WO2021254462A1 - 割草机器人 - Google Patents

割草机器人 Download PDF

Info

Publication number
WO2021254462A1
WO2021254462A1 PCT/CN2021/100760 CN2021100760W WO2021254462A1 WO 2021254462 A1 WO2021254462 A1 WO 2021254462A1 CN 2021100760 W CN2021100760 W CN 2021100760W WO 2021254462 A1 WO2021254462 A1 WO 2021254462A1
Authority
WO
WIPO (PCT)
Prior art keywords
lawn mower
distance
mower robot
path
preset value
Prior art date
Application number
PCT/CN2021/100760
Other languages
English (en)
French (fr)
Inventor
梅庆枭
陈伟鹏
Original Assignee
南京德朔实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010559893.9A external-priority patent/CN113892332A/zh
Priority claimed from CN202010558974.7A external-priority patent/CN113812251A/zh
Application filed by 南京德朔实业有限公司 filed Critical 南京德朔实业有限公司
Priority to EP21826309.3A priority Critical patent/EP4129039A4/en
Publication of WO2021254462A1 publication Critical patent/WO2021254462A1/zh
Priority to US17/980,190 priority patent/US20230059610A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D75/00Accessories for harvesters or mowers
    • A01D75/28Control mechanisms for harvesters or mowers when moving on slopes; Devices preventing lateral pull
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers

