御される。 Further, the controller 1A and the controller 1B are configured so that information can be transmitted and received via a communication unit (not shown). The current controller 11 in the controller 1B operates by receiving a signal (specifically, a current command value) from the servo controller 9 in the controller 1A. That is, each current controller 11 in the controllers 1A and 1B operates based on the same command from the servo controller 9 in the controller 1A. As a result, the power converters 2A and 2B are controlled to output currents having the same phase and amplitude.
 電力変換器2AからのU相の出力配線と、電力変換器2BからのU相の出力配線は、モータ3が有するU相の2系統の入力端子にそれぞれ接続される。電力変換器2A,2BからのV相およびW相の出力配線に関しても同様である。ここで、図5では、マスター器およびスレーブ器に共通する形で監視用電流センサ8が設けられる。監視用電流センサ8は、貫通孔が形成された貫通型電流センサであり、CT(Current Transformer)センサやホール素子センサ等が一般的に知られている。 The U-phase output wiring from the power converter 2A and the U-phase output wiring from the power converter 2B are connected to the two U-phase input terminals of the motor 3, respectively. The same applies to the V-phase and W-phase output wirings from the power converters 2A and 2B. Here, in FIG. 5, the monitoring current sensor 8 is provided in a form common to the master device and the slave device. The monitoring current sensor 8 is a through-type current sensor having a through hole formed therein, and a CT (Current Transformer) sensor, a Hall element sensor, or the like is generally known.
 監視用電流センサ8は、この例では3相のそれぞれに設けられる。U相の監視用電流センサ8は、2個の電力変換器2A,2BからのU相の出力配線が自身の貫通孔を共に貫通するように設置される。これにより、U相の監視用電流センサ8は、2個の電力変換器2A,2BのU相の出力電流値を合成した合成電流値を、U相の電流監視信号(例えばアナログ電圧信号)Iud2として検出する。V相およびW相に関しても同様である。その結果、V相およびW相の監視用電流センサ8は、2個の電力変換器2A,2BのV相およびW相の出力電流値をそれぞれ合成したV相およびW相の合成電流値を、V相およびW相の電流監視信号Ivd2,Iwd2としてそれぞれ検出する。 The monitoring current sensor 8 is provided in each of the three phases in this example. The U-phase monitoring current sensor 8 is installed so that the U-phase output wirings from the two power converters 2A and 2B penetrate through their own through holes. As a result, the U-phase monitoring current sensor 8 uses the combined current value obtained by synthesizing the U-phase output current values of the two power converters 2A and 2B as the U-phase current monitoring signal (for example, an analog voltage signal) Iud2. Detect as. The same applies to the V phase and the W phase. As a result, the V-phase and W-phase monitoring current sensor 8 obtains the combined current values of the V-phase and W-phase, which are the combined output current values of the V-phase and W-phase of the two power converters 2A and 2B, respectively. It is detected as V-phase and W-phase current monitoring signals Ivd2 and Iwd2, respectively.
 電流監視器10は、前述したように、複数の制御器1A,1Bのいずれか一つであるマスター器に搭載される。電流監視器10は、監視用電流センサ8で検出された合成電流値(Iud2,Ivd2,Iwd2)を所定の間隔(第2の間隔)で取得することで、合成電流値を監視する。また、電流監視器10は、制御用電流センサ7Aで検出された出力電流値(Iu1A,Iv1A,Iw1A)と、制御用電流センサ7Bで検出された出力電流値(Iu1B,Iv1B,Iw1B)とを所定の間隔(第2の間隔)で取得することで、2個の電力変換器2A,2Bのそれぞれの出力電流値を監視する。 As described above, the current monitor 10 is mounted on the master device which is one of the plurality of controllers 1A and 1B. The current monitor 10 monitors the combined current value by acquiring the combined current value (Id2, Ivd2, Iwd2) detected by the monitoring current sensor 8 at a predetermined interval (second interval). Further, the current monitor 10 determines the output current value (Iu1A, Iv1A, Iw1A) detected by the control current sensor 7A and the output current value (Iu1B, Iv1B, Iw1B) detected by the control current sensor 7B. By acquiring at a predetermined interval (second interval), the output current values of the two power converters 2A and 2B are monitored.
 このように複数の電力変換器2A,2Bを有する構成の場合、電流監視器10をスレーブ器にも設けるのではなくマスター器にのみ設けることで、スレーブ器を簡略化できる。また、スレーブ器の制御用電流センサ7Bからの出力電流値を、マスター器の電流監視器10が直接監視することにより、スレーブ器が監視結果をマスター器に送信するような場合と比較して、制御器1Bと制御器1Aとの間の通信量を低減できる。その結果、モータ制御装置の処理負荷を軽減することが可能になる。 In the case of a configuration having a plurality of power converters 2A and 2B in this way, the slave device can be simplified by providing the current monitor 10 only in the master device instead of providing it in the slave device. Further, as compared with the case where the current monitor 10 of the master unit directly monitors the output current value from the control current sensor 7B of the slave unit and the slave unit transmits the monitoring result to the master unit. The amount of communication between the controller 1B and the controller 1A can be reduced. As a result, it becomes possible to reduce the processing load of the motor control device.
 ここで、前述したように、電力変換器2A,2Bは同位相同振幅となるよう制御される。これに伴い、電流監視器10で取得される合成電流値(Iud2,Ivd2,Iwd2)は、制御系の外乱や異常のない限り、制御用電流センサ7Aに基づく出力電流値(Iu1A,Iv1A,Iw1A)の2倍の電流値に一致し、制御用電流センサ7Bに基づく出力電流値(Iu1B,Iv1B,Iw1B)の2倍の電流値にも一致する。このため、このような整合性が得られるか否かに基づいて、異常診断を行うことが可能になる。 Here, as described above, the power converters 2A and 2B are controlled to have the same phase and the same amplitude. Along with this, the combined current values (Id2, Ivd2, Iwd2) acquired by the current monitor 10 are the output current values (Iu1A, Iv1A, Iw1A) based on the control current sensor 7A unless there is a disturbance or abnormality in the control system. ), And also doubles the output current value (Iu1B, Iv1B, Iw1B) based on the control current sensor 7B. Therefore, it is possible to perform an abnormality diagnosis based on whether or not such consistency can be obtained.
