WO2021255037A1 - Générateur de radionucléides 99mo/99mtc - Google Patents

Générateur de radionucléides 99mo/99mtc Download PDF

Info

Publication number
WO2021255037A1
WO2021255037A1 PCT/EP2021/066136 EP2021066136W WO2021255037A1 WO 2021255037 A1 WO2021255037 A1 WO 2021255037A1 EP 2021066136 W EP2021066136 W EP 2021066136W WO 2021255037 A1 WO2021255037 A1 WO 2021255037A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide particles
sorbent
composition according
particle size
Prior art date
Application number
PCT/EP2021/066136
Other languages
English (en)
Inventor
Steve DIERICK
Solène LE BRAS
Christophe SAUVAGE
Mathieu DARAN
Original Assignee
Institut National Des Radioéléments
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National Des Radioéléments filed Critical Institut National Des Radioéléments
Publication of WO2021255037A1 publication Critical patent/WO2021255037A1/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/0005Isotope delivery systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0036Molybdenum
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0042Technetium

Definitions

  • the present invention relates to a "Mo / 99m Tc radionuclide generator, as well as to a device comprising a chromatographic column, said chromatographic column being filled with a composition comprising titanium oxide and a source of molybdenum-99. and / or disintegration products of molybdenum-99.
  • a "Mo / 99m Tc radionuclide generator" as well as to a device comprising a chromatographic column, said chromatographic column being filled with a composition comprising titanium oxide and a source of molybdenum-99. and / or disintegration products of molybdenum-99.
  • the radionuclide generator has become an essential equipment in the medical field of diagnosis and therapy, and is used as a source of radionuclide.
  • a radionuclide generator is mainly composed of a chromatographic column filled with an adsorbent material, for example alumina or an ion exchange resin, on which a radionuclide is adsorbed. Due to the generally low half-life of the radionuclides used in the field of medical imaging, the radionuclide of interest is generally delivered to the practitioner in the form of its parent radionuclide, with a longer half-life, which is adsorbed on said adsorbent material.
  • an adsorbent material for example alumina or an ion exchange resin
  • 99m Tc technetium-99m
  • 99 Mo molybdenum-99
  • the "Mo / 99m Tc radionuclide generator then comprises a chromatographic column in which the" Mo is adsorbed on a sorbent.
  • the "Mo currently used generally results from the fission of highly or weakly enriched uranium 235 (235 U).
  • The" Mo generated by this process typically exhibits a specific activity greater than 5000 Ci / g.
  • the process for isolating "Mo obtained by fission of 235 U requires a specific installation as well as numerous preparation and purification steps. It also generates highly radioactive waste, which requires controlled and expensive disposal.
  • the use of highly enriched uranium for civilian purposes is highly regulated.
  • WO 2016/055434 aims to provide a stationary phase for a radioisotope generator exhibiting a specific elution of the daughter radioisotope, at high concentrations, with a reduced breakthrough of the parent radioisotope.
  • the mother / daughter pair is for example the 68 Ge / 68 Ga, 82 Sr / 82 Rb, "Mo / 99m Tc, or 188 W / 188 Re pair.
  • This document discloses the use of titanium dioxide having surface values. specific and particle size dso over a very wide range, respectively between 30 and 300 m 2 / g and between 10 and 350 miti, in a radioisotope generator device. titanium dioxide with a BET specific surface area of 259 m 2 / g and a dso particle size of 152 ⁇ m as stationary phase to determine the initial 68 Ge breakthrough for use in a 68 Ge / 68 type generator Ga. The breakthrough obtained is relatively high and is of the order of 10 2 %.
  • Another particular exemplary embodiment relates to a generator of 99 Mo / 99m Tc radioisotopes comprising a stationary phase charged with "Mo comprising particles.
  • titanium oxide having a particle size of 35 ⁇ m t a BET specific surface of 120 m 2 / g exhibits a breakthrough of the order of 10 6 to 10 7 %.
  • Chakravarty Journal of Nanoscience and Nanotechnology, Vol. 8, 4447-4452, 2008 discloses the use of a sorbent material, composed of titanium oxide nanocrystals in a polymer matrix for adsorption of "Mo.
  • This material has a titanium oxide with a BET specific surface area of 30 m 2 / g and is sieved using a 25-50 mesh sieve (corresponding to an aggregate size of 300-710 pm).
  • This material shows a breakthrough at the limit of the European Pharmacopoeia (less than 10 3 ) and a dynamic capacity to breakthrough of 75 mg of Mo per gram of sorbent material.
  • the dynamic capacity to breakthrough is defined as the amount of molybdenum fixed on a titanium oxide column when the molybdenum is detectable in the eluates.
  • Mushtaq Radiochim. Acta 99, 231-235, 2011
  • Mushtaq presents a hydrated titanium oxide as adsorbent for "Mo, in particular for” Mo of low specific activity, and for its potential for use in a generator of radionuclides "Mo /" m Tc.
  • Said hydrated titanium oxide exhibits aggregates sieved at 100-200 mesh ( corresponding to a size between 75 and 150 ⁇ m.
  • the static batch capacity is defined as the quantity of Mo fixed on the titanium oxide in suspension in a solution containing an excess of Mo at a given temperature and at a given time.
  • the static capacity in batch being different from the dynamic capacity in breakthrough, the value disclosed in this document is meaningless for an application in a radionuclide generator. Fasih (Science and Technology Separation, vol. 51, n ° 13,
  • 2115-2121, 2016 discloses the synthesis and use of nanocrystalline titanium dioxide as a sorbent for the preparation of a "Mo /" m Tc radionuclide generator.
  • Said titanium dioxide has a BET specific surface area of 320 m 2 / g and an aggregate size between 100 and 400 ⁇ m.
  • the calculated dynamic capacity to breakthrough is 78 ⁇ 2 mg of "MB per gram of T1O2 and the breakthrough is of the order of 10 4 .
  • Fasih in order to comply with the American pharmacopoeia in force, proposes an additional step of purification of 99m Tc by separation on alumina, which has the disadvantage of increasing the elution time, to the detriment of the yield in 99m Tc.
  • Sorbents comprising titanium dioxide have also been disclosed in the context of the selective extraction of "Mo with a view to its purification.
  • Document US Pat. No. 6,337,055 describes a process the aim of which is to selectively extract" Mo from highly radioactive solutions.
  • uranium using an inorganic sorbent whose composition is hydrated titanium dioxide comprising 5 to 40 mol% zirconium oxide.
  • Said hydrated titanium dioxide is in the form of pellets and preferably has a size of between 0.1 and 2.0 mm and a specific surface area of between 100 and 350 m 2 / g.
  • a subject of the present invention is therefore a composition comprising a source of molybdenum (Mo) comprising "Mo and / or disintegration products of" Mo, and a sorbent comprising particles of titanium oxide, characterized in that the concentration of said source of Mo, expressed in molybdenum equivalent, is less than or equal to 2.1 mmol of Mo per gram of sorbent, and in that said particles of titanium oxide have a BET specific surface, measured according to the ISO 9277: 2010 standard, between 180.0 m 2 / g and 280.0 m 2 / g and a particle size dso of between 10.0 pm and 350.0 pm.
  • a subject of the present invention is also a device comprising a chromatographic column, said chromatographic column comprising said composition.
  • a subject of the present invention is also a generator of “Mo / 99m Tc radionuclides comprising said device.
  • composition is inclusive or open ended and does not exclude other unrequited elements, or compositional components. This term should be interpreted as specifying the presence of the characteristics, values, steps or components referring to it, but does not exclude the presence or addition of one or more characteristics, values, steps or components. Therefore, the scope of the expression “a composition comprising component A and B” should not be limited to a composition consisting only of components A and B. This means that the only relevant components are A and B. Therefore, the term “comprising” includes the more restrictive terms “consisting essentially of” and “consisting of"
  • said composition comprises a source of molybdenum (Mo), comprising molybdenum-99 ( 99 Mo) and / or decay products of "Mo, as defined above.
  • Mo molybdenum
  • the term “Molybdenum” or “Mo” is used interchangeably and includes all known isotopes of molybdenum, radioactive or non-radioactive, such as, for example, molybdenum having a number of nucleons between 92 and 100, such as molybdenum-98 , molybdenum-99 and molybdenum-100.
  • the source of molybdenum included in the composition according to the present invention is a molybdate salt.
  • Molybdate can come in different forms, which are highly dependent on the concentration of said molybdenum source as well as the pH and can, for example, be in the form of M0O4 2 , [M02O7] 2 , [M06O19] 2 , [ M07O24] 6 , [M08O26] 4 , complexes thereof, such as conjugate molybdate acids and conjugate bases of molybdic acid, or a combination thereof.
  • the source of Mo included in the composition according to the present invention can come from any means known to those skilled in the art and can be obtained for example from the fission of a uranium-235 target, highly or slightly enriched in uranium-235, previously irradiated or by neutron capture or by photonuclear reaction (g, h) on targets based on natural molybdenum or enriched respectively in 98 Mo or in 100 Mo.
  • said source of Mo is obtained by neutron capture or by photonuclear reaction (g, h) on molybdenum-based targets enriched respectively in 98 Mo or in 100 Mo.
  • said decay products of" Mo are selected from the group consisting of technetium-99m ( 99m Tc), technetium-99 ("Te), ruthenium-99 ("Ru) and mixtures thereof.
  • said "Mo" decay product is preferably 99m Tc.
  • composition as defined according to the present invention comprises a source of molybdenum characterized in that the concentration of said source of Mo, expressed in molybdenum equivalent, is less than or equal to 2.1 mmol of Mo per gram of sorbent.
  • concentration expressed in molybdenum equivalent (hereinafter C) is defined by the sum of the quantities of materials, expressed in moles, in molybdenum, any isotope combined and as defined above. (hereinafter PM 0 ) and the sum of the quantities of materials of said disintegration products of "Mo, expressed in moles (hereinafter ndisint) - the whole over the mass of said sorbent (hereinafter m S orbant), and is defined by the following relation:
