WO2021254380A1 - 水样预处理装置、水样预处理系统及水样预处理方法 - Google Patents

水样预处理装置、水样预处理系统及水样预处理方法 Download PDF

Info

Publication number
WO2021254380A1
WO2021254380A1 PCT/CN2021/100326 CN2021100326W WO2021254380A1 WO 2021254380 A1 WO2021254380 A1 WO 2021254380A1 CN 2021100326 W CN2021100326 W CN 2021100326W WO 2021254380 A1 WO2021254380 A1 WO 2021254380A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pipe
supernatant
valve
turbidity
Prior art date
Application number
PCT/CN2021/100326
Other languages
English (en)
French (fr)
Inventor
文立群
李智
郭珍
张卫斌
Original Assignee
力合科技(湖南)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力合科技(湖南)股份有限公司 filed Critical 力合科技(湖南)股份有限公司
Publication of WO2021254380A1 publication Critical patent/WO2021254380A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/093Cleaning containers, e.g. tanks by the force of jets or sprays
    • B08B9/0936Cleaning containers, e.g. tanks by the force of jets or sprays using rotating jets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • G01N2001/386Other diluting or mixing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4083Concentrating samples by other techniques involving separation of suspended solids sedimentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4088Concentrating samples by other techniques involving separation of suspended solids filtration