Definitions

  • This application relates to an intelligent device, for example, to a lawn mower robot and a method for correcting the path of the lawn mower robot.
  • the lawn mower robot walking on the ground is likely to slip due to uneven ground or wet ground. At this time, if the lawn mower robot does not respond in time, the lawn mower robot will always be slipping. Status, this will reduce the work efficiency of the lawn mower robot. Similarly, when the lawn mower robot is walking on a slope with a certain slope, the lawn mower robot is prone to side slip or landslide. At this time, if the lawn mower robot does not respond in time, the lawn mower robot will Will be in a state of sideslip or landslide for a long time, which will also reduce the working efficiency of the lawn mower robot.
  • This application provides a lawn mower robot with more accurate fault judgment and a control method of the lawn mower robot.
  • An embodiment provides a lawn mowing robot, including: a mowing element; a body for supporting the mowing element; a drive assembly, including a traveling wheel that supports the fuselage to drive the fuselage to walk on the ground, and a traveling wheel connected to the traveling wheel.
  • the motion parameters of the drive components are calculated and the second path of the lawn mower robot in the cycle is calculated;
  • the fault judgment module determines whether the difference between the second path and the first path is greater than or equal to the first preset value;
  • the execution module drives the mowing
  • the robot executes a response program; the control module is respectively connected with the fault judgment module and the execution module; among them, the difference between the second path and the first path in each of the consecutive n1 cycles is greater than or equal to the first preset
  • the control module controls the execution module to execute the response program.
  • control module controls the execution module to execute the response program .
  • the execution module shown includes: an alarm module, which is used to send an alarm signal to the user.
  • the execution module includes an obstacle avoidance module, which is used to control the lawn mower robot to respond to actions.
  • the lawn mower robot further includes: a setting module, which is connected to the fault judgment module; and the setting module is used to set the size of the first preset value.
  • the fault judgment module also judges whether the difference between the first distance and the second distance is greater than or equal to the second preset value; wherein, the first distance and the second distance in each of the consecutive k1 cycles When the distance difference is greater than or equal to the second preset value, the control module controls the execution module to execute the response program.
  • the fault judgment module also judges whether the difference between the first distance and the second distance is greater than or equal to the second preset value; wherein, when the first distance and the second distance are in continuous k2 to k3 cycles When the number of cycles in which the difference is greater than or equal to the second preset value is greater than or equal to k2, the control module controls the execution module to execute the response program.
  • An embodiment provides a lawn mowing robot, including: a mowing element; a body for supporting the mowing element; a drive assembly, including a traveling wheel that supports the fuselage to drive the fuselage to walk on the ground, and a traveling wheel connected to the traveling wheel.
  • the motion parameters of the drive components are calculated and the second path of the lawn mower robot in the cycle is calculated;
  • the fault judgment module determines whether the difference between the second path and the first path is greater than or equal to a preset value;
  • the execution module drives the lawn mower robot Execute a response program; the control module is respectively connected with the fault judgment module and the execution module; among them, when the difference between the second path and the first path in consecutive n1 to n2 cycles is greater than or equal to the preset value, the number of cycles is greater than When equal to n1, the control module controls the execution module to execute the response program.
  • An embodiment provides a lawn mowing robot, including: a mowing element; a body for supporting the mowing element; a drive assembly, including a traveling wheel that supports the fuselage to drive the fuselage to walk on the ground, and a traveling wheel connected to the traveling wheel.
  • the motion parameters of the drive components are calculated and the second path of the lawn mower robot in the cycle is calculated;
  • the fault judgment module determines whether the difference between the first path and the second path is greater than or equal to a preset value;
  • the execution module drives the lawn mower robot Execute a response program; the control module is respectively connected with the fault judgment module and the execution module; among them, in each of the consecutive k1 cycles, when the difference between the first path and the second path is greater than or equal to the preset value,
  • the control module controls the execution module to execute the response program.
  • An embodiment provides a lawn mowing robot, including: a mowing element; a body for supporting the mowing element; a drive assembly, including a traveling wheel that supports the fuselage to drive the fuselage to walk on the ground, and a traveling wheel connected to the traveling wheel.
  • the first detection module detects the motion parameters of the mowing robot's body in a period and calculates the first path of the mowing robot in the period;
  • the second detection module detects in the period The motion parameters of the drive components and calculate the second path of the lawn mower robot in the cycle;
  • the fault judgment module judges whether the difference between the first distance and the second distance is greater than or equal to a preset value
  • the execution module drives the mowing robot to execute a response program
  • the control module is connected to the fault judgment module and the execution module respectively;
  • control module controls the execution module to execute the response program when the number of cycles in which the difference between the first path and the second path is greater than or equal to the preset value is greater than or equal to k1 in consecutive k1 to k2 cycles.
  • An embodiment provides a method for controlling a lawnmower robot.
  • the lawnmower robot includes a body and a drive assembly.
  • the drive assembly includes a traveling wheel that supports the fuselage to drive the fuselage to walk on the ground and is connected with the traveling wheel to drive the traveling wheel to rotate.
  • the motor control method includes the steps of: detecting the motion parameters of the body of the lawn mower robot in a cycle and calculating the first path of the lawn mower robot in the cycle, and detecting the motion parameters of the driving components in the cycle and calculating The second path of the lawn mower robot in the cycle; determine whether the difference between the second path and the first path in each of the consecutive n1 cycles is greater than or equal to a preset value; in the continuous n1 cycles When the difference between the second path and the first path in each cycle is greater than or equal to the preset value, the lawn mower robot is controlled to execute a response program.
  • An embodiment provides a method for controlling a lawnmower robot.
  • the lawnmower robot includes a body and a drive assembly.
  • the drive assembly includes a traveling wheel that supports the fuselage to drive the fuselage to walk on the ground and is connected with the traveling wheel to drive the traveling wheel to rotate.
  • the motor control method includes the steps of: detecting the motion parameters of the body of the lawn mower robot in a cycle and calculating the first path of the lawn mower robot in the cycle, and detecting the motion parameters of the driving components in the cycle and calculating The second path of the lawn mower robot in the cycle; determine whether the number of cycles in which the difference between the second path and the first path in the consecutive n1 to n2 cycles is greater than or equal to a preset value is greater than or equal to n1; When the number of cycles in which the difference between the second path and the first path in n1 to n2 cycles is greater than or equal to the preset value is greater than or equal to n1, the lawn mower robot is controlled to execute a response program.
  • An embodiment provides a method for controlling a lawnmower robot.
  • the lawnmower robot includes a body and a drive assembly.
  • the drive assembly includes a traveling wheel that supports the fuselage to drive the fuselage to walk on the ground and is connected with the traveling wheel to drive the traveling wheel to rotate.
  • the motor control method includes the steps of: detecting the motion parameters of the body of the lawn mower robot in a cycle and calculating the first path of the lawn mower robot in the cycle, and detecting the motion parameters of the driving components in the cycle and calculating The second path of the lawnmower robot in the cycle; determine whether the difference between the first path and the second path in each of the consecutive k1 cycles is greater than or equal to a preset value; in the continuous k1 cycles When the difference between the first path and the second path in each cycle is greater than or equal to the preset value, the lawn mower robot is controlled to execute a response program.
  • An embodiment provides a method for controlling a lawnmower robot.
  • the lawnmower robot includes a body and a drive assembly.
  • the drive assembly includes a traveling wheel that supports the fuselage to drive the fuselage to walk on the ground and is connected with the traveling wheel to drive the traveling wheel to rotate.
  • the motor control method includes the steps of: detecting the motion parameters of the body of the lawn mower robot in a cycle and calculating the first path of the lawn mower robot in the cycle, and detecting the motion parameters of the driving components in the cycle and calculating The second path of the lawn mower robot in the cycle; determine whether the number of cycles in which the difference between the first path and the second path in the continuous k1 to k2 cycles is greater than or equal to a preset value is greater than or equal to k1; When the number of cycles in which the difference between the first path and the second path in the k1 to k2 cycles is greater than or equal to the preset value is greater than or equal to k1, the lawn mower robot is controlled to execute a response program.
  • An embodiment provides a lawn mowing robot, including: a mowing element; a body for supporting the mowing element; a drive assembly, including a traveling wheel that supports the fuselage to drive the fuselage to walk on the ground, and a traveling wheel connected to the traveling wheel.
  • the motor that drives the walking wheel The motor that drives the walking wheel; the first detection module detects the motion parameters of the mowing robot body in a cycle and calculates the first path of the mowing robot in the cycle; the second detection module detects the driving in the cycle
  • the movement parameters of the components are calculated and the second path of the lawn mower robot in the cycle is calculated;
  • the fault judgment module determines whether the difference between the second path and the first path is greater than or equal to the first preset value;
  • the correction module corrects the lawn mower robot
  • the control module is respectively connected with the fault judgment module and the correction module; wherein, when the difference between the second distance and the first distance is greater than or equal to the first preset value, the control module controls the correction module to change the actual distance of the mowing robot
  • the distance correction is the sum of the initial distance at the beginning of the cycle and the first distance.
  • the period is greater than or equal to 1 millisecond and less than or equal to 100 milliseconds.
  • the first preset value when the body of the lawn mower robot has a first travel speed, the first preset value is the first value; when the body of the lawn mower robot has a second travel speed, the first preset value is The second value; wherein, when the first travel speed is greater than the second travel speed, the first value is greater than the second value.
  • the first preset value when the first distance of the lawn mower robot in a cycle is a first value is greater than the first preset value when the first distance of the lawn mower robot in a cycle is a second value.
  • the preset value, the first value is greater than the second value.
  • the lawn mower robot further includes: a setting module, which is connected to the fault judgment module; and the setting module is used to set the size of the first preset value.
  • the setting module when the difference between the second distance and the first distance in the consecutive first number of cycles is greater than or equal to the first preset value, the setting module increases the size of the first preset value.
  • the setting module sets the size of the first preset value as the first A change in quantity changes.
  • the fault judgment module also judges whether the difference between the first distance and the second distance is greater than or equal to the second preset value; and when the difference between the first distance and the second distance is greater than or equal to the second preset value , The control module controls the correction module to correct the actual path of the lawn mower robot to the sum of the initial path at the beginning of the cycle and the first path.
  • An embodiment provides a lawn mowing robot, including: a mowing element; a body for supporting the mowing element; a drive assembly, including a traveling wheel that supports the fuselage to drive the fuselage to walk on the ground, and a traveling wheel connected to the traveling wheel.
  • the motor that drives the walking wheel The motor that drives the walking wheel; the first detection module detects the motion parameters of the mowing robot body in a cycle and calculates the first path of the mowing robot in the cycle; the second detection module detects the driving in the cycle
  • the movement parameters of the components are calculated and the second path of the lawn mower robot in the cycle is calculated;
  • the fault judgment module determines whether the difference between the first path and the second path is greater than or equal to a preset value;
  • the correction module corrects the ability of the lawn mower robot
  • the control module is respectively connected with the fault judgment module and the correction module; among them, when the difference between the first distance and the second distance is greater than or equal to the preset value, the control module controls the correction module to correct the actual distance of the mowing robot It is the sum of the initial distance and the first distance at the beginning of the cycle.
  • An embodiment provides a method for correcting the path of a lawnmower robot.
  • the lawnmower robot includes a body and a drive assembly.
  • the drive assembly includes a traveling wheel that supports the fuselage to drive the fuselage to walk on the ground and is connected to the traveling wheel to drive.
  • the correction method for the rotating motor of the walking wheel includes the steps of: detecting the motion parameters of the body of the lawn mower robot in a cycle and calculating the first path of the lawn mower robot in the cycle, and detecting the motion parameters of the driving components in the cycle In order to calculate the second path of the lawn mower robot in the cycle; determine whether the difference between the second path and the first path is greater than or equal to the first preset value; the difference between the second path and the first path is greater than or equal to the first path When the preset value is set, the actual distance of the lawn mower robot is corrected to the sum of the initial distance at the beginning of the cycle and the first distance.
  • the method further includes the step of setting the size of the first preset value according to a change of a motion parameter of the lawn mower robot.
  • the method further includes the step of judging whether the difference between the first distance and the second distance is greater than or equal to a second preset value; when the difference between the first distance and the second distance is greater than or equal to the second preset value, Correct the actual path of the lawn mower robot to the sum of the initial path at the beginning of the cycle and the first path.
  • An embodiment provides a method for correcting the path of a lawnmower robot.
  • the lawnmower robot includes a body and a drive assembly.
  • the drive assembly includes a traveling wheel that supports the fuselage to drive the fuselage to walk on the ground and is connected to the traveling wheel to drive.
  • the correction method for the rotating motor of the walking wheel includes the steps of: detecting the motion parameters of the body of the lawn mower robot in a cycle and calculating the first path of the lawn mower robot in the cycle, and detecting the motion parameters of the driving components in the cycle And calculate the second path of the lawn mower robot in the cycle; determine whether the difference between the first path and the second path is greater than or equal to a preset value; the difference between the first path and the second path is greater than or equal to the preset value When the time, the actual path of the lawn mower robot is corrected to the sum of the initial path at the beginning of the cycle and the first path.
  • Figure 1 is a perspective view of a lawn mower robot in an embodiment
  • Fig. 2 is a plan view of the lawn mower robot in Fig. 1 when it is traveling within the boundary area;
  • Fig. 3 is a block diagram of the lawn mower robot in Fig. 1;
  • Fig. 4 is a flowchart of a method for correcting the path of the lawn mower robot in Fig. 1;
  • Fig. 5 is a flowchart of another method for correcting the path of the lawn mower robot in Fig. 1;
  • Fig. 6 is a flowchart of the method for judging the slipping phenomenon of the lawn mower robot in Fig. 1;
  • Fig. 7 is a flowchart of another method for judging the slipping phenomenon of the lawn mower robot in Fig. 1;
  • Fig. 8 is a flowchart of a method for judging a side slip phenomenon or a landslide phenomenon of the lawn mower robot in Fig. 1;
  • Fig. 9 is a flowchart of another method for judging the side slip phenomenon or landslide phenomenon of the lawn mower robot in Fig. 1.
  • the lawn mower robot 100 shown in FIG. 1 is used as an outdoor walking power tool, which is usually used to mow vegetation such as lawns and weeds outdoors.
  • the lawn mowing robot 100 can automatically walk outdoors without the need for a user to push and walk, and the lawn mowing robot 100 can automatically mow the lawn according to its own or user-side control system.
  • the lawn mower robot 100 can walk in a boundary area 200 set outdoors to cut vegetation.
  • the boundary of the boundary line area 200 may be a cable, and the cable surrounds the boundary line area 200.
  • the boundary may also be a virtual boundary on the map, and the virtual boundary surrounds the virtual boundary line area 200.
  • a charging pile 300 for charging the lawn mower robot 100 is arranged in the boundary area 200 or on the boundary. When the lawn mower robot 100 has insufficient power, the lawn mower robot 100 automatically walks to the charging pile 200 for charging.
  • the mowing robot 100 includes: a mowing element 11, a housing 12, a walking assembly 13, a first motor 14 and a second motor.
  • the mowing element 11 is used to cut grass on the ground.
  • the casing 12 is used to support the mowing element 11, the walking assembly 13, the first motor 14 and the second motor.
  • the walking assembly 13 includes a first walking wheel 131, the first walking wheel 131 is connected to a first motor 14, and the first motor 14 drives the first walking wheel 131 to rotate.
  • the traveling assembly 13 further includes a second traveling wheel, which is installed to the front side of the casing 12, and the second traveling wheel is not connected with the first motor 14.
  • the first motor 14 only drives the first traveling wheel 131 to rotate, and the second traveling wheel serves the purpose of assisting support and walking.
  • the lawn mower robot 100 may also include a plurality of first motors 14 that drive the first traveling wheels 131 and the second traveling wheels, respectively.
  • the second motor is used to drive the mowing element 11 to rotate to realize the mowing function.
  • the mowing robot 100 may also include only one motor, which drives the walking assembly 13 and also drives the mowing element 11. Among them, in this embodiment, the whole composed of the first traveling wheel 131 and the first motor 14 driving the first traveling wheel 131 is regarded as the driving assembly 15 for driving the lawn mower robot 100 to walk on the ground.
  • the mowing robot 100 further includes a first detection module 161 and a second detection module 162.
  • the first detection module 161 is used to detect and calculate the motion parameters of the body 10a of the mowing robot 100 within a period T.
  • the first path ⁇ S1 of the mowing robot 100 in the period T is obtained, and the second detection module 162 is used to detect the motion parameters of the driving assembly 15 in the period T and calculate the first path of the mowing robot 100 in the period T.
  • the body 10a of the lawnmower robot 100 can be understood as a motion parameter of the entire lawnmower robot.
  • the first detection module 161 can obtain the motion parameters of the body 10a of the lawn mower 100 by detecting the motion parameters of the casing 12, or the first detection module 161 can detect the movement parameters of the casing 12 in synchronization with the movement parameters. Or the motion parameters of other retreating parts are used to obtain the motion parameters of the body 10a of the lawn mower 100.
  • the motion parameter of the fuselage 10a may be the acceleration of the fuselage 10a or the posture of the fuselage 10a, etc., and finally the first path ⁇ S1 of the motion of the fuselage 10a is obtained through calculation.
  • the first path ⁇ S1 calculated by detecting the motion parameters of the fuselage 10a is basically the same as the actual path of the lawn mower 100 moving in this period. of.
  • the second detection module 162 may calculate the second path ⁇ S2 of the lawn mower 100 by detecting the motion parameters of the first motor 14, or the second detection module 162 may also calculate the motion parameters of the first walking wheel 131 The second path of the lawn mower 100 ⁇ S2.
  • the first path ⁇ S1 and the second path ⁇ S2 are basically the same within a short period T, and the actual path of the lawn mower robot 100 can pass
  • the first distance ⁇ S1 is calculated, and it can also be calculated through the second distance ⁇ S2.
  • the lawn mower robot 100 is running on the ground and has a slipping phenomenon, a side slip phenomenon or a landslide phenomenon, the first path ⁇ S1 and the second path ⁇ S2 of the lawn mower robot 100 in a period T are different.
  • the slipping phenomenon refers to the fact that the first traveling wheel 131 rotates normally under the drive of the first motor 14, but the lawn mower robot 100 stops walking, or the distance traveled by the lawn mower robot 100 is less than that of the first traveling wheel 131 to drive the lawn mower robot.
  • the distance 100 should travel, that is, the first traveling wheel 131 is idling.