  • the concentration of said source of Mo is expressed as elemental molybdenum, all isotope combined and as defined above, and in the hypothetical case where the decay products of "Mo were in the form of Mo.
  • the composition as defined according to the present invention comprises a source of molybdenum whose concentration, expressed in molybdenum equivalent, is less than or equal to 1.9 mmol of Mo per gram of sorbent, or less than or equal to 1.7 mmol of Mo per gram of sorbent, or less than or equal to 1.5 mmol of Mo per gram of sorbent.
  • composition as defined according to the present invention advantageously comprises a source of molybdenum whose concentration, expressed in molybdenum equivalent, is greater than or equal to 0.0001 mmol, or greater than or equal to 0.01 mmol of Mo per gram of sorbent, or greater than or equal to 0.2 mmol of Mo per gram of sorbent, or greater than or equal to 0.5 mmol of Mo per gram of sorbent
  • the composition as defined according to the present invention comprises a source of Mo whose concentration, expressed in molybdenum equivalent, is between 0.0001 and 2.1 mmol of Mo per gram of sorbent, or between 0.01 and 1.9 mmol of Mo per gram of sorbent, or between 0.2 and 1.7 mmol of Mo per gram of sorbent, or between 0.5 and 1.5 mmol of Mo per gram of sorbent.
  • composition according to the present invention comprises a sorbent comprising particles of titanium oxide, as defined above.
  • the sorbent included in the composition as defined according to the present invention can comprise other oxides and / or hydroxides of metals, such as, for example, zirconium hydroxide, zirconium dioxide, hydroxide aluminum, aluminum oxide, silicon dioxide, tin dioxide, hafnium hydroxide, and hafnium dioxide.
  • the sorbent has a titanium oxide content greater than or equal to 90 mol% relative to the total number of moles of said sorbent, preferably greater than or equal to 92 mol% relative to the number of total moles of said sorbent, more preferably greater than or equal to 95 mol% relative to the total number of moles of said sorbent.
  • said composition according to the present invention comprises a sorbent consisting essentially of titanium oxide particles.
  • the term “consisting essentially of particles of titanium oxide” means that all other particles P, other than particles of titanium oxide, may be present at a maximum content of. 5 mol% relative to the total number of moles of said sorbent, preferably a maximum content of 2 mol% relative to the total number of moles of said sorbent, even more preferably a maximum content of 1 mol% relative to the number of total moles of said sorbent.
  • said titanium oxide is chosen from the group consisting of titanium monoxide (TiO), titanium dioxide (Ti0 2 ) or hydrated titanium dioxide of the Ti0 2 .xH 0 type, where x represents an integer between 0 and 10.
  • the titanium dioxide can be in anatase or rutile crystalline form or a mixture thereof.
  • said titanium oxide is chosen from the group consisting of T1O2 or PO2.CH2O, where x is an integer from 0 to 10.
  • the titanium oxide particles are not limited by their morphology and can for example be in the form of pellets, needles, spherical crystallites, spheres, or their combination.
  • said titanium oxide particles are in the form of spheres.
  • said titanium particles have a BET specific surface area of between 180.0 m 2 / g and 280.0 m 2 / g.
  • the BET specific surface area is the specific surface area of the particles calculated by nitrogen adsorption by the BET method according to the ISO 9277: 2010 standard.
  • said titanium oxide particles have a BET specific surface area greater than or equal to 190.0 m 2 / g, preferably greater than or equal to 200.0 m 2 / g, of more preferably greater than or equal to 210.0 m 2 / g, even more preferably greater than or equal to 220.0 m 2 / g.
  • said titanium oxide particles also have a BET specific surface area preferably less than or equal to 275.0 m 2 / g, preferably less than or equal to 270.0 m 2 / g, more preferably less than or equal to 265.0 m 2 / g, even more preferably less than or equal to 260.0 m 2 / g
  • said titanium oxide particles have a BET specific surface area preferably between 190.0 m 2 / g and 275.0 m 2 / g, preferably between 200.0 m 2 / g m 2 / g and 270.0 m 2 / g, more preferably between 210.0 m 2 / g and 265.0 m 2 / g, of even more preferably between 220.0 m 2 / g and 260.0 m 2 / g.
  • said titanium oxide particles have a particle size d 50 of between 10.0 ⁇ m and 350.0 ⁇ m.
  • the notation “dx of y pm” means that x% by number of the particles, relative to the total number of particles, have a particle size of less than y pm.
  • a d 50 equal to 60 ⁇ m means that 50% by number of the particles, relative to the total number of particles, have a particle size of less than 60 ⁇ m.
  • the composition as defined according to the present invention comprises particles of titanium oxide having a particle size d 50 greater than or equal to 12.0 ⁇ m, or greater than or equal to 14.0 ⁇ m, or greater than or equal to
  • the composition as defined according to the present invention comprises titanium oxide particles having a particle size dso less than or equal to 250.0 ⁇ m, or less than or equal to 200.0 ⁇ m, or less than or equal to
  • the composition as defined according to the present invention comprises particles of titanium oxide having a particle size d 50 of between 12.0 ⁇ m and 250.0 ⁇ m, or between 14.0 ⁇ m and 200 ⁇ m. , 0 ⁇ m, or between 16.0 ⁇ m and 150.0 ⁇ m.
  • said titanium oxide particles exhibit pores having an average diameter, measured according to the BJH method greater than or equal to 1.0 nm, preferably greater than or equal to 2.0 nm , more preferably greater than or equal to 3.0 nm.
  • the mean diameter of the pores is measured by the BJH method by nitrogen adsorption manometry and calculated according to the BJH method in desorption.
  • said titanium oxide particles exhibit pores having an average diameter, measured according to the BJH method, less than or equal to 30.0 nm, preferably less than or equal to 20.0 nm , more preferably less than or equal to 15.0 nm, even more preferably less than or equal to 8.0 nm, even more preferably less than or equal to 5.0 nm.
  • said titanium oxide particles exhibit pores having an average diameter, measured according to the BJH method, of between 1.0 nm and 30.0 nm, preferably between 1.0 nm and 20.0 nm, more preferably between 2.0 nm and 8.0 nm, even more preferably between 3.0 nm and 5.0 nm.
  • said titanium oxide particles have crystallites whose size is less than or equal to 30.0 nm, or less than or equal to 15.0 nm, or less than or equal to 10, 0 nm, or less than or equal to
  • said titanium oxide particles have a pore volume, measured according to the BJH method, greater than or equal to 0.05 cm 3 / g, preferably greater than or equal to 0.07 cm 3 / g, more preferably greater than or equal to 0.10 cm 3 / g, even more preferably greater than or equal to 0.12 cm 3 / g, even more preferably greater than or equal to 0.15 cm 3 / g.
  • the pore volume is measured by nitrogen adsorption manometry and calculated according to the BJH desorption method.
  • said titanium oxide particles have a pore volume, measured according to the BJH method, less than or equal to 0.4 cm 3 / g, preferably less than or equal to 0.3 cm 3 / g, more preferably less than or equal to 0.25 cm 3 / g.
  • said titanium oxide particles have a pore volume, measured according to the BJH method, of between 0.05 cm 3 / g and 0.4 cm 3 / g, preferably between 0, 10 cm 3 / g and 0.30 cm 3 / g, more preferably between 0.15 cm 3 / g and 0.25 cm 3 / g.
  • said titanium oxide particles have a particle size distribution width (width of the DTP below) of between 1.0 and 10.0.
  • width of the particle size distribution width of the DTP hereinafter - also called span value
  • said titanium oxide particles have a width of the DTP less than or equal to 7.0, preferably less than or equal to 5.0, more preferably less than or equal. to 3.0, even more preferably less than or equal to 2.0. It is understood that in the composition according to the present invention, the width of the DTP as defined above is greater than or equal to 1.0.
  • said titanium oxide particles have a width of the DTP of between 1.0 and 7.0, preferably between 1.0 and 5.0, more preferably between 1.0 and 3.0, even more preferably between 1.0 and 2.0.
  • composition as defined according to the present invention has a variety of applications.
  • composition as defined according to the present invention is particularly advantageous in its use in a device comprising a chromatographic column.
  • a subject of the invention is therefore also a device comprising a chromatographic column, said chromatographic column comprising said composition, as defined above, and an eluent.
  • composition as defined above and an eluent included in a chromatographic column makes it possible to achieve a greatly reduced breakthrough, an increased dynamic capacity to breakthrough in Mo and a reduced volume of the eluate.
  • breakthrough corresponds to undesirable entrainment by the eluent of molybdenum from said sorbent contained in a chromatographic column, and which is found in the eluate at the outlet of said chromatographic column.
  • the parameter “dynamic capacity to breakthrough in Mo” is defined as the quantity of molybdenum adsorbed on the sorbent at the moment when the total quantity of molybdenum present in the eluates is equal to 0.10% of the number of molybdenum inserted into the column, and is expressed in milligrams of Mo per gram of said sorbent.
  • the BET specific surface area and the diameter of the particles dso of said titanium oxide particles make it possible, synergistically, to obtain optimum adsorption of said source of molybdenum on said sorbent, this which promotes a particularly low breakthrough, while allowing the elution of the compound (s) of interest, such as, for example, the decay products of "Mo, preferably 99m Tc, or the starting products and / or intermediates resulting from the production of "Mo, such as, for example, compounds comprising uranium, and / or uranium-235 fission products.
  • the compound (s) of interest such as, for example, the decay products of "Mo, preferably 99m Tc, or the starting products and / or intermediates resulting from the production of "Mo, such as, for example, compounds comprising uranium, and / or uranium-235 fission products.
  • the combination of the BET specific surface area and the size of the particles dso of said titanium oxide particles makes it possible to considerably increase the dynamic capacity for breakthrough in Mo and in particular promotes the use. of Mo of low specific activity while maintaining a yield and a concentration of the compound (s) of interest in the optimum eluate, and this, by limiting the necessary steps of concentration of the eluate during, for example, the use of said eluate for radiopharmaceutical purposes.