Definitions

  • the invention relates to the field of water pollution monitoring and hydrological observation, in particular to a water sample pretreatment device.
  • the present invention also relates to a water sample pretreatment system with the water sample pretreatment device and a water sample pretreatment method for water sample treatment using the water sample pretreatment system.
  • Turbidity that is, the degree of obstruction of light penetration by particles in the water, has an important impact on the accuracy of the measurement results of photometric water quality analyzers, while most conventional water quality analyzers use the photometric measurement principle.
  • pretreatment systems which mainly remove particles in water by means of sedimentation, filtration, and digestion.
  • Static settlement has become the preferred pretreatment method because it can guarantee the representativeness of the water sample to the greatest extent.
  • How to ensure the comparability of monitoring data of water stations across the country, first of all, must solve the problem of consistency of water sample pretreatment conditions at each station.
  • the main factors affecting the effect of settlement pretreatment are settlement time, settlement method, water intake depth and so on.
  • the present invention provides a water sample pretreatment device and a water sample pretreatment system with the same, so as to solve the problem that the pretreatment method of the existing water station cannot ensure that the monitoring data of each station is obtained under the same turbidity condition, thereby causing inter-station monitoring Technical problems of poor consistency of data conditions and poor comparability.
  • a water sample pretreatment device is used to preprocess the source water by standing and sedimentation so that the turbidity of the water samples supplied into the detection instrument at each station is the same.
  • the water sample pretreatment device includes: a water tank, which is connected to the active source The water supply device, the water tank is also connected with a water distribution device, the water distribution device is used to mix the supernatant formed by the source water in the water tank after standing and settling into the detection instrument, the source water supply device and the water distribution device are respectively connected to the control device; the water tank A turbidity detector for real-time detection of the turbidity of the source water or the turbidity of the supernatant is installed inside.
  • the turbidity detector is connected to the control device to detect the turbidity value of the source water or the turbidity of the supernatant.
  • the value is sent to the control device, and the control device is used to control the water distribution device to start after the first preset settling time to dispense the supernatant when the received source water turbidity value is equal to or less than the first-level threshold value preset by the system.
  • control device is also used to control the water distribution device to start after the second preset sedimentation time when the turbidity value of the source water received is greater than the first-level threshold value preset by the system and less than the second-level threshold value to remove the supernatant
  • the control device is also used to control the water distribution device when the turbidity value of the source water is greater than the first-level threshold value preset by the system when the turbidity value of the supernatant is equal to Or start when it is less than the first-level threshold value preset by the system to dispense the supernatant into the testing instrument;
  • the water distribution device is connected with a secondary processing device, and the secondary processing device is used to pre-process the supernatant distributed by the water distribution device.
  • the secondary processing device is connected to the control device, and the control device is also used to receive the source water turbidity value equal to or greater than the system preset secondary threshold value or the supernatant turbidity value after the third preset sedimentation time When it is still greater than the first-level threshold preset by the system, the secondary processing device is controlled to start to pretreat the supernatant distributed by the water distribution device.
  • the water distribution device includes a water intake head for sucking the supernatant liquid arranged in the water tank, the output end of the water intake head is connected with a water intake hose, the output end of the water intake hose is connected with a water distribution pipe, and the output end of the water distribution pipe extends After the water tank, connect the detection instrument to mix the supernatant into the detection instrument; the extension section of the water distribution pipe that extends out of the water tank is provided with a second pump for pumping the supernatant, which is used to filter the supernatant
  • the first filter used to control the conduction or isolation of the water distribution pipe
  • the second switch valve used to adjust the flow rate of the water distribution pipe
  • the water sample cup used to temporarily store the supernatant liquid
  • the reversing valve downstream of the sample cup is used to control the conduction or isolation of the pipeline from the water sample cup to the testing instrument, the second pump, the first filter, the second on-off valve, the second regulating valve and the changeover valve.
  • the valve is respectively
  • a turbidity detector is connected to the water intake head to detect the source water turbidity value of the source water at the water intake head or the supernatant turbidity value of the supernatant liquid;
  • the water distribution device also includes a device for adjusting the height of the water intake head Lifting adjusting member, which includes: a lifting driver connected to the outer surface of the upper cover of the water tank, a conductive screw rod vertically arranged in the water tank and fixedly connected to the driving end of the lifting driver at the upper end, and vertically arranged inside the water tank
  • the guide shaft on the wall is used to guide the up and down movement of the water intake head, and the lifting drive is connected with the control device; the water intake head is respectively penetrated on the outer circle of the conductive screw rod and the guide shaft, and the water intake head and the conductive screw rod External thread connection.
  • the secondary processing device includes a water diversion pipe for drawing the supernatant liquid, the input end of the water diversion pipe is connected with the water sample cup, and the output end of the water diversion pipe is connected with the reversing valve;
  • the second filter for secondary filtration of the supernatant and a constant volume bottle for temporarily holding the filtered supernatant.
  • the second filter is connected to the control device;
  • the constant volume bottle is connected with a suction tube for pumping
  • the suction end of the suction pipe is connected with a suction pump for generating negative pressure in the water diversion pipe to suck the supernatant liquid, and the suction pump is connected with the control device.
  • the water sample pretreatment device also includes a system drainage device, and the system drainage device includes a waste liquid recovery tank for containing waste liquid, a first overflow pipe, a first discharge pipe, a second discharge pipe, and a third row.
  • the sample tube, the second overflow tube, and the fourth discharge tube; the two ends of the first overflow tube are respectively connected with the inner cavity of the water tank and the waste liquid recovery tank; the two ends of the first discharge tube are respectively connected with the water tank
  • the bottom of the inner cavity of the tube is connected to the waste liquid recovery tank, and the pipeline of the first discharging tube is provided with a third on-off valve for conducting or blocking the first discharging tube; the two ends of the second discharging tube are respectively connected with
  • the first filter is in communication with the waste liquid recovery tank, and the pipeline of the second discharge pipe is provided with a fourth on-off valve for conducting or blocking the second discharge pipe; the two ends of the third discharge pipe are respectively connected with The bottom of the inner cavity of the water sample cup is in communication with the waste liquid
  • the water sample pretreatment device further includes a cleaning device, the cleaning device includes a cleaning water supplier for supplying cleaning water, the cleaning water supplier is connected with a water supply main pipe, and a first water supply branch pipe and a second water supply pipe respectively connected with the water supply main pipe.
  • Water supply branch pipe the pipeline of the water supply main pipe is provided with a fifth regulating valve for adjusting the flow rate of the water supply main pipe; the output end of the first water supply branch pipe is connected with the source water input pipe, and the pipeline of the first water supply branch pipe is provided with a An eighth switch valve for conducting or blocking a water supply branch; the output end of the second water supply branch is connected to the water intake pipe, and the pipeline of the second water supply branch is provided with a ninth switch valve for conducting or blocking the second water supply branch ;
  • the cleaning water supplier, the fifth regulating valve, the eighth on-off valve and the ninth on-off valve are respectively connected to the control device.
  • the cleaning device further includes a third water supply branch pipe.
  • the input end of the third water supply branch pipe is connected to the second water supply branch pipe.
  • the output end of the third water supply branch pipe penetrates the upper cover of the water tank and then extends into the water tank.
  • the pipeline is equipped with a tenth on-off valve that controls the conduction or isolation of the third water supply branch, which is connected to the control device;
  • the output end of the third water supply branch is connected with a self-rotating nozzle that automatically rotates under the action of the cleaning water pressure ,
  • the self-rotating nozzle is connected with a plurality of nozzles;
  • the water sample pretreatment device also includes a back-flushing device, the back-flushing device includes a gas scrubbing pipe connected with the first discharge pipe, the input end of the gas scrubbing pipe is connected to supply compression
  • a water sample pretreatment system including the water sample pretreatment device as described in any one of the above, and used for detecting the water sample processed by the water sample pretreatment device
  • the analytical detection instrument is connected with the output end of the water distribution device of the water sample pretreatment device.
  • a water sample pretreatment method which adopts the water sample pretreatment system as described above, and includes the following steps: S1: the control device controls the source water supply device to start, and the source water is supplied Into the water tank; S2: The turbidity detector detects the turbidity value of the source water. According to different turbidity values, the control device correspondingly controls the water distribution device to start after different settling times.
  • the control device When the turbidity detector detects the turbidity of the source water When the value is equal to or greater than the second-level threshold value preset by the system or the supernatant turbidity value is still greater than the first-level threshold value preset by the system after the third preset sedimentation time, the control device then controls the secondary processing device to start the distribution The supernatant is pretreated so that the turbidity value of the supernatant in the detection instrument is equal to or less than the preset threshold of the system.
  • step S2 specifically includes the following steps: a turbidity detector arranged in the water tank detects the turbidity value of the source water, and when the turbidity value of the source water is equal to or less than the first-level threshold value preset by the system, the control device controls the water distribution The device starts after the first preset sedimentation time to dispense the supernatant into the detection instrument; when the source water turbidity value is greater than the system preset first-level threshold and less than the system preset second-level threshold, control The device controls the water distribution device to start after the second preset sedimentation time to dispense the supernatant into the detection instrument; when the source water turbidity value is greater than the system preset first-level threshold, the control device controls the water distribution device to be in the third Start when the turbidity value of the supernatant liquid is equal to or less than the first-level threshold value preset by the system within the preset sedimentation time to mix the supernatant liquid into the detection instrument; when the turbidity
  • the water sample pretreatment device of the present invention changes the static settlement pretreatment method of the existing water station for a fixed period of time, and expands the settlement mode conditioned on the turbidity value of the clear liquid layer, that is, in the third preset settlement time, when the When the turbidity value of the clear liquid is equal to or less than the preset threshold of the system, the control system controls the water distribution device to start. Compared with the time-based settling, it can effectively shorten the settling time and improve the settling pretreatment efficiency.
  • the turbidity threshold value can be uniformly used for settlement and the system preset turbidity threshold standard can be unified, so that the monitoring data of each water station can be obtained under the same turbidity condition, which improves the consistency and comparability of the data between the stations, so that The environmental quality assessment of surface water in various provinces and cities is more objective.
  • Figure 1 is a schematic diagram of the spatial structure of a water sample pretreatment device according to a preferred embodiment of the present invention
  • Figure 2 is a schematic diagram of the waterway of Figure 1;
  • Fig. 3 is a flow chart of settlement in Fig. 1 with time as the condition;
  • Fig. 4 is a flow chart of sedimentation in Fig. 1 under the condition of turbidity value
  • Fig. 5 is a schematic diagram of the spatial structure of the first filter in Fig. 1;
  • Fig. 6 is a schematic sectional front view of the structure of Fig. 5.
  • the preferred embodiment of the present invention provides a water sample pretreatment device, which is used to preprocess the source water by standing and sedimentation, so that the turbidity of the water sample supplied into the detection instrument 50 at each station is
  • the water sample pretreatment device includes: a water tank 10 connected to a source water supply device 20, and a water distribution device 30 is also connected to the water tank 10.
  • the supernatant is mixed into the detection instrument 50, and the source water supply device 20 and the water distribution device 30 are respectively connected to the control device; the water tank 10 is provided with a turbidity for real-time detection of the turbidity of the source water or the turbidity of the supernatant.
  • Detector 60 is used to preprocess the source water by standing and sedimentation, so that the turbidity of the water sample supplied into the detection instrument 50 at each station is
  • the water sample pretreatment device includes: a water tank 10 connected to a source water supply device 20, and a water distribution device 30 is also connected to the water tank 10.
  • the turbidity detector 60 is connected to the control device to send the detected source water turbidity value or supernatant turbidity value to the control device.
  • the control device is used when the received source water turbidity value is equal to or less than
  • the control water distribution device 30 is activated after the first preset sedimentation time to dispense the supernatant into the detection instrument 50;
  • the water distribution device 30 is controlled to start after the second preset sedimentation time to dispense the supernatant into the detection instrument 50;
  • the control device is also used for receiving the source water
  • the turbidity value is greater than the first-level threshold value preset by the system
  • the water distribution device 30 is controlled to activate when the turbidity value of the supernatant liquid is equal to or less than the first-level threshold value preset by the system within the third preset sedimentation time, so as The clear liquid is mixed into the detection instrument 50;
  • the water distribution device is controlled to activate when the turbidity value of the supernatant liquid is
  • the source water supply device 20 is activated under the control of the control device to supply the source water to be pretreated into the water tank 10, and the turbidity detector 60 provided in the water tank 10 detects the source The turbidity value of the water.
  • the control device shall comply with the "Surface Water Environmental Quality Standard" (GB3838 -2002) After the source water settles for the first preset settling time (generally 30 min), the water distribution device 30 is controlled to start, and the supernatant formed after the source water settles is mixed into the detection instrument 50.
  • the pretreatment system of the present invention can settle according to the condition of time, and the settlement flow chart is shown in Figure 3
  • the control device controls the water distribution device 30 to start, and the supernatant formed after the source water sedimentation is mixed into the detection instrument 50; when the source water turbidity
  • the sedimentation flow chart is shown in Figure 4.
  • the control device controls the water distribution device 30 to start, and the supernatant liquid is distributed into the detection instrument 50.
  • the turbidity value of the supernatant detected by the turbidity detector 60 is equal to or greater than the preset value of the system.
  • the control device controls the secondary processing device to start, and the secondary processing device 70 is connected by the water distribution device 30
  • the distributed supernatant is pretreated, so that the turbidity value of the supernatant of the supernatant mixed into the detection instrument 50 is equal to or less than the first-level threshold preset by the system, so that the supernatant mixed into the detection instrument 50
  • the turbidity value meets the requirements of the testing instrument 50.
  • the water sample pretreatment device of the present invention changes the static settlement pretreatment method of the existing water station for a fixed period of time, and expands the settlement mode conditioned on the turbidity value of the clear liquid layer, that is, in the third preset settlement time, when the When the turbidity value of the clear liquid is equal to or less than the preset threshold value of the system, the control system that controls the water distribution device 30 to start. Compared with the time-based settling, it can effectively shorten the settling time and improve the settling pretreatment efficiency.