 一例として、異常診断において抽出した異常が、個々の電力変換器由来かモータ由来かを推定できる。例えば、制御用電流センサ7A,7Bからの出力電流値が共に正常で、監視用電流センサ8からの電流に異常があれば、異常はモータ由来である可能性が高い。さらに、モータ3によって駆動される負荷機器を含めたシステム全体に何らかのシステム異常が発生した場合で、例えば、監視用電流センサ8からの出力電流値に異常がない場合、システム異常は、負荷機器由来である可能性が高い。 As an example, it is possible to estimate whether the abnormality extracted in the abnormality diagnosis is derived from an individual power converter or a motor. For example, if the output current values from the control current sensors 7A and 7B are both normal and the current from the monitoring current sensor 8 is abnormal, it is highly possible that the abnormality is derived from the motor. Further, when some system abnormality occurs in the entire system including the load device driven by the motor 3, for example, when there is no abnormality in the output current value from the monitoring current sensor 8, the system abnormality is derived from the load device. Is likely to be.
 この場合、監視用電流センサ8からの出力電流値をモータ制御装置の上位に設けられる上位装置(図示せず)へ伝送し、上位装置で詳細な異常診断を行えばよい。上位装置は、モータ制御装置および負荷機器を制御し、負荷機器の制御シーケンス等に応じてモータ制御装置へ速度指令等を発行する装置である。上位装置は、例えば、監視用電流センサ8からの出力電流値と負荷機器の制御シーケンス等とを照合することで、異常診断を行うことが可能である。 In this case, the output current value from the monitoring current sensor 8 may be transmitted to a higher-level device (not shown) provided above the motor control device, and the higher-level device may perform detailed abnormality diagnosis. The host device is a device that controls the motor control device and the load device, and issues a speed command or the like to the motor control device according to the control sequence of the load device or the like. The host device can perform abnormality diagnosis by collating, for example, the output current value from the monitoring current sensor 8 with the control sequence of the load device.
 なお、制御器1Aと制御器1Bは、それぞれ、別のマイコン等によって実現される。ただし、場合によっては、制御器1Aと制御器1Bとを1個のマイコン内に実装することも可能である。あるいは、制御器1Bを設けずに、制御器1A内のPWM制御器15が、電力変換器2Aと共通のPWM信号で電力変換器2Bをスイッチング制御するように構成することも可能である。また、図5の電流監視器10において、出力電流値(Iu1A,Iv1A,Iw1A)を取得する間隔と、出力電流値(Iu1B,Iv1B,Iw1B)を取得する間隔とが異なるように構成することも可能である。 Note that the controller 1A and the controller 1B are each realized by different microcomputers and the like. However, in some cases, the controller 1A and the controller 1B can be mounted in one microcomputer. Alternatively, it is also possible to configure the PWM controller 15 in the controller 1A to switch and control the power converter 2B with a PWM signal common to the power converter 2A without providing the controller 1B. Further, in the current monitor 10 of FIG. 5, the interval for acquiring the output current value (Iu1A, Iv1A, Iw1A) and the interval for acquiring the output current value (Iu1B, Iv1B, Iw1B) may be different. It is possible.
 <モータ制御装置の変形例>
 図6は、図5のモータ制御装置を変形した構成例を示すブロック図である。図6には、説明の簡略化のため、図5に示した部位のうち説明に必要な部位のみを抽出して示している。図6では、制御用電流センサ7A,7Bおよび監視用電流センサ8は、全てU相W相の2相を検出している。ただし、検出する相数は用途に応じて適宜変更可能である。図6において、図5と大きく異なる点は、電流監視器10を、複数の制御器1A,1Bとは異なる診断用の制御器1C内に設けたことにある。言い換えれば、電流監視器10は、複数の制御器1A,1Bの外部に共通に設けられる。これに伴い、制御器1Aは、図5の制御器1Bと略同一の構成となる。
<Modification example of motor control device>
FIG. 6 is a block diagram showing a configuration example in which the motor control device of FIG. 5 is modified. In FIG. 6, for the sake of simplification of the explanation, only the parts necessary for the explanation are extracted and shown from the parts shown in FIG. In FIG. 6, the control current sensors 7A and 7B and the monitoring current sensor 8 all detect two phases of U phase and W phase. However, the number of phases to be detected can be appropriately changed depending on the application. In FIG. 6, the major difference from FIG. 5 is that the current monitor 10 is provided in the diagnostic controller 1C, which is different from the plurality of controllers 1A and 1B. In other words, the current monitor 10 is commonly provided outside the plurality of controllers 1A and 1B. Along with this, the controller 1A has substantially the same configuration as the controller 1B in FIG.
 このような構成を用いることで、巻線系統を3巻線、4巻線といった多様に変化させる場合に、制御器1A(または1B)と同一構成の制御器を巻線系統の数だけ設け、これらに共通に診断用の制御器1C(電流監視器10)を設ければよい。その結果、巻線系統の数を変化させる場合の拡張性が容易となり、例えば、製造や検査の上での管理等が容易になる。なお、制御器1A,1B,1Cは、例えば、個別のマイコン等によって実現される。ただし、場合によっては、診断用の制御器1Cを除く制御器1A,1Bを1個のマイコン等で実現することも可能である。 By using such a configuration, when the winding system is variously changed such as 3 windings and 4 windings, as many controllers as the number of winding systems having the same configuration as the controller 1A (or 1B) are provided. A diagnostic controller 1C (current monitor 10) may be provided in common with these. As a result, expandability when the number of winding systems is changed becomes easy, and for example, management in manufacturing and inspection becomes easy. The controllers 1A, 1B, and 1C are realized by, for example, individual microcomputers and the like. However, depending on the case, it is possible to realize the controllers 1A and 1B excluding the diagnostic controller 1C with one microcomputer or the like.
 また、図6の構成においても、図5の場合と同様に、制御器1A,1C内にそれぞれ個別のクロック発生器12A,12Cを搭載することが望ましい。また、制御器1A,1B,1Cは、例えば、電流指令値、電流フィードバック信号Iu1A,Iw1A,Iu1B,Iw1B等を、通信部を介して相互に交信可能となっている。ここで、診断用の制御器1Cの通信部として、光学式や磁気式等を用いて電気的に絶縁した状態で通信を行う通信絶縁部17を設けてもよい。 Further, also in the configuration of FIG. 6, it is desirable to mount individual clock generators 12A and 12C in the controllers 1A and 1C, respectively, as in the case of FIG. Further, the controllers 1A, 1B, 1C can communicate with each other, for example, a current command value, a current feedback signal Iu1A, Iw1A, Iu1B, Iw1B, etc. via a communication unit. Here, as the communication unit of the controller 1C for diagnosis, a communication insulation unit 17 that performs communication in a state of being electrically isolated by using an optical type, a magnetic type, or the like may be provided.