  • the device according to the present invention comprises a chromatographic column, the material of which can be any material known to those skilled in the art, such as, for example, glass, stainless steel, or polyetheretherketone (PEEK).
  • a chromatographic column the material of which can be any material known to those skilled in the art, such as, for example, glass, stainless steel, or polyetheretherketone (PEEK).
  • the device according to the present invention comprises a chromatographic column which may have any shape known to those skilled in the art, such as, for example, a tubular shape, a U-shape, etc.
  • a chromatographic column which may have any shape known to those skilled in the art, such as, for example, a tubular shape, a U-shape, etc.
  • the inventors have surprisingly found that when the composition as defined according to the present invention exhibits a particle size dso between 18.0 miti and 140.0 miti, preferably between 20.0 miti and 135.0 miti, more preferably between 22.0 miti and 130.0 miti, or between 90.0 miti miti and 130.0 miti, said composition is particularly favorable in a device comprising a chromatographic column, in particular in a process for purifying the "Mo produced by fission of uranium.
  • the eluent included in said device can be any eluent known to those skilled in the art, and can, for example, be an aqueous saline solution, such as an aqueous solution of sodium chloride optionally comprising a nitrate salt, or an aqueous solution of hydroxide salts, such as, for example, an aqueous solution of sodium hydroxide (NaOH), potassium hydroxide (KOH) or ammonium hydroxide (NhUOH) or their combination.
  • the composition as defined according to the present invention is also particularly advantageous in its use in a device comprising a chromatographic column, said device being used in a generator of “Mo / 99m Tc radionuclides.
  • the subject of the invention is also a generator of “Mo / 99m Tc radionuclides comprising said device, said chromatographic column being connected to an eluent pipe and to an eluate outlet.
  • a "Mo / 99m Tc radionuclide generator is used, inter alia, in the field of nuclear medicine to produce an eluate comprising 99m Tc from a loaded sorbent. "Mo, which spontaneously decays to 99m Tc, which is intended to be eluted by an eluent.
  • the 99m Tc in the eluate is intended to be used as such or to bind to a molecule, such as for example a ligand or a biocompatible molecule, such as a protein or an antibody, so as to form a radiotracer, resulting from complexing 99m Tc with said ligand or said molecule, which is generally then administered to a patient by injection, typically in the form of a solution or a liquid suspension.
  • a molecule such as for example a ligand or a biocompatible molecule, such as a protein or an antibody
  • composition as defined according to the present invention in a “Mo / 99m Tc” radionuclide generator makes it possible, in addition to the advantages of the device mentioned above, to obtain 99m Tc in accordance with pharmacopoeia standards and thus reduce the harmful effects of the radioactivity of said "Mo on the patient, the practitioner and the quality of medical images, by a very low" Mo breakthrough.
  • said “Mo /” m Tc radionuclide generator according to the present invention comprises a chromatographic column connected to an eluent pipe and to an eluate outlet, and is arranged in a shielded formwork, preferably made at least in part from a dense material, such as, for example, depleted uranium, tungsten or lead.
  • said sorbent is advantageously loaded with a source of Mo as defined above, spontaneously disintegrating into its decay products, particularly into 99m Tc.
  • the radionuclide generator "Mo / 99m Tc according to the present invention comprises the composition as defined above.
  • the “Mo /” m Tc radionuclide generator according to the present invention comprises said composition comprising a source of Mo whose concentration, expressed in molybdenum equivalent, is between 0.0001 and 2.1 mmol of Mo per gram. of sorbent, preferably between 0.01 and 1.9 mmol of Mo per gram of sorbent, more preferably between 0.2 and 1.7 mmol of Mo per gram of sorbent, even more preferably between 0.5 and 1.5 mmol of Mo per gram of sorbent.
  • composition as defined according to the present invention has a particle size dso of between 26.0 ⁇ m and 70.0 ⁇ m, preferably between 28.0 ⁇ m and 65.0 ⁇ m, even more preferably between 30.0 and 60.0 ⁇ m, said composition is particularly favorable in a generator of “Mo /” m Tc radionuclides comprising a device comprising a chromatographic column.
  • said generator of “Mo / 99m Tc radionuclides according to the present invention comprises an eluent, said eluent being an aqueous saline solution.
  • aqueous saline solution is defined as being a solution of sodium chloride in water and optionally containing a nitrate salt.
  • said generator of "Mo / 99m Tc radionuclides according to the present invention comprises an eluent, said eluent being an aqueous saline solution comprising sodium chloride present at a concentration of between 0.1 mmol and 6.2 mol per liter of solution.
  • aqueous saline preferably between 15.0 mmol and 2.0 mol per liter of aqueous saline solution, more preferably between 50.0 mmol and 500.0 mmol per liter of aqueous saline solution, even more preferably between 100.0 mmol and 250.0 mmol per liter of aqueous saline solution, even more preferably between 125.0 mmol and 175.0 mmol per liter of aqueous saline solution.
  • said generator of radionuclides "Mo / 99m Tc according to the present invention comprises an eluent, said eluent being an aqueous saline solution as defined above, and optionally comprises a nitrate salt, such as, for example nitr sodium ate.
  • said aqueous saline solution as defined above is sterile.
  • said “Mo / 99m Tc radionuclide generator as defined above operates under sterile conditions.
  • a sorbent consisting of titanium oxide particles having a BET specific surface area of 249.0 m 2 / g and a dso particle size of 40.0 ⁇ m is loaded with a source of "Mo having an activity of 2.0. MBq.
  • Said sorbent consisting of titanium oxide particles also has an average BJH pore diameter of 3.7 nm and a crystallite size of 3.85 nm.
  • the dynamic capacity at breakthrough defined as the quantity of molybdenum adsorbed on the sorbent at the moment when the total quantity of molybdenum present in the eluates is equal to 0.10% of the quantity of molybdenum inserted in the column is calculated.
  • the dynamic capacity to breakthrough is 99.0 mg of Mo per gram of titanium oxide, which corresponds to a value of 1.04 mmol of Mo per gram of sorbent.
  • a "Mo / 99m Tc radionuclide generator comprising said sorbent as defined in Example 1 (E1) is loaded with a source of" Mo containing 0.867 mmol of molybdenum, expressed in molybdenum equivalent per gram of sorbent, and an activity of 455.0 GBq to perform the production of 99m Tc as well as the separation of the radionuclides of the pair "Mo /" m Tc.
  • the eluent used is an aqueous solution of sodium chloride NaCl concentrated to 154.0 mmol per liter of aqueous solution.
  • a sorbent consisting of titanium oxide particles having a BET specific surface area of 262.0 m 2 / g and a dso particle size of 40.0 miti, an average BJH pore diameter of 4.2 nm, and a size of crystallites of 4.42 nm, is loaded by a source of "Mo with an activity of 2.0 MBq.
  • the dynamic capacity at breakthrough defined as the amount of molybdenum adsorbed on the sorbent at the moment when the total amount of molybdenum present in the eluates is equal to 0.10% of the amount of molybdenum inserted in the column, is calculated.
  • the dynamic capacity to breakthrough is 120.4 mg of Mo per gram of titanium oxide, which corresponds to a value of 1.25 mmol of Mo per gram of sorbent.
  • a "Mo /" m T c radionuclide generator comprising said sorbent as defined in Example 2 (E2) is loaded by a source of "Mo containing 0.591 mmol of molybdenum, expressed in molybdenum equivalent per gram of sorbent, and an activity of 18.1 GBq to effect the production of 99m Tc as well as the separation of the radionuclides of the "Mo /" m Tc pair.
  • the eluent used is an aqueous solution of sodium chloride NaCl concentrated to 154.0 mmol per liter of aqueous solution.
  • the generator was eluted daily for a period of 14 days in order to follow the breakthrough in "Mo in each of the eluates taken daily.
  • a sorbent consisting of titanium oxide particles having a BET specific surface area of 135.0 m 2 / g and a dso particle size of 38.0 ⁇ m is loaded with a source of "Mo having an activity of 2.0. MBq.
  • Said sorbent consisting of titanium oxide particles also exhibits an average BJH pore diameter of 6.9 nm, and a crystallite size of 7.21 nm.
  • the dynamic capacity to breakthrough defined as the amount of molybdenum adsorbed on the sorbent when the total quantity of molybdenum present in the eluates is equal to 0.10% of the quantity of molybdenum inserted into the column is calculated.
  • the dynamic capacity at breakthrough is 45.0 mg of Mo per gram of titanium oxide, which corresponds to a value of 0.47 mmol of Mo per gram of sorbent.
  • a "Mo /" m Tc radionuclide generator comprising said sorbent as defined in Comparative Example 1 (EC1) is loaded with a source of "Mo containing 0.331 mmol of molybdenum, expressed in molybdenum equivalent per gram of sorbent, and an activity of 203.0 MBq to perform the production of 99m Tc as well as the separation of the radionuclides of the pair "Mo / 99m Tc.
  • Elution test The eluent used is an aqueous solution of sodium chloride concentrated at 154.0 mmol per liter.
  • the generator was eluted daily for a period of 20 days in order to follow the breakthrough in "Mo in each of the eluates taken daily.
  • a sorbent consisting of titanium oxide particles having a BET specific surface area of 156.0 m 2 / g and a particle size dso of 40.0 miti, an average BJH pore diameter of 6.1 nm and a size of crystallites of 5.42 nm, is loaded by a source of "Mo with an activity of 2.0 MBq.
  • the dynamic capacity at breakthrough defined as the amount of molybdenum adsorbed on the sorbent at the moment when the total amount of molybdenum present in the eluates is equal to 0.10% of the amount of molybdenum inserted in the column, is calculated.
  • the dynamic capacity at breakthrough is 67.8 mg of Mo per gram of titanium oxide, which corresponds to a value of 0.71 mmol of Mo per gram of sorbent.
  • the result is shown in Table 1.
  • a "Mo / 99m Tc radionuclide generator comprising a composition as described by the present invention exhibits a much lower" Mo breakthrough and considerably increased dynamic breakthrough capacity in Mo. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

