WO2021254321A1 - 一种具有大范围斯托克斯位移的新型荧光化合物 - Google Patents

一种具有大范围斯托克斯位移的新型荧光化合物 Download PDF

Info

Publication number
WO2021254321A1
WO2021254321A1 PCT/CN2021/100087 CN2021100087W WO2021254321A1 WO 2021254321 A1 WO2021254321 A1 WO 2021254321A1 CN 2021100087 W CN2021100087 W CN 2021100087W WO 2021254321 A1 WO2021254321 A1 WO 2021254321A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorescent compound
compound according
stokes shift
solution
Prior art date
Application number
PCT/CN2021/100087
Other languages
English (en)
French (fr)
Inventor
陈锦森
张有福
李竑
王建鹏
Original Assignee
南京金斯瑞生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京金斯瑞生物科技有限公司 filed Critical 南京金斯瑞生物科技有限公司
Priority to CN202180042636.0A priority Critical patent/CN115697998A/zh
Publication of WO2021254321A1 publication Critical patent/WO2021254321A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the invention relates to the field of fluorescent dyes, in particular to a novel fluorescent compound with a wide range of Stokes shift.
  • Fluorescence modifiers have several advantages, such as flexible controllability of structure and optical properties, non-invasive measurement, high cell compatibility, real-time response and high sensitivity, and a variety of transduction methods (fluorescence quenching or enhancement, fluorescence each Anisotropy, fluorescence lifetime, fluorescence resonance energy transfer and excimer-monomer light conversion).
  • fluorescence quenching or enhancement fluorescence quenching or enhancement, fluorescence each Anisotropy, fluorescence lifetime, fluorescence resonance energy transfer and excimer-monomer light conversion.
  • FITC fluorescein
  • the Stokes shift of these dyes is mostly less than 35 nanometers (nm). Due to the crosstalk between the excitation light and the emitted light and the influence of backscattering effects, they are used in the measurement process. Will produce serious self-quenching and measurement errors.
  • medical biological imaging requires dyes to be in the optical range of 650-900 nanometers, because light scattering effects, autofluorescence, and absorption of organs and tissues can be greatly reduced in this range. Therefore, in order to meet the requirements of the market for biological detection, it is necessary to develop fluorescent dye molecules with a Stokes shift greater than 35 nanometers in the range of 650-900 nanometers.
  • the present invention provides a fluorescent compound of formula (I):
  • R 1 is selected from H, C 1 -C 6 alkyl
  • R 2 , R 3 , and R 4 are each independently selected from H, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 2 -C 6 alkenyl, C 2 -C 6 alkyne Group, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkoxy, amino, halogen, cyano, hydroxy, nitro;
  • R 5 and R 6 are each independently selected from H, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1- C 6 haloalkyl, C 1 -C 6 haloalkoxy, amino, halogen, cyano, hydroxyl, nitro; or R 5 , R 6 together with their attached atoms form a ring selected from the following group or Ring system: optionally substituted carbocyclic group, optionally substituted aryl group, optionally substituted heteroaryl group or optionally substituted heterocyclic group;
  • R 7 and R 8 are each independently selected from H, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1- C 6 haloalkyl, C 1 -C 6 haloalkoxy, amino, halogen, cyano, hydroxyl, nitro; or R 7 , R 8 together with their attached atoms form a ring selected from the following group or Ring system: optionally substituted carbocyclic group, optionally substituted aryl group, optionally substituted heteroaryl group or optionally substituted heterocyclic group;
  • R 9 is selected from linear alkyl group, branched chain alkyl group, linear PEG group or tetrahydrofuran five-membered ring group;
  • R 10 is selected from ester group, alkynyl group, azide group, amine group, sulfonic acid group;
  • R 11 is selected from H, N-hydroxysuccinimide group
  • X is selected from F, Cl, Br, I, acetate, carbonate, bicarbonate, nitrate, sulfate, citrate, malate, tartrate or glutamate.
  • the R 1 is H or methyl.
  • the R 2 is H or methyl.