 <診断用の制御器の動作>
 ここで、診断用の制御器1Cを、機能安全における速度監視に用いてもよい。機能安全における危険側故障診断率を高める方策として、異なる複数の監視器を設けることや、複数の監視器の電源を分離して故障の他方への波及を防ぐことが知られている。図6のような構成例を用いることで、制御器1A,1Bによる速度監視器と、診断用の制御器1Cによる速度監視器とを独立に設けることができる。さらに、制御器1A,1Bと診断用の制御器1Cとを通信絶縁部17で電気的に分離することができる。これらの結果、より信頼性の高い機能安全システムを構築することができる。
<Operation of diagnostic controller>
Here, the diagnostic controller 1C may be used for speed monitoring in functional safety. As a measure for increasing the failure diagnosis rate on the dangerous side in functional safety, it is known to provide a plurality of different monitors and to separate the power supplies of the plurality of monitors to prevent the failure from spreading to the other side. By using the configuration example as shown in FIG. 6, the speed monitor by the controllers 1A and 1B and the speed monitor by the diagnostic controller 1C can be independently provided. Further, the controllers 1A and 1B and the diagnostic controller 1C can be electrically separated by the communication insulation unit 17. As a result, a more reliable functional safety system can be constructed.
 図7は、図6における診断用の制御器を用いて速度監視を行う場合の動作例を示すフロー図である。図7において、診断用の制御器1Cは、電流フィードバック信号(出力電流値)Iu1A,Iw1A,Iu1B,Iw1Bを取得し(ステップS601,S603)、出力電流値(Iu1A,Iw1A)に基づく速度(ω1A)と、出力電流値(Iu1B,Iw1B)に基づく速度(ω1B)とを算出する(ステップS602,S604)。 FIG. 7 is a flow chart showing an operation example when speed monitoring is performed using the diagnostic controller in FIG. In FIG. 7, the diagnostic controller 1C acquires current feedback signals (output current values) Iu1A, Iw1A, Iu1B, Iw1B (steps S601 and S603), and has a velocity (ω1A) based on the output current values (Iu1A, Iw1A). ) And the speed (ω1B) based on the output current values (Iu1B, Iw1B) (steps S602 and S604).
 また、診断用の制御器1Cは、電流フィードバック信号に基づくU相の合成電流値(Iu1A+Iu1B)とW相の合成電流値(Iw1A+Iw1B)とを算出し(ステップS605)、当該合成電流値に基づく速度(ω1)を算出する(ステップS606)。さらに、診断用の制御器1Cは、電流監視信号(出力電流値)Iud2,Iwd2を取得し(ステップS607)、これに基づいて速度(ω1d)を算出する(ステップS608)。 Further, the diagnostic controller 1C calculates the combined current value of the U phase (Iu1A + Iu1B) and the combined current value of the W phase (Iw1A + Iw1B) based on the current feedback signal (step S605), and the speed based on the combined current value. (Ω1) is calculated (step S606). Further, the diagnostic controller 1C acquires the current monitoring signals (output current values) Iud2 and Iwd2 (step S607), and calculates the speed (ω1d) based on the current monitoring signals (step S607).
 その後、診断用の制御器1Cは、ステップS602,S604,S606,S608で算出した各速度(ω1A,ω1B,ω1,ω1d)が同等か否かを判定する(ステップS609)。診断用の制御器1Cは、ステップS609における各速度が同等であり、かつ、各速度が所定の範囲内であれば、異常無しとして処理を終了する(ステップS610)。一方、診断用の制御器1Cは、ステップS609における各速度が同等でない場合、または、各速度は同等であるが所定の範囲外の場合、異常有りとしてモータ3を停止させる(ステップS610,S611)。 After that, the diagnostic controller 1C determines whether or not the respective velocities (ω1A, ω1B, ω1, ω1d) calculated in steps S602, S604, S606, and S608 are equivalent (step S609). If the speeds of the diagnostic controller 1C are the same in step S609 and the speeds are within a predetermined range, the process is terminated with no abnormality (step S610). On the other hand, the diagnostic controller 1C stops the motor 3 as having an abnormality when the speeds in step S609 are not the same or when the speeds are the same but out of the predetermined range (steps S610 and S611). ..
 <実施の形態2の主要な効果>
 以上、実施の形態2のモータ制御装置を用いることで、モータが複数の巻線を有する場合であっても、実施の形態1で述べた各種効果と同様の効果が得られる。特に、各電力変換器2A,2Bの各出力電流値と、各電力変換器2A,2Bの出力電流値を合成した合成電流値とを取得できるように構成することで、電流値の整合性に基づいて異常診断を行うことが可能になる。
<Main effects of Embodiment 2>
As described above, by using the motor control device of the second embodiment, even when the motor has a plurality of windings, the same effects as the various effects described in the first embodiment can be obtained. In particular, by configuring so that the output current values of the power converters 2A and 2B and the combined current value obtained by synthesizing the output current values of the power converters 2A and 2B can be obtained, the consistency of the current values can be improved. It becomes possible to perform an abnormality diagnosis based on this.
 (実施の形態3)
 <モータ制御装置の構成>
 図8は、本発明の実施の形態3によるモータ制御装置の構成例を示すブロック図である。図8に示すモータ制御装置は、図6の構成例と比較して、監視用電流センサ8の構成が異なっている。すなわち、制御用電流センサ7A,7Bのそれぞれは、図6の場合と同様に3相中の2相(この例ではU相およびW相)の出力電流値を検出し、監視用電流センサ8は、図6の場合と異なり当該3相中の残りの1相(V相)の合成電流値を検出する。
(Embodiment 3)
<Structure of motor control device>
FIG. 8 is a block diagram showing a configuration example of the motor control device according to the third embodiment of the present invention. The motor control device shown in FIG. 8 has a different configuration of the monitoring current sensor 8 as compared with the configuration example of FIG. That is, each of the control current sensors 7A and 7B detects the output current values of two of the three phases (U phase and W phase in this example) as in the case of FIG. 6, and the monitoring current sensor 8 detects the output current values. , Unlike the case of FIG. 6, the combined current value of the remaining 1 phase (V phase) in the 3 phases is detected.