La présente invention a donc pour objet une composition comprenant une source de molybdène (Mo) à une concentration inférieure ou égale à 2,1 mmol comprenant du 99Mo et/ou des produits de désintégration du 99Mo, et un sorbant comprenant des particules d'oxyde de titane présentant une surface spécifique BET, entre 180,0 m²/g et 280,0 m²/g et une taille de particules d50 comprise entre 10,0 µm et 350,0 µm. La présente invention a également pour objet un dispositif comprenant une colonne chromatographique comprenant ladite composition et un générateur de radionucléides 99Mo/99mTc comprenant ledit dispositif.

Description

Générateur de radionucléides "Mo/"mTc
Domaine de l’invention
La présente invention se rapporte à un générateur de radionucléides "Mo/99mTc, ainsi qu’à un dispositif comprenant une colonne chromatographique, ladite colonne chromatographique étant remplie d’une composition comprenant de l’oxyde de titane et une source de molybdène-99 et/ou des produits de désintégration du molybdène-99. Etat de l’art
Le générateur de radionucléides est devenu un équipement essentiel dans le domaine médical du diagnostic et de la thérapie, et est utilisé en tant que source de radionucléide.
Un générateur de radionucléides est principalement composé d’une colonne chromatographique remplie d’un matériau adsorbant, par exemple de l’alumine ou une résine échangeuse d’ions, sur lequel un radionucléide est adsorbé. Dû au temps de demi-vie généralement faible des radionucléides utilisés dans le domaine de l’imagerie médicale, le radionucléide d’intérêt est généralement délivré au praticien sous la forme de son radionucléide parent, d’une durée de demi-vie plus longue, qui est adsorbé sur ledit matériau adsorbant.
Parmi la large gamme de radionucléides disponibles, le technétium-99m (99mTc), d’une demi-vie d’environ 6 heures, est le plus courant. Le 99mTc est obtenu suite à la désintégration du molybdène-99 (99Mo), son radionucléide parent, d’un temps de demi-vie d’environ 66 heures. Le générateur de radionucléides "Mo/99mTc comprend alors une colonne chromatographique dans laquelle le "Mo est adsorbé sur un sorbant. Le "Mo se désintègre spontanément en 99mTc, ce dernier étant spécifiquement élué, typiquement par une solution saline, par différence d’affinité entre le "Mo et le 99mTc vis-à-vis du sorbant. Le "Mo actuellement utilisé résulte généralement de la fission d’uranium 235 (235U), hautement ou faiblement enrichi. Le "Mo généré par ce procédé présente typiquement une activité spécifique supérieure à 5000 Ci/g. Cependant, le procédé d’isolement du "Mo obtenu par fission d’235U requiert une installation spécifique ainsi que de nombreuses étapes de préparation et de purification. Il génère également des déchets hautement radioactifs, qui demandent une élimination contrôlée et coûteuse. De plus, dans le cadre de la limitation des risques de prolifération nucléaire, l’utilisation d’uranium hautement enrichi à des fins civiles est fortement régulée.
La production de "Mo par capture de neutrons ou par réaction photonucléaire (g,h) sur des cibles à base de molybdène enrichi respectivement en "Mo ou en 100Mo représente une alternative intéressante au "Mo obtenu par fission d’uranium, de par sa mise en oeuvre plus simple, et de par la présence réduite de déchets radioactifs pendant le procédé. Toutefois, le "Mo résultant présente une activité spécifique modérée à faible, de l’ordre de quelques dizaines à quelques centaines de Ci/g. Afin de compenser cette faible activité spécifique tout en gardant constante la quantité de 99mTc obtenue lors de l’élution, la concentration en molybdène adsorbée sur le sorbant de la colonne chromatographique doit être augmentée. En outre, les phases stationnaires doivent permettre de limiter le breakthrough en "Mo. En effet, il convient de limiter les risques de contamination du patient en respectant la pharmacopée en vigueur, qui tend à se durcir. Les spécifications de la pharmacopée européenne prévoient par exemple une valeur seuil de breakthrough en "Mo à ne pas dépasser de 0,1 %, tandis que la pharmacopée américaine stipule un breakthrough inférieur à 0,015 %. Cependant, les sorbants à base d’alumine, prédominants dans les générateurs de radionucléides "Mo/"mTc, ont une capacité d’adsorption en Mo faible. Bien que l’utilisation d’une colonne chromatographique contenant une quantité plus importante de sorbant soit envisageable, l’augmentation du volume d’élution et donc la diminution de la concentration du radionucléide fille dans l’éluat nécessite une étape de concentration ultérieure, entraînant une diminution du rendement d’extraction et une perte de radioactivité du radionucléide fille. De plus, l’augmentation de la taille des colonnes chromatographiques nécessite un changement d’équipement au niveau du générateur de radionucléides, ce qui entraîne des coûts supplémentaires. WO 2016/055434 a pour but de fournir une phase stationnaire pour générateur de radio-isotopes présentant une élution spécifique du radio-isotope fille, à des concentrations élevées, avec un breakthrough du radio-isotope mère réduit. Le couple mère/fille est par exemple le couple 68Ge/68Ga, 82Sr/82Rb, "Mo/99mTc, ou 188W/188Re. Ce document divulgue l’utilisation de dioxyde de titane présentant des valeurs de surface spécifique et de taille de particules dso sur une gamme très large, respectivement entre 30 et 300 m2/g et entre 10 et 350 miti, dans un dispositif de générateur de radio-isotopes. Un exemple de réalisation particulier porte sur l’utilisation de dioxyde de titane d’une surface spécifique BET de 259 m2/g et d’une taille de particules dso de 152 pm comme phase stationnaire pour déterminer le breakthrough initial 68Ge en vue de son utilisation dans un générateur de type 68Ge/68Ga. Le breakthrough obtenu est relativement haut et est de l’ordre de 10 2 %. Un autre exemple de réalisation particulier porte sur un générateur de radio- isotopes 99Mo/99mTc comportant une phase stationnaire chargée par du "Mo comprenant des particules d'oxyde de titane ayant une taille de particules de 35 pm et une surface spécifique BET de 120 m2/g présente un breakthrough de l’ordre de 106à 107%.
Chakravarty (Journal of Nanoscience and Nanotechnology, Vol. 8, 4447-4452, 2008) divulgue l’utilisation d’un matériau sorbant, composé de nano-cristaux d’oxyde de titane dans une matrice polymérique pour l’adsorption de "Mo. Ce matériau présente un oxyde de titane d’une surface spécifique BET de 30 m2/g et est tamisé en utilisant un tamis de 25-50 mesh (correspondant à une taille d’agrégat de 300 à 710 pm). Ce matériau montre un breakthrough à la limite de la pharmacopée européenne (inférieure à 10 3) et une capacité dynamique au breakthrough de 75 mg de Mo par gramme de matériau sorbant. La capacité dynamique au breakthrough est définie comme étant la quantité de molybdène fixée sur une colonne d’oxyde de titane au moment où le molybdène est détectable dans les éluats. Mushtaq (Radiochim. Acta 99, 231-235, 2011), quant à lui, présente un oxyde de titane hydraté en tant qu’adsorbant pour du "Mo, en particulier pour du "Mo de faible activité spécifique, et pour son potentiel d’utilisation dans un générateur de radionucléides "Mo/"mTc. Ledit oxyde de titane hydraté présente des agrégats tamisés à 100-200 mesh (correspondant à une taille comprise entre 75 et 150 pm. Un breakthrough de 10 4 et une capacité statique en batch, mesurée par adsorption du "Mo à 100°C pendant 1 heure, de 230 mg de Mo par gramme de sorbant sont obtenus. La capacité statique en batch est définie comme la quantité de Mo fixée sur l’oxyde de titane en suspension dans une solution contenant un excès de Mo à une température et à un temps donné. La capacité statique en batch étant différente de la capacité dynamique au breakthrough, la valeur divulguée dans ce document est dénuée de sens pour une application dans un générateur de radionucléides. Fasih (Séparation Science and Technology, vol. 51 , n°13,
2115-2121 , 2016) divulgue la synthèse et l’utilisation de dioxyde de titane nanocristallin en tant que sorbant pour la préparation d’un générateur de radionucléides "Mo/"mTc. Ledit dioxyde de titane présente une surface spécifique BET de 320 m2/g et une taille des agrégats entre 100 et 400 pm. La capacité dynamique au breakthrough calculée est de 78 ± 2 mg de "Mo par gramme de T1O2 et le breakthrough est de l’ordre de 10 4. Fasih, afin de se conformer à la pharmacopée américaine en vigueur, propose une étape additionnelle de purification du 99mTc par séparation sur de l’alumine, ce qui a pour désavantage d’augmenter le temps d’élution, au détriment du rendement en 99mTc. Les sorbants comprenant du dioxyde de titane ont également été divulgués dans le cadre de l’extraction sélective de "Mo en vue de sa purification. Le document US 6,337,055 décrit un procédé dont le but est d’extraire sélectivement du "Mo de solutions hautement radioactives d’uranium en utilisant un sorbant inorganique dont la composition est du dioxyde de titane hydraté comprenant 5 à 40 mol% d’oxyde de zirconium. Ledit dioxyde de titane hydraté est sous la forme de pastilles et présente préférentiellement une taille comprise entre 0,1 et 2,0 mm et une surface spécifique comprise entre 100 et 350 m2/g.
Il existe donc un besoin continu de générateurs de radionucléides 99Mo/"mTc améliorés, ledit générateur comprenant un dispositif présentant une capacité dynamique au breakthrough élevée tout en limitant le breakthrough en "Mo lors de l’élution du 99mTc, en particulier pour la production de 99mTc à partir de source de "Mo d’activité spécifique faible à modérée.
Résumé de l’invention
Les inventeurs ont trouvé de manière surprenante qu’il est possible de fournir une composition, un dispositif et un générateur de radionucléides "Mo/"mTc répondant aux besoins susmentionnés. La présente invention a donc pour objet une composition comprenant une source de molybdène (Mo) comprenant du "Mo et/ou des produits de désintégration du "Mo, et un sorbant comprenant des particules d’oxyde de titane, caractérisée en ce que la concentration de ladite source de Mo, exprimée en équivalent de molybdène, est inférieure ou égale à 2,1 mmol de Mo par gramme de sorbant, et en ce que lesdites particules d’oxyde de titane présentent une surface spécifique BET, mesurée selon la norme ISO 9277:2010, entre 180,0 m2/g et 280,0 m2/g et une taille de particules dso comprise entre 10,0 pm et 350,0 pm.