  • the lawnmower robot 100 is walking outdoors, if the lawnmower robot 100 is walking on uneven ground, raised obstacles on the ground may cause the first walking wheel 131 to spin idly, so that the lawnmower robot 100 is prone to slipping. Phenomenon. Or, when the lawn mower robot 100 is walking on wet ground, the friction between the ground and the walking assembly 13 is relatively small.
  • the first traveling wheel 131 is also prone to idling.
  • the lawn mower robot 100 also There will be slipping.
  • the mowing robot 100 is on the ground with a certain slope, for example, when the ground is relatively wet, if the body 10a moves but the first walking wheel 131 does not rotate, it can be judged that the mowing robot 100 may have a landslide Phenomenon or side slip phenomenon.
  • the lawn mower robot 100 further includes a fault judgment module 17, a correction module 181, a control module 182 and an execution module 19.
  • the fault judgment module 17 is connected to the first detection module 161, and the fault judgment module 17 is also connected to the second detection module 162.
  • the fault judgment module 17 can judge whether the difference between the second path ⁇ S2 and the first path ⁇ S1 is greater than or equal to the first path.
  • the default value is C1.
  • the correcting module 181 is used to correct the actual distance of the lawn mower 100.
  • the control module 182 is connected to the fault judgment module 17, and the control module 182 is also connected to the execution module 19.
  • the control module 182 controls the correction module 181 to correct the actual path of the lawn mower 100 to the initial path at the beginning of the period T Sum with the first distance ⁇ S1.
  • the fault judgment module 17 includes a first fault judgment module 171, and the first fault judgment module 171 is mainly used to judge that the lawn mower 100 may achieve a slip phenomenon.
  • the first path ⁇ S1 is closer to the actual path of the lawn mower 100 moving in the period T, and the second path ⁇ S2 will be greater than the actual path of the lawn mower 100. Therefore, At this time, the actual path of the lawn mower robot 100 is corrected to the sum of the initial path at the beginning of the period T and the first path ⁇ S1, so that the calculation of the path of the lawn mower robot 100 can be more accurate.
  • both the first path ⁇ S1 and the second path ⁇ S2 are detected within a certain period T. In this way, through the setting of the period T, the lawn mower robot 100 can cyclically correct the path.
  • the first path ⁇ S1 cannot be completely the same as the actual path of the lawn mower robot 100. Due to the limitation of the detection accuracy of the second detection module 162, the second path ⁇ S2 may not be completely the same as the actual path of the lawn mower 100. Therefore, the fault judgment condition is set as whether the difference between the second distance ⁇ S2 and the first distance ⁇ S1 is greater than or equal to the first preset value C1, and the first preset value C1 is also greater than 0, which can avoid cross cutting. The grass robot 100 may not accurately correct the actual distance of the lawn mower 100.
  • the fault judgment module 17 also includes a second fault judgment module 172.
  • the second fault judgment module 172 is connected to the first detection module 161 and the second detection module 162.
  • the second fault judgment module 172 is used to judge whether the difference between the first distance ⁇ S1 and the second distance ⁇ S2 is greater than or equal to the second preset Value C2.
  • the control module 182 controls the correction module 181 to correct the actual distance of the lawn mower 100 to the initial distance at the beginning of the period T and The sum of the first trip ⁇ S1.
  • the first path ⁇ S1 is closer to the actual path of the lawn mower 100 movement in the period T, and the second path ⁇ S2 is smaller than The actual distance of the lawnmower robot 100. Therefore, the actual distance of the lawnmower robot 100 is corrected to the sum of the initial distance at the beginning of the period T and the first distance ⁇ S1, so that the calculation of the distance of the lawnmower robot 100 can be improved. Is precise.
  • both the first path ⁇ S1 and the second path ⁇ S2 are detected within a certain period T. In this way, through the setting of the period T, the lawn mower robot 100 can cyclically correct the path.
  • the fault judgment condition is set as whether the difference between the first distance ⁇ S1 and the second distance ⁇ S2 is greater than or equal to the second preset value C2, and the second preset value C2 is also greater than 0, which can avoid cross cutting.
  • the grass robot 100 may not accurately correct the actual distance of the lawn mower 100.
  • the period T of the first path ⁇ S1 detected based on the slip phenomenon and the period T of the first path ⁇ S1 detected based on the sideslip phenomenon may also be different.
  • the cycle T of the first path ⁇ S1 detected based on the slip phenomenon may also be different.
  • the actual distance of the lawn mower robot 100 is detected more accurately under different conditions.
  • the lawnmower robot 100 includes two first detection modules 161 and two second detection modules 162, and the two first detection modules 161 can respectively detect the lawnmower 100 machines in different periods T.
  • the two second detection modules 162 may also detect the motion parameters of the drive assembly 15 in different periods T.
  • the method for correcting the path of the lawn mower 100 includes the following steps:
  • the first detection module 161 starts to detect the motion parameters of the body 10a of the lawnmower robot 100 from time t1 at the beginning of the period T and calculates that the lawnmower robot 100 is within the period T
  • the first path ⁇ S1 generated, where the path that the lawn mower robot 100 has traveled at time t1 is the initial path St1
  • the second detection module 162 starts to detect the motion parameters of the drive assembly 15 at time t1 when the period T starts And calculate the second path ⁇ S2 generated by the lawn mower robot 100 in the period T.
  • the first fault judgment module 171 receives the data detected by the first detection module 161 and the second detection module 162, and then determines whether the difference between the second distance ⁇ S2 and the first distance ⁇ S1 is greater than or equal to the first preset value C1, that is Determine whether the formula is satisfied:
  • the actual distance St2 of the lawn mower robot 100 is corrected to the sum of the initial distance St1 at the beginning of the period T and the first distance ⁇ S1.
  • the first fault judgment module 171 judges that the difference between ⁇ S2 and ⁇ S1 is greater than or equal to the first preset value C1, it sends the judgment result to the control module 182, and the control module 182 controls the correction module 181 to correct the actual situation of the lawn mower 100 Distance.
  • the correction module 181 corrects the actual distance St2 of the lawnmower robot 100 at time t2 when the period T ends to the sum of the initial distance St1 at the beginning of the period T and the first distance ⁇ S1, that is, according to the following formula Correct the actual distance St2 at t2:
  • St2 St1+ ⁇ S1;
  • step P21 is included between step P2 and step P1: when the difference between the second distance ⁇ S2 and the first distance ⁇ S1 is less than the first preset value C1, it is determined that the first distance ⁇ S1 and Whether the difference of the second distance ⁇ S2 is greater than or equal to the second preset value C2, that is, it is judged whether the formula is satisfied:
  • step P3 is entered, and the correction module 181 drives the lawn mower 100 to the actual time t2 at the end of the period T
  • the path St2 is corrected to the sum of the initial path St1 at the beginning of the period T and the first path ⁇ S1. If the difference between the first distance ⁇ S1 and the second distance ⁇ S2 is less than the second preset value C2, then return to step P1 to continue the detection. In one embodiment, there is no sequence between step P2 and step P21. In other embodiments, step P21 may be performed first, and then step P2 may be performed.
  • the correction module 181 merges the first distance ⁇ S1 and the second distance ⁇ S2 to obtain a fusion distance ⁇ S, and then the correction module 181 corrects the actual distance St2 of the lawn mower 100 at time t2 to the initial distance St1 and the fusion distance ⁇ S ⁇ The sum. That is:
  • the detection accuracy of the first detection module 161 and the second detection module 162 can be taken into consideration at the same time, so that the detection accuracy of the path of the lawn mower robot 100 can be improved.
  • the first detection module 161 adopts an inertial measurement unit
  • the second detection module 162 adopts an odometer.
  • the inertial measurement unit may make the detection result inaccurate as the error accumulates, and the detection result of the inertial measurement unit is relatively accurate in a shorter period of time T.
  • the correction module 181 corrects the actual distance St2 of the lawn mower 100 at time t2 to the sum of the initial distance St1 and the second distance ⁇ S2.
  • the period T during which the first detection module 161 performs detection is greater than or equal to 1 millisecond and less than or equal to 100 milliseconds. In this way, the accuracy of detection of the actual path of the lawn mower robot 100 can be improved. In one embodiment, the period T is greater than or equal to 10 milliseconds and less than or equal to 50 milliseconds. On the one hand, it can avoid the problem that the program is prone to errors caused by too frequent detection, and on the other hand, it can also reduce the length of the detection cycle to make the actual distance The accuracy of detection is improved.
  • the size of the first preset value C1 can be adjusted or set. In this way, the size of the first preset value C1 can be adjusted in real time according to the actual conditions and operating conditions of the lawn mower 100, thereby improving cutting The detection accuracy of the actual distance of the grass robot 100.
  • the mowing robot 100 further includes a first setting module 173 for setting a first preset value C1.
  • the first setting module 173 is connected to the first fault judgment module 171, and the first setting module 173 can set the size of the first preset value C1 in real time.
  • the correction module 181 detects according to the first detection module 161 The error of the corrected actual distance of the first distance ⁇ S1 will continue to increase.
  • the first setting module 173 changes the size of the first preset value C1 according to the change of the first quantity, so as to reduce the detected value. error.
  • the first setting module 173 increases the size of the first preset value C1 according to the increase of the first number.
  • the size of the first preset value C1 may also be changed according to the change of the driving speed of the lawn mower robot 100.
  • the first setting module 173 may increase the first preset value C1.
  • the first preset value C1 is the first value
  • the first preset value C1 is The second value.
  • the first preset value C1 may also change with the change of the first distance ⁇ S1.
  • the first preset value C1 when the first path ⁇ S1 of the lawnmower robot 100 in a period T is a first value is greater than when the first path ⁇ S1 of the lawnmower robot 100 in a period T is a second value
  • the size of the second preset value C2 can be adjusted or set. In this way, the size of the second preset value C2 can be adjusted in real time according to the actual conditions and operating conditions of the lawn mower robot 100. As a result, the detection accuracy of the actual path of the lawn mower robot 100 is improved.
  • the mowing robot 100 further includes a second setting module 174 for setting a second preset value C2.
  • the second setting module 174 is connected to the second fault judgment module 172, and the second setting module 174 can set the size of the second preset value C2 in real time.
  • the correction module 181 detects according to the first detection module 161 The error of the corrected actual distance of the first distance ⁇ S1 will continue to increase.
  • the second setting module 174 changes the second preset value C2 according to the change of the first quantity, so as to reduce the detected value. error.
  • the second setting module 174 increases the size of the second preset value C2 according to the increase of the first number.
  • the magnitude of the second preset value C2 may also be changed according to the change of the driving speed of the lawn mower robot 100.
  • the setting module may increase the second preset value C2.
  • the second preset value C2 is the first value
  • the second preset value C2 is The second value.
  • the second preset value C2 may also change with the change of the first distance ⁇ S1.
  • the second preset value C2 when the first distance ⁇ S1 of the lawn mower robot 100 in a period T is a first value is greater than when the first distance ⁇ S1 of the lawn mower robot 100 in a period T is a second value
  • the correction method for correcting the path of the lawnmower robot 100 further includes the step of setting the size of the first preset value C1 according to a change of a movement parameter of the lawnmower robot 100.
  • the motion parameter may be the driving speed of the body 10a of the lawn mower 100 or the first path ⁇ S1 in a period T, or the motion parameter may also be the continuous occurrence of the first path ⁇ S1 and the second path.
  • the difference of ⁇ S2 is greater than or equal to the number of consecutive periods T of the first preset value C1.
  • the lawnmower robot 100 may also include an execution module 19, and the execution module 19 is used to execute a response program.
  • the control module 182 controls the execution module 19 to execute the response program . That is, within n1 consecutive cycles T, each cycle T satisfies the formula:
  • the first fault judgment module 171 when the difference between the second path ⁇ S2 and the first path ⁇ S1 is greater than or equal to the first preset value C1 in the continuous n1 cycles T, at this time, the first fault judgment module 171 then It is determined that the lawn mower robot 100 has slipped.
  • the number of consecutive cycles T satisfying that the difference between the second path ⁇ S2 and the first path ⁇ S1 is greater than or equal to the first preset value C1 is set, so that the judgment of the first fault judgment module 171 can be improved. The precision reduces the misjudgment rate.
  • the lawnmower robot 100 In the actual driving process of the lawnmower robot 100, it usually walks on the lawn, and the lawn is generally not flat enough, so the lawnmower robot 100 is easier to meet the second distance ⁇ S2 and the first distance within a shorter period T.
  • the difference of the distance ⁇ S1 is greater than or equal to the first preset value C1. If the lawnmower robot 100 is allowed to execute the response program at this time, it is very likely that the lawnmower robot 100 is always executing the response program, or the lawnmower robot 100 executes the response program as soon as it is started. This will affect the lawnmower robot 100's performance. Operation reduces work efficiency.
  • the number of consecutive cycles T satisfying that the difference between the second path ⁇ S2 and the first path ⁇ S1 is greater than or equal to the first preset value C1 is set, so that the lawn mower 100 can be avoided in the future.
  • the response procedure is also executed, thereby improving work efficiency.
  • the execution module 19 executes the response program, which can prevent the lawnmower robot 100 from being in a slipping state all the time, thereby affecting the efficiency of mowing.
  • the execution module 19 may include an alarm module 191.
  • the alarm module 191 can promptly send an alarm signal to the user.
  • the alarm signal may be a sound signal.
  • the alarm module 191 generates a sound signal, if the user is not near the lawnmower robot 100 but does other things indoors, the user can hear the sound of the lawnmower robot 100 malfunctioning in time. Signals, so that the user can arrive in time to make the lawn-mower robot 100 out of the predicament, thereby improving the work efficiency of the lawn-mower robot 100.
  • the alarm signal is a light signal, so that in a relatively dark environment or a relatively noisy environment, the user can promptly discover that the lawnmower robot 100 is malfunctioning, so that the lawnmower robot 100 can get out of the predicament in time.
  • the alarm signal may also be that an alarm sign appears on a display screen of the lawn mower robot 100 itself.
  • the alarm module 191 may directly transmit an alarm signal to a mobile phone or computer or other device at the user end, so that the user can more easily find that the lawn mower robot 100 is malfunctioning.
  • the execution module 19 also includes an obstacle avoidance module 192.
  • the obstacle avoidance module 192 controls the lawn mower robot 100 to respond to actions, so that the cutting The grass robot 100 is automatically out of the predicament.
  • the action response may be to cause the lawn mower robot 100 to stop, the action response may also be to cause the lawn mower robot 100 to retreat, the action response may also be to make the lawn mower robot 100 turn, and the action response may also be to cause the lawn mower robot 100 to change the driving speed. Wait.
  • the lawnmower robot 100 responds to actions, so that the lawnmower robot 100 no longer slips.
  • the obstacle avoidance module 192 controls the mowing robot 100 to respond to actions, or the alarm module 191 sends out an alarm signal, it is considered that the execution module 19 has executed the response program.
  • the first fault judgment module 171 can also judge whether the difference between the second path ⁇ S2 and the first path ⁇ S1 in the consecutive n2 to n3 cycles T is greater than or equal to the first preset value C1. Equal to n2.
  • the control module 182 controls the execution module 19 Perform response procedures.
  • n1 is less than n2, and n2 is less than n3, which makes the fault judgment more reasonable.
  • ⁇ S2- ⁇ S1 ⁇ C1 is greater than or equal to n2, it is considered that the lawn mower 100 has a slipping phenomenon.
  • the ratio of the number of cycles T that satisfies the difference between the second path ⁇ S2 and the first path ⁇ S1 is greater than or equal to the first preset value C1 to n3 is greater than or equal to a preset value
  • the value is also considered to be an indirect judgment of whether the difference between the second distance ⁇ S2 and the first distance ⁇ S1 is greater than or equal to the first preset value C1, and the number of periods T is greater than or equal to n2.
  • the second fault judgment module 172 can also judge whether the difference between the first distance ⁇ S1 and the second distance ⁇ S2 is greater than or equal to the second preset value C2.
  • the control module 182 controls the execution module 19 to execute the response program. That is, in the continuous k1 cycles T, each cycle T satisfies the formula:
  • the second fault judgment module 172 judges that the lawn mower 100 appears Side slip phenomenon or landslide phenomenon.
  • the number of consecutive cycles T satisfying that the difference between the first distance ⁇ S1 and the second distance ⁇ S2 is greater than or equal to the second preset value C2 is set, so that the judgment of the second fault judgment module 172 can be improved. The precision reduces the misjudgment rate.
  • the lawnmower robot 100 In the actual driving process of the lawnmower robot 100, it usually walks on the lawn, and the lawn is generally not flat enough, so the lawnmower robot 100 is easier to meet the first distance ⁇ S1 and the second distance in a shorter period T. The difference of the distance ⁇ S2 is greater than or equal to the second preset value C2. If the lawnmower robot 100 is allowed to execute the response program at this time, it is very likely that the lawnmower robot 100 is always executing the response program, or the lawnmower robot 100 executes the response program as soon as it is started. This will affect the lawnmower robot 100's performance. Operation reduces work efficiency.
  • the number of consecutive cycles T satisfying that the difference between the first path ⁇ S1 and the second path ⁇ S2 is greater than or equal to the second preset value C2 is set, so that the lawn mower 100 can be avoided in the future.
  • the problem of executing the response procedure during sideslip or when the time of sideslip can be ignored, thereby improving work efficiency.
  • the execution module 19 executes a response program, which can prevent the lawn mower robot 100 from being in a side slip state or a landslide state all the time. Affect the efficiency of mowing.
  • the alarm module 191 may issue an alarm signal, or the obstacle avoidance module 192 may control the lawn mower robot 100 to respond.
  • the second fault judgment module 172 can also judge whether the number of periods T in which the difference between the first path ⁇ S1 and the second path ⁇ S2 is greater than or equal to the second preset value C2 in the continuous k2 to k3 cycles T is greater than Equal to k2.
  • the control module 182 controls the execution module 19 Perform response procedures. In this way, the omission of fault judgment can be avoided, thereby improving the accuracy of the judgment of sideslip phenomenon or landslide phenomenon.
  • k1 is less than k2, and k2 is less than k3, which makes the fault judgment more reasonable.
  • the ratio of the number of cycles T that satisfies the difference between the first path ⁇ S1 and the second path ⁇ S2 is greater than or equal to the second preset value C2 to k3 is greater than or equal to a preset
  • the value is also considered to be an indirect judgment of whether the number of periods T in which the difference between the first distance ⁇ S1 and the second distance ⁇ S2 is greater than or equal to the second preset value C2 is greater than or equal to k2.
  • control method for controlling the lawnmower robot 100 can be a method of judging whether the lawnmower robot 100 has a slip phenomenon and how to make a response program, which includes the following steps:
  • step Q12 may be included between step Q1 and step Q2.
  • the period can also be judged first Whether the difference between the second path ⁇ S2 and the first path ⁇ S1 in T is greater than or equal to the first preset value C1, so that if T does not satisfy the difference between the second path ⁇ S2 and the first path ⁇ S1 in one cycle
  • the value is less than the first preset value C1
  • step Q21 may be included between step Q2 and step Q3.
  • step Q21 may be performed first, and then step Q2 may be performed.
  • another control method for controlling the mowing robot 100 can be a method of judging whether the mowing robot 100 has a side slip phenomenon or a landslide phenomenon and how to make a response program, which includes the following steps:
  • R1 Detect the motion parameters of the body 10a of the lawn mower 100 in a period T, calculate the first path ⁇ S1 of the lawn mower 100 in the period T, and detect the movement of the drive assembly 15 in the period T Parameters and calculate the second path ⁇ S2 of the lawn mower robot 100 in the period T.
  • step R12 may be included between step R1 and step R2.
  • the period can also be judged first Whether the difference between the first distance ⁇ S1 and the second distance ⁇ S2 in T is greater than or equal to the second preset value C2, so if T does not satisfy the difference between the first distance ⁇ S1 and the second distance ⁇ S2 in one cycle
  • the value is less than the second preset value C2 you can directly return to step R1 to perform the next cycle detection, thereby improving the efficiency of program operation.
  • step R21 may be included between step R2 and step R3.
  • step R21 may be performed first, and then step R2 may be performed.