 3相モータ3は、略3相平衡であるため、特に異常が無ければ、制御用電流センサ7A,7Bで検出された出力電流値(Iu1A,Iw1A,Iu1B,Iw1B)の総和が、監視用電流センサ8で検出された出力電流値(Ivd2)に一致することになる。したがって、このような構成を用いることでも、実施の形態2の場合と同様に、電流値の整合性に基づく異常診断や、速度の一致に基づく異常診断を実現できる。そして、このような異常診断を、監視用電流センサ8の相数を削減した上で実現できる。 Since the three-phase motor 3 is substantially three-phase balanced, the total of the output current values (Iu1A, Iw1A, Iu1B, Iw1B) detected by the control current sensors 7A and 7B is the monitoring current unless there is a particular abnormality. It matches the output current value (Ivd2) detected by the sensor 8. Therefore, even by using such a configuration, it is possible to realize an abnormality diagnosis based on the consistency of the current values and an abnormality diagnosis based on the matching of the speeds, as in the case of the second embodiment. Then, such an abnormality diagnosis can be realized after reducing the number of phases of the monitoring current sensor 8.
 (実施の形態4)
 <モータ制御装置の構成>
 図9は、本発明の実施の形態4によるモータ制御装置の構成例を示すブロック図である。図9に示すモータ制御装置は、図6の構成例と比較して、監視用電流センサ8が設けられない点と、制御器1C内の電流監視器10が制御用電流センサ7A,7BからのU相の出力電流値(Iu1A,Iu1B)を直接的に取得する点とが異なっている。
(Embodiment 4)
<Structure of motor control device>
FIG. 9 is a block diagram showing a configuration example of the motor control device according to the fourth embodiment of the present invention. The motor control device shown in FIG. 9 is not provided with the monitoring current sensor 8 as compared with the configuration example of FIG. 6, and the current monitoring device 10 in the controller 1C is from the control current sensors 7A and 7B. It differs from the point that the output current value (Iu1A, Iu1B) of the U phase is directly acquired.
 例えば、図7で述べたような機能安全の速度監視において、電流のゼロクロス周期から速度を求める場合には、3相中の1相の電流値から速度が算出することができる。このため、図9の構成例を用いることでも、図7に示したような速度監視の一部を実現することが可能になる。具体的には、図9の制御器1Cは、制御用電流センサ7AからのU相の出力電流値(Iu1A)に基づく速度と、制御用電流センサ7BからのU相の出力電流値(Iu1B)に基づく速度とを比較することができる。 For example, in the functional safety speed monitoring as described in FIG. 7, when the speed is obtained from the zero cross period of the current, the speed can be calculated from the current value of one of the three phases. Therefore, it is possible to realize a part of the speed monitoring as shown in FIG. 7 by using the configuration example of FIG. Specifically, the controller 1C of FIG. 9 has a speed based on the U-phase output current value (Iu1A) from the control current sensor 7A and a U-phase output current value (Iu1B) from the control current sensor 7B. Can be compared with the speed based on.
 (実施の形態5)
 <モータ制御装置の構成>
 図10は、本発明の実施の形態5によるモータ制御装置において、一部の構成例を示す回路図である。図10では、例えば図5に示した監視用電流センサ8の代わりとして、制御器1A,1Bを跨ぐ形で電流集約部18が設けられる。電流集約部18は、オペアンプ回路で構成される加算器を備える。加算器は、複数の電流センサ7A,7Bからの検出信号となる電流フィードバック信号(例えばアナログ電圧信号)Iu1A,Iw1A,Iu1B,Iw1Bを相毎にアナログ加算し、相毎の電流監視信号(合成電流値)Iud,Iwdとして電流監視器10へ出力する。
(Embodiment 5)
<Structure of motor control device>
FIG. 10 is a circuit diagram showing a part of a configuration example in the motor control device according to the fifth embodiment of the present invention. In FIG. 10, for example, instead of the monitoring current sensor 8 shown in FIG. 5, a current collecting unit 18 is provided so as to straddle the controllers 1A and 1B. The current consolidating unit 18 includes an adder composed of an operational amplifier circuit. The adder adds the current feedback signals (for example, analog voltage signals) Iu1A, Iw1A, Iu1B, and Iw1B, which are the detection signals from the plurality of current sensors 7A and 7B, in analog for each phase, and the current monitoring signal for each phase (combined current). Value) Output to the current monitor 10 as Iud and Iwd.
 また、複数の電流センサ7A,7Bからのそれぞれの検出信号(Iu1A,Iw1A,Iu1B,Iw1B)は、電流集約部18側とは異なる経路で、直列抵抗Rfおよびその後段のコンデンサCfで構成されるローパスフィルタを介して電流制御器11A,11Bへ出力される。この際に、ローパスフィルタは、検出信号(Iu1A,Iw1A,Iu1B,Iw1B)に対して高周波のスイッチングノイズ成分を除去する等、検出信号をフィルタリングして電流制御器11A,11Bへ出力する。 Further, each detection signal (Iu1A, Iw1A, Iu1B, Iw1B) from the plurality of current sensors 7A and 7B is composed of a series resistor Rf and a capacitor Cf in the subsequent stage in a path different from that on the current aggregation unit 18 side. It is output to the current controllers 11A and 11B via the low-pass filter. At this time, the low-pass filter filters the detection signal and outputs it to the current controllers 11A and 11B, such as removing a high-frequency switching noise component from the detection signal (Iu1A, Iw1A, Iu1B, Iw1B).
 電流集約部18内の加算器は、オペアンプOPu,OPwと、入力抵抗R1およびフィードバック抵抗R2で構成される。制御用電流センサ7A,7BからのU相の検出信号(Iu1A,Iu1B)は、それぞれに設けられた入力抵抗R1を介してワイヤードオア接続され、オペアンプOPuに入力される。同様に、制御用電流センサ7A,7BからのW相の検出信号(Iw1A,Iw1B)は、それぞれ異なる入力抵抗R1を介してワイヤードオア接続され、オペアンプOPwに入力される。 The adder in the current aggregation unit 18 is composed of operational amplifiers OPu and OPw, an input resistor R1 and a feedback resistor R2. The U-phase detection signals (Iu1A, Iu1B) from the control current sensors 7A and 7B are wired or connected via the input resistors R1 provided in each and are input to the operational amplifier OPu. Similarly, the W phase detection signals (Iw1A, Iw1B) from the control current sensors 7A and 7B are wired or connected via different input resistors R1 and input to the operational amplifier OPw.