La présente invention a également pour objet un dispositif comprenant une colonne chromatographique, ladite colonne chromatographique comprenant ladite composition.
La présente invention a également pour objet un générateur de radionucléides "Mo/99mTc comprenant ledit dispositif.
Description détaillée de l’invention Dans le contexte de la présente invention, le terme
« comprenant » est inclusif ou à extrémité ouverte et n’exclut pas d’autres éléments non récités, ou composants de composition. Ce terme doit être interprété comme spécifiant la présence des caractéristiques, valeurs, étapes ou composants y faisant référence, mais n’exclut pas la présence ou l’ajout d’une ou de plusieurs caractéristiques, valeurs, étapes ou composants. Dès lors, la portée de l’expression « une composition comprenant un composant A et B » ne doit pas être limité à une composition constituée uniquement des composants A et B. Cela signifie que les seuls composants pertinents sont A et B. Par conséquent, le terme « comprenant » inclut les termes plus restrictifs « constitué essentiellement de » et « constitué de »
Selon la présente invention, ladite composition comprend une source de molybdène (Mo), comprenant du molybdène-99 (99Mo) et/ou des produits de désintégration du "Mo, comme défini précédemment. Dans le contexte de la présente invention, le terme « molybdène » ou « Mo » est utilisé indifféremment et inclut tous les isotopes connus du molybdène, radioactifs ou non-radioactifs, tel que, par exemple, le molybdène présentant un nombre de nucléons compris entre 92 et 100, tel que le molybdène-98, le molybdène-99 et le molybdène-100. En particulier, la source de molybdène comprise dans la composition selon la présente invention est un sel de molybdate. Le sel de molybdate peut se présenter sous différentes formes, lesquelles dépendent fortement de la concentration de ladite source de molybdène ainsi que du pH et peut, par exemple, se présenter sous la forme de M0O42 , [M02O7]2 , [M06O19]2 , [M07O24]6 , [M08O26]4 , leur complexes, tels que les acides conjugués de molybdate et les bases conjugués d’acide molybdique, ou leur combinaison.
La source de Mo comprise dans la composition selon la présente invention peut provenir de n’importe quel moyen connu de l’homme de métier et peut être obtenue par exemple à partir de la fission d’une cible d’uranium-235, hautement ou faiblement enrichie en uranium-235, préalablement irradiée ou par capture de neutrons ou par réaction photonucléaire (g,h) sur des cibles à base de molybdène naturel ou enrichi respectivement en 98Mo ou en 100Mo. De préférence, ladite source de Mo est obtenue par capture de neutrons ou par réaction photonucléaire (g,h) sur des cibles à base de molybdène enrichi respectivement en 98Mo ou en 100Mo.
Le "Mo se désintègre spontanément en ses produits de désintégration. En particulier, lesdits produits de désintégration du "Mo sont choisis dans le groupe constitué du technétium-99m (99mTc), du technétium-99 ("Te), du ruthénium-99 ("Ru) et de leurs mélanges. En particulier, ledit produit de désintégration du "Mo est de préférence le 99mTc.
La composition telle que définie selon la présente invention comprend une source de molybdène caractérisée en ce que la concentration de ladite source de Mo, exprimée en équivalent de molybdène, est inférieure ou égale à 2,1 mmol de Mo par gramme de sorbant.
Dans le contexte de la présente invention, le terme « concentration exprimée en équivalent de molybdène » (ci-après C) est défini par la somme des quantités de matières, exprimées en moles, en molybdène, tout isotope confondu et tel que défini précédemment (ci-après PM0) et de la somme des quantités de matières desdits produits de désintégration du "Mo, exprimées en moles (ci-après ndésint) - le tout sur la masse dudit sorbant (ci-après mSorbant), et est définie par la relation suivante :
Figure imgf000009_0001
En d’autres termes, la concentration de ladite source de Mo est exprimée en molybdène élémentaire, tout isotope confondu et tel que défini précédemment, et dans le cas hypothétique où les produits de désintégration du "Mo étaient sous la forme de Mo.
Avantageusement, la composition telle que définie selon la présente invention comprend une source de molybdène dont la concentration, exprimée en équivalent de molybdène, est inférieure ou égale à 1 ,9 mmol de Mo par gramme de sorbant, ou inférieure ou égale à 1 ,7 mmol de Mo par gramme de sorbant, ou inférieure ou égale à 1 ,5 mmol de Mo par gramme de sorbant.
Il est entendu que la composition telle que définie selon la présente invention comprend avantageusement une source de molybdène dont la concentration, exprimée en équivalent de molybdène, est supérieure ou égale à 0,0001 mmol, ou supérieure ou égale à 0,01 mmol de Mo par gramme de sorbant, ou supérieure ou égale à 0,2 mmol de Mo par gramme de sorbant, ou supérieure ou égale à 0,5 mmol de Mo par gramme de sorbant
Avantageusement, la composition telle que définie selon la présente invention comprend une source de Mo dont la concentration, exprimée en équivalent de molybdène, est comprise entre 0,0001 et 2,1 mmol de Mo par gramme de sorbant, ou entre 0,01 et 1 ,9 mmol de Mo par gramme de sorbant, ou entre 0,2 et 1 ,7 mmol de Mo par gramme de sorbant, ou entre 0,5 et 1 ,5 mmol de Mo par gramme de sorbant.
Ladite composition selon la présente invention comprend un sorbant comprenant des particules d’oxyde de titane, comme défini précédemment. II est entendu que le sorbant compris dans la composition telle que définie selon la présente invention peut comprendre d’autre oxydes et/ou hydroxydes de métaux, tel que, par exemple, l’hydroxyde de zirconium, le dioxyde de zirconium, l’hydroxyde d’aluminium, l’oxyde d’aluminium, le dioxyde de silicium, le dioxyde d’étain, l’hydroxyde d’hafnium, et le dioxyde d’hafnium.
Avantageusement, dans la composition selon la présente invention, le sorbant présente une teneur en oxyde de titane supérieure ou égale à 90 mol% par rapport au nombre de moles total dudit sorbant, de manière préférentielle supérieure ou égale à 92 mol% par rapport au nombre de moles total dudit sorbant, de manière plus préférentielle supérieure ou égale à 95 mol% par rapport au nombre de moles total dudit sorbant.
Avantageusement, ladite composition selon la présente invention comprend un sorbant constitué essentiellement de particules d’oxyde de titane.
Il est entendu que, dans le cadre de la présente invention, le terme « constitué essentiellement de particules d’oxyde de titane » signifie que toutes autres particules P, différentes des particules d’oxyde de titane, peuvent être présentes à une teneur maximale de 5 mol% par rapport au nombre de moles total dudit sorbant, de manière préférentielle une teneur maximale de 2 mol% par rapport au nombre de moles total dudit sorbant, de manière encore plus préférentielle une teneur maximale de 1 mol% par rapport au nombre de moles total dudit sorbant. Dans la composition selon la présente invention, ledit oxyde de titane est choisi dans le groupe constitué du monoxyde de titane (TiO), du dioxyde de titane (Ti02) ou du dioxyde de titane hydraté de type Ti02.xH 0, où x représente un nombre entier compris entre 0 et 10. Le dioxyde de titane peut être sous forme cristalline anatase ou rutile ou un mélange de ceux-ci. Avantageusement, ledit oxyde de titane est choisi dans le groupe constitué du T1O2 ou du PO2.CH2O, où x représente un nombre entier compris entre 0 et 10.
Il est entendu que dans la composition selon la présente invention, les particules d’oxyde de titane ne sont pas limitées par leur morphologie et peuvent par exemple se présenter sous la forme de pastilles, d’aiguilles, de cristallites sphériques, de sphères, ou leur combinaison. De manière préférentielle, lesdites particules d’oxyde de titane se présentent sous la forme de sphères.
Dans la composition selon la présente invention, lesdites particules de titane présentent une surface spécifique BET comprise entre 180,0 m2/g et 280,0 m2/g.
Dans le contexte de la présente invention, la surface spécifique BET est la surface spécifique des particules calculée par adsorption d'azote par la méthode BET selon la norme ISO 9277:2010. Avantageusement, dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent une surface spécifique BET supérieure ou égale à 190,0 m2/g, de manière préférentielle supérieure ou égale à 200,0 m2/g, de manière plus préférentielle supérieure ou égale à 210,0 m2/g, de manière encore plus préférentielle supérieure ou égale à 220,0 m2/g.
Avantageusement, dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent également une surface spécifique BET de préférence inférieure ou égale à 275,0 m2/g, de manière préférentielle inférieure ou égale à 270,0 m2/g, de manière plus préférentielle inférieure ou égale à 265,0 m2/g, de manière encore plus préférentielle inférieure ou égale à 260,0 m2/g
Avantageusement, dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent une surface spécifique BET de préférence comprise entre 190,0 m2/g et 275,0 m2/g, de manière préférentielle comprise entre 200,0 m2/g et 270,0 m2/g, de manière plus préférentielle comprise entre 210,0 m2/g et 265,0 m2/g, de manière encore plus préférentielle comprise entre 220,0 m2/g et 260,0 m2/g.
Dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent une taille de particules dso comprise entre 10,0 pm et 350,0 pm.
Dans le cadre de la présente invention, la notation « dx de y pm» signifie que x% en nombre des particules, par rapport au nombre total de particules, présentent une taille de particules inférieure à y pm.
Par exemple, un dso égal à 60 pm signifie que 50 % en nombre des particules, par rapport au nombre total de particules, présentent une taille de particules inférieure à 60 pm.
Selon une certaine forme de réalisation, la composition telle que définie selon la présente invention comprend des particules d’oxyde de titane présentant une taille de particules dso supérieure ou égale à 12,0 pm, ou supérieure ou égale à 14,0 pm, ou supérieure ou égale à
16,0 pm.
Selon une certaine forme de réalisation, la composition telle que définie selon la présente invention comprend des particules d’oxyde de titane présentant une taille de particules dso inférieure ou égale à 250,0 pm, ou inférieure ou égale à 200,0 pm, ou inférieure ou égale à
150,0 pm.