  • the source water supply device 20 includes a source water input pipe 21, the input end of the source water input pipe 21 is a source water intake point, and the output end of the source water input pipe 21 is connected to the water tank Within 10.
  • the pipeline of the source water input pipe 21 is provided with a first pump 22 for pumping source water, a first switch valve 23 for controlling the conduction or isolation of the source water input pipe 21, and a first switch valve 23 for regulating the source water input pipe 21.
  • the first regulating valve 24, the first pump 22, the first on-off valve 23, and the first regulating valve 24 of the flow rate are respectively connected to the control device.
  • the output end of the source water input pipe 21 extends horizontally into the water tank 10 along the tangential direction of the cylindrical water tank 10, and the source water is tangentially injected to form a vortex, so that the particles contained in the source water are gathered toward the center of the water tank 10 under the action of centripetal force.
  • the inner wall of the water tank 10 is not easy to adhere to impurities.
  • the tangential injection method can make the particles contained in the source water settle down in an orderly manner, thereby shortening the settling time.
  • the water distribution device 30 includes a water intake head 31 arranged in the water tank 10 for absorbing the supernatant liquid, and the output end of the water intake head 31 is connected with a water intake hose 32, and the water intake hose
  • the output end of 32 is connected to a water distribution pipe 33, and the output end of the water distribution pipe 33 extends out of the water tank 10 and is connected to a detection instrument 50 to mix the supernatant into the detection instrument 50.
  • the extension section of the water distribution pipe 33 that extends out of the water tank 10 is provided with a second pump 34 for pumping the supernatant liquid, a first filter 35 for filtering the supernatant liquid, and a control water distribution pipe 33.
  • the second on-off valve 36 that is on or off, the second regulating valve 37 for adjusting the flow of the water distribution pipe 33, the water sample cup 38 for temporarily storing the supernatant liquid, and the water sample cup 38 downstream of the water sample cup 38
  • the reversing valve 39, the second pump 34, the first filter 35, the second on-off valve 36, the second regulating valve 37 and The reversing valves 39 are respectively connected to the control device.
  • the second pump 34 is a water pump
  • the second on-off valve 36 is an electric valve
  • the second regulating valve 37 is a flow valve
  • the reversing valve 39 is a three-way solenoid valve.
  • the control device controls the action of the water distribution device 30, the second pump 34 is activated, and the supernatant in the water tank 10 enters the water intake hose 32 from the water intake head 31, and then enters the water distribution pipe 33 through the second pump A filter 35 enters the water sample cup 38 after filtering, and finally enters the detection instrument 50 from the water sample cup 38.
  • a microporous filter screen is provided in the water intake head to filter the water sample.
  • the first filter 35 includes a filter box 351 having a filter cavity, and the filter box 351 is provided with a liquid inlet 3511 and a liquid outlet 3512 respectively communicating with the filter cavity.
  • the drain port 3513 the water distribution pipe 33 extends out of the water tank 10 and communicates with the liquid inlet 3511, the liquid outlet 3512 is connected to the testing instrument 50 through the water distribution pipe 33, and the drain port 3513 is connected to the system drainage device 80 for containing waste liquid.
  • the filter cavity is provided with a filter mesh 352 for filtering the incoming supernatant liquid.
  • the filter mesh 352 is arranged obliquely to divide the filter cavity into a pre-filtering cavity 3514 and a post-filtering cavity 3515, a liquid inlet 3511 and a liquid drain 3513 is respectively connected with the pre-filtering cavity 3514, and the liquid outlet 3512 is connected with the post-filtering cavity 3515.
  • the filter box 351 is also connected with an ultrasonic vibrator 353 for generating vibration, and the ultrasonic vibrator 353 is connected with the control device.
  • the filter box 351 is a rectangular box
  • the filter cavity is a rectangular cavity
  • the filter mesh 352 is arranged along the diagonal of the rectangular cavity.
  • the impurities are blocked by the oblique filter mesh 352, and are taken away by the diverted water sample from the drain port 3513, so they are not easy to adhere to the surface of the filter mesh; after the water sample is filtered, it can be removed from the liquid outlet 3512 fills the filter cavity with cleaning water, and the cleaning water is discharged from the drain 3513.
  • the filter mesh 352 is cleaned in the reverse direction.
  • the ultrasonic vibrator is turned on while the reverse cleaning is performed. The cavitation effect of the ultrasonic in the water body further strengthens the cleaning. Effect.
  • a turbidity detector 60 is connected to the water intake head 31 to detect the source water turbidity value of the source water at the water intake head 31 or the supernatant turbidity value of the supernatant. Ensure real-time interpretation of the turbidity value of the supernatant taken.
  • the water distribution device 30 also includes a lifting adjusting member 41 for adjusting the height of the position of the water intake head 31.
  • the lifting adjusting member 41 includes: a lifting driver 411 connected to the outer surface of the upper cover of the water tank 10, vertically arranged in the water tank 10 and the upper end is connected to the lifting
  • the driving end of the driver 411 is fixedly connected with a conductive screw rod 412 and a guide shaft 413 vertically arranged on the inner side wall of the water tank 10 for guiding the up and down movement of the water intake head 31.
  • the lifting driver 411 is connected to the control device.
  • the water intake head 31 is respectively pierced on the outer circles of the conductive screw rod 412 and the guide shaft 413, and the water intake head 31 is threadedly connected with the outer circle of the conductive screw rod 412.
  • the lifting driver 411 is a lifting motor, and the water intake hose 32 ensures the movement of the water intake head 31 at different water depth positions.
  • the elevation adjustment member 41 is provided to further adjust the water intake depth of the water intake head 31, and realize the turbidity detection of different water depths (water layers) by the turbidity detector 60.
  • the control device receives the sampling depth value, and calculates the total volume of supernatant required for detection according to the number of detection instruments 50, and at the same time, matches the size data of the water tank 10 to calculate the sampling depth of the water head 31, and finally controls the lifting drive 411 to move
  • the water sampling head 31 is raised and lowered to the corresponding sampling depth, and then the sampling head 31 is automatically adjusted to the minimum sampling depth according to the number of detection instruments configured, so as to obtain a water sample that satisfies the sedimentation effect in the shortest time, and at the same time, the sampling depth of the water sampling head 31 is achieved.
  • Adaptive adjustment is provided.
  • the secondary processing device 70 includes a water diversion tube 71 for drawing the supernatant liquid, the input end of the water diversion tube 71 is communicated with the water sample cup 38, and the output end of the water diversion pipe 71 is communicated with the reversing valve 39.
  • a second filter 72 for secondary filtration of the supernatant liquid and a constant volume bottle 73 for temporarily holding the filtered supernatant liquid are provided in the pipeline of the water diversion pipe 71.
  • the second filter 72 and The control device is connected.
  • the constant volume bottle 73 is connected with a suction pipe 74.
  • the suction end of the suction pipe 74 is connected with a suction pump 75 for generating negative pressure in the water pipe 71 to suck the supernatant liquid.
  • the suction pump 75 is connected with the control device.
  • the control device controls the secondary processing device 70 to start, and the reversing valve 39 reverses the direction of the water sample cup 38 and the detection instrument 50
  • the water distribution pipe 33 is disconnected and the water pipe 71 is connected, and the suction pump 75 is activated.
  • the supernatant in the water sample cup 38 enters the second filter 72 from the water pipe 71 to be filtered under the action of vacuum.
  • the supernatant liquid then enters the constant volume bottle 73 through the water pipe 71 for temporary storage, and finally enters the water distribution pipe 33 from the constant volume bottle 73 through the reversing valve 39, and finally enters the detection instrument 50 through the water distribution pipe 33.
  • the second filter 72 is a commonly used device for filtering in the market
  • the suction pump 75 is a vacuum pump.
  • the secondary processing device 70 can also be a dilution device that comes with the detection instrument 50.
  • the dilution device selects a preset dilution factor according to the turbidity value of the supernatant, and dilutes the supernatant to make the dilution
  • the turbidity value of the supernatant afterwards is equal to or lower than the system preset threshold.
  • the secondary processing device 70 may also be an automatic centrifugal device, and the automatic centrifugal device is connected to the control device.
  • the centrifugal device can suck the supernatant from the water sample cup 38 for centrifugation.
  • the supernatant obtained after centrifugation by the centrifugal device enters the water distribution pipe 33 through the reversing valve 39, and finally enters the detection instrument 50 through the water distribution pipe 33.
  • the control device can select a preset centrifugal speed and centrifugation time according to the turbidity value of the supernatant obtained by sedimentation, so that the centrifugation method, the filtration and the dilution method are basically consistent in the pretreatment effect.
  • the water sample pretreatment device further includes a system drainage device 80, which includes a waste liquid recovery tank for containing waste liquid, a first overflow pipe 81, and a first overflow pipe 81.
  • the two ends of the first overflow pipe 81 are respectively communicated with the inner cavity of the water tank 10 and the waste liquid recovery tank.
  • the two ends of the first discharging tube 82 are respectively connected with the bottom of the inner cavity of the water tank 10 and the waste liquid recovery tank, and the pipeline of the first discharging tube 82 is provided with a device for conducting or blocking the first discharging tube 82
  • the two ends of the second discharging pipe 83 are respectively connected to the first filter 35 and the waste liquid recovery tank, and the second discharging pipe 83 is provided with a second pipe for conducting or blocking the second discharging pipe 83 in the pipeline.
  • the two ends of the third sample discharge tube 84 are respectively connected with the inner cavity bottom of the water sample cup 38 and the waste liquid recovery tank, and the pipeline of the third sample discharge tube 84 is provided for conducting or conducting the third sample discharge tube 84.
  • Two ends of the second overflow pipe 85 are respectively communicated with the side wall of the water sample cup 38 and the waste liquid recovery tank.
  • the two ends of the fourth discharging tube 86 are respectively connected with the bottom of the constant volume bottle 73 and the waste liquid recovery tank, and the pipeline of the fourth discharging tube 86 is provided with a device for conducting or blocking the fourth discharging tube 86
  • the sixth switch valve 91 is provided.
  • the third on-off valve 87, the fourth on-off valve 88, the fifth on-off valve 89, and the sixth on-off valve 91 are respectively connected to the control device.
  • the third on-off valve 87 is a pneumatic valve
  • the fourth on-off valve 88 is an electric valve
  • the fifth on-off valve 89 is a solenoid valve
  • the sixth on-off valve 91 is a solenoid valve.
  • the side wall of the water tank 10 is provided with an overflow port
  • the first overflow pipe 81 is inserted into the overflow port along the tangential direction of the water tank, so that the excess water sample flows from the overflow port on the side wall of the water tank 10 along the tangential direction. Discharge to speed up the settling speed and shorten the settling time.
  • the water sample pretreatment device further includes a cleaning device 110
  • the cleaning device 110 includes a cleaning water supplier for supplying cleaning water
  • the cleaning water supplier is connected with a water supply main 111
  • the first water supply branch pipe 112 and the second water supply branch pipe 113 respectively communicate with the water supply main pipe 111.
  • the pipeline of the water supply main pipe 111 is provided with a fifth regulating valve 114 for adjusting the flow rate of the water supply main pipe 111.
  • the output end of the first water supply branch pipe 112 is communicated with the source water input pipe, and the pipeline of the first water supply branch pipe 112 is provided with an eighth on-off valve 115 for conducting or blocking the first water supply branch pipe 112.
  • the output end of the second water supply branch pipe 113 is in communication with the water intake pipe, and the pipeline of the second water supply branch pipe 113 is provided with a ninth on-off valve 116 for conducting or blocking the second water supply branch pipe 113.
  • the washing water supplier, the fifth regulating valve 114, the eighth on-off valve 115 and the ninth on-off valve 116 are respectively connected to the control device.
  • the fifth regulating valve 114 is a flow valve
  • the eighth on-off valve 115 and the ninth on-off valve 116 are both electric valves.
  • the first water supply branch pipe 112 is used to clean the source water input pipe 21 and electrical components arranged in the source water input pipe 21;
  • the second water supply branch pipe 113 is used to clean the water distribution pipe 33 and the electrical components arranged in the water distribution pipe. 33 The electrical components in the pipeline are cleaned.
  • the cleaning device 110 further includes a third water supply branch pipe 117, the input end of the third water supply branch pipe 117 is in communication with the second water supply branch pipe 113, and the output end of the third water supply branch pipe 117 passes through
  • the upper cover of the water tank 10 extends into the water tank 10, and the pipeline of the third water supply branch pipe 117 is provided with a tenth switch valve 118 that controls the conduction or isolation of the third water supply branch pipe 117, and the tenth switch valve 118 is connected to the control device.
  • the output end of the third water supply branch pipe 117 communicates with a self-rotating spray head 119 that automatically rotates under the action of the washing water pressure, and the self-rotating spray head 119 communicates with a plurality of nozzles 120.
  • the tenth on-off valve 118 is an electric valve.
  • the water sample pretreatment device also includes a back-flushing device 130.
  • the back-flushing device 130 includes an air-washing pipe 131 connected to the first sample discharge pipe 82.
  • the input end of the air-washing pipe 131 is connected with a compressed air supply for supplying compressed air.
  • the piping of the air washing pipe 131 is provided with an eleventh on-off valve 132 for controlling the conduction or blocking of the air washing pipe 131, and a third regulating valve 133 for adjusting the flow rate of the air washing pipe 131.
  • Compressed air The feeder, the eleventh on-off valve 132 and the third regulating valve 133 are respectively connected to the control device.
  • the eleventh on-off valve 132 is a solenoid valve
  • the third regulating valve 133 is a flow valve.
  • the bottom of the water tank 10 is arranged in a conical shape, and the large-angle cone bottom structure of the water tank facilitates the discharge of bottom sediments.
  • compressed air is injected into the water tank 10 through the bottom air washing pipe 131, which can agitate the compacted sediments at the cone bottom of the water tank, and solve the problem that the sediments cannot be compacted when the amount of sediment is large.
  • the self-rotating sprinkler 119 is a three-pronged rotating sprinkler driven by hydraulic power. After pressurized tap water is introduced, the sprinkler can self-rotate, and the rotation speed can be adjusted by adjusting the inclination angle of the nozzle 120. Dead-angle cleaning, combined with the compressed air blown into the bottom of the water tank, makes the sedimentation tank have a good self-cleaning effect.
  • a preferred embodiment of the present invention also provides a water sample pretreatment system, including a water sample pretreatment device as described in any one of the above, and a water sample pretreatment device for treating
  • the detection instrument 50 for detecting and analyzing the water sample is connected to the output end of the water distribution device 30 of the water sample pretreatment device.
  • a preferred embodiment of the present invention also provides a water sample pretreatment method, which adopts the water sample pretreatment system as described above, and includes the following steps:
  • the control device controls the source water supply device 20 to start, and supplies the source water into the water tank 10;
  • the turbidity detector 60 detects the turbidity value of the source water. According to different turbidity values, the control device correspondingly controls the water distribution device 30 to start after different settling times. When the turbidity detector 60 detects the turbidity value of the source water When the turbidity value of the supernatant is still greater than the first-level threshold value preset by the system after the third preset sedimentation time is equal to or greater than the second-level threshold value preset by the system, the control device controls the secondary processing device to start the distribution The supernatant is pretreated so that the turbidity value of the supernatant of the supernatant mixed into the detection instrument 50 is equal to or less than the preset threshold of the system.
  • step S2 specifically includes the following steps:
  • the turbidity detector 60 arranged in the water tank 10 detects the turbidity value of the source water.
  • the control device controls the water distribution device 30 to pass the first preset settlement Start after time to dispense the supernatant into the testing instrument 50;
  • the control device controls the water distribution device 30 to start after the second preset sedimentation time, so as to mix the supernatant into Within 50 testing instruments;
  • the control device controls the water distribution device 30 when the supernatant turbidity value is equal to or less than the first-level threshold value preset by the system within the third preset sedimentation time Start to dispense the supernatant into the testing instrument 50;
  • the control device controls the activation of the secondary processing device 70 to perform filtration, centrifugation or dilution processing on the supernatant distributed by the water distribution device 30.