 これにより、2系統の同相電流波形が、相毎にアナログ加算される。前述したように、複数系統の電力変換器2A,2B(図示省略)は、互いに同じ振幅位相の電流指令値に従い動作するため、オペアンプの出力も入力と同位相の略正弦波状の波形となる。ここで、電流監視器10が出力電流値を取得する経路を監視経路と呼び、電流制御器11A,11Bが出力電流値を取得する経路を制御経路と呼ぶ。図10の構成例では、監視経路の伝達関数の遮断周波数(すなわち電流集約部18の遮断周波数)は、制御経路の伝達関数の遮断周波数(すなわちローパスフィルタの遮断周波数)よりも高くなっている。 As a result, the two common mode current waveforms are added in analog for each phase. As described above, since the power converters 2A and 2B (not shown) of the plurality of systems operate according to the current command values having the same amplitude phase, the output of the operational amplifier also has a substantially sinusoidal waveform having the same phase as the input. Here, the path through which the current monitor 10 acquires the output current value is called a monitoring path, and the path through which the current controllers 11A and 11B acquire the output current value is called a control path. In the configuration example of FIG. 10, the cutoff frequency of the transfer function of the monitoring path (that is, the cutoff frequency of the current aggregation unit 18) is higher than the cutoff frequency of the transfer function of the control path (that is, the cutoff frequency of the low-pass filter).
 なお、図10に示されるように、各入力抵抗R1と制御用電流センサ7A,7Bとの間は、絶縁アンプ等の絶縁・増幅の機能をもつ回路を介して接続されてもよく、直接的に接続されてもよい。また、オペアンプOPu,OPwは、マスター器である制御器1Aにのみ搭載され、スレーブ器である制御器1Bは、入力抵抗R1のみを搭載する。そして、各入力抵抗R1は、マスター・スレーブ間の配線によって互いに並列バス接続(ワイヤードオア接続)される。これにより、スレーブ器の小型化に貢献できる。また、各スレーブ器に2個以上のコネクタを設けることで、多数台のスレーブ器を数珠つなぎに並列バス配線することも可能である。 As shown in FIG. 10, each input resistor R1 and the control current sensors 7A and 7B may be directly connected to each other via a circuit having an insulating / amplifying function such as an insulating amplifier. May be connected to. Further, the operational amplifiers OPu and OPw are mounted only on the controller 1A which is a master device, and the controller 1B which is a slave device mounts only the input resistor R1. Then, each input resistor R1 is connected to each other by a parallel bus connection (wired or connection) by wiring between a master and a slave. This can contribute to the miniaturization of the slave device. Further, by providing two or more connectors for each slave unit, it is possible to connect a large number of slave units in parallel bus wiring.
 <実施の形態5の主要な効果>
 以上、実施の形態5のモータ制御装置を用いることで、図5等に示したような貫通型電流センサ(監視用電流センサ8)を用いることなく、実施の形態2の場合と同様の効果が得られる。すなわち、システムの小型化や低コスト化に寄与できる。また、電流集約部18の遮断周波数は、ローパスフィルタの遮断周波数に比べて高くなっている。これにより、電流監視器10は、例えばリンギング波形の解析やリサージュ分析等で必要とされる、高周波成分を含んだ電流値を取得することが可能になる。その結果、高周波成分を損うことなく、より精度の高い異常診断が実現可能になる。
<Main effects of Embodiment 5>
As described above, by using the motor control device of the fifth embodiment, the same effect as that of the second embodiment can be obtained without using the penetration type current sensor (monitoring current sensor 8) as shown in FIG. 5 and the like. can get. That is, it can contribute to the miniaturization and cost reduction of the system. Further, the cutoff frequency of the current aggregation unit 18 is higher than the cutoff frequency of the low-pass filter. This makes it possible for the current monitor 10 to acquire a current value including a high frequency component, which is required for, for example, analysis of a ringing waveform or Lissajous analysis. As a result, more accurate abnormality diagnosis can be realized without damaging the high frequency component.
 (実施の形態6)
 <モータ制御装置の構成>
 図11は、本発明の実施の形態6によるモータ制御装置において、一部の構成例を示す回路図である。図11は、図10の構成例と比較して、電流集約部18の構成が若干異なっている。図11の電流集約部18は、複数の整流器(DH1,DL1,DH2,DL2)と、アンプ回路(この例ではオペアンプOPu,OPw)とを備える。
(Embodiment 6)
<Structure of motor control device>
FIG. 11 is a circuit diagram showing a part of a configuration example in the motor control device according to the sixth embodiment of the present invention. FIG. 11 shows that the configuration of the current collecting unit 18 is slightly different from that of the configuration example of FIG. The current aggregation unit 18 of FIG. 11 includes a plurality of rectifiers (DH1, DL1, DH2, DL2) and an amplifier circuit (in this example, operational amplifiers OPu and OPw).
 複数の整流器のそれぞれは、4個のダイオードDH1,DL1,DH2,DL2を含むダイオードブリッジで構成される。複数(ここでは4個)の整流器は、複数の制御用電流センサ7A,7Bからの各相の検出信号(Iu1A,Iw1A,Iu1B,Iw1B)をそれぞれ整流する。制御用電流センサ7A,7Bが電流値に比例した略正弦波状の検出信号を出力する場合、複数の整流器のそれぞれは、ダイオードブリッジによって全波整流を行う。また、複数の整流器の出力ノード(正端子および負端子)は、相毎に正端子および負端子同士が共通に接続される。 Each of the plurality of rectifiers is composed of a diode bridge including four diodes DH1, DL1, DH2, DL2. The plurality of (here, four) rectifiers rectify the detection signals (Iu1A, Iw1A, Iu1B, Iw1B) of each phase from the plurality of control current sensors 7A and 7B, respectively. When the control current sensors 7A and 7B output a substantially sinusoidal detection signal proportional to the current value, each of the plurality of rectifiers performs full-wave rectification by a diode bridge. Further, in the output nodes (positive terminal and negative terminal) of the plurality of rectifiers, the positive terminal and the negative terminal are commonly connected to each other for each phase.