Abstract

一种割草机器人(100),包括割草元件(11),机身(12),驱动组件(15),行走轮(131),马达(14),第一检测模块(161),第二检测模块(162),故障判断模块(17),执行模块(19)和控制模块(182)。第一检测模块(161)检测在一个周期内割草机器人(100)的第一路程;第二检测模块(162)检测在周期内驱动组件(15)的运动参数并计算出割草机器人(100)在该周期内的第二路程;故障判断模块(17)判断第二路程和第一路程的差值是否大于等于第一预设值;执行模块(19)驱动割草机器人(100)执行一个响应程序;控制模块(182)分别与故障判断模块(17)和执行模块(19)连接;其中,在连续的n1个周期内的每个周期内所述第二路程与第一路程的差值均大于等于所述第一预设值时,控制模块(182)控制执行模块(19)执行所述响应程序。

Description

割草机器人
本申请要求申请日为2020年6月18日、申请号为202010558974.7,以及申请日为2020年6月18日、申请号为202010559893.9的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种智能设备,例如涉及一种割草机器人和修正割草机器人的路程的修正方法。
背景技术
割草机器人在地面上行走是很可能因为地面的不平整或者地面的潮湿而出现打滑的现象,这时如果不及时的对割草机器人进行一个响应动作,那么割草机器人将会一直处于打滑的状态,这样会降低割草机器人的工作效率。同样的,当割草机器人在具有一定的坡度的斜坡上行走时,割草机器人容易出现侧滑或者滑坡的现象,这时如果不及时的对割草机器人进行一个响应动作,那么割草机器人将会长时间的处于侧滑或者滑坡的状态,这样也会降低割草机器人的工作效率。
发明内容
本申请提供一种故障判断更准确的割草机器人以及割草机器人的控制方法。
一实施例提供一种割草机器人,包括:割草元件;机身,用于支撑割草元件;驱动组件,包括支撑机身以驱动机身在地面上行走的行走轮和与行走轮连接以驱动行走轮转动的马达;第一检测模块,检测在一个周期内割草机器人的机身的运动参数并计算出割草机器人在该周期内的第一路程;第二检测模块,检测在周期内驱动组件的运动参数并计算出割草机器人在该周期内的第二路程;故障判断模块,判断第二路程和第一路程的差值是否大于等于第一预设值;执行模块,驱动割草机器人执行一个响应程序;控制模块,分别与故障判断模块和执行模块连接;其中,在连续的n1个周期内的每个周期内第二路程与第一路程的差值均大于等于第一预设值时,控制模块控制执行模块执行响应程序。
在一个实施例中,当在连续的n2到n3个周期内第二路程与第一路程的差值大于等于第一预设值的周期的数量大于等于n2时,控制模块控制执行模块执行响应程序。
在一个实施例中,所示执行模块包括:报警模块,用于向用户发出报警信号。
在一个实施例中,执行模块包括:避障模块,用于控制割草机器人进行动作响应。
在一个实施例中,割草机器人还包括:设定模块,与故障判断模块连接;设定模块用于设定第一预设值的大小。
在一个实施例中,故障判断模块还判断第一路程和第二路程的差值是否大于等于第二预设值;其中,在连续的k1个周期内的每个周期内第一路程和第二路程的差值均大于等于第二预设值时,控制模块控制执行模块执行响应程序。
在一个实施例中,故障判断模块还判断第一路程和第二路程的差值是否大于等于第二预设值;其中,当在连续的k2到k3个周期内第一路程和第二路程的差值大于等于第二预设值的周期的数量是大于等于k2时,控制模块控制执行模块执行响应程序。
一实施例提供一种割草机器人,包括:割草元件;机身,用于支撑割草元件;驱动组件,包括支撑机身以驱动机身在地面上行走的行走轮和与行走轮连接以驱动行走轮转动的马达;第一检测模块,检测在一个周期内割草机器人的机身的运动参数并计算出割草机器人在该周期内的第一路程;第二检测模块,检测在周期内驱动组件的运动参数并计算出割草机器人在该周期内的第二路程;故障判断模块,判断第二路程和第一路程的差值是否大于等于一个预设值;执行模块,驱动割草机器人执行一个响应程序;控制模块,分别与故障判断模块和执行模块连接;其中,当在连续的n1到n2个周期内第二路程与第一路程的差值大于等于预设值的周期的数量大于等于n1时,控制模块控制执行模块执行响应程序。
一实施例提供一种割草机器人,包括:割草元件;机身,用于支撑割草元件;驱动组件,包括支撑机身以驱动机身在地面上行走的行走轮和与行走轮连接以驱动行走轮转动的马达;第一检测模块,检测在一个周期内割草机器人的机身的运动参数并计算出割草机器人在该周期内的第一路程;第二检测模块,检测在周期内驱动组件的运动参数并计算出割草机器人在该周期内的第二路程;故障判断模块,判断第一路程和第二路程的差值是否大于等于一个预设值;执行模块,驱动割草机器人执行一个响应程序;控制模块,分别与故障判断模块和执行模块连接;其中,在连续的k1个周期内的每个周期内第一路程与第二路程的差值均大于等于预设值时,控制模块控制执行模块执行响应程序。
一实施例提供一种割草机器人,包括:割草元件;机身,用于支撑割草元件;驱动组件,包括支撑机身以驱动机身在地面上行走的行走轮和与行走轮连接以驱动行走轮转动的马达;第一检测模块,检测在一个周期内割草机器人的机身的运动参数并计算出割草机器人在该周期内的第一路程;第二检测模块,检测在周期内驱动组件的运动参数并计算出割草机器人在该周期内的第二路程;
故障判断模块,判断第一路程和第二路程的差值是否大于等于一个预设值;
执行模块,驱动割草机器人执行一个响应程序;
控制模块,分别与故障判断模块和执行模块连接;
其中,当在连续的k1到k2个周期内第一路程与第二路程的差值大于等于预设值的周期的数量大于等于k1时,控制模块控制执行模块执行响应程序。
一实施例提供一种割草机器人的控制方法,割草机器人包括机身和驱动组件,驱动组件包括支撑机身以驱动机身在地面上行走的行走轮和与行走轮连接以驱动行走轮转动的马达,控制方法包括步骤:检测在一个周期内割草机器人的机身的运动参数并计算出割草机器人在该周期内的第一路程,并检测在周期内驱动组件的运动参数并计算出割草机器人在该周期内的第二路程;判断在连续的n1个周期内的每个周期内第二路程与第一路程的差值是否均大于等于一个预设值;在连续的n1个周期内的每个周期内第二路程与第一路程的差值均大于等于预设值时,控制割草机器人执行一个响应程序。
一实施例提供一种割草机器人的控制方法,割草机器人包括机身和驱动组件,驱动组件包括支撑机身以驱动机身在地面上行走的行走轮和与行走轮连接以驱动行走轮转动的马达,控制方法包括步骤:检测在一个周期内割草机器人的机身的运动参数并计算出割草机器人在该周期内的第一路程,并检测在周期内驱动组件的运动参数并计算出割草机器人在该周期内的第二路程;判断在连续的n1到n2个周期内第二路程与第一路程的差值大于等于一个预设值的周期的数量是否大于等于n1;在连续的n1到n2个周期内第二路程与第一路程的差值大于等于预设值的周期的数量大于等于n1时,控制割草机器人执行一个响应程序。
一实施例提供一种割草机器人的控制方法,割草机器人包括机身和驱动组件,驱动组件包括支撑机身以驱动机身在地面上行走的行走轮和与行走轮连接以驱动行走轮转动的马达,控制方法包括步骤:检测在一个周期内割草机器人的机身的运动参数并计算出割草机器人在该周期内的第一路程,并检测在周期内驱动组件的运动参数并计算出割草机器人在该周期内的第二路程;判断在连续的k1个周期内的每个周期内第一路程与第二路程的差值是否均大于等于一个预设值;在连续的k1个周期内的每个周期内第一路程与第二路程的差值均大于等于预设值时,控制割草机器人执行一个响应程序。
一实施例提供一种割草机器人的控制方法,割草机器人包括机身和驱动组件,驱动组件包括支撑机身以驱动机身在地面上行走的行走轮和与行走轮连接以驱动行走轮转动的马达,控制方法包括步骤:检测在一个周期内割草机器人的机身的运动参数并计算出割草机器人在该周期内的第一路程,并检测在周期内驱动组件的运动参数并计算出割草机器人在该周期内 的第二路程;判断在连续的k1到k2个周期内第一路程与第二路程的差值大于等于一个预设值的周期的数量是否大于等于k1;在连续的k1到k2个周期内第一路程与第二路程的差值大于等于预设值的周期的数量大于等于k1时,控制割草机器人执行一个响应程序。
一实施例提供一种割草机器人,包括:割草元件;机身,用于支撑割草元件;驱动组件,包括支撑机身以驱动机身在地面上行走的行走轮和与行走轮连接以驱动行走轮转动的马达;第一检测模块,检测在一个周期内割草机器人机身的运动参数并计算出割草机器人在该周期内的第一路程;第二检测模块,检测在周期内驱动组件的运动参数并计算出割草机器人在该周期内的第二路程;故障判断模块,判断第二路程和第一路程的差值是否大于等于第一预设值;修正模块,修正割草机器人的实际路程;控制模块,分别与故障判断模块和修正模块连接;其中,在第二路程和第一路程的差值大于等于第一预设值时,控制模块控制修正模块将割草机器人的实际路程修正为周期开始时的初始路程与第一路程的和。
在一个实施例中,周期大于等于1毫秒且小于等于100毫秒。
在一个实施例中,在割草机器人的机身具有第一行驶速度时,第一预设值为第一数值;在割草机器人的机身具有第二行驶速度时,第一预设值为第二数值;其中,在第一行驶速度大于第二行驶速度时,第一数值大于第二数值。
在一个实施例中,在割草机器人在一个周期内的第一路程为第一数值时的第一预设值大于在割草机器人在一个周期内的第一路程为第二数值时的第一预设值,第一数值大于第二数值。
在一个实施例中,割草机器人还包括:设定模块,与故障判断模块连接;设定模块用于设定第一预设值的大小。
在一个实施例中,在连续的第一数量的周期内第二路程和第一路程的差值大于等于第一预设值时,设定模块增大第一预设值的大小。
在一个实施例中,当在连续的第一数量的周期内第二路程和第一路程的差值大于等于第一预设值时,设定模块设定第一预设值的大小随着第一数量的变化而变化。
在一个实施例中,故障判断模块还判断第一路程和第二路程的差值是否大于等于第二预设值;且在第一路程和第二路程的差值大于等于第二预设值时,控制模块控制修正模块将割草机器人的实际路程修正为周期开始时的初始路程与第一路程的和。
一实施例提供一种割草机器人,包括:割草元件;机身,用于支撑割草元件;驱动组件,包括支撑机身以驱动机身在地面上行走的行走轮和与行走轮连接以驱动行走轮转动的马达;第一检测模块,检测在一个周期内割草机器人机身的运动参数并计算出割草机器人在该周期 内的第一路程;第二检测模块,检测在周期内驱动组件的运动参数并计算出割草机器人在该周期内的第二路程;故障判断模块,判断第一路程和第二路程的差值是否大于等于一个预设值;修正模块,修正割草机器人能的实际路程;控制模块,分别与故障判断模块和修正模块连接;其中,在第一路程和第二路程的差值大于等于预设值时,控制模块控制修正模块将割草机器人的实际路程修正为周期开始时的初始路程与第一路程的和。
一实施例提供一种修正割草机器人的路程的修正方法,割草机器人包括机身和驱动组件,驱动组件包括支撑机身以驱动机身在地面上行走的行走轮和与行走轮连接以驱动行走轮转动的马达,修正方法包括步骤:检测在一个周期内割草机器人的机身的运动参数并计算出割草机器人在该周期内的第一路程,并检测在周期内驱动组件的运动参数以计算出割草机器人在该周期内的第二路程;判断第二路程和第一路程的差值是否大于等于第一预设值;在第二路程和第一路程的差值大于等于第一预设值时,将割草机器人的实际路程修正为周期开始时的初始路程与第一路程的和。
在一个实施例中,还包括步骤:根据割草机器人的一个运动参数的变化设定第一预设值的大小。
在一个实施例中,还包括步骤:判断第一路程和第二路程的差值是否大于等于第二预设值;在第一路程和第二路程的差值大于等于第二预设值时,将割草机器人的实际路程修正为周期开始时的初始路程与第一路程的和。
一实施例提供一种修正割草机器人的路程的修正方法,割草机器人包括机身和驱动组件,驱动组件包括支撑机身以驱动机身在地面上行走的行走轮和与行走轮连接以驱动行走轮转动的马达,修正方法包括步骤:检测在一个周期内割草机器人的机身的运动参数并计算出割草机器人在该周期内的第一路程,并检测在周期内驱动组件的运动参数并计算出割草机器人在该周期内的第二路程;判断第一路程和第二路程的差值是否大于等于一个预设值;在第一路程和第二路程的差值大于等于预设值时,将割草机器人的实际路程修正为周期开始时的初始路程与第一路程的和。
本申请通过多个周期的检测与判断,使得该割草机器人的故障判断的准确度更高。
附图说明
图1是一个实施例中割草机器人的立体图;
图2是图1中的割草机器人在边界线区域内行驶时的平面图;
图3是图1中的割草机器人的模块结构图;
图4是图1中的割草机器人的路程的修正方法的流程图;
图5是图1中的割草机器人的路程的另一种修正方法的流程图;
图6是图1中的割草机器人的打滑现象的判断方法的流程图;
图7是图1中的割草机器人的打滑现象的另一种判断方法的流程图;
图8是图1中的割草机器人的侧滑现象或者滑坡现象的判断方法的流程图;
图9是图1中的割草机器人的侧滑现象或者滑坡现象的另一种判断方法的流程图。
具体实施方式
图1所示的割草机器人100作为一种户外行走动力工具,其通常被用于在户外修剪草坪、杂草等植被。割草机器人100能在户外自动行走,无需用户用手推着行走,割草机器人100能根据自身的或者用户端的控制系统自动的修剪草坪。
如图2所示,割草机器人100可以在户外设置的一个边界线区域200内行走以切割植被。边界线区域200的边界可以为线缆,线缆围绕而成边界线区域200。或者边界也可以是地图上虚拟边界,虚拟边界围绕而成虚拟的边界线区域200。在边界线区域200内或者边界上设置用于给割草机器人100充电的充电桩300,当割草机器人100电量不足时,割草机器人100自动的行走至充电桩200进行充电。