Selon une certaine forme de réalisation, la composition telle que définie selon la présente invention comprend des particules d’oxyde de titane présentant une taille de particules dso comprise entre 12,0 pm et 250,0 pm, ou entre 14,0 pm et 200,0 pm, ou entre 16,0 pm et 150,0 pm.
Avantageusement, dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent des pores ayant un diamètre moyen, mesuré selon la méthode BJH supérieur ou égal à 1 ,0 nm, de manière préférentielle supérieur ou égal à 2,0 nm, de manière plus préférentielle supérieur ou égal à 3,0 nm. Dans le contexte de la présente invention, le diamètre moyen des pores est mesuré par la méthode BJH par manométrie d’adsorption d’azote et calculé selon la méthode BJH en désorption.
Avantageusement, dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent des pores ayant un diamètre moyen, mesuré selon la méthode BJH, inférieur ou égal à 30,0 nm, de préférence inférieur ou égal à 20,0 nm, de manière plus préférentielle inférieur ou égal à 15,0 nm, de manière encore plus préférentielle inférieur ou égal à 8,0 nm, de manière encore plus préférentielle inférieure ou égal à 5,0 nm.
Avantageusement, dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent des pores ayant un diamètre moyen, mesuré selon la méthode BJH, compris entre 1 ,0 nm et 30,0 nm, de préférence entre 1 ,0 nm et 20,0 nm, de manière plus préférentielle entre 2,0 nm et 8,0 nm, de manière encore plus préférentielle entre 3,0 nm et 5,0 nm.
Avantageusement, dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent des cristallites dont la taille est inférieure ou égale à 30,0 nm, ou inférieure ou égale à 15,0 nm, ou inférieure ou égale à 10,0 nm, ou inférieure ou égale à
6,0 nm.
Avantageusement, dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent un volume poreux, mesuré selon la méthode BJH, supérieur ou égal à 0,05 cm3/g, de préférence supérieur ou égal à 0,07 cm3/g, de manière plus préférentielle supérieur ou égal à 0,10 cm3/g, de manière encore plus préférentielle supérieur ou égal à 0,12 cm3/g, de manière encore plus préférentielle supérieur ou égal à 0,15 cm3/g.
Dans le contexte de la présente invention, le volume poreux est mesuré par manométrie d’adsorption d’azote et calculé selon la méthode BJH en désorption. Avantageusement, dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent un volume poreux, mesuré selon la méthode BJH inférieur ou égal à 0,4 cm3/g, de préférence inférieur ou égal à 0,3 cm3/g, de manière plus préférentielle inférieur ou égal à 0,25 cm3/g.
Avantageusement, dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent un volume poreux, mesuré selon la méthode BJH compris entre 0,05 cm3/g et 0,4 cm3/g, de préférence entre 0,10 cm3/g et 0,30 cm3/g, de manière plus préférentielle entre 0,15 cm3/g et 0,25 cm3/g.
Avantageusement, dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent une largeur de distribution de taille de particules (largeur de la DTP ci-après) comprise entre 1 ,0 et 10,0. Dans le contexte de la présente invention, la « largeur de là distribution de taille de particules » (largeur de la DTP ci-après - également appelée span value en anglais) est définie par la relation suivante : rf 90
Largeur de la DTP ( span value ) = - —
“10 Avantageusement, dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent une largeur de la DTP inférieure ou égale à 7,0, de préférence inférieure ou égale à 5,0, de manière plus préférentielle inférieure ou égale à 3,0, de manière encore plus préférentielle inférieure ou égale à 2,0. II est entendu que dans la composition selon la présente invention, la largeur de la DTP telle que définie précédemment est supérieure ou égale à 1 ,0.
Avantageusement, dans la composition selon la présente invention, lesdites particules d’oxyde de titane présentent une largeur de la DTP comprise entre 1 ,0 et 7,0, de manière préférentielle entre 1 ,0 et 5,0, de manière plus préférentielle entre 1,0 et 3,0, de manière encore plus préférentielle entre 1 ,0 et 2,0.
Les inventeurs ont trouvé de manière surprenante que la composition telle que définie selon la présente invention présente une variété d’applications.
La composition telle que définie selon la présente invention est particulièrement avantageuse dans son utilisation dans un dispositif comprenant une colonne chromatographique.
L’invention a donc également pour objet un dispositif comprenant une colonne chromatographique, ladite colonne chromatographique comprenant ladite composition, telle que définie précédemment, et un éluant.
Il est entendu que chacune des définitions, préférences et mode de réalisation avantageux mentionnés en relation avec la composition de la présente invention sont également applicables aux modes de réalisation du dispositif de la présente invention mentionnés ci-après.
Les inventeurs ont trouvé de manière surprenante que ladite composition telle que définie précédemment et un éluant compris dans une colonne chromatographique permet d’atteindre un breakthrough grandement diminué, une capacité dynamique au breakthrough en Mo augmentée et un volume de l’éluat diminué.
Dans le contexte de la présente invention, le terme « breakthrough » correspond à un entrainement indésirable par l’éluant du molybdène à partir dudit sorbant contenu dans une colonne chromatographique, et qui se retrouve dans l’éluat en sortie de ladite colonne chromatographique.
Dans le contexte de la présente invention, le paramètre « capacité dynamique au breakthrough en Mo » est défini comme la quantité de molybdène adsorbé sur le sorbant au moment où la quantité totale de molybdène présent dans les éluats est égale à 0,10% de la quantité de molybdène insérée dans la colonne, et est exprimé en milligramme de Mo par gramme dudit sorbant.
En effet, dans la composition selon la présente invention, la surface spécifique BET et le diamètre des particules dso desdites particules d’oxyde de titane permettent, de manière synergique, d’obtenir une adsorption optimale de ladite source de molybdène sur ledit sorbant, ce qui favorise un breakthrough particulièrement bas, tout en permettant l’élution du ou des composés d’intérêt, tels que, par exemple, les produits de désintégration du "Mo, de manière préférentielle le 99mTc, ou les produits de départs et/ou les intermédiaires issus de la production de "Mo, tels que, par exemple, les composés comprenant de l’uranium, et/ou les produits de fissions de l’uranium-235.
De plus, dans la composition selon la présente invention, la combinaison de la surface spécifique BET et la taille des particules dso desdites particules d’oxyde de titane permet d’augmenter considérablement la capacité dynamique au breakthrough en Mo et favorise en particulier l’utilisation de Mo de faible activité spécifique tout en conservant un rendement et une concentration du ou des composés d’intérêt dans l’éluat optimum, et ce, en limitant de nécessaires étapes de concentration de l’éluat lors de, par exemple, l’utilisation dudit éluat à des fins radio-pharmaceutiques.
Le dispositif selon la présente invention comprend une colonne chromatographique dont le matériau peut être n’importe quel matériau connu de l’homme de métier, tel que, par exemple le verre, l’acier inoxydable, ou le polyétheréthercétone (PEEK).
De plus, le dispositif selon la présente invention comprend une colonne chromatographique pouvant avoir n’importe qu’elle forme connue de l’homme de métier, telle que, par exemple, une forme tubulaire, une forme en U, ... Les inventeurs ont trouvés de manière surprenante que lorsque la composition telle que définie selon la présente invention présente une taille de particules dso comprise entre 18,0 miti et 140,0 miti, de manière préférentielle entre 20,0 miti et 135,0 miti, de manière plus préférentielle entre 22,0 miti et 130,0 miti, ou entre 90,0 miti et 130,0 miti, ladite composition est particulièrement favorable dans un dispositif comprenant une colonne chromatographique, en particulier dans un procédé de purification du "Mo produit par fission d’uranium.
En général, l’éluant compris dans ledit dispositif peut être n’importe quel éluant connu de l’homme de métier, et peut, par exemple, être une solution aqueuse saline, telle qu’une solution aqueuse de chlorure de sodium optionnellement comprenant un sel de nitrate, ou une solution aqueuse de sels d’hydroxydes, telle que, par exemple, une solution aqueuse d’hydroxyde de sodium (NaOH), d’hydroxyde de potassium (KOH) ou d’hydroxyde d’ammonium (NhUOH) ou leur combinaison. La composition telle que définie selon la présente invention est également particulièrement avantageuse dans son utilisation dans un dispositif comprenant une colonne chromatographique, ledit dispositif étant utilisé dans un générateur de radionucléides "Mo/99mTc.
L’invention a également pour objet un générateur de radionucléides "Mo/99mTc comprenant ledit dispositif, ladite colonne chromatographique étant reliée à un conduit d’éluant et à une sortie d’éluat.
Il est entendu que chacune des définitions, préférences et mode de réalisation avantageux mentionnés en relation avec la composition et/ou le dispositif de la présente invention sont également applicables aux modes de réalisation du générateur de radionucléides "Mo/99mTc de la présente invention mentionnés ci-après.
Typiquement, un générateur de radionucléides "Mo/99mTc est utilisé, entre autres, dans le domaine de la médecine nucléaire pour produire un éluat comprenant du 99mTc à partir d’un sorbant chargé en "Mo, qui se désintègre spontanément en 99mTc, lequel est destiné à être élué par un éluant.
Le 99mTc dans l’éluat est destiné à être utilisé tel quel ou à se lier à une molécule, comme par exemple un ligand ou une molécule biocompatible, telle qu’une protéine ou un anticorps, de façon à former un radiotraceur, résultant de la complexation du 99mTc avec ledit ligand ou ladite molécule, qui est généralement ensuite administré à un patient par voie injectable, typiquement sous forme d’une solution ou d’une suspension liquide. L’administration du radionucléide ou du radiotraceur permet dans ce cas le diagnostic de certaines pathologies.
Les inventeurs ont observé de manière surprenante que l’utilisation de la composition telle que définie selon la présente invention dans un générateur de radionucléides "Mo/99mTc permet, en sus des avantages du dispositif précédemment mentionnés, d’obtenir du 99mTc conforme aux normes de pharmacopées et ainsi de diminuer les effets néfastes de la radioactivité dudit "Mo sur le patient, le praticien et la qualité des images médicales, de par un breakthrough en "Mo très faible.