 オペアンプOPuは、複数の整流器におけるU相の共通出力ノードからの信号を非反転入力および反転入力で受けて、電流監視器10へU相の電流監視信号Iudを出力する。同様に、オペアンプOPwは、複数の整流器におけるW相の共通出力ノードからの信号を非反転入力および反転入力で受けて、電流監視器10へW相の電流監視信号Iwdを出力する。 The operational amplifier OPu receives the signal from the U-phase common output node in the plurality of rectifiers as the non-inverting input and the inverting input, and outputs the U-phase current monitoring signal Iud to the current monitor 10. Similarly, the operational amplifier OPw receives the signal from the common output node of the W phase in the plurality of rectifiers as the non-inverting input and the inverting input, and outputs the W-phase current monitoring signal Iwd to the current monitor 10.
 ダイオードブリッジの作用によって、オペアンプOPu,OPwの入力には、各制御用電流センサ7A,7Bからの正および負の検出信号のうちの最も瞬時振幅の大きい信号のみが代表して印加されることになる。前述したように、複数系統の電力変換器2A,2B(図示省略)は、互いに同じ振幅位相の電流指令値に従い動作するため、オペアンプOPu,OPwの出力は、略正弦波状の全波整流波形となる。 Due to the action of the diode bridge, only the signal having the largest instantaneous amplitude among the positive and negative detection signals from the control current sensors 7A and 7B is typically applied to the inputs of the operational amplifiers OPu and OPw. Become. As described above, since the power converters 2A and 2B (not shown) of multiple systems operate according to the current command values having the same amplitude phase, the outputs of the operational amplifiers OPu and OPw are substantially sinusoidal full-wave rectified waveforms. Become.
 以上のような構成で得られる電流監視信号Iud,Iwdの瞬時値は、各電流センサの代表値であるため、モータ電流の振幅情報を得る観点では図10の構成例に比べて劣り得る。ただし、電流監視信号Iud,Iwdのゼロクロスを検出することで、モータ3の速度を得ることができる。このため、例えば、図7で述べたような機能安全における速度監視等を行う際に適用することが可能である。また、モータ電流の振幅情報として、振幅の最大ワースト値を得ることができるため、診断項目によっては電流値に基づく異常診断も可能である。 Since the instantaneous values of the current monitoring signals Iud and Iwd obtained by the above configuration are representative values of each current sensor, they may be inferior to the configuration example of FIG. 10 from the viewpoint of obtaining the amplitude information of the motor current. However, the speed of the motor 3 can be obtained by detecting the zero cross of the current monitoring signals Iud and Iwd. Therefore, for example, it can be applied when performing speed monitoring or the like in functional safety as described in FIG. 7. Further, since the maximum worst value of the amplitude can be obtained as the amplitude information of the motor current, it is possible to perform an abnormality diagnosis based on the current value depending on the diagnosis item.
 図12は、図11を変形した構成例を示す回路図である。図12には、図11における複数の整流器(ダイオードブリッジ)に対して、同相の電流センサの基準コモン電位側を並列接続し共通のダイオード列DH2,DL2の中点に接続した構成例が示される。なお電流センサの信号電位側は電流センサ毎に設けられたダイオード列DH1,DL1の中点へそれぞれ接続され、ダイオード列DH1,DL1の両端電位は、相毎に設けたオペアンプOPu,OPwの入力に共通に並列接続されている点は、図11と同様である。電流監視信号Iud,Iwdは、図11の構成例では全波整流波形となるのに対して、図12の構成例では正負のピークをもつ略正弦波状の波形となる。図12の構成例を用いることでも、図11の場合と同様に、機能安全における速度監視や、電流値に基づく異常診断を行うことが可能である。 FIG. 12 is a circuit diagram showing a configuration example obtained by modifying FIG. 11. FIG. 12 shows a configuration example in which the reference common potential side of the in-phase current sensor is connected in parallel to the plurality of rectifiers (diode bridges) in FIG. 11 and connected to the midpoint of the common diode trains DH2 and DL2. .. The signal potential side of the current sensor is connected to the midpoint of the diode trains DH1 and DL1 provided for each current sensor, and the potentials across the diode trains DH1 and DL1 are input to the operational amplifiers OPu and OPw provided for each phase. The point that they are commonly connected in parallel is the same as in FIG. The current monitoring signals Iud and Iwd have a full-wave rectified waveform in the configuration example of FIG. 11, whereas they have a substantially sinusoidal waveform with positive and negative peaks in the configuration example of FIG. 12. By using the configuration example of FIG. 12, it is possible to perform speed monitoring in functional safety and abnormality diagnosis based on the current value, as in the case of FIG. 11.
 <実施の形態6の主要な効果>
 以上、実施の形態6のモータ制御装置を用いることでも、実施の形態5の場合と同様の効果が得られる。すなわち、貫通型電流センサ(監視用電流センサ8)が不要となり、システムの小型化や低コスト化に寄与できる。また、電流集約部18の遮断周波数は、ローパスフィルタの遮断周波数に比べて高くなっている。これにより、電流監視器10は、例えばリンギング波形の解析やリサージュ分析等で必要とされる、高周波成分を含んだ電流値を取得することが可能になる。その結果、高周波成分を損うことなく、より精度の高い異常診断が実現可能になる。
<Main effects of Embodiment 6>
As described above, even by using the motor control device of the sixth embodiment, the same effect as that of the fifth embodiment can be obtained. That is, the penetration type current sensor (monitoring current sensor 8) becomes unnecessary, which can contribute to the miniaturization and cost reduction of the system. Further, the cutoff frequency of the current aggregation unit 18 is higher than the cutoff frequency of the low-pass filter. This makes it possible for the current monitor 10 to acquire a current value including a high frequency component, which is required for, for example, analysis of a ringing waveform or Lissajous analysis. As a result, more accurate abnormality diagnosis can be realized without damaging the high frequency component.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、前述した実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the invention made by the present inventor has been specifically described above based on the embodiment, the present invention is not limited to the above embodiment and can be variously modified without departing from the gist thereof. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. .. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 1…制御器、2…電力変換器、3…モータ、7…制御用電流センサ、8…監視用電流センサ、10…電流監視器、11…電流制御器、15…PWM制御器、18…電流集約部、Iu1,Iv1,Iw1…電流フィードバック信号(出力電流値)、Iud,Ivd,Iwd…電流監視信号(出力電流値)、OP…オペアンプ、Tsc,Tse,Tsr…間隔(周期) 1 ... controller, 2 ... power converter, 3 ... motor, 7 ... control current sensor, 8 ... monitoring current sensor, 10 ... current monitor, 11 ... current controller, 15 ... PWM controller, 18 ... current Aggregator, Iu1, Iv1, Iw1 ... Current feedback signal (output current value), Iud, Ivd, Iwd ... Current monitoring signal (output current value), OP ... Optics, Tsc, Tse, Tsr ... Interval (cycle)

Claims (13)

  1.  直流電力を複数のスイッチング素子のスイッチングによって交流電力に変換し、当該交流電力をモータに供給する電力変換器と、
     前記電力変換器を制御する制御器と、
    を備えるモータ制御装置であって、
     前記制御器は、
     前記複数のスイッチング素子をPWM信号で制御するPWM制御器と、
     前記電力変換器の出力電流値を第1の間隔で取得し、取得した前記出力電流値と、電流指令値との誤差に基づいて前記PWM信号のデューティ比を定める電流制御器と、
     前記電力変換器の前記出力電流値を、前記第1の間隔とは異なる第2の間隔で取得することで前記出力電流値を監視する電流監視器と、
    を有する、
    モータ制御装置。
    A power converter that converts DC power into AC power by switching multiple switching elements and supplies the AC power to the motor.