如图1所示,割草机器人100包括:割草元件11、机壳12、行走组件13、第一马达14和第二马达。割草元件11用于切割地面上的草。机壳12用于支撑割草元件11、行走组件13,第一马达14和第二马达。行走组件13包括第一行走轮131,第一行走轮131与第一马达14连接,第一马达14驱动第一行走轮131转动。行走组件13还包括第二行走轮,第二行走轮安装至机壳12的前侧,第二行走轮不与第一马达14连接。也即是说,第一马达14只驱动第一行走轮131转动,而第二行走轮起到辅助支撑和行走的目的。在其它实施例中,割草机器人100也可以包括多个分别驱动第一行走轮131和第二行走轮的第一马达14。第二马达用于驱动割草元件11转动以实现割草功能。在其它实施例中,割草机器人100也可以只包括一个马达,这个马达驱动行走组件13,也驱动割草元件11。其中,在本实施例中,将第一行走轮131、驱动第一行走轮131的第一马达14构成的整体认为是用于驱动割草机器人100在地面上行走的驱动组件15。
如图3所示,割草机器人100还包括第一检测模块161和第二检测模块162,第一检测模块161用于检测在一个周期T内割草机器人100的机身10a的运动参数并计算出割草机器人100在该周期T内的第一路程△S1,第二检测模块162用于检测在该周期T内驱动组件15 的运动参数并计算出割草机器人100在该周期T内的第二路程△S2。割草机器人100的机身10a可以理解为割草机器人整机的一个运动参数。在检测时,第一检测模块161可以通过检测机壳12的运动参数来得出割草机器人100的机身10a的运动参数,或者,第一检测模块161与可以通过检测与机壳12同步的前进或者后退的其它零件的运动参数来得出割草机器人100的机身10a的运动参数。示例性地,机身10a的运动参数可以是机身10a的加速度或者机身10a的姿态等,最终通过计算得出机身10a运动的第一路程△S1。在一实施例中,在长度较短的周期T内,通过检测机身10a的运动参数计算出的第一路程△S1基本上与割草机器人100在该周期内运动的实际路程基本上是相同的。第二检测模块162可以通过检测第一马达14的运动参数来计算出割草机器人100的第二路程△S2,或者,第二检测模块162也可以通过检测第一行走轮131的运动参数计算出割草机器人100的第二路程△S2。
当割草机器人100正常地在地面上行驶时,在较短的一个周期T内,第一路程△S1和第二路程△S2基本上是相同的,这时割草机器人100的实际路程可以通过第一路程△S1计算得出,也可以通过第二路程△S2计算得出。而当割草机器人100在地面上行驶时出现打滑现象、侧滑现象或者滑坡现象时,割草机器人100在一个周期T内的第一路程△S1和第二路程△S2不同。其中,打滑现象指的是第一行走轮131在第一马达14的驱动下正常转动,但是割草机器人100却停止行走,或者割草机器人100行走的路程小于第一行走轮131驱动割草机器人100应当行走的路程,也即是,第一行走轮131出现空转的情况。当割草机器人100在室外行走时,如果割草机器人100行走在不平坦的地面上,地面上的凸起障碍物可能会使得第一行走轮131空转,从而这时割草机器人100容易出现打滑现象。或者,当割草机器人100在潮湿的地面上行走时,地面与行走组件13之间的摩擦力较小,这时第一行走轮131也容易出现空转的现象,从容这时割草机器人100也会出现打滑现象。当割草机器人100在具有一定坡度的地面上时,例如地面上也比较潮湿时,这时如果机身10a发生移动,但第一行走轮131不转动,可以判断割草机器人100可能出现了滑坡现象或者侧滑现象。
在本实施中,割草机器人100还包括故障判断模块17、修正模块181、控制模块182和执行模块19。故障判断模块17与第一检测模块161连接,故障判断模块17还与第二检测模块162连接,故障判断模块17能够判断第二路程△S2和第一路程△S1的差值是否大于等于第一预设值C1。修正模块181用于修正割草机器人100的实际路程。控制模块182与故障判断模块17连接,控制模块182还与执行模块19连接。当第二路程△S2和第一路程△S1的差值大于等于第一预设值C1时,控制模块182控制修正模块181件割草机器人100的实际路程修正为该周期T开始时的初始路程与第一路程△S1的和。可选地,故障判断模块17包括 第一故障判断模块171,第一故障判断模块171主要用于判断割草机器人100可能实现打滑现象的问题。
当割草机器人100出现打滑现象时,第一路程△S1更接近割草机器人100在该周期T内运动的实际路程,而第二路程△S2则会大于割草机器人100的实际路程,因此,这时将割草机器人100的实际路程修正为周期T开始时的初始路程与第一路程△S1的和,这样可以使得割草机器人100的路程的计算更为精确。同时,在本实施例中,第一路程△S1和第二路程△S2均是在一定周期T内进行检测的,这样,通过周期T的设定,割草机器人100能够循环的进行路程的修正,从而使得割草机器人100的实时的路程的计算更精确。另外,即使是当割草机器人100在地面上正常行驶时,受到第一检测模块161的检测精度的限制,第一路程△S1也不可能完全的与割草机器人100的实际路程相同,同样的,受到第二检测模块162的检测精度的限制,第二路程△S2也不可能完全的与割草机器人100的实际路程相同。因此,将故障判断的条件设定为第二路程△S2和第一路程△S1的差值是否大于等于第一预设值C1,该第一预设值C1还大于0,这样能够避免对割草机器人100出现不够准确的修正割草机器人100的实际路程的情况。
故障判断模块17还包括第二故障判断模块172。第二故障判断模块172与第一检测模块161以及第二检测模块162连接,第二故障判断模块172用于判断第一路程△S1和第二路程△S2的差值是否大于等于第二预设值C2。在第一路程△S1和第二路程△S2的差值大于等于第二预设值C2时,控制模块182控制修正模块181将割草机器人100的实际路程修正为周期T开始时的初始路程与第一路程△S1的和。
在一实施例中,当割草机器人100出现侧滑现象或者滑坡现象时,第一路程△S1更接近割草机器人100在该周期T内运动的实际路程,而第二路程△S2则会小于割草机器人100的实际路程,因此,这时将割草机器人100的实际路程修正为周期T开始时的初始路程与第一路程△S1的和,这样可以使得割草机器人100的路程的计算更为精确。同时,在本实施例中,第一路程△S1和第二路程△S2均是在一定周期T内进行检测的,这样,通过周期T的设定,割草机器人100能够循环的进行路程的修正,从而使得割草机器人100的实时的路程的计算更精确。另外,即使是当割草机器人100在地面上正常行驶时,受到第一检测模块161的检测精度的限制,第一路程△S1也不可能完全的与割草机器人100的实际路程相同,同样的,受到第二检测模块162的检测精度的限制,第二路程△S2也不可能完全的与割草机器人100的实际路程相同。因此,将故障判断的条件设定为第一路程△S1和第二路程△S2的差值是否大于等于第二预设值C2,该第二预设值C2还大于0,这样能够避免对割草机器人100出现 不够准确的修正割草机器人100的实际路程的情况。
在一实施例中,基于打滑现象而检测的第一路程△S1的周期T和基于侧滑现象而检测的第一路程△S1的周期T也可以不同,这样,可以根据割草机器人100的工况不同而更精度的检测割草机器人100的实际路程。例如,在一个实施例中,割草机器人100包括两个第一检测模块161和两个第二检测模块162,两个第一检测模块161能够分别在不同的周期T内检测割草机器人100机身10a的运动参数,两个第二检测模块162也可以分别在不同的周期T内检测驱动组件15的运动参数。
如图4所示,修正割草机器人100的路程的修正方法,包括如下步骤:
P1,检测在一个周期T内割草机器人100的机身10a的运动参数并计算出割草机器人100在该周期内的第一路程△S1,并检测在周期T内驱动组件15的运动参数并计算出割草机器人100在该周期内的第二路程△S2。示例性地,在一个周期T中,第一检测模块161从该周期T的开始时的t1时刻开始检测割草机器人100的机身10a的运动参数并计算出割草机器人100在该周期T内所产生的第一路程△S1,其中,在t1时刻时割草机器人100已经行驶的路程为初始路程St1,第二检测模块162从该周期T开始时的t1时刻开始检测驱动组件15的运动参数并计算出割草机器人100在该周期T内所产生的第二路程△S2。
P2,判断第二路程△S2和第一路程△S1的差值是否大于等于第一预设值C1。第一故障判断模块171接收到第一检测模块161和第二检测模块162检测到的数据,然后判断第二路程△S2与第一路程△S1的差值是否大于等于第一预设值C1即判断是否满足公式:
△S2-△S1≥C1;
当第二路程△S2与第一路程C的差值大于等于第一预设值C1时则继续进行到下一步。而当第二路程△S2与第一路程△S1的差值小于第一预设值C1时,则重新回到步骤P1继续进行检测。
P3,将割草机器人100的实际路程St2修正为周期T开始时的初始路程St1与第一路程的△S1和。当第一故障判断模块171判断出△S2与△S1的差值大于等于第一预设值C1时,将判断结果发送至控制模块182,控制模块182控制修正模块181修正割草机器人100的实路程。示例性地,修正模块181将割草机器人100行驶至周期T结束时的t2时刻的实际路程St2修正为周期T开始时的初始路程St1和第一路程△S1的和,即按照下述公式进行修正t2时刻的实际路程St2:
St2=St1+△S1;
而当第二路程△S2与第一路程△S1的差值小于第一预设值C1时,则重新回到步骤P1 继续进行检测。
如图5所示,在步骤P2和步骤P1之间还包括步骤P21:当第二路程△S2与第一路程△S1的差值小于第一预设值C1时,判断第一路程△S1和第二路程△S2的差值是否大于等于第二预设值C2,即判断是否满足公式:
△S1-△S2≥C2;
当第一路程△S1和第二路程△S2的差值大于等于第二预设值C2时,则进入到步骤P3,修正模块181将割草机器人100行驶至周期T结束时的t2时刻的实际路程St2修正为周期T开始时的初始路程St1和第一路程△S1的和。而如果第一路程△S1与第二路程△S2的差值小于第二预设值C2时,则重新回到步骤P1继续进行检测。在一实施例中,步骤P2和步骤P21之间不存在先后的顺序。在其它实施例中,与可以先进行步骤P21,然后再进行步骤P2。
而当第二路程△S2与第一路程△S1的差值小于第一预设值C1,且第一路程△S1与第二路程△S2的差值小于第二预设值C2,这时,修正模块181将第一路程△S1和第二路程△S2进行融合得到一个融合路程△S,然后修正模块181将割草机器人100在t2时刻的实际路程St2修正为初始路程St1和融合路程△S的和。也即是:
△S=f(△S1,△S2);
这样,能够同时的兼顾第一检测模块161和第二检测模块162的检测精度,从而能够使得割草机器人100的路程的检测精度得到提高。
在本实施例中,第一检测模块161采用一种惯性测量单元,第二检测模块162采用里程计。这样,当割草机器人100长时间行驶时,惯性测量单元随着误差的累积将对使得检测结果可能不准确,在较短时间的周期T内,惯性测量单元的检测结果是比较精确的。因此,在其它一些实施例中,当第二路程△S2与第一路程△S1的差值小于第一预设值C1,且第一路程△S1与第二路程△S2的差值也小于第二预设值C2时,修正模块181将割草机器人100在t2时刻的实际路程St2修正为初始路程St1和第二路程△S2的和。
在本实施例中,第一检测模块161进行检测的周期T大于等于1毫秒且小于等于100毫秒。这样,可以提高割草机器人100的实际路程的检测的精度。在一实施例中,周期T大于等于10毫秒且小于等于50毫秒,一方面,可以避免检测的过于频繁而导致的程序容易出错的问题,另一方面也可以降低检测周期的长度,使得实际路程的检测精度得到提高。
第一预设值C1的大小是可以被调节或者设定的,这样,可以根据割草机器人100的自身的实际条件以及运行的工况实时的调节第一预设值C1的大小,从而提高割草机器人100的实际路程的检测精度。在本实施例中,割草机器人100还包括用于设定第一预设值C1的 第一设定模块173。第一设定模块173与第一故障判断模块171连接,第一设定模块173能够实时的设定第一预设值C1的大小。在本实施例中,当连续的第一数量的周期T内第二路程△S2与第一路程△S1的差值大于等于第一预设值C1时,修正模块181根据第一检测模块161检测的第一路程△S1修正后的实际路程的误差将会不断的增大,这时第一设定模块173根据第一数量的变化而改变第一预设值C1的大小,从而可以降低检测的误差。第一设定模块173根据第一数量的增大而增大第一预设值C1的大小。
在一些实施例中,第一预设值C1的大小也可以根据割草机器人100的行驶速度的变化而变化。当割草机器人100的行驶速度较大时,检测到的第一路程△S1与第二路程△S2之间的误差将会增大。因此,当割草机器人100的行驶速度增大时,第一设定模块173可以增大第一预设值C1。当割草机器人100的机身10a具有第一行驶速度时,第一预设值C1为第一数值,在割草机器人100的机身10a具有第二行驶速度时,第一预设值C1为第二数值。当第一行驶速度大于第二行驶速度时,第一数值大于第二数值。
在其它实施例中,第一预设值C1也可以随着第一路程△S1的变化而变化。在割草机器人100在一个周期T内的第一路程△S1为第一数值时的第一预设值C1大于在割草机器人100在一个周期T内的第一路程△S1为第二数值时的第一预设值C1,其中,第一数值大于第二数值。