De plus, l’augmentation considérable de la capacité dynamique au breakthrough en Mo favorise l’utilisation de Mo de faible activité spécifique tout en conservant un rendement et une concentration en "mTc optimale, et ce, sans changement d’équipement au niveau du générateur de radionucléides, limitant ainsi des coûts additionnels et offrant par conséquent une sécurité accrue pour le praticien et le patient. Un générateur de radionucléides utilisant du Mo de faible activité spécifique ne nécessite donc pas l’utilisation de Mo de haute activité spécifique produit par fission, ce qui réduit drastiquement la production de déchets nucléaires de longues demi-vies et le risque de prolifération nucléaire. Avantageusement, ledit générateur de radionucléides "Mo/"mTc selon la présente invention, comprend une colonne chromatographique reliée à un conduit d’éluant et à une sortie d’éluat, et est disposée dans un coffrage blindé, de préférence réalisé au moins en partie en un matériau dense, comme par exemple en uranium appauvri, en tungstène ou en plomb. Dans le générateur de radionucléides "Mo/99mTc selon la présente invention, ledit sorbant est avantageusement chargé avec une source de Mo telle que définie précédemment, se désintégrant spontanément en ses produits de désintégration, particulièrement en 99mTc. Avantageusement, le générateur de radionucléides "Mo/99mTc selon la présente invention comprend la composition telle que définie précédemment. En particulier, le générateur de radionucléides "Mo/"mTc selon la présente invention comprend ladite composition comprenant une source de Mo dont la concentration, exprimée en équivalent de molybdène, est comprise entre 0,0001 et 2,1 mmol de Mo par gramme de sorbant, de préférence entre 0,01 et 1 ,9 mmol de Mo par gramme de sorbant, de manière plus préférentielle entre 0,2 et 1 ,7 mmol de Mo par gramme de sorbant, de manière encore plus préférentielle entre 0,5 et 1 ,5 mmol de Mo par gramme de sorbant. Les inventeurs ont trouvé de manière surprenante que lorsque la composition telle que définie selon la présente invention présente une taille de particules dso comprise entre 26,0 pm et 70,0 miti, de manière préférentielle entre 28,0 pm et 65,0 pm, de manière encore plus préférentielle entre 30,0 et 60,0 pm, ladite composition est particulièrement favorable dans un générateur de radionucléides "Mo/"mTc comprenant un dispositif comprenant une colonne chromatographique.
Avantageusement, ledit générateur de radionucléides "Mo/99mTc selon la présente invention comprend un éluant, ledit éluant étant une solution aqueuse saline. Dans le cadre de l’invention, le terme « solution aqueuse saline » est défini comme étant une solution de chlorure de sodium dans l’eau et contenant optionnellement un sel de nitrate.
Avantageusement, ledit générateur de radionucléides "Mo/99mTc selon la présente invention comprend un éluant, ledit éluant étant une solution aqueuse saline comprenant du chlorure de sodium présent à une concentration comprise entre 0,1 mmol et 6,2 mol par litre de solution aqueuse saline, de manière préférentielle comprise entre 15,0 mmol et 2,0 mol par litre de solution aqueuse saline, de manière plus préférentielle comprise entre 50,0 mmol et 500,0 mmol par litre de solution aqueuse saline, de manière encore plus préférentielle comprise entre 100,0 mmol et 250,0 mmol par litre de solution aqueuse saline, de manière encore plus préférentielle comprise entre 125,0 mmol et 175,0 mmol par litre de solution aqueuse saline. Avantageusement, ledit générateur de radionucléides "Mo/99mTc selon la présente invention comprend un éluant, ledit éluant étant une solution aqueuse saline telle que défini précédemment, et comprend optionnellement un sel de nitrate, telle que, par exemple du nitrate de sodium. Avantageusement, ladite solution aqueuse saline telle que définie précédemment est stérile.
Avantageusement, ledit générateur de radionucléides "Mo/99mTc tel que défini précédemment opère en conditions stériles.
Chaque variante préférentielle, avantageuse ou particulière de chaque mode de réalisation peut être combinée avec chaque variante préférentielle, avantageuse ou particulière de chaque mode de réalisation.
Il est bien entendu que la présente invention n’est en aucune façon limitée aux formes de réalisation décrites ci-dessus et que bien des modifications peuvent y être apportées sans sortir du cadre des revendications annexées. Exemple 1 (ED
Un sorbant constitué de particules d’oxyde de titane présentant une surface spécifique BET de 249,0 m2/g et une taille de particules dso de 40,0 pm est chargé par une source de "Mo d’une activité de 2,0 MBq.
Ledit sorbant constitué de particules d’oxyde de titane présente également un diamètre moyen des pores BJH de 3,7 nm et une taille de cristallites de 3,85 nm.
La capacité dynamique au breakthrough, définie comme la quantité de molybdène adsorbé sur le sorbant au moment où la quantité totale de molybdène présent dans les éluats est égale à 0,10% de la quantité de molybdène insérée dans la colonne est calculée.
La capacité dynamique au breakthrough est de 99,0 mg de Mo par gramme d’oxyde de titane, ce qui correspond à une valeur de 1 ,04 mmol de Mo par gramme de sorbant.
Chargement d’un générateur de radionucléides "Mo/"mTc :
Un générateur de radionucléides "Mo/99mTc comprenant ledit sorbant tel que défini dans l’exemple 1 (E1) est chargé par une source de "Mo contenant 0,867 mmol de molybdène, exprimé en équivalent de molybdène par gramme de sorbant, et une activité de 455,0 GBq pour effectuer la production du 99mTc ainsi que la séparation des radionucléides du couple "Mo/"mTc. Test d’élution :
L’éluant utilisé est une solution aqueuse de chlorure de sodium NaCI concentrée à 154,0 mmol par litre de solution aqueuse.
Le générateur a été élué quotidiennement pendant une période de 20 jours afin de suivre le breakthrough en "Mo dans chacun des éluats prélevés quotidiennement. Résultats :
Le breakthrough en "Mo moyen calculé est de 1 ,96 x 10 9 à 3,07 x 10" après répétition de l’expérience trois fois.
Les résultats sont repris au Tableau 1.
Exemple 2 (E2)
Un sorbant constitué de particules d’oxyde de titane présentant une surface spécifique BET de 262,0 m2/g et une taille de particules dso de 40,0 miti, un diamètre moyen des pores BJH de 4,2 nm, et une taille de cristallites de 4,42 nm, est chargé par une source de "Mo d’une activité de 2,0 MBq.
La capacité dynamique au breakthrough, définie comme la quantité de molybdène adsorbé sur le sorbant au moment où la quantité totale de molybdène présent dans les éluats est égale à 0,10% de la quantité de molybdène insérée dans la colonne, est calculée.
La capacité dynamique au breakthrough est de 120,4 mg de Mo par gramme d’oxyde de titane, ce qui correspond à une valeur de 1 ,25 mmol de Mo par gramme de sorbant.
Chargement d’un générateur de radionucléides "Mo/"mTc : Un générateur de radionucléides "Mo/"mT c comprenant ledit sorbant tel que défini dans l’exemple 2 (E2) est chargé par une source de "Mo contenant 0,591 mmol de molybdène, exprimé en équivalent de molybdène par gramme de sorbant, et une activité de 18,1 GBq pour effectuer la production du 99mTc ainsi que la séparation des radionucléides du couple "Mo/"mTc. Test d’élution :
L’éluant utilisé est une solution aqueuse de chlorure de sodium NaCI concentrée à 154,0 mmol par litre de solution aqueuse. Le générateur a été élué quotidiennement pendant une période de 14 jours afin de suivre le breakthrough en "Mo dans chacun des éluats prélevés quotidiennement.
Résultats : Le breakthrough en "Mo moyen calculé est de 3,93 x 10 9.
Les résultats sont repris au Tableau 1.
Exemple comparatif 1 (EC1)
Un sorbant constitué de particules d’oxyde de titane présentant une surface spécifique BET de 135,0 m2/g et une taille de particules dso de 38,0 pm est chargé par une source de "Mo d’une activité de 2,0 MBq.
Ledit sorbant constitué de particules d’oxyde de titane présente également un diamètre moyen des pores BJH de 6,9 nm, et une taille de cristallites de 7,21 nm.La capacité dynamique au breakthrough, définie comme la quantité de molybdène adsorbé sur le sorbant au moment où la quantité totale de molybdène présent dans les éluats est égale à 0,10% de la quantité de molybdène insérée dans la colonne est calculée.
La capacité dynamique au breakthrough est de 45,0 mg de Mo par gramme d’oxyde de titane, ce qui correspond à une valeur de 0,47 mmol de Mo par gramme de sorbant.
Chargement d’un générateur de radionucléides "Mo/"mTc :
Un générateur de radionucléides "Mo/"mTc comprenant ledit sorbant tel que défini dans l’exemple comparatif 1 (EC1) est chargé par une source de "Mo contenant 0,331 mmol de molybdène, exprimé en équivalent de molybdène par gramme de sorbant, et une activité de 203,0 MBq pour effectuer la production du 99mTc ainsi que la séparation des radionucléides du couple "Mo/99mTc.
Test d’élution : L’éluant utilisé est une solution aqueuse de chlorure de sodium concentrée à 154,0 mmol par litre.
Le générateur a été élué quotidiennement pendant une période de 20 jours afin de suivre le breakthrough en "Mo dans chacun des éluats prélevés quotidiennement.
Résultats :
Le breakthrough en "Mo moyen calculé est de 6,34 x 10 7 à 2,12 x 10 5 après répétition de l’expérience trois fois.
Les résultats sont repris au Tableau 1.
Exemple comparatif 2 (EC2)
Un sorbant constitué de particules d’oxyde de titane présentant une surface spécifique BET de 156,0 m2/g et une taille de particules dso de 40,0 miti, un diamètre moyen des pores BJH de 6,1 nm et une taille de cristallites de 5,42 nm, est chargé par une source de "Mo d’une activité de 2,0 MBq.
La capacité dynamique au breakthrough, définie comme la quantité de molybdène adsorbé sur le sorbant au moment où la quantité totale de molybdène présent dans les éluats est égale à 0,10% de la quantité de molybdène insérée dans la colonne, est calculée.
La capacité dynamique au breakthrough est de 67,8 mg de Mo par gramme d’oxyde de titane, ce qui correspond à une valeur de 0,71 mmol de Mo par gramme de sorbant. Le résultat est repris au Tableau 1.
Tableau 1 :
Figure imgf000025_0001
Comme on peut le voir, et comme illustré au tableau 1 , un générateur de radionucléides "Mo/99mTc comprenant une composition telle que décrite par la présente invention présente un breakthrough en "Mo bien inférieur et une capacité dynamique au breakthrough en Mo considérablement augmentée.