    A controller that controls the power converter and
    It is a motor control device equipped with
    The controller
    A PWM controller that controls the plurality of switching elements with PWM signals,
    A current controller that acquires the output current value of the power converter at the first interval and determines the duty ratio of the PWM signal based on the error between the acquired output current value and the current command value.
    A current monitor that monitors the output current value by acquiring the output current value of the power converter at a second interval different from the first interval, and
    Have,
    Motor control device.
  2.  請求項1記載のモータ制御装置において、
     前記モータは、複数の巻線を有し、
     前記電力変換器は、前記複数の巻線に応じて複数設けられ、
     前記電流監視器は、前記複数の電力変換器のそれぞれの前記出力電流値を監視する、
    モータ制御装置。
    In the motor control device according to claim 1,
    The motor has multiple windings
    A plurality of the power converters are provided according to the plurality of windings.
    The current monitor monitors the output current value of each of the plurality of power converters.
    Motor control device.
  3.  請求項2記載のモータ制御装置において、
     前記制御器は、前記複数の電力変換器に応じて複数設けられ、
     前記複数の制御器のそれぞれは、前記PWM制御器と、前記電流制御器とを有し、
     前記電流監視器は、前記複数の制御器のいずれか一つの中に設けられる、
    モータ制御装置。
    In the motor control device according to claim 2,
    A plurality of the controllers are provided according to the plurality of power converters.
    Each of the plurality of controllers has the PWM controller and the current controller.
    The current monitor is provided in any one of the plurality of controllers.
    Motor control device.
  4.  請求項2記載のモータ制御装置において、
     前記制御器は、前記複数の電力変換器に応じて複数設けられ、
     前記複数の制御器のそれぞれは、前記PWM制御器と、前記電流制御器とを有し、
     前記電流監視器は、前記複数の制御器の外部に共通に設けられる、
    モータ制御装置。
    In the motor control device according to claim 2,
    A plurality of the controllers are provided according to the plurality of power converters.
    Each of the plurality of controllers has the PWM controller and the current controller.
    The current monitor is commonly provided outside the plurality of controllers.
    Motor control device.
  5.  請求項2記載のモータ制御装置において、
     前記複数の電力変換器からの複数の出力配線にそれぞれ設置され、前記複数の電力変換器の前記出力電流値をそれぞれ検出する複数の電流センサと、
     貫通孔が形成され、前記複数の電力変換器からの前記複数の出力配線が前記貫通孔を貫通するように設置されることで、前記複数の電力変換器の前記出力電流値を合成した合成電流値を検出する貫通型電流センサと、
    を有し、
     前記電流監視器は、前記複数の電流センサでそれぞれ検出された前記出力電流値に加えて、前記貫通型電流センサで検出された前記合成電流値を監視する、
    モータ制御装置。
    In the motor control device according to claim 2,
    A plurality of current sensors installed in a plurality of output wirings from the plurality of power converters and detecting the output current values of the plurality of power converters, respectively.
    A through hole is formed, and the plurality of output wirings from the plurality of power converters are installed so as to penetrate the through hole, so that a combined current obtained by synthesizing the output current values of the plurality of power converters. A penetration type current sensor that detects the value, and
    Have,
    The current monitor monitors the combined current value detected by the through-type current sensor in addition to the output current value detected by each of the plurality of current sensors.
    Motor control device.
  6.  請求項5記載のモータ制御装置であって、
     前記モータは、3相モータであり、
     前記複数の電流センサのそれぞれは、3相中の2相の前記出力電流値を検出し、
     前記貫通型電流センサは、前記3相中の残りの1相の前記合成電流値を検出する、
    モータ制御装置。
    The motor control device according to claim 5.
    The motor is a three-phase motor.
    Each of the plurality of current sensors detects the output current value of two of the three phases.
    The through-type current sensor detects the combined current value of the remaining one of the three phases.
    Motor control device.
  7.  請求項2記載のモータ制御装置において、
     前記複数の電力変換器からの複数の出力配線にそれぞれ設置され、前記複数の電力変換器の前記出力電流値をそれぞれ検出する複数の電流センサと、
     前記複数の電流センサからの検出信号をそれぞれフィルタリングして前記電流制御器へ出力する複数のローパスフィルタと、
     オペアンプ回路で構成され、前記複数の電流センサからの検出信号をアナログ加算して前記電流監視器へ出力する加算器と、
    を有する、
    モータ制御装置。
    In the motor control device according to claim 2,
    A plurality of current sensors installed in a plurality of output wirings from the plurality of power converters and detecting the output current values of the plurality of power converters, respectively.
    A plurality of low-pass filters that filter the detection signals from the plurality of current sensors and output them to the current controller.
    An adder that is composed of an operational amplifier circuit, analog-adds detection signals from the plurality of current sensors, and outputs the detection signals to the current monitor.
    Have,
    Motor control device.