同样的,第二预设值C2的大小是可以被调节或者设定的,这样,可以根据割草机器人100的自身的实际条件以及运行的工况实时的调节第二预设值C2的大小,从而提高割草机器人100的实际路程的检测精度。在本实施例中,割草机器人100还包括用于设定第二预设值C2的第二设定模块174。第二设定模块174与第二故障判断模块172连接,第二设定模块174能够实时的设定第二预设值C2的大小。在本实施例中,当连续的第一数量的周期T内第一路程△S1与第二路程△S2的差值大于等于第二预设值C2时,修正模块181根据第一检测模块161检测的第一路程△S1修正后的实际路程的误差将会不断的增大,这时第二设定模块174根据第一数量的变化而改变第二预设值C2的大小,从而可以降低检测的误差。第二设定模块174根据第一数量的增大而增大第二预设值C2的大小。
在一些实施例中,第二预设值C2的大小也可以根据割草机器人100的行驶速度的变化而变化。当割草机器人100的行驶速度较大时,检测到的第一路程△S1与第二路程△S2之间的误差将会增大。因此,当割草机器人100的行驶速度增大时,设定模块可以增大第二预设值C2。当割草机器人100的机身10a具有第一行驶速度时,第二预设值C2为第一数值,在割草机器人100的机身10a具有第二行驶速度时,第二预设值C2为第二数值。当第一行驶速 度大于第二行驶速度时,第一数值大于第二数值。
在其它实施例中,第二预设值C2也可以随着第一路程△S1的变化而变化。在割草机器人100在一个周期T内的第一路程△S1为第一数值时的第二预设值C2大于在割草机器人100在一个周期T内的第一路程△S1为第二数值时的第二预设值C2,其中,第一数值大于第二数值。
这样,在修正割草机器人100的路程的修正方法中还包括步骤:根据割草机器人100的一个运动参数的变化设定第一预设值C1的大小。如上述,该运动参数可以是割草机器人100机身10a的行驶速度或者在一个周期T内的第一路程△S1,或者,运动参数也可也是连续的发生第一路程△S1与第二路程△S2的差值大于等于第一预设值C1的连续周期T的数量。
割草机器人100还可以包括一个执行模块19,执行模块19用于执行一个响应程序。当在连续的n1个周期T内的每个周期T内第二路程△S2与第一路程△S1的差值均大于等于第一预设值C1时,控制模块182控制执行模块19执行响应程序。即在连续的n1个周期T内,每个周期T中均满足公式:
△S2-△S1≥C1。
在一实施例中,当在连续的n1个周期T内,第二路程△S2与第一路程△S1的差值均大于等于第一预设值C1,这时,第一故障判断模块171则判断割草机器人100出现了打滑现象。在本实施中,设定了满足第二路程△S2与第一路程△S1的差值均大于等于第一预设值C1的连续的周期T的数量,从而可以提高第一故障判断模块171判断的精度,降低误判率。在割草机器人100实际行驶的过程中,通常是在草坪上进行行走,而草坪一般都不够平整,那么割草机器人100在较短的一个周期T内较容易满足第二路程△S2与第一路程△S1的差值大于等于第一预设值C1。如果这时即让割草机器人100执行响应程序,那么很可能会出现割草机器人100一直在执行响应程序,或者说割草机器人100刚启动即执行响应程序,这样将会影响割草机器人100的运行,降低了工作效率。而在本实施中,设定了满足第二路程△S2与第一路程△S1的差值均大于等于第一预设值C1的连续的周期T的数量,从而可以避免割草机器人100在未打滑时或者打滑时间可以忽略的情况下也执行响应程序的问题,进而提高了工作效率。另一方面,当第一故障判断模块171判断出割草机器人100出现打滑现象时,执行模块19则执行响应程序,可以避免割草机器人100一直处于打滑状态,从而影响割草的效率。
在本实施中,执行模块19可以包括报警模块191,当第一故障判断模块171判断出割草机器人100出现打滑现象时,报警模块191能够及时的向用户发出报警信号。该报警信号可 以是声音信号,这样,当报警模块191发生声音信号时,如果用户不在割草机器人100附近,而是在室内做其它事情,用户则能够及时的听见割草机器人100发生故障的声音信号,从而用户能够及时的赶到以使得割草机器人100脱离困境,进而提高了割草机器人100的工作效率。或者,报警信号是光信号,这样,当在比较昏暗的环境或者比较嘈杂的环境下,用户能够及时地发现割草机器人100出现故障,从而及时地使得割草机器人100脱离困境。再或者,报警信号也可以是割草机器人100自身的一个显示屏上出现报警标志。再或者,报警模块191可以直接向用户端的手机或者电脑或者其它设备传送报警信号,这样用户能够更容易发现割草机器人100出现故障。
在本实施中,执行模块19还包括避障模块192,当第一故障判断模块171判断出割草机器人100发生打滑现象时,避障模块192则控制割草机器人100进行动作响应,从而使得割草机器人100自动地脱离困境。该动作响应可以是使得割草机器人100停机,该动作响应也可以是使得割草机器人100后退,动作响应还可以是使得割草机器人100转向,动作响应还可以是使得割草机器人100改变行驶速度等。最终,通过割草机器人100进行动作响应,从而使得割草机器人100不再打滑。避障模块192控制割草机器人100进行动作响应,或者报警模块191发出报警信号,均认为是执行模块19执行了响应程序。
当割草机器人100出现打滑现象的过程中,也有可能存在某个周期T内第二路程△S2与第一路程△S1的差值小于第一预设值C1。因此,第一故障判断模块171还能够判断在连续的n2到n3个周期T内第二路程△S2与第一路程△S1的差值大于等于第一预设值C1的周期T的数量是否大于等于n2。当在连续的n2到n3个周期T内第二路程△S2与第一路程△S1的差值大于等于第一预设值C1的周期T的数量大于等于n2时,控制模块182控制执行模块19执行响应程序。这样,能够避免故障判断的遗漏,从而提高了打滑现象判断的准确率。在本实施中,n1小于n2,且n2小于n3,这样使得故障判断的更为合理。在连续的n2到n3个周期T内,其中满足公式:△S2-△S1≥C1的周期T的数量大于等于n2,即认为割草机器人100出现打滑现象。如果在连续的n2到n3个周期T内,其中满足第二路程△S2与第一路程△S1的差值大于等于第一预设值C1的周期T的数量与n3的比值大于等于一个预设值,也认为是间接的判断第二路程△S2与第一路程△S1的差值大于等于第一预设值C1的周期T的数量是否大于等于n2。
第二故障判断模块172还能判断第一路程△S1和所述第二路程△S2的差值是否大于等于第二预设值C2。当在连续的k1个所述周期T内的每个所述周期T内所述第一路程△S1和所述第二路程△S2的差值均大于等于所述第二预设值C2时,所述控制模块182控制所述执行 模块19执行所述响应程序。即在连续的k1个周期T内,每个周期T中均满足公式:
△S1-△S2≥C2。
当在连续的k1个周期T内,第一路程△S1与第二路程△S2的差值均大于等于第二预设值C2,这时,第二故障判断模块172则判断割草机器人100出现了侧滑现象或者滑坡现象。在本实施中,设定了满足第一路程△S1与第二路程△S2的差值均大于等于第二预设值C2的连续的周期T的数量,从而可以提高第二故障判断模块172判断的精度,降低误判率。在割草机器人100实际行驶的过程中,通常是在草坪上进行行走,而草坪一般都不够平整,那么割草机器人100在较短的一个周期T内较容易满足第一路程△S1与第二路程△S2的差值均大于等于第二预设值C2。如果这时即让割草机器人100执行响应程序,那么很可能会出现割草机器人100一直在执行响应程序,或者说割草机器人100刚启动即执行响应程序,这样将会影响割草机器人100的运行,降低了工作效率。而在本实施中,设定了满足第一路程△S1与第二路程△S2的差值均大于等于第二预设值C2的连续的周期T的数量,从而可以避免割草机器人100在未侧滑时或者侧滑时间可以忽略的情况下也执行响应程序的问题,进而提高了工作效率。另一方面,当第二故障判断模块172判断出割草机器人100出现侧滑现象或者滑坡现象时,执行模块19则执行响应程序,可以避免割草机器人100一直处于侧滑状态或者滑坡状态,从而影响割草的效率。
同样的,当第二故障判断模块172判断出割草机器人100出现侧滑现象或者滑坡现象时,报警模块191可以发出报警信号,或者避障模块192控制割草机器人100进行动作响应。
当割草机器人100出现侧滑现象或者滑坡现象的过程中,也有可能存在某个周期T内第一路程△S1与第二路程△S2的差值小于第二预设值C2。因此,第二故障判断模块172还能够判断在连续的k2到k3个周期T内第一路程△S1与第二路程△S2的差值大于等于第二预设值C2的周期T的数量是否大于等于k2。当在连续的k2到k3个周期T内第一路程△S1与第二路程△S2的差值大于等于第二预设值C2的周期T的数量大于等于k2时,控制模块182控制执行模块19执行响应程序。这样,能够避免故障判断的遗漏,从而提高了侧滑现象或者滑坡现象判断的准确率。在本实施中,k1小于k2,且k2小于k3,这样使得故障判断的更为合理。在连续的k2到k3个周期T内,其中满足第一路程△S1与第二路程△S2的差值大于等于第二预设值C2的周期T的数量大于等于k2,即认为割草机器人100出现侧滑现象或者滑坡现象。如果在连续的k2到k3个周期T内,其中满足第一路程△S1与第二路程△S2的差值大于等于第二预设值C2的周期T的数量与k3的比值大于等于一个预设值,也认为是间接的判断第一路程△S1与第二路程△S2的差值大于等于第二预设值C2的周期T的数量是否 大于等于k2。
如6所示,控制割草机器人100的控制方法,可以为判断割草机器人100是否出现打滑现象以及如何做出响应程序的方法,其包括如下步骤:
Q1,检测在一个周期T内割草机器人100机身10a的运动参数并计算出割草机器人100在该周期内的第一路程△S1,并检测在周期T内驱动组件15的运动参数并计算出割草机器人100在该周期内的第二路程△S2。
Q2,判断在连续的n1个周期T内的每个周期T内第二路程△S2与第一路程△S1的差值是否均大于等于第一预设值C1时。当在连续的n1个周期T内的每个周期T内第二路程△S2与第一路程△S1的差值均大于等于第一预设值C1时,则继续进行到下一步。而当不满足连续的n1个周期T内的每个周期T内第二路程△S2与第一路程△S1的差值均大于等于第一预设值C1时,则重新回到步骤Q1继续进行检测。
Q3,在连续的n1个所述周期内的每个所述周期内所述第二路程与所述第一路程的差值均大于等于所述第一预设值时,控制所述割草机器人100执行一个响应程序。
如图6所示,在步骤Q1和步骤Q2之间还可以包括步骤Q12。例如,在判断连续的n1个周期T内的每个周期T内第二路程△S2与第一路程△S1的差值是否均大于等于第一预设值C1之前,还可以先进行判断该周期T内第二路程△S2和第一路程△S1的差值是否大于等于第一预设值C1,这样,如果当在一个周期内T不满足第二路程△S2和第一路程△S1的差值小于第一预设值C1时,可以直接回到步骤Q1进行下一个周期T的检测,从而提高了程序运行的效率。
如图7所示,在步骤Q2和步骤Q3之间还可以包括步骤Q21。例如,当不满足在连续的n1个周期T内第二路程△S2与第一路程△S1的差值均大于等于第一预设值C1时,可以判断是否在连续的n2到n3个周期T内的第二路程△S2与第一路程△S1的差值均大于等于第一预设值C1的周期T的数量是否大于等于n2。如果是,则也进行下一步骤Q3;如果不是,则重新回到步骤Q1。其中步骤Q2和步骤Q21之前也不存在先后的顺序。在其它实施中,也可以先进行步骤Q21,然后再进行步骤Q2。
如8所示,另一种控制割草机器人100的控制方法,可以为判断割草机器人100是否出现侧滑现象或者滑坡现象以及如何做出响应程序的方法,其包括如下步骤:
R1,检测在一个周期T内割草机器人100机身10a的运动参数并计算出割草机器人100在该周期T内的第一路程△S1,并检测在周期T内所述驱动组件15的运动参数并计算出割草机器人100在该周期T内的第二路程△S2。
R2,判断在连续的k1个周期T内的每个周期T内第一路程△S1与第二路程△S2的差值是否均大于等于第二预设值C2。当在连续的k1个周期T内的每个周期T内第一路程△S1与第二路程△S2的差值均大于等于第二预设值C2时,则继续进行到下一步。而当不满足连续的k1个周期T内的每个周期T内第一路程△S1与第二路程△S2的差值均大于等于第二预设值C2时,则重新回到步骤R1继续进行检测。
R3,在连续的k1个周期T内的每个周期T内第一路程△S1与第二路程△S2的差值均大于等于第二预设值C2时,控制所述割草机器人100执行一个响应程序。
如图8所示,在步骤R1和步骤R2之间还可以包括步骤R12。例如,在判断连续的k1个周期T内的每个周期T内第一路程△S1与第二路程△S2的差值是否均大于等于第二预设值C2之前,还可以先进行判断该周期T内第一路程△S1与第二路程△S2的差值是否大于等于第二预设值C2,这样,如果当在一个周期内T不满足第一路程△S1与第二路程△S2的差值小于第二预设值C2时,可以直接回到步骤R1进行下一个周期的检测,从而提高了程序运行的效率。
如图9所示,在步骤R2和步骤R3之间还可以包括步骤R21。例如,当不满足在连续的k1个周期T内第一路程△S1与第二路程△S2的差值均大于等于第二预设值C2时,可以判断是否在连续的k2到k3个周期T内的第一路程△S1与第二路程△S2的差值均大于等于第二预设值C2的周期T的数量是否大于等于k2。如果是,则也进行下一步骤R3;如果不是,则重新回到步骤R1。其中步骤R2和步骤R21之前也不存在先后的顺序。在其它实施中,也可以先进行步骤R21,然后再进行步骤R2。