Claims

REVENDICATIONS
1. Composition comprenant une source de molybdène (Mo) comprenant du "Mo et/ou des produits de désintégration du "Mo, et un sorbant comprenant des particules d’oxyde de titane, caractérisée en ce que la concentration de ladite source de Mo, exprimée en équivalent de molybdène, est inférieure ou égale à 2,1 mmol de Mo par gramme de sorbant, et en ce que lesdites particules d’oxyde de titane présentent une surface spécifique BET, mesurée selon la norme ISO 9277:2010, entre 180,0 m2/g et 280,0 m2/g et une taille de particules dso comprise entre
10,0 pm et 350,0 pm.
2. Composition selon la revendication 1 , caractérisée en ce que lesdites particules d’oxyde de titane présentent une surface spécifique BET, mesurée selon la norme ISO 9277:2010, comprise 200,0 m2/g et 270,0 m2/g.
3. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que lesdites particules d’oxydes de titane présentent une taille de particules dso comprise entre 12,0 pm et 250,0 pm.
4. Composition selon l’une quelconque des revendications 1 à 2, caractérisée en ce que lesdites particules d’oxydes de titane présentent une taille de particules dso comprise entre 14,0 pm et 200,0 pm.
5. Composition selon les revendications 1 à 2, caractérisée en ce que lesdites particules d’oxydes de titane présentent une taille de particules dso comprise entre 16,0 pm et 150,0 pm.
6. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que lesdites particules d’oxyde de titane présentent des pores ayant un diamètre moyen, mesuré selon la méthode BJH, compris entre 1 ,0 nm et 30,0 nm.
7. Composition selon l’une quelconque des revendications 1 à 5, caractérisée en ce que lesdites particules d’oxyde de titane présentent des pores ayant un diamètre moyen, mesuré selon la méthode BJH, compris entre de préférence entre 1 ,0 nm et 20,0 nm.
8. Composition selon l’une quelconque des revendications 1 à 5, caractérisée en ce que lesdites particules d’oxyde de titane présentent des pores ayant un diamètre moyen, mesuré selon la méthode BJH, compris entre 2,0 nm et 8,0 nm.
9. Composition selon l’une quelconque des revendications 1 à 5, caractérisée en ce que lesdites particules d’oxyde de titane présentent des pores ayant un diamètre moyen, mesuré selon la méthode BJH, compris entre 3,0 nm et 5,0 nm.
10. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que lesdites particules d’oxyde de titane présentent des cristallites dont la taille est inférieure ou égale à 30,0 nm, ou inférieure ou égale à 15,0 nm, ou inférieure ou égale à 10,0 nm, ou inférieure ou égale à 6,0 nm
11. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que lesdites particules d’oxyde de titane présentent une largeur de distribution de taille de particules (largeur de la DTP) comprise entre 1 ,0 et 10.
12. Composition selon l’une quelconque des revendications 1 à 10, caractérisée en ce que lesdites particules d’oxyde de titane présentent une largeur de distribution de taille de particules (largeur de la DTP) comprise entre 1 ,0 et 7,0.
13. Composition selon l’une quelconque des revendications 1 à 10, caractérisée en ce que lesdites particules d’oxyde de titane présentent une largeur de distribution de taille de particules (largeur de la DTP) comprise entre 1 ,0 et 5,0.
14. Composition selon l’une quelconque des revendications 1 à 10, caractérisée en ce que lesdites particules d’oxyde de titane présentent une largeur de distribution de taille de particules (largeur de la DTP) comprise entre 1 ,0 et 3,0.
15. Composition selon l’une quelconque des revendications 1 à 10, caractérisée en ce que lesdites particules d’oxyde de titane présentent une largeur de distribution de taille de particules (largeur de la DTP) comprise entre 1 ,0 et 2,0.
16. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que l’oxyde de titane est choisi dans le groupe constitué du T1O2 ou du T1O2.XH2O, où x représente un nombre entier compris entre 0 et 10.
17. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que ledit sorbant présente une teneur en oxyde de titane supérieure ou égale à 90 mol% par rapport au nombre de moles total dudit sorbant.
18. Composition selon l’une quelconque des revendications 1 à 16, caractérisée en ce que ledit sorbant est constitué essentiellement de particules d’oxyde de titane.
19. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que ladite source de Mo présente une concentration, exprimée en équivalent de molybdène comprise entre 0,0001 et 2,1 mmol de Mo par gramme de sorbant.
20. Dispositif comprenant une colonne chromatographique, ladite colonne chromatographique comprenant la composition selon l’une quelconque des revendications 1 à 19 et un éluant.
21. Dispositif selon la revendication 20, caractérisée en ce que lesdites particules d’oxyde de titane présentent une taille de particules dso comprise entre 18,0 pm et 140,0 pm.
22. Dispositif selon la revendication 20, caractérisée en ce que lesdites particules d’oxyde de titane présentent une taille de particules dso comprise entre 20,0 pm et 135,0 pm.
23. Dispositif selon la revendication 20, caractérisée en ce que lesdites particules d’oxyde de titane présentent une taille de particules dso comprise entre 22,0 et 130,0 pm.
24. Dispositif selon la revendication 20, caractérisée en ce que lesdites particules d’oxyde de titane présentent une taille de particules dso comprise entre 90,0 pm et 130,0 pm.
25. Dispositif selon l’une quelconque des revendications 20 à 24, caractérisée en ce que l’éluant est choisi parmi le groupe constitué d’une solution saline comprenant optionnellement une source de nitrate et une solution aqueuse de sels d’hydroxydes.
26. Dispositif selon la revendication 25, caractérisée en ce que ladite solution aqueuse de sel d’hydroxydes est choisie parmi le groupe constitué d’une solution aqueuse d’hydroxyde de sodium, d’hydroxyde de potassium et d’hydroxyde d’ammonium.
27. Générateur de radionucléides "Mo/99mTc comprenant le dispositif selon l’une quelconque des revendications 20 à 26, ladite colonne chromatographique étant reliée à un conduit d’éluant et à une sortie d’éluat.
28. Générateur de radionucléides "Mo/99mTc selon la revendication 27, caractérisé en ce que lesdites particules d’oxyde de titane présentent une taille de particules dso comprise entre 26,0 pm et 70,0 pm.
29. Générateur de radionucléides "Mo/99mTc selon la revendication 27, caractérisé en ce que lesdites particules d’oxyde de titane présentent une taille de particules dso comprise entre 28,0 et 65,0 pm.
30. Générateur de radionucléides "Mo/99mTc selon la revendication 27, caractérisé en ce que lesdites particules d’oxyde de titane présentent une taille de particules dso comprise entre 30,0 et 60,0 pm.
31. Générateur de radionucléides "Mo/99mTc selon l’une quelconque des revendications 27 à 30, caractérisé en ce que la concentration de ladite source de Mo, exprimée en équivalent de molybdène, est comprise entre 0,0001 et 2,1 mmol de Mo par gramme de sorbant.
32. Générateur de radionucléides "Mo/99mTc selon l’une quelconque des revendications 27 à 30, caractérisé en ce que la concentration de ladite source de Mo, exprimée en équivalent de molybdène, est comprise entre 0,01 et 1 ,9 mmol de Mo par gramme de sorbant.
33. Générateur de radionucléides "Mo/99mTc selon l’une quelconque des revendications 27 à 30, caractérisé en ce que la concentration de ladite source de Mo, exprimée en équivalent de molybdène, est comprise entre 0,2 et 1 ,7 mmol de Mo par gramme de sorbant.
34. Générateur de radionucléides "Mo/99mTc selon l’une quelconque des revendications 27 à 30, caractérisé en ce que la concentration de ladite source de Mo, exprimée en équivalent de molybdène, est comprise entre 0,5 et 1 ,5 mmol de Mo par gramme de sorbant.
PCT/EP2021/066136 2020-06-16 2021-06-15 Générateur de radionucléides 99mo/99mtc WO2021255037A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE20205433A BE1027963B1 (fr) 2020-06-16 2020-06-16 Générateur de radionucléides 99Mo/99mTc
BEBE2020/5433 2020-06-16

Publications (1)

Publication Number Publication Date
WO2021255037A1 true WO2021255037A1 (fr) 2021-12-23

Family

ID=71119902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/066136 WO2021255037A1 (fr) 2020-06-16 2021-06-15 Générateur de radionucléides 99mo/99mtc

Country Status (2)

Country Link
BE (1) BE1027963B1 (fr)
WO (1) WO2021255037A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337055B1 (en) 2000-01-21 2002-01-08 Tci Incorporated Inorganic sorbent for molybdenum-99 extraction from irradiated uranium solutions and its method of use
WO2016055434A1 (fr) 2014-10-07 2016-04-14 Institut National Des Radioéléments GÉNÉRATEUR DE RADIO-ISOTOPES À PHASE STATIONNAIRE COMPRENANT DE l'OXYDE DE TITANE
EP3264420A1 (fr) * 2016-06-28 2018-01-03 Institut National Des Radioéléments Procede de production d'une fraction contenant un radio-isotope de mo-99 pur, fraction et generateur contenant le radio-isotope de mo-99

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337055B1 (en) 2000-01-21 2002-01-08 Tci Incorporated Inorganic sorbent for molybdenum-99 extraction from irradiated uranium solutions and its method of use
WO2016055434A1 (fr) 2014-10-07 2016-04-14 Institut National Des Radioéléments GÉNÉRATEUR DE RADIO-ISOTOPES À PHASE STATIONNAIRE COMPRENANT DE l'OXYDE DE TITANE
EP3264420A1 (fr) * 2016-06-28 2018-01-03 Institut National Des Radioéléments Procede de production d'une fraction contenant un radio-isotope de mo-99 pur, fraction et generateur contenant le radio-isotope de mo-99

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAKRAVARTY, JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, vol. 8, 2008, pages 4447 - 4452
FASIH, SEPARATION SCIENCE AND TECHNOLOGY, vol. 51, no. 13, 2016, pages 2115 - 2121
MUSHTAQ, RADIOCHIM. ACTA, vol. 99, 2011, pages 231 - 235

Also Published As

Publication number Publication date
BE1027963B1 (fr) 2021-08-02

Similar Documents

Publication Publication Date Title
JP5969462B2 (ja) 医薬許容純度の223Ra試薬の製造方法
AU2011247361B2 (en) Isotope preparation method
AU2011247362A1 (en) Isotope production method
AU2011247361A1 (en) Isotope preparation method
US20140140462A1 (en) Process
Chakravarty et al. Nanocrystalline zirconia: A novel sorbent for the preparation of 188W/188Re generator
BE1027963B1 (fr) Générateur de radionucléides 99Mo/99mTc
AU2018207260B2 (en) Alternating flow column chromatography apparatus and method of use
EP3264420B1 (fr) Procede de production d'une fraction contenant un radio-isotope de mo-99 pur
JP6691333B2 (ja) 68Ge/68Gaジェネレータ
CA2963319C (fr) Generateur de radio-isotopes a phase stationnaire comprenant de l'oxyde de titane
JP6211639B2 (ja) ウランを原料としないMoを原料とする低比放射能99Moからの99mTC製剤及び99mTCジェネレータ製造方法及び99mTC製剤及び99mTCジェネレータ製造装置、並びに99mTCジェネレータカラム
EP3863684B1 (fr) Procédé de transfert d'un radioisotope entre deux phases stationnaires contenues dans deux colonnes de chromatographie
BE1030063B1 (fr) Procédé de production de Molybdène-99
Evans et al. Technetium-99m generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21731208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21731208

Country of ref document: EP

Kind code of ref document: A1