  8.  請求項2記載のモータ制御装置において、
     前記複数の電力変換器からの複数の出力配線にそれぞれ設置され、前記複数の電力変換器の前記出力電流値をそれぞれ検出する複数の電流センサと、
     前記複数の電流センサからの検出信号をそれぞれフィルタリングして前記電流制御器へ出力する複数のローパスフィルタと、
     前記複数の電流センサからの検出信号をそれぞれ整流し、出力ノードが共通に接続される複数の整流器と、
     前記複数の整流器の前記出力ノードからの信号を受けて、前記電流監視器への出力を行うアンプ回路と、
    を有する、
    モータ制御装置。
    In the motor control device according to claim 2,
    A plurality of current sensors installed in a plurality of output wirings from the plurality of power converters and detecting the output current values of the plurality of power converters, respectively.
    A plurality of low-pass filters that filter the detection signals from the plurality of current sensors and output them to the current controller.
    A plurality of rectifiers that rectify the detection signals from the plurality of current sensors and connect the output nodes in common,
    An amplifier circuit that receives signals from the output nodes of the plurality of rectifiers and outputs them to the current monitor.
    Have,
    Motor control device.
  9.  請求項1または2記載のモータ制御装置において、
     前記第2の間隔は、前記第1の間隔よりも短くなっている、
    モータ制御装置。
    In the motor control device according to claim 1 or 2.
    The second interval is shorter than the first interval,
    Motor control device.
  10.  請求項1または2記載のモータ制御装置において、
     前記電流監視器が前記出力電流値を取得する経路の伝達関数の遮断周波数は、前記電流制御器が前記出力電流値を取得する経路の伝達関数の遮断周波数よりも高くなっている、モータ制御装置。
    In the motor control device according to claim 1 or 2.
    The cutoff frequency of the transfer function of the path from which the current monitor acquires the output current value is higher than the cutoff frequency of the transfer function of the path from which the current controller acquires the output current value. ..
  11.  請求項1または2記載のモータ制御装置において、
     前記電流監視器は、監視トリガ成立後に前記第2の間隔で所定回数連続して前記出力電流値を取得し、
     前記監視トリガは、前記PWM信号の立ち上がりエッジまたは立ち下りエッジである、モータ制御装置。
    In the motor control device according to claim 1 or 2.
    After the monitoring trigger is established, the current monitor continuously acquires the output current value a predetermined number of times at the second interval.
    The monitoring trigger is a motor control device which is an rising edge or a falling edge of the PWM signal.
  12.  請求項1または2記載のモータ制御装置において、
     前記電流監視器は、前記電流制御器が前記出力電流値を取得する期間とは異なる期間で前記出力電流値を取得する、
    モータ制御装置。
    In the motor control device according to claim 1 or 2.
    The current monitor acquires the output current value in a period different from the period in which the current controller acquires the output current value.
    Motor control device.
  13.  請求項1または2記載のモータ制御装置において、
     前記第2の間隔は、時系列的にランダムに定められる、
    モータ制御装置。
    In the motor control device according to claim 1 or 2.
    The second interval is randomly determined in chronological order.
    Motor control device.
PCT/JP2020/040671 2020-06-16 2020-10-29 Motor control device WO2021255956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-103541 2020-06-16
JP2020103541A JP7246344B2 (en) 2020-06-16 2020-06-16 motor controller

Publications (1)

Publication Number Publication Date
WO2021255956A1 true WO2021255956A1 (en) 2021-12-23

Family

ID=79196236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040671 WO2021255956A1 (en) 2020-06-16 2020-10-29 Motor control device

Country Status (2)

Country Link
JP (1) JP7246344B2 (en)
WO (1) WO2021255956A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141945A (en) * 2012-01-12 2013-07-22 Jtekt Corp Electric power steering device
WO2014115446A1 (en) * 2013-01-28 2014-07-31 日立オートモティブシステムズ株式会社 Motor control system
JP2019161934A (en) * 2018-03-15 2019-09-19 トヨタ自動車株式会社 Motor controller, motor control program and motor control method
JP2019193388A (en) * 2018-04-23 2019-10-31 ルネサスエレクトロニクス株式会社 Motor drive device and motor drive method
JP6704560B1 (en) * 2019-03-18 2020-06-03 三菱電機株式会社 Power conversion device, drive control system, machine learning device, and motor monitoring method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141945A (en) * 2012-01-12 2013-07-22 Jtekt Corp Electric power steering device
WO2014115446A1 (en) * 2013-01-28 2014-07-31 日立オートモティブシステムズ株式会社 Motor control system
JP2019161934A (en) * 2018-03-15 2019-09-19 トヨタ自動車株式会社 Motor controller, motor control program and motor control method
JP2019193388A (en) * 2018-04-23 2019-10-31 ルネサスエレクトロニクス株式会社 Motor drive device and motor drive method
JP6704560B1 (en) * 2019-03-18 2020-06-03 三菱電機株式会社 Power conversion device, drive control system, machine learning device, and motor monitoring method

Also Published As

Publication number Publication date
JP7246344B2 (en) 2023-03-27
JP2021197840A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
CN110277946B (en) Motor control device, motor control program, and motor control method
CN111175595B (en) Method for monitoring residual life of direct current capacitor of three-phase full-control rectification system
JP6516878B2 (en) Motor controller
CN108633323B (en) Power conversion device and rotating electric machine drive device
CN109155581B (en) Power conversion device
JP5514660B2 (en) Load control device
JP6629893B2 (en) Motor drive device for estimating stray capacitance
JP5132848B1 (en) Power converter
CN111656669B (en) Control device
EP2896533A1 (en) Semiconductor device and driving apparatus
JP5979086B2 (en) Supervisory circuit
WO2021255956A1 (en) Motor control device
JP5466482B2 (en) Digital conversion device and power conversion device
CN108631684A (en) The control device of AC rotary motor
US9528886B2 (en) Method and apparatus for diagnosing a device for determining the temperature of a component of an electric unit
JP2020043672A (en) Inverter controller
US11777429B2 (en) Control device and failure determination method
JP5473071B2 (en) Load control device
US9780694B2 (en) Power conversion device and power conversion control method
US20230261601A1 (en) Power conversion system
CN110663168A (en) Rotation angle detection device and AC rotating machine control device
KR20190001984A (en) Method and system for estimating a position of rotator in electric motor
JP6540586B2 (en) Control device for AC motor
CN108141144B (en) Inverter device and method for manufacturing inverter device
US20200195187A1 (en) Motor control device and motor control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940874

Country of ref document: EP

Kind code of ref document: A1