Claims (27)

  1. 一种割草机器人,包括:
    割草元件;
    机身,用于支撑所述割草元件;
    驱动组件,包括支撑所述机身以驱动所述机身在地面上行走的行走轮和与所述行走轮连接以驱动所述行走轮转动的马达;
    第一检测模块,检测在一个周期内所述割草机器人的所述机身的运动参数并计算出所述割草机器人在该周期内的第一路程;
    第二检测模块,检测在所述周期内所述驱动组件的运动参数并计算出所述割草机器人在该周期内的第二路程;
    故障判断模块,判断所述第二路程和所述第一路程的差值是否大于等于第一预设值;
    执行模块,驱动所述割草机器人执行一个响应程序;
    控制模块,分别与所述故障判断模块和所述执行模块连接;
    其中,在连续的n1个所述周期内的每个所述周期内所述第二路程与所述第一路程的差值均大于等于所述第一预设值时,所述控制模块控制所述执行模块执行所述响应程序。
  2. 根据权利要求1所述的割草机器人,其中:当在连续的n2到n3个所述周期内所述第二路程与所述第一路程的差值大于等于所述第一预设值的周期的数量大于等于n2时,所述控制模块控制所述执行模块执行所述响应程序。
  3. 根据权利要求1所述的割草机器人,其中:所示执行模块包括:报警模块,用于向用户发出报警信号。
  4. 根据权利要求1所述的割草机器人,其中:所述执行模块包括:避障模块,用于控制所述割草机器人进行动作响应。
  5. 根据权利要求1所述的割草机器人,还包括:设定模块,与所述故障判断模块连接;所述设定模块用于设定所述第一预设值的大小。
  6. 根据权利要求1所述的割草机器人,其中:所述故障判断模块还判断所述第一路程和所述第二路程的差值是否大于等于第二预设值;其中,在连续的k1个所述周期内的每个所述周期内所述第一路程和所述第二路程的差值均大于等于所述第二预设值时,所述控制模块控制所述执行模块执行所述响应程序。
  7. 根据权利要求1所述的割草机器人,其中:所述故障判断模块还判断所述第一路程和所述第二路程的差值是否大于等于第二预设值;其中,当在连续的k2到k3个所述周期内所述第一路程和所述第二路程的差值大于等于所述第二预设值的周期的数量是大于等于k2时,所述 控制模块控制所述执行模块执行所述响应程序。
  8. 一种割草机器人,包括:
    割草元件;
    机身,用于支撑所述割草元件;
    驱动组件,包括支撑所述机身以驱动所述机身在地面上行走的行走轮和与所述行走轮连接以驱动所述行走轮转动的马达;
    第一检测模块,检测在一个周期内所述割草机器人的所述机身的运动参数并计算出所述割草机器人在该周期内的第一路程;
    第二检测模块,检测在所述周期内所述驱动组件的运动参数并计算出所述割草机器人在该周期内的第二路程;
    故障判断模块,判断所述第二路程和所述第一路程的差值是否大于等于一个预设值;
    执行模块,驱动所述割草机器人执行一个响应程序;
    控制模块,分别与所述故障判断模块和所述执行模块连接;
    其中,当在连续的n1到n2个所述周期内所述第二路程与所述第一路程的差值大于等于所述预设值的周期的数量大于等于n1时,所述控制模块控制所述执行模块执行所述响应程序。
  9. 一种割草机器人,包括:
    割草元件;
    机身,用于支撑所述割草元件;
    驱动组件,包括支撑所述机身以驱动所述机身在地面上行走的行走轮和与所述行走轮连接以驱动所述行走轮转动的马达;
    第一检测模块,检测在一个周期内所述割草机器人的所述机身的运动参数并计算出所述割草机器人在该周期内的第一路程;
    第二检测模块,检测在所述周期内所述驱动组件的运动参数并计算出所述割草机器人在该周期内的第二路程;
    故障判断模块,判断所述第一路程和所述第二路程的差值是否大于等于一个预设值;
    执行模块,驱动所述割草机器人执行一个响应程序;
    控制模块,分别与所述故障判断模块和所述执行模块连接;
    其中,在连续的k1个所述周期内的每个所述周期内所述第一路程与所述第二路程的差值均大于等于所述预设值时,所述控制模块控制所述执行模块执行所述响应程序。
  10. 一种割草机器人,包括:
    割草元件;
    机身,用于支撑所述割草元件;
    驱动组件,包括支撑所述机身以驱动所述机身在地面上行走的行走轮和与所述行走轮连接以驱动所述行走轮转动的马达;
    第一检测模块,检测在一个周期内所述割草机器人的所述机身的运动参数并计算出所述割草机器人在该周期内的第一路程;
    第二检测模块,检测在所述周期内所述驱动组件的运动参数并计算出所述割草机器人在该周期内的第二路程;
    故障判断模块,判断所述第一路程和所述第二路程的差值是否大于等于一个预设值;
    执行模块,驱动所述割草机器人执行一个响应程序;
    控制模块,分别与所述故障判断模块和所述执行模块连接;
    其中,当在连续的k1到k2个所述周期内所述第一路程与所述第二路程的差值大于等于所述预设值的周期的数量大于等于k1时,所述控制模块控制所述执行模块执行所述响应程序。
  11. 一种割草机器人的控制方法,所述割草机器人包括机身和驱动组件,所述驱动组件包括支撑所述机身以驱动所述机身在地面上行走的行走轮和与所述行走轮连接以驱动所述行走轮转动的马达,所述控制方法包括步骤:
    检测在一个周期内所述割草机器人的所述机身的运动参数并计算出所述割草机器人在该周期内的第一路程,并检测在所述周期内所述驱动组件的运动参数并计算出所述割草机器人在该周期内的第二路程;
    判断在连续的n1个所述周期内的每个所述周期内所述第二路程与所述第一路程的差值是否均大于等于一个预设值;
    在连续的n1个所述周期内的每个所述周期内所述第二路程与所述第一路程的差值均大于等于所述预设值时,控制所述割草机器人执行一个响应程序。
  12. 一种割草机器人的控制方法,所述割草机器人包括机身和驱动组件,所述驱动组件包括支撑所述机身以驱动所述机身在地面上行走的行走轮和与所述行走轮连接以驱动所述行走轮转动的马达,所述控制方法包括步骤:
    检测在一个周期内所述割草机器人的所述机身的运动参数并计算出所述割草机器人在该周期内的第一路程,并检测在所述周期内所述驱动组件的运动参数并计算出所述割草机器人在该周期内的第二路程;
    判断在连续的n1到n2个所述周期内所述第二路程与所述第一路程的差值大于等于一个预设 值的周期的数量是否大于等于n1;
    在连续的n1到n2个所述周期内所述第二路程与所述第一路程的差值大于等于所述预设值的周期的数量大于等于n1时,控制所述割草机器人执行一个响应程序。
  13. 一种割草机器人的控制方法,所述割草机器人包括机身和驱动组件,所述驱动组件包括支撑所述机身以驱动所述机身在地面上行走的行走轮和与所述行走轮连接以驱动所述行走轮转动的马达,所述控制方法包括步骤:
    检测在一个周期内所述割草机器人的所述机身的运动参数并计算出所述割草机器人在该周期内的第一路程,并检测在所述周期内所述驱动组件的运动参数并计算出所述割草机器人在该周期内的第二路程;
    判断在连续的k1个所述周期内的每个所述周期内所述第一路程与所述第二路程的差值是否均大于等于一个预设值;
    在连续的k1个所述周期内的每个所述周期内所述第一路程与所述第二路程的差值均大于等于所述预设值时,控制所述割草机器人执行一个响应程序。
  14. 一种割草机器人的控制方法,所述割草机器人包括机身和驱动组件,所述驱动组件包括支撑所述机身以驱动所述机身在地面上行走的行走轮和与所述行走轮连接以驱动所述行走轮转动的马达,所述控制方法包括步骤:
    检测在一个周期内所述割草机器人的所述机身的运动参数并计算出所述割草机器人在该周期内的第一路程,并检测在所述周期内所述驱动组件的运动参数并计算出所述割草机器人在该周期内的第二路程;
    判断在连续的k1到k2个所述周期内所述第一路程与所述第二路程的差值大于等于一个预设值的周期的数量是否大于等于k1;
    在连续的k1到k2个所述周期内所述第一路程与所述第二路程的差值大于等于所述预设值的周期的数量大于等于k1时,控制所述割草机器人执行一个响应程序。
  15. 一种割草机器人,包括:
    割草元件;
    机身,用于支撑所述割草元件;
    驱动组件,包括支撑所述机身以驱动所述机身在地面上行走的行走轮和与所述行走轮连接以驱动所述行走轮转动的马达;
    第一检测模块,检测在一个周期内所述割草机器人的所述机身的运动参数并计算出所述割草机器人在该周期内的第一路程;
    第二检测模块,检测在所述周期内所述驱动组件的运动参数并计算出所述割草机器人在该周期内的第二路程;
    故障判断模块,判断所述第二路程和所述第一路程的差值是否大于等于第一预设值;
    修正模块,修正所述割草机器人的实际路程;
    控制模块,分别与所述故障判断模块和所述修正模块连接;
    其中,在所述第二路程和所述第一路程的差值大于等于所述第一预设值时,所述控制模块控制所述修正模块将所述割草机器人的实际路程修正为所述周期开始时的初始路程与所述第一路程的和。
  16. 根据权利要求15所述的割草机器人,其中:所述周期大于等于1毫秒且小于等于100毫秒。
  17. 根据权利要求15所述的割草机器人,其中:在所述割草机器人的所述机身具有第一行驶速度时,所述第一预设值为第一数值;在所述割草机器人的所述机身具有第二行驶速度时,所述第一预设值为第二数值;其中,在所述第一行驶速度大于第二行驶速度时,所述第一数值大于所述第二数值。
  18. 根据权利要求15所述的割草机器人,其中:在所述割草机器人在一个所述周期内的所述第一路程为第一数值时的第一预设值大于在所述割草机器人在一个所述周期内的所述第一路程为第二数值时的第一预设值,所述第一数值大于所述第二数值。
  19. 根据权利要求15所述的割草机器人,还包括:设定模块,与所述故障判断模块连接;所述设定模块用于设定所述第一预设值的大小。
  20. 根据权利要求19所述的割草机器人,其中:在连续的第一数量的所述周期内所述第二路程和所述第一路程的差值大于等于所述第一预设值时,所述设定模块增大所述第一预设值的大小。
  21. 根据权利要求19所述的割草机器人,其中:当在连续的第一数量的所述周期内所述第二路程和所述第一路程的差值大于等于所述第一预设值时,所述设定模块设定所述第一预设值的大小随着所述第一数量的变化而变化。
  22. 根据权利要求15所述的割草机器人,其中:所述故障判断模块还判断所述第一路程和所述第二路程的差值是否大于等于第二预设值;且在所述第一路程和所述第二路程的差值大于等于所述第二预设值时,所述控制模块控制所述修正模块将所述割草机器人的实际路程修正为所述周期开始时的初始路程与所述第一路程的和。
  23. 一种割草机器人,包括:
    割草元件;
    机身,用于支撑所述割草元件;
    驱动组件,包括支撑所述机身以驱动所述机身在地面上行走的行走轮和与所述行走轮连接以驱动所述行走轮转动的马达;
    第一检测模块,检测在一个周期内所述割草机器人的所述机身的运动参数并计算出所述割草机器人在该周期内的第一路程;
    第二检测模块,检测在所述周期内所述驱动组件的运动参数并计算出所述割草机器人在该周期内的第二路程;
    故障判断模块,判断所述第一路程和所述第二路程的差值是否大于等于一个预设值;
    修正模块,修正所述割草机器人能的实际路程;
    控制模块,分别与所述故障判断模块和所述修正模块连接;
    其中,在所述第一路程和所述第二路程的差值大于等于所述预设值时,所述控制模块控制所述修正模块将所述割草机器人的实际路程修正为所述周期开始时的初始路程与所述第一路程的和。
  24. 一种修正割草机器人的路程的修正方法,所述割草机器人包括机身和驱动组件,所述驱动组件包括支撑所述机身以驱动所述机身在地面上行走的行走轮和与所述行走轮连接以驱动所述行走轮转动的马达,所述修正方法包括步骤:
    检测在一个周期内所述割草机器人的所述机身的运动参数并计算出所述割草机器人在该周期内的第一路程,并检测在所述周期内所述驱动组件的运动参数以计算出所述割草机器人在该周期内的第二路程;
    判断所述第二路程和所述第一路程的差值是否大于等于第一预设值;
    在所述第二路程和所述第一路程的差值大于等于所述第一预设值时,将所述割草机器人的实际路程修正为所述周期开始时的初始路程与所述第一路程的和。
  25. 根据权利要求24所示的修正割草机器人的路程的修正方法,还包括步骤:
    根据所述割草机器人的一个运动参数的变化设定所述第一预设值的大小。
  26. 根据权利要求24所示的修正割草机器人的路程的修正方法,还包括步骤:
    判断所述第一路程和所述第二路程的差值是否大于等于第二预设值;
    在所述第一路程和所述第二路程的差值大于等于所述第二预设值时,将所述割草机器人的实际路程修正为所述周期开始时的初始路程与所述第一路程的和。
  27. 一种修正割草机器人的路程的修正方法,所述割草机器人包括机身和驱动组件,所述驱 动组件包括支撑所述机身以驱动所述机身在地面上行走的行走轮和与所述行走轮连接以驱动所述行走轮转动的马达,所述修正方法包括步骤:
    检测在一个周期内所述割草机器人的所述机身的运动参数并计算出所述割草机器人在该周期内的第一路程,并检测在所述周期内所述驱动组件的运动参数并计算出所述割草机器人在该周期内的第二路程;
    判断所述第一路程和所述第二路程的差值是否大于等于一个预设值;
    在所述第一路程和所述第二路程的差值大于等于所述预设值时,将所述割草机器人的实际路程修正为所述周期开始时的初始路程与所述第一路程的和。
PCT/CN2021/100760 2020-06-18 2021-06-18 割草机器人 WO2021254462A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21826309.3A EP4129039A4 (en) 2020-06-18 2021-06-18 ROBOT LAWN MOWER
US17/980,190 US20230059610A1 (en) 2020-06-18 2022-11-03 Robotic lawn mower