Abstract

一种水样预处理装置、水样预处理系统及水样预处理方法,包括:用于对源水进行静置沉降的水箱(10),水箱(10)连通有源水供给装置(20),水箱(10)还连通有配水装置(30),配水装置(30)用于将水箱(10)中的上清液配入检测仪器(50)内,源水供给装置(20)和配水装置(30)分别与控制装置相连。水箱(10)内设有用于对源水的浊度或上清液的浊度进行实时检测的浊度检测器(60),浊度检测器(60)与控制装置相连。配水装置(30)连通有二次处理装置(70),二次处理装置(70)用于对由配水装置(30)配送的上清液进行预处理,以使配入检测仪器(50)的上清液浊度值等于或小于系统预设阀值,二次处理装置(70)与控制装置相连。

Description

水样预处理装置、水样预处理系统及水样预处理方法 技术领域
本发明涉及水污染监测及水文观测领域,特别地,涉及一种水样预处理装置。此外,本发明还涉及一种具有该水样预处理装置的水样预处理系统、及使用该水样预处理系统的进行水样处理的水样预处理方法。
背景技术
近年来,政府对生态环境保护举措力度不断加大,实行最严格的生态环境保护制度,严明生态环境保护责任制度,为进一步推动水污染防治工作,规范城市地表水环境质量排名和信息发布,强化公众监督,生态环境部按照全面、客观、公平、规范的原则,出台了《城市地表水环境质量排名技术规定(试行)》,这就要求参与排名的水质自动站,其监测数据应具备良好的一致性和横向可比性。
浊度,即水中颗粒物对光线穿透产生的阻碍程度,对光度法水质分析仪测量结果的准确性产生重要影响,而常规水质分析仪大多采用光度法测量原理。为了降低浊度对水样检测的影响,目前,水站均配备了预处理系统,主要通过沉降、过滤、消解等方式来去除水中颗粒物。静置沉降由于能最大程度保证水样的代表性,而成为首选的预处理方式。如何保证全国各地水站监测数据的可比性,首先必须要解决各站点水样预处理条件的一致性问题。总体来说,影响沉降预处理效果的主要因素有沉降时间、沉降方式、取水深度等。然而全国水站的集成厂商并不相同,各厂商的设计理念、预处理流程也存在较大差异,具体表现在沉降水箱10形态结构各异,取样深度不一等,这些预处理条件不一致的问题,从根本上影响各站点监测数据的横向可比性,同时对城市地表水环境质量排名的客观性和公正性也带来不利影响。
现有水质自动监测站(下文简称水站)常用的水样预处理方式为静置沉降,所有站点无论水样浊度高低,均统一静置30min后再启动仪器测试。不同站点水样浊度可能存在较大差异,统一静置沉降30min后,上清夜的浊度也不尽相同,清夜层浊度的不同会给部分仪器带来测试结果的差异,但现有水站的预处理方式无法保证各站点监测数据在同一浊度条件下获得,这就造成了不同站点间获取的水样后,经预处理后进行检测时,水样的浊度不尽相同。即送检的水样成份、条件没法相同,直接导致检测结果的差异化。
这也构成了需要进一步改进水样预处理装置的设计,以解决所存在的技术问题。
发明内容
本发明提供了一种水样预处理装置及具有其的水样预处理系统,以解决现有水站的预处理方式无法保证各站点监测数据在同一浊度条件下获得,进而造成站点间监测数据条件一致性差、可比性不强的技术问题。
本发明采用的技术方案如下:
一种水样预处理装置,用于对源水进行静置沉降预处理,以使各站点供入检测仪器内的水样的浊度相同,水样预处理装置包括:水箱,水箱连通有源水供给装置,水箱还连通有配水装置,配水装置用于将水箱中由源水静置沉降后形成的上清液配入检测仪器内,源水供给装置和配水装置分别与控制装置相连;水箱内设有用于对源水的浊度或上清液的浊度进行实时检测的浊度检测器,浊度检测器与控制装置相连,以将检测的源水浊度值或上清液浊度值发送给控制装置,控制装置用于在接收的源水浊度值等于或小于系统预设的一级阀值时,控制配水装置经过第一预设沉降时间后启动以将上清液配入检测仪器内;控制装置还用于在接收的源水浊度值大于系统预设的一级阀值且小于二级阀值时,控制配水装置经过第二预设沉降时间后启动以将上清液配入检测仪器内;控制装置还用于在接收的源水浊度值大于系统预设的一级阀值时,控制配水装置在第三预设沉降时间内当上清液浊度值等于或小于系统预设的一级阀值时启动,以将上清液配入检测仪器内;配水装置连通有二次处理装置,二次处理装置用于对由配水装置配送的上清液进行预处理,二次处理装置与控制装置相连,控制装置还用于在接收的源水浊度值等于或大于系统预设的二级阀值或经第三预设沉降时间后上清液浊度值仍大于系统预设的一级阀值时,控制二次处理装置启动,以对由配水装置配送的上清液进行预处理。
进一步地,配水装置包括设置于水箱中的用于吸取上清液的取水头,取水头的输出端连接有取水软管,取水软管的输出端连接有配水管,配水管的输出端伸出水箱后连接检测仪器以将上清液配入检测仪器中;配水管上伸出水箱的外伸段上设有用于泵送上清液的第二泵送器、用于对上清液进行过滤的第一过滤器、用于控制配水管导通或隔断的第二开关阀、用于调节配水管流量大小的第二调节阀、用于临时存装上清液的水样杯、及位于水样杯的下游的用于控制水样杯至检测仪器之间的管路导通或隔断的换向阀,第二泵送器、第一过滤器、第二开关阀、第二调节阀及换向阀分别与控制装置相连。
进一步地,浊度检测器连接于取水头上,以检测取水头处源水的源水浊度值或上清液的上清液浊度值;配水装置还包括用于调节取水头位置高度的升降调节构件,升降调节构件包括:连接于水箱上盖外表面上的升降驱动器、竖直设置于水箱中且上端与升降驱动器的驱动端固定连接的传导丝杆、及竖直设置于水箱的内侧壁上用于对取水头的上下移动进行导向的导向轴杆,升降驱动器与控制装置相连;取水头分别穿设于传导丝杆和导向轴杆的外圆上,且取水头与传导丝杆的外圆螺纹连接。
进一步地,二次处理装置包括用于引取上清液的引水管,引水管的输入端与水样杯连通,引水管的输出端与换向阀连通;引水管的管路中设有用于对上清液进行二次过滤的第二过滤器、及用于对过滤后的上清液进行临时盛装的定容瓶,第二过滤器与控制装置相连;定容瓶连通有抽吸管,抽吸管的抽吸端连接有用于使引水管中产生负压以吸取上清液的抽吸泵,抽吸泵与控制装置相连。
进一步地,水样预处理装置还包括系统排水装置,系统排水装置包括用于盛装废液的废液回收池、第一溢流管、第一排样管、第二排样管、第三排样管、第二溢流管、及第四排样管;第一溢流管的两端分别与水箱的内腔侧向和废液回收池连通;第一排样管的两端分别与 水箱的内腔底部和废液回收池连通,且第一排样管的管路中设有用于使第一排样管导通或隔断的第三开关阀;第二排样管的两端分别与第一过滤器和废液回收池连通,且第二排样管的管路中设有用于使第二排样管导通或隔断的第四开关阀;第三排样管的两端分别与水样杯的内腔底部和废液回收池连通,且第三排样管的管路中设有用于使第三排样管导通或隔断的第五开关阀;第二溢流管的两端分别与水样杯的侧壁和废液回收池连通;第四排样管的两端分别与定容瓶的底部和废液回收池连通,且第四排样管的管路中设有用于使第四排样管导通或隔断的第六开关阀;第三开关阀、第四开关阀、第五开关阀及第六开关阀分别与控制装置相连。
进一步地,水样预处理装置还包括清洗装置,清洗装置包括用于供给清洗水的清洗水供给器,清洗水供给器连接有供水总管、及与供水总管分别连通的第一供水支管和第二供水支管;供水总管的管路中设有用于调节供水总管流量大小的第五调节阀;第一供水支管的输出端与源水输入管连通,且第一供水支管的管路中设有使第一供水支管导通或隔断的第八开关阀;第二供水支管的输出端与取水管连通,且第二供水支管的管路中设有使第二供水支管导通或隔断的第九开关阀;清洗水供给器、第五调节阀、第八开关阀及第九开关阀分别与控制装置相连。
进一步地,清洗装置还包括第三供水支管,第三供水支管的输入端与第二供水支管连通,第三供水支管的输出端穿过水箱的上盖后伸入水箱中,第三供水支管的管路中设有控制第三供水支管导通或隔断的第十开关阀,第十开关阀与控制装置相连;第三供水支管的输出端连通有在清洗水压力作用下自动旋转的自旋转喷头,自旋转喷头连通有多个喷嘴;水样预处理装置还包括反吹洗装置,反吹洗装置包括与第一排样管连通的气洗管,气洗管的输入端连通有用于供给压缩空气的压缩空气供给器,且气洗管的管路中设有用于控制气洗管导通或隔断的第十一开关阀、及用于调节气洗管流量大小的第三调节阀,压缩空气供给器、第十一开关阀及第三调节阀分别与控制装置相连。
根据本发明的另一方面,还提供了一种水样预处理系统,包括如上述中任一项的水样预处理装置、及用于对由水样预处理装置处理后的水样进行检测分析的检测仪器,检测仪器与水样预处理装置的配水装置的输出端连通。
根据本发明的另一方面,还提供了一种水样预处理方法,采用如上述中的水样预处理系统进行,包括以下步骤:S1:控制装置控制源水供给装置启动,将源水供入水箱中;S2:浊度检测器检测源水的浊度值,根据不同的浊度值,控制装置相应控制配水装置经过不同的沉降时间后启动,当浊度检测器检测的源水浊度值等于或大于系统预设的二级阀值或经第三预设沉降时间后上清液浊度值仍大于系统预设的一级阀值时,控制装置再控制二次处理装置启动对配送的上清液进行预处理,以使配入检测仪器的上清液的上清液浊度值等于或小于系统预设阀值。
进一步地,步骤S2具体包括以下步骤:设置于水箱中的浊度检测器检测源水的浊度值,当源水浊度值等于或小于系统预设的一级阀值时,控制装置控制配水装置经过第一预设沉降时间后启动,以将上清液配入检测仪器内;当源水浊度值大于系统预设的一级阀值且小于系统预设的二级阀值时,控制装置控制配水装置经过第二预设沉降时间后启动,以将上清液配 入检测仪器内;当源水浊度值大于系统预设的一级阀值时,控制装置控制配水装置在第三预设沉降时间内当上清液浊度值等于或小于系统预设的一级阀值时启动,以将上清液配入检测仪器内;当浊度检测器检测的源水浊度值等于或大于系统预设的二级阀值、或经第三预设沉降时间后上清液浊度值仍大于系统预设的一级阀值时,控制装置控制二次处理装置启动,以对由配水装置配送的上清液进行过滤、离心或稀释处理。
本发明具有以下有益效果:
本发明的水样预处理装置改变了现有水站固定时长的静止沉降预处理方式,扩展了以清液层浊度值为条件的沉降模式,即在第三预设沉降时间内,当上清液的浊度值等于或小于系统预设阀值时,控制系统即控制配水装置启动,相比以时间为条件的沉降,其可有效缩短沉降时间,进而提高沉降预处理效率。实际处理时,当源水浊度值低于系统预设阀值时,浊度对检测仪器测试结果的影响较小,故而各水站监测数据具备较好的一致性;当源水浊度值大于系统预设阀值时,浊度对检测仪器测试结果影响大,各水站监测数据的一致性变差,在源水浊度较高(影响检测仪器测试结果)的情况下,各水站可统一采用浊度阈值为条件进行沉降并统一系统预设浊度阈值标准,这样可使各水站的监测数据在同一浊度条件下获得,提升了站点间数据的一致性和可比性,使各省市地表水环境质量评价更加客观。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明优选实施例的水样预处理装置的空间结构示意图;
图2是图1的水路原理图;
图3是图1中以时间为条件的沉降流程图;
图4是图1中以浊度值为条件的沉降流程图;
图5是图1中第一过滤器的空间结构示意图;
图6是图5的剖视主视结构示意图。
图例说明
10、水箱;20、源水供给装置;21、源水输入管;22、第一泵送器;23、第一开关阀;24、第一调节阀;25、分流管;26、第四调节阀;30、配水装置;31、取水头;32、取水软管;33、配水管;34、第二泵送器;35、第一过滤器;351、过滤箱;3511、进液口;3512、出液口;3513、排液口;3514、过滤前腔;3515、过滤后腔;352、过滤网片;353、超声振子;36、第二开关阀;37、第二调节阀;38、水样杯;39、换向阀;41、升降调节构件;411、升降驱动器;412、传导丝杆;413、导向轴杆;50、检测仪器;60、浊度检测器;70、二次 处理装置;71、引水管;72、第二过滤器;73、定容瓶;74、抽吸管;75、抽吸泵;80、系统排水装置;81、第一溢流管;82、第一排样管;83、第二排样管;84、第三排样管;85、第二溢流管;86、第四排样管;87、第三开关阀;88、第四开关阀;89、第五开关阀;91、第六开关阀;110、清洗装置;111、供水总管;112、第一供水支管;113、第二供水支管;114、第五调节阀;115、第八开关阀;116、第九开关阀;117、第三供水支管;118、第十开关阀;119、自旋转喷头;120、喷嘴;130、反吹洗装置;131、气洗管;132、第十一开关阀;133、第三调节阀。
具体实施方式
以下结合附图对本发明的实施例进行详细说明,但是本发明可以由下述所限定和覆盖的多种不同方式实施。
参照图1-图4,本发明的优选实施例提供了一种水样预处理装置,用于对源水进行静置沉降预处理,以使各站点供入检测仪器50内的水样的浊度相同,水样预处理装置包括:水箱10,水箱10连通有源水供给装置20,水箱10还连通有配水装置30,配水装置30用于将水箱10中由源水静置沉降后形成的上清液配入检测仪器50内,源水供给装置20和配水装置30分别与控制装置相连;水箱10内设有用于对源水的浊度或上清液的浊度进行实时检测的浊度检测器60,浊度检测器60与控制装置相连,以将检测的源水浊度值或上清液浊度值发送给控制装置,控制装置用于在接收的源水浊度值等于或小于系统预设的一级阀值时,控制配水装置30经过第一预设沉降时间后启动以将上清液配入检测仪器50内;控制装置还用于在接收的源水浊度值大于系统预设的一级阀值且小于二级阀值时,控制配水装置30经过第二预设沉降时间后启动以将上清液配入检测仪器50内;控制装置还用于在接收的源水浊度值大于系统预设的一级阀值时,控制配水装置30在第三预设沉降时间内当上清液浊度值等于或小于系统预设的一级阀值时启动,以将上清液配入检测仪器50内;配水装置30连通有二次处理装置70,二次处理装置70用于对由配水装置30配送的上清液进行预处理,二次处理装置70与控制装置相连,控制装置还用于在接收的源水浊度值等于或大于系统预设的二级阀值或经第三预设沉降时间后上清液浊度值仍大于系统预设的一级阀值时,控制二次处理装置70启动,以对由配水装置30配送的上清液进行预处理。
本发明的水样预处理装置工作时,源水供给装置20在控制装置的控制下启动,将待预处理的源水供入水箱10中,设置于水箱10中的浊度检测器60检测源水的浊度值,当源水的浊度值等于或小于系统预设的一级阈值(可为检测仪器允许的浊度上限阀值)时,控制装置依据《地表水环境质量标准》(GB3838-2002)的有关要求使源水沉降第一预设沉降时间(一般为30min)后,控制配水装置30启动,将源水沉降后形成的上清液配入检测仪器50内。当源水浊度值大于系统预设的一级阀值且小于系统预设的二级阀值时,本发明的预处理系统可依据时间为条件进行沉降,其沉降流程图如图3所示,当源水沉降时间到达第二预设沉降时间时(一般为60min),控制装置控制配水装置30启动,将源水沉降后形成的上清液配入检测仪器50内;当源水浊度值大于系统预设的一级阀值时,其沉降流程图如图4所示,在源水的第三预设沉降时间内,当沉降后形成的上清液水样的浊度值等于或小于系统预设的一级阀值时,控制装置控制配水装置30启动,将该上清液配入检测仪器50内。当源水以时间为条件沉降 结束后或以浊度值为条件沉降结束后,且配水装置30启动时,浊度检测器60检测的上清液的浊度值等于或大于系统预设的二级阀值或经第三预设沉降时间后上清液浊度值仍大于系统预设的一级阀值时,控制装置再控制二次处理装置启动,二次处理装置70对由配水装置30配送的上清液进行预处理,进而使配入检测仪器50的上清液的上清液浊度值等于或小于系统预设的一级阀值,从而使配入检测仪器50的上清液的浊度值满足检测仪器50的需求。
本发明的水样预处理装置改变了现有水站固定时长的静止沉降预处理方式,扩展了以清液层浊度值为条件的沉降模式,即在第三预设沉降时间内,当上清液的浊度值等于或小于系统预设阀值时,控制系统即控制配水装置30启动,相比以时间为条件的沉降,其可有效缩短沉降时间,进而提高沉降预处理效率。实际处理时,当源水浊度值低于系统预设阀值时,浊度对检测仪器测试结果的影响较小,故而各水站监测数据具备较好的一致性;当源水浊度值大于系统预设阀值时,浊度对检测仪器测试结果影响大,各水站监测数据的一致性变差,在源水浊度较高(影响检测仪器测试结果)的情况下,各水站可统一采用浊度阈值为条件进行沉降并统一系统预设浊度阈值标准,这样可使各水站的监测数据在同一浊度条件下获得,提升了站点间数据的一致性和可比性,使各省市地表水环境质量评价更加客观。
可选地,如图1和图2所示,源水供给装置20包括源水输入管21,源水输入管21的输入端为源水取水点,源水输入管21的输出端连通至水箱10内。源水输入管21的管路上设有用于泵送源水的第一泵送器22、用于控制源水输入管21导通或隔断的第一开关阀23、及用于调节源水输入管21流量大小的第一调节阀24,第一泵送器22、第一开关阀23及第一调节阀24分别与控制装置相连。优选地,源水输入管21的输出端沿圆筒形水箱10的切线方向水平伸入水箱10内,源水切线进样形成涡流,使源水中含有的颗粒物在向心力作用下向水箱10中心聚拢,而水箱10的内壁不易附着杂质,相比传统水箱垂直侧壁方向进样时产生的紊流,沿切线方向进样的方式可使源水中含有的颗粒物有序沉降,进而缩短沉降时间。优选地,如图2所示,源水供给装置20还包括分流管25及第四调节阀26,分流管25的输入端与源水输入管21连通,分流管25的输出端与用于盛装废液的系统排水装置连通,第四调节阀26设置于分流管25的管路中,用于控制分流管25的流量大小,且第四调节阀26与控制装置相连,分流管25用于对源水输入管21进行分流。具体地,第一泵送器22为水泵,第一开关阀23为电动阀,第一调节阀24为流量阀,第四调节阀26为流量阀。
可选地,如图1和图2所示,配水装置30包括设置于水箱10中的用于吸取上清液的取水头31,取水头31的输出端连接有取水软管32,取水软管32的输出端连接有配水管33,配水管33的输出端伸出水箱10后连接检测仪器50以将上清液配入检测仪器50中。配水管33上伸出水箱10的外伸段上设有用于泵送上清液的第二泵送器34、用于对上清液进行过滤的第一过滤器35、用于控制配水管33导通或隔断的第二开关阀36、用于调节配水管33流量大小的第二调节阀37、用于临时存装上清液的水样杯38、及位于水样杯38的下游的用于控制水样杯38至检测仪器50之间的管路导通或隔断的换向阀39,第二泵送器34、第一过滤器35、第二开关阀36、第二调节阀37及换向阀39分别与控制装置相连。具体地,第二泵送器34为水泵,第二开关阀36电动阀,第二调节阀37为流量阀,换向阀39为三通电磁阀。当静置沉降结束后,控制装置控制配水装置30动作,第二泵送器34启动,水箱10中的上清液由取水头31进入取水软管32,然后再进入配水管33中,经第一过滤器35过滤后进入水样杯38中, 最后由水样杯38进入检测仪器50中。优选地,取水头内设有微孔过滤网,对水样进行过滤。
本可选方案中,如图5和图6所示,第一过滤器35包括具有过滤腔的过滤箱351,过滤箱351上设有与过滤腔分别连通的进液口3511、出液口3512及排液口3513,配水管33伸出水箱10后与进液口3511连通,出液口3512通过配水管33连通至检测仪器50,排液口3513与用于盛装废液的系统排水装置80连通。过滤腔内设有用于对进入的上清液进行过滤的过滤网片352,过滤网片352倾斜设置以将过滤腔分隔为过滤前腔3514和过滤后腔3515,进液口3511和排液口3513分别与过滤前腔3514连通,出液口3512与过滤后腔3515连通。过滤箱351还连接有用于产生振动的超声振子353,超声振子353与控制装置相连。具体地,如图6所示,过滤箱351为矩形箱,过滤腔为矩形腔,过滤网片352沿矩形腔的对角线设置。水样过滤时,杂质被倾斜设置的过滤网片352阻隔,并由排液口3513处被分流水样带走,故而不易附着在过滤网片表面;水样过滤完成后,可从出液口3512向过滤腔内充入清洗水,清洗水从排液口3513中排出,对过滤网片352进行反向清洗,反向清洗的同时开启超声振子,超声波在水体中的空化效应进一步强化清洗效果。
本可选方案中,如图2所示,浊度检测器60连接于取水头31上,以检测取水头31处源水的源水浊度值或上清液的上清液浊度值,保证实时判读所取上清液的浊度值。配水装置30还包括用于调节取水头31位置高度的升降调节构件41,升降调节构件41包括:连接于水箱10上盖外表面上的升降驱动器411、竖直设置于水箱10中且上端与升降驱动器411的驱动端固定连接的传导丝杆412、及竖直设置于水箱10的内侧壁上用于对取水头31的上下移动进行导向的导向轴杆413,升降驱动器411与控制装置相连。取水头31分别穿设于传导丝杆412和导向轴杆413的外圆上,且取水头31与传导丝杆412的外圆螺纹连接。具体地,升降驱动器411为升降电机,且取水软管32保证取水头31在不同水深位置的移动。本发明中,通过设置升降调节构件41,进而调节取水头31的取水深度,并实现浊度检测器60对不同水深(水层)的浊度检测。
优选地,配水装置30还包括用于检测取水头31的取样深度的水深检测器,水深检测器连接于取水头31上且与控制装置相连,以将检测的取水头31的取样深度值发送给控制装置。控制装置接收取样深度值,并根据检测仪器50的数量计算出检测所需上清液的总体积,同时匹配水箱10的尺寸数据计算出取水头31的取样深度,最后控制升降驱动器411动作以使取水头31升降至对应的取样深度处,进而实现根据配置的检测仪器数量自动调节取样头31至最小取样深度,以便在最短时间内获得满足沉降效果的水样,同时实现取水头31取样深度的适应性调节。
可选地,二次处理装置70包括用于引取上清液的引水管71,引水管71的输入端与水样杯38连通,引水管71的输出端与换向阀39连通。引水管71的管路中设有用于对上清液进行二次过滤的第二过滤器72、及用于对过滤后的上清液进行临时盛装的定容瓶73,第二过滤器72与控制装置相连。定容瓶73连通有抽吸管74,抽吸管74的抽吸端连接有用于使引水管71中产生负压以吸取上清液的抽吸泵75,抽吸泵75与控制装置相连。当配水管33中所配上清液的浊度值大于系统预设阀值时,控制装置控制二次处理装置70启动,使换向阀39换向以使水样杯38与检测仪器50之间的配水管33断开而引水管71连通,且使抽吸泵75启动,水样杯38中的上清液在抽真空作用下由引水管71进入第二过滤器72中过滤,且过滤后的上 清液再通过引水管71进入定容瓶73中临时存储,最后由定容瓶73经换向阀39进入配水管33,最后由配水管33进入检测仪器50中。具体地,第二过滤器72为市场上常用的用于过滤的装置,抽吸泵75为真空泵。
可选地,二次处理装置70还可为检测仪器50自带的稀释装置,该稀释装置根据上清液的浊度值选择预先设定的稀释倍数,将上清液进行稀释,以使稀释后的上清液的浊度值等于或低于系统预设阀值。
可选地,二次处理装置70还可以为自动离心装置,自动离心装置与控制装置相连。该离心装置可从水样杯38中吸取上清液进行离心处理,离心装置离心后获得的上清液通过换向阀39进入配水管33,最后由配水管33进入检测仪器50中。优选的,控制装置可依据沉降所得上清液的浊度值选择预设的离心转速和离心时间,使得离心方式与过滤、稀释方式在预处理效果上保持基本一致。
可选地,如图1和图2所示,水样预处理装置还包括系统排水装置80,系统排水装置80包括用于盛装废液的废液回收池、第一溢流管81、第一排样管82、第二排样管83、第三排样管84、第二溢流管85、及第四排样管86。第一溢流管81的两端分别与水箱10的内腔侧向和废液回收池连通。第一排样管82的两端分别与水箱10的内腔底部和废液回收池连通,且第一排样管82的管路中设有用于使第一排样管82导通或隔断的第三开关阀87。第二排样管83的两端分别与第一过滤器35和废液回收池连通,且第二排样管83的管路中设有用于使第二排样管83导通或隔断的第四开关阀88。第三排样管84的两端分别与水样杯38的内腔底部和废液回收池连通,且第三排样管84的管路中设有用于使第三排样管84导通或隔断的第五开关阀89。第二溢流管85的两端分别与水样杯38的侧壁和废液回收池连通。第四排样管86的两端分别与定容瓶73的底部和废液回收池连通,且第四排样管86的管路中设有用于使第四排样管86导通或隔断的第六开关阀91。第三开关阀87、第四开关阀88、第五开关阀89及第六开关阀91分别与控制装置相连。具体地,第三开关阀87为气动阀,第四开关阀88为电动阀,第五开关阀89为电磁阀,第六开关阀91为电磁阀。优选地,水箱10的侧壁上开设有溢流口,第一溢流管81沿水箱的切线方向插入该溢流口中,从而多余的水样从水箱10侧壁上的溢流口沿切线方向排出,加快沉降速度,缩短沉降时间。
可选地,如图1和图2所示,水样预处理装置还包括清洗装置110,清洗装置110包括用于供给清洗水的清洗水供给器,清洗水供给器连接有供水总管111、及与供水总管111分别连通的第一供水支管112和第二供水支管113。供水总管111的管路中设有用于调节供水总管111流量大小的第五调节阀114。第一供水支管112的输出端与源水输入管连通,且第一供水支管112的管路中设有使第一供水支管112导通或隔断的第八开关阀115。第二供水支管113的输出端与取水管连通,且第二供水支管113的管路中设有使第二供水支管113导通或隔断的第九开关阀116。清洗水供给器、第五调节阀114、第八开关阀115及第九开关阀116分别与控制装置相连。具体地,第五调节阀114为流量阀,第八开关阀115和第九开关阀116均为电动阀。实际工作时,第一供水支管112用于对源水输入管21及设置于源水输入管21管路中的电器元件进行清洗;第二供水支管113用于对配水管33及设置于配水管33管路中的电器元件进行清洗。
可选地,如图1和图2所示,清洗装置110还包括第三供水支管117,第三供水支管117的输入端与第二供水支管113连通,第三供水支管117的输出端穿过水箱10的上盖后伸入水箱10中,第三供水支管117的管路中设有控制第三供水支管117导通或隔断的第十开关阀118,第十开关阀118与控制装置相连。第三供水支管117的输出端连通有在清洗水压力作用下自动旋转的自旋转喷头119,自旋转喷头119连通有多个喷嘴120。具体地,第十开关阀118为电动阀。水样预处理装置还包括反吹洗装置130,反吹洗装置130包括与第一排样管82连通的气洗管131,气洗管131的输入端连通有用于供给压缩空气的压缩空气供给器,且气洗管131的管路中设有用于控制气洗管131导通或隔断的第十一开关阀132、及用于调节气洗管131流量大小的第三调节阀133,压缩空气供给器、第十一开关阀132及第三调节阀133分别与控制装置相连。具体地,第十一开关阀132为电磁阀,第三调节阀133为流量阀。
优选地,水箱10的底部设置成圆锥形,水箱大角度锥底结构,利于底部沉积物排出。水箱10排样前,通过底部气洗管131向水箱10内注入压缩空气,可鼓动水箱锥底位置板结的沉积物,解决泥沙量大时沉积物板结无法排样的问题。自旋转喷头119为由水力驱动的三叉旋转喷头,通入带压自来水后,该喷头可自旋转,并通过调整喷嘴120的倾角可实现旋转速度调节,旋转发散的喷淋水柱可实现水箱内壁无死角清洗,配合水箱底部鼓入的压缩空气,使沉降水箱具备良好的自清洁效果。
参照图1-4,本发明的优选实施例还提供了一种水样预处理系统,包括如上述中任一项的水样预处理装置、及用于对由水样预处理装置处理后的水样进行检测分析的检测仪器50,检测仪器50与水样预处理装置的配水装置30的输出端连通。
参照图1-4,本发明的优选实施例还提供了一种水样预处理方法,采用如上述中的水样预处理系统进行,包括以下步骤:
S1:控制装置控制源水供给装置20启动,将源水供入水箱10中;
S2:浊度检测器60检测源水的浊度值,根据不同的浊度值,控制装置相应控制配水装置30经过不同的沉降时间后启动,当浊度检测器60检测的源水浊度值等于或大于系统预设的二级阀值或经第三预设沉降时间后上清液浊度值仍大于系统预设的一级阀值时,控制装置再控制二次处理装置启动对配送的上清液进行预处理,以使配入检测仪器50的上清液的上清液浊度值等于或小于系统预设阀值。
可选地,步骤S2具体包括以下步骤:
设置于水箱10中的浊度检测器60检测源水的浊度值,当源水浊度值等于或小于系统预设的一级阀值时,控制装置控制配水装置30经过第一预设沉降时间后启动,以将上清液配入检测仪器50内;
当源水浊度值大于系统预设的一级阀值且小于系统预设的二级阀值时,控制装置控制配水装置30经过第二预设沉降时间后启动,以将上清液配入检测仪器50内;
当源水浊度值大于系统预设的一级阀值时,控制装置控制配水装置30在第三预设沉降时间内当上清液浊度值等于或小于系统预设的一级阀值时启动,以将上清液配入检测仪器50内;
当浊度检测器60检测的源水浊度值等于或大于系统预设的二级阀值或经第三预设沉降时间后上清液浊度值仍大于系统预设的一级阀值时,控制装置控制二次处理装置70启动,以对由配水装置30配送的上清液进行过滤、离心或稀释处理。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种水样预处理装置,其特征在于,所述水样预处理装置包括:
    水箱(10),所述水箱(10)连通有源水供给装置(20),所述水箱(10)还连通有配水装置(30),所述配水装置(30)用于将所述水箱(10)中由源水静置沉降后形成的上清液配入所述检测仪器(50)内,所述源水供给装置(20)和所述配水装置(30)分别与控制装置相连;