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010559893.9 2020-06-18
CN202010559893.9A CN113892332A (zh) 2020-06-18 2020-06-18 割草机器人和修正割草机器人的路程的修正方法
CN202010558974.7 2020-06-18
CN202010558974.7A CN113812251A (zh) 2020-06-18 2020-06-18 割草机器人和割草机器人的控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/980,190 Continuation US20230059610A1 (en) 2020-06-18 2022-11-03 Robotic lawn mower

Publications (1)

Publication Number Publication Date
WO2021254462A1 true WO2021254462A1 (zh) 2021-12-23

Family

ID=79268469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100760 WO2021254462A1 (zh) 2020-06-18 2021-06-18 割草机器人

Country Status (3)

Country Link
US (1) US20230059610A1 (zh)
EP (1) EP4129039A4 (zh)
WO (1) WO2021254462A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060225928A1 (en) * 2003-09-18 2006-10-12 Nelson Carl V Mono-track vehicle
CN103744425A (zh) * 2012-08-23 2014-04-23 苏州宝时得电动工具有限公司 自动工作设备及其控制方法
CN103914067A (zh) * 2013-01-05 2014-07-09 联想(北京)有限公司 一种控制方法及电子设备
CN104699101A (zh) * 2015-01-30 2015-06-10 深圳拓邦股份有限公司 可定制割草区域的机器人割草系统及其控制方法
CN105867379A (zh) * 2016-04-13 2016-08-17 上海物景智能科技有限公司 一种机器人的运动控制方法及控制系统
CN206491007U (zh) * 2017-01-14 2017-09-15 郑州大学 新型智能割草机器人
CN107402573A (zh) * 2016-05-19 2017-11-28 苏州宝时得电动工具有限公司 自动工作系统,自移动设备及其控制方法
CN107509443A (zh) * 2017-09-05 2017-12-26 惠州市蓝微电子有限公司 一种智能割草机的坡地行驶控制方法及系统
CN109634285A (zh) * 2019-01-14 2019-04-16 深圳市傲基电子商务股份有限公司 割草机器人及其控制方法
JP2019187432A (ja) * 2019-06-21 2019-10-31 株式会社ササキコーポレーション 自走式作業機の制御方法及び制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102880175B (zh) * 2011-07-16 2016-02-17 苏州宝时得电动工具有限公司 自动行走设备
CN107348910B (zh) * 2017-09-12 2019-10-08 珠海市一微半导体有限公司 机器人打滑的检测方法和建图方法及芯片
CN109514581B (zh) * 2018-12-20 2021-03-23 珠海市一微半导体有限公司 一种基于智能移动机器人的安全提醒方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060225928A1 (en) * 2003-09-18 2006-10-12 Nelson Carl V Mono-track vehicle
CN103744425A (zh) * 2012-08-23 2014-04-23 苏州宝时得电动工具有限公司 自动工作设备及其控制方法
CN103914067A (zh) * 2013-01-05 2014-07-09 联想(北京)有限公司 一种控制方法及电子设备
CN104699101A (zh) * 2015-01-30 2015-06-10 深圳拓邦股份有限公司 可定制割草区域的机器人割草系统及其控制方法
CN105867379A (zh) * 2016-04-13 2016-08-17 上海物景智能科技有限公司 一种机器人的运动控制方法及控制系统
CN107402573A (zh) * 2016-05-19 2017-11-28 苏州宝时得电动工具有限公司 自动工作系统,自移动设备及其控制方法
CN206491007U (zh) * 2017-01-14 2017-09-15 郑州大学 新型智能割草机器人
CN107509443A (zh) * 2017-09-05 2017-12-26 惠州市蓝微电子有限公司 一种智能割草机的坡地行驶控制方法及系统
CN109634285A (zh) * 2019-01-14 2019-04-16 深圳市傲基电子商务股份有限公司 割草机器人及其控制方法
JP2019187432A (ja) * 2019-06-21 2019-10-31 株式会社ササキコーポレーション 自走式作業機の制御方法及び制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4129039A4

Also Published As

Publication number Publication date
EP4129039A1 (en) 2023-02-08
US20230059610A1 (en) 2023-02-23
EP4129039A4 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
US11140819B2 (en) Intelligent mowing system
US20230004172A1 (en) Automatic Working System, Self-Moving Device, and Methods for Controlling Same
US10191488B2 (en) Autonomous vehicle with improved simultaneous localization and mapping function
EP3238523B1 (en) Moving robot and control method thereof
EP3187953B1 (en) Autonomous working machine such as autonomous lawn mower
WO2018086612A1 (zh) 自动工作系统及其控制方法
WO2019187122A1 (ja) 自律走行作業機、及び制御システム
CN112889010A (zh) 自主草坪割草机及其导航系统
CN111198559A (zh) 行走机器人的控制方法及系统
WO2021254462A1 (zh) 割草机器人
CN113766825A (zh) 节能草坪养护车辆
CN111123910A (zh) 一种双核四轮驱动uwb定位割草机器人及其控制方法
JP2021069293A (ja) 移植機
CN113812251A (zh) 割草机器人和割草机器人的控制方法
CN113892332A (zh) 割草机器人和修正割草机器人的路程的修正方法
CN112425344A (zh) 一种果园自走式除草机及其自主导航避障方法
CN111123339A (zh) 一种双模式的自行走设备控制方法及自行走设备
JP7476870B2 (ja) 作業車両
CN112799390B (zh) 自移动设备及其工作方法
JP7458826B2 (ja) 制御装置、作業システム、作業機および制御方法
US20210298230A1 (en) Mower
WO2020228263A1 (zh) 自移动机器人的控制方法及自移动机器人系统
JPH0397012A (ja) 自走型作業ロボット
JPH08331906A (ja) 移動刈取機の自動旋回制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021826309

Country of ref document: EP

Effective date: 20221104

NENP Non-entry into the national phase

Ref country code: DE