    所述水箱(10)内设有用于对源水的浊度或上清液的浊度进行实时检测的浊度检测器(60),所述浊度检测器(60)与所述控制装置相连,以将检测的源水浊度值或上清液浊度值发送给所述控制装置,所述控制装置用于在接收的源水浊度值等于或小于系统预设的一级阀值时,控制所述配水装置(30)经过第一预设沉降时间后启动以将上清液配入所述检测仪器(50)内;所述控制装置还用于在接收的源水浊度值大于系统预设的一级阀值且小于二级阀值时,控制所述配水装置(30)经过第二预设沉降时间后启动以将上清液配入所述检测仪器(50)内;所述控制装置还用于在接收的源水浊度值大于系统预设的一级阀值时,控制所述配水装置(30)在第三预设沉降时间内当上清液浊度值等于或小于系统预设的一级阀值时启动,以将上清液配入所述检测仪器(50)内;
    所述配水装置(30)连通有二次处理装置(70),所述二次处理装置(70)用于对由所述配水装置(30)配送的上清液进行预处理,所述二次处理装置(70)与所述控制装置相连,所述控制装置还用于在接收的源水浊度值等于或大于系统预设的二级阀值或经第三预设沉降时间后上清液浊度值仍大于系统预设的一级阀值时,控制所述二次处理装置(70)启动,以对由所述配水装置(30)配送的上清液进行预处理。
  2. 根据权利要求1所述的水样预处理装置,其特征在于,
    所述配水装置(30)包括设置于所述水箱(10)中的用于吸取上清液的取水头(31),所述取水头(31)的输出端连接有取水软管(32),所述取水软管(32)的输出端连接有配水管(33),所述配水管(33)的输出端伸出所述水箱(10)后连接所述检测仪器(50)以将上清液配入所述检测仪器(50)中;
    所述配水管(33)上伸出所述水箱(10)的外伸段上设有用于泵送上清液的第二泵送器(34)、用于对上清液进行过滤的第一过滤器(35)、用于控制所述配水管(33)导通或隔断的第二开关阀(36)、用于调节所述配水管(33)流量大小的第二调节阀(37)、用于临时存装上清液的水样杯(38)、及位于所述水样杯(38)的下游的用于控制所述水样杯(38)至所述检测仪器(50)之间的管路导通或隔断的换向阀(39),所述第二泵送器(34)、所述第一过滤器(35)、所述第二开关阀(36)、所述第二调节阀(37)及所述换向阀(39)分别与所述控制装置相连。
  3. 根据权利要求2所述的水样预处理装置,其特征在于,
    所述浊度检测器(60)连接于所述取水头(31)上,以检测所述取水头(31)处源水的源水浊度值或上清液的上清液浊度值;
    所述配水装置(30)还包括用于调节所述取水头(31)位置高度的升降调节构件(41),所述升降调节构件(41)包括:
    连接于所述水箱(10)上盖外表面上的升降驱动器(411)、竖直设置于所述水箱(10)中且上端与所述升降驱动器(411)的驱动端固定连接的传导丝杆(412)、及竖直设置于所述水箱(10)的内侧壁上用于对所述取水头(31)的上下移动进行导向的导向轴杆(413),所述升降驱动器(411)与所述控制装置相连;
    所述取水头(31)分别穿设于所述传导丝杆(412)和所述导向轴杆(413)的外圆上,且所述取水头(31)与所述传导丝杆(412)的外圆螺纹连接。
  4. 根据权利要求2所述的水样预处理装置,其特征在于,
    所述二次处理装置(70)包括用于引取上清液的引水管(71),所述引水管(71)的输入端与所述水样杯(38)连通,所述引水管(71)的输出端与所述换向阀(39)连通;
    所述引水管(71)的管路中设有用于对上清液进行二次过滤的第二过滤器(72)、及用于对过滤后的上清液进行临时盛装的定容瓶(73),所述第二过滤器(72)与所述控制装置相连;
    所述定容瓶(73)连通有抽吸管(74),所述抽吸管(74)的抽吸端连接有用于使所述引水管(71)中产生负压以吸取上清液的抽吸泵(75),所述抽吸泵(75)与所述控制装置相连。
  5. 根据权利要求4所述的水样预处理装置,其特征在于,
    所述水样预处理装置还包括系统排水装置(80),所述系统排水装置(80)包括排水汇集池、第一溢流管(81)、第一排样管(82)、第二排样管(83)、第三排样管(84)、第二溢流管(85)、及第四排样管(86);
    所述第一溢流管(81)的两端分别与所述水箱(10)的内腔侧向和所述排水汇集池连通;
    所述第一排样管(82)的两端分别与所述水箱(10)的内腔底部和所述排水汇集池连通,且所述第一排样管(82)的管路中设有用于使所述第一排样管(82)导通或隔断的第三开关阀(87);
    所述第二排样管(83)的两端分别与所述第一过滤器(35)和所述排水汇集池连通,且所述第二排样管(83)的管路中设有用于使所述第二排样管(83)导通或隔断的第四开关阀(88);
    所述第三排样管(84)的两端分别与所述水样杯(38)的内腔底部和所述排水汇集池连通,且所述第三排样管(84)的管路中设有用于使所述第三排样管(84)导通或隔断的第五开关阀(89);
    所述第二溢流管(85)的两端分别与所述水样杯(38)的侧壁和所述排水汇集池连 通;
    所述第四排样管(86)的两端分别与所述定容瓶(73)的底部和所述排水汇集池连通,且所述第四排样管(86)的管路中设有用于使所述第四排样管(86)导通或隔断的第六开关阀(91);
    所述第三开关阀(87)、所述第四开关阀(88)、所述第五开关阀(89)及所述第六开关阀(91)分别与所述控制装置相连。
  6. 根据权利要求5所述的水样预处理装置,其特征在于,
    所述水样预处理装置还包括清洗装置(110),所述清洗装置(110)包括用于供给清洗水的清洗水供给器,所述清洗水供给器连接有供水总管(111)、及与所述供水总管(111)分别连通的第一供水支管(112)和第二供水支管(113);
    所述供水总管(111)的管路中设有用于调节所述供水总管(111)流量大小的第五调节阀(114);
    所述第一供水支管(112)的输出端与源水输入管(21)连通,且所述第一供水支管(112)的管路中设有使所述第一供水支管(112)导通或隔断的第八开关阀(115);
    所述第二供水支管(113)的输出端与所述取水管连通,且所述第二供水支管(113)的管路中设有使所述第二供水支管(113)导通或隔断的第九开关阀(116);
    所述清洗水供给器、所述第五调节阀(114)、所述第八开关阀(115)及所述第九开关阀(116)分别与所述控制装置相连。
  7. 根据权利要求6所述的水样预处理装置,其特征在于,
    所述清洗装置(110)还包括第三供水支管(117),所述第三供水支管(117)的输入端与所述第二供水支管(113)连通,所述第三供水支管(117)的输出端伸入所述水箱(10)中,所述第三供水支管(117)的管路中设有控制所述第三供水支管(117)导通或隔断的第十开关阀(118),所述第十开关阀(118)与所述控制装置相连;
    所述第三供水支管(117)的输出端连通有在清洗水压力作用下自动旋转的自旋转喷头(119),所述自旋转喷头(119)连通有多个喷嘴(120);
    所述水样预处理装置还包括反吹洗装置(130),所述反吹洗装置(130)包括与所述第一排样管(82)连通的气洗管(131),所述气洗管(131)的输入端连通有用于供给压缩空气的压缩空气供给器,且所述气洗管(131)的管路中设有用于控制所述气洗管(131)导通或隔断的第十一开关阀(132)、及用于调节所述气洗管(131)流量大小的第三调节阀(133),所述压缩空气供给器、所述第十一开关阀(132)及所述第三调节阀(133)分别与所述控制装置相连。
  8. 一种水样预处理系统,其特征在于,包括权利要求1所述的水样预处理装置、及用于对由所述水样预处理装置处理后的水样进行检测分析的检测仪器(50),所述检测仪器(50) 与所述水样预处理装置的配水装置(30)的输出端连通。
  9. 一种水样预处理方法,其特征在于,采用如权利要求8所述的水样预处理系统进行,包括以下步骤:
    S1:控制装置控制源水供给装置(20)启动,将源水供入水箱(10)中;
    S2:浊度检测器(60)检测源水的浊度值,根据不同的浊度值,控制装置相应控制配水装置(30)经过不同的沉降时间后启动,当浊度检测器(60)检测的源水浊度值等于或大于系统预设的二级阀值或经第三预设沉降时间后上清液浊度值仍大于系统预设的一级阀值时,控制装置再控制二次处理装置启动对配送的上清液进行预处理,以使配入检测仪器(50)的上清液浊度值等于或小于系统预设阀值。
  10. 根据权利要求9所述的水样预处理方法,其特征在于,步骤S2具体包括以下步骤:
    设置于水箱(10)中的浊度检测器(60)检测源水的浊度值,当源水浊度值等于或小于系统预设的一级阀值时,控制装置控制所述配水装置(30)经过第一预设沉降时间后启动,以将上清液配入所述检测仪器(50)内;
    当源水浊度值大于系统预设的一级阀值且小于系统预设的二级阀值时,控制装置控制所述配水装置(30)经过第二预设沉降时间后启动,以将上清液配入所述检测仪器(50)内;
    当源水浊度值大于系统预设的一级阀值时,控制装置控制所述配水装置(30)在第三预设沉降时间内当上清液浊度值等于或小于系统预设的一级阀值时启动,以将上清液配入所述检测仪器(50)内;
    当浊度检测器(60)检测的源水浊度值等于或大于系统预设的二级阀值或经第三预设沉降时间后上清液浊度值仍大于系统预设的一级阀值时,控制装置控制所述二次处理装置(70)启动,以对由所述配水装置(30)配送的上清液进行过滤、离心或稀释处理。
PCT/CN2021/100326 2020-06-16 2021-06-16 水样预处理装置、水样预处理系统及水样预处理方法 WO2021254380A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010549245.5 2020-06-16
CN202010549245.5A CN111781053B (zh) 2020-06-16 2020-06-16 水样预处理装置、水样预处理系统及水样预处理方法

Publications (1)

Publication Number Publication Date
WO2021254380A1 true WO2021254380A1 (zh) 2021-12-23

Family

ID=72755975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100326 WO2021254380A1 (zh) 2020-06-16 2021-06-16 水样预处理装置、水样预处理系统及水样预处理方法

Country Status (2)

Country Link
CN (1) CN111781053B (zh)
WO (1) WO2021254380A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781053B (zh) * 2020-06-16 2022-12-30 力合科技(湖南)股份有限公司 水样预处理装置、水样预处理系统及水样预处理方法
CN113917096B (zh) * 2021-09-08 2023-11-10 聚光科技(杭州)股份有限公司 水质检测系统和方法
CN114477504B (zh) * 2022-03-11 2023-10-17 北京海得科过滤技术有限公司 一种水性涂料清洗溶剂动态分离回收装置及驱控方法
CN116672805B (zh) * 2023-08-03 2023-11-17 芒果传感技术(深圳)有限公司 一种自动过滤装置、自动过滤的水质监测站及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032691A (ja) * 2006-06-29 2008-02-14 Fuji Electric Systems Co Ltd 水質監視システムおよび水質監視方法
CN103991962A (zh) * 2014-06-04 2014-08-20 上海理工大学 污水就地回用的icast处理方法及其自控与监测装置
CN204389228U (zh) * 2014-12-31 2015-06-10 陕西正大环保科技有限公司 泥沙水质在线监测采样预处理系统
CN106053751A (zh) * 2016-08-11 2016-10-26 力合科技(湖南)股份有限公司 一种水质监测系统
CN106840827A (zh) * 2017-03-28 2017-06-13 福州福光水务科技有限公司 一种水样多级预处理装置
CN209940646U (zh) * 2019-05-07 2020-01-14 天津舜蒲环保科技发展有限公司 一种印刷机废水回收处理系统
CN111781053A (zh) * 2020-06-16 2020-10-16 力合科技(湖南)股份有限公司 水样预处理装置、水样预处理系统及水样预处理方法
CN111871989A (zh) * 2020-06-16 2020-11-03 力合科技(湖南)股份有限公司 水样预处理系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286534A (ja) * 2007-05-15 2008-11-27 Toshiba Corp バイオセンサ型異常水質検出装置
CN101468821B (zh) * 2007-12-25 2010-11-24 中国石油化工股份有限公司 污水预处理系统及预处理方法
JP2012125673A (ja) * 2010-12-14 2012-07-05 Nishimatsu Constr Co Ltd 濁水処理システムおよび濁水処理方法
JP2012143702A (ja) * 2011-01-12 2012-08-02 Nishimatsu Constr Co Ltd 濁水処理システムおよび濁水処理方法
WO2014152176A2 (en) * 2013-03-15 2014-09-25 Omni Water Solutions, Inc. Water treatment systems and methods
JP6173808B2 (ja) * 2013-07-10 2017-08-02 株式会社東芝 凝集剤注入率設定方法
US9975784B2 (en) * 2014-12-29 2018-05-22 ClearCove Systems, Inc. System for controlling waste water treatment in a waste water treatment plant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032691A (ja) * 2006-06-29 2008-02-14 Fuji Electric Systems Co Ltd 水質監視システムおよび水質監視方法
CN103991962A (zh) * 2014-06-04 2014-08-20 上海理工大学 污水就地回用的icast处理方法及其自控与监测装置
CN204389228U (zh) * 2014-12-31 2015-06-10 陕西正大环保科技有限公司 泥沙水质在线监测采样预处理系统
CN106053751A (zh) * 2016-08-11 2016-10-26 力合科技(湖南)股份有限公司 一种水质监测系统
CN106840827A (zh) * 2017-03-28 2017-06-13 福州福光水务科技有限公司 一种水样多级预处理装置
CN209940646U (zh) * 2019-05-07 2020-01-14 天津舜蒲环保科技发展有限公司 一种印刷机废水回收处理系统
CN111781053A (zh) * 2020-06-16 2020-10-16 力合科技(湖南)股份有限公司 水样预处理装置、水样预处理系统及水样预处理方法
CN111871989A (zh) * 2020-06-16 2020-11-03 力合科技(湖南)股份有限公司 水样预处理系统

Also Published As

Publication number Publication date
CN111781053B (zh) 2022-12-30
CN111781053A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
WO2021254380A1 (zh) 水样预处理装置、水样预处理系统及水样预处理方法
CN104132837A (zh) 一种水质在线分析仪预处理装置
CN110841343A (zh) 一种机械加速澄清池全自动运行控制系统与控制方法
CA1332197C (en) Gas assisted flotation process and apparatus
CN104111326A (zh) 负压废液系统、生化分析仪器及废液排放方法
CN111871989B (zh) 水样预处理系统
US5055184A (en) Gas assisted flotation apparatus
CN212016855U (zh) 一种机械加速澄清池全自动运行控制系统
CN209432814U (zh) 分层水质检测装置
CN214793951U (zh) 一种浊度仪预处理除泡器
CN211856072U (zh) 水样超声波匀化预处理装置
CN204027898U (zh) 一种水质在线分析仪预处理装置
CN203909029U (zh) 水质安全在线自动监测系统伺服装置
CN104020268B (zh) 水质安全在线自动监测系统伺服装置
CN103278358A (zh) 一种水质在线分析仪前置预处理器
CN111499019A (zh) 一种污水处理装置
CN209511975U (zh) 一种锅炉清洗装置
CN112014322B (zh) 一种用于水样光学测量方法的气泡消除装置
CN207662691U (zh) 水样超声波匀化预处理装置
CN207799449U (zh) 消泡剂在线稀释投加控制装置
CN219751981U (zh) 一种微型水质自动在线监测站
CN220257410U (zh) 一种钙离子检测装置
CN208594135U (zh) 一种环境检测废液收集装置
CN215195520U (zh) 一种离心萃取机及具有该萃取机的一键式萃取系统
CN215508079U (zh) 一种公路集料筛分水洗装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826620

Country of ref document: EP

Kind code of ref document: A1