  • the R 3 is H or methyl.
  • the R 4 is H or methyl.
  • the R 2 , R 3 , and R 4 are all H.
  • the R 5 and R 6 are both H or R 5 and R 6 together with the atoms to which they are attached form a benzene ring.
  • the R 7 and R 8 are both H or R 7 and R 8 together with the atoms to which they are attached form a benzene ring.
  • the R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are all H.
  • the R 1 is a methyl group
  • the R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are all H.
  • the R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are all H, and the R 7 and R 8 together with the atoms to which they are attached form a benzene ring.
  • the R 1 , R 2 , R 3 , R 4 , R 7 , and R 8 are all H, and the R 5 and R 6 together with the atoms to which they are attached form a benzene ring.
  • the R 1 is a methyl group
  • the R 2 , R 3 , R 4 , R 5 , and R 6 are all H
  • the R 7 and R 8 together with the atoms to which they are attached form a benzene ring .
  • the R 1 is a methyl group
  • the R 2 , R 3 , R 4 , R 7 , and R 8 are all H
  • the R 5 , R 6 together with the atoms to which they are attached form a benzene ring .
  • the R 9 is selected from a C 1 -C 20 alkyl group or a C 1 -C 20 linear PEG group.
  • the R 9 is n-butyl.
  • the R 10 is an ester group.
  • the R 11 is selected from H.
  • the R 11 is selected from N-hydroxysuccinimide group.
  • the X is selected from F, Cl, Br, or I.
  • the X is selected from Br.
  • the compound is selected from:
  • the fluorescent compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the fluorescent compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the fluorescent compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the fluorescent compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the fluorescent compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the fluorescent compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the fluorescent compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the fluorescent compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the fluorescent compound has a Stokes shift in the range of 90-200 nm; preferably, it has a Stokes shift in the range of 100-195 nm; more preferably, it has a Stokes shift in the range of 110-186 nm.
  • the fluorescent compound has a span of 100nm, 104nm, 110nm, 114nm, 116nm, 134nm, 143nm, 144nm, 148nm, 150nm, 152nm, 154nm, 156nm, 164nm, 172nm, 176nm, 182nm, 184nm, or 186nm. Torkos displacement.
  • the fluorescent compound has a Stokes shift of 100 nm.
  • the fluorescent compound has a Stokes shift of 104 nm.
  • the fluorescent compound has a Stokes shift of 110 nm.
  • the fluorescent compound has a Stokes shift of 114 nm.
  • the fluorescent compound has a Stokes shift of 116 nm. In some embodiments, the fluorescent compound has a Stokes shift of 134 nm. In some embodiments, the fluorescent compound has a Stokes shift of 143 nm. In some embodiments, the fluorescent compound has a Stokes shift of 144 nm. In some embodiments, the fluorescent compound has a Stokes shift of 148 nm. In some embodiments, the fluorescent compound has a Stokes shift of 150 nm. In some embodiments, the fluorescent compound has a Stokes shift of 152 nm. In some embodiments, the fluorescent compound has a Stokes shift of 154 nm. In some embodiments, the fluorescent compound has a Stokes shift of 156 nm.
  • the fluorescent compound has a Stokes shift of 164 nm. In some embodiments, the fluorescent compound has a Stokes shift of 172 nm. In some embodiments, the fluorescent compound has a Stokes shift of 176 nm. In some embodiments, the fluorescent compound has a Stokes shift of 182 nm. In some embodiments, the fluorescent compound has a Stokes shift of 184 nm. In some embodiments, the fluorescent compound has a Stokes shift of 186 nm.
  • the Stokes shift is measured under the condition of pH 7-8.5. In some embodiments, the Stokes shift is measured under the condition of pH 7 or 8.5. In some embodiments, the Stokes shift is measured at a pH of 7. In some embodiments, the Stokes shift is measured at a pH of 8.5.
  • the nucleic acid is a deoxyribonucleic acid of 1-1000 nt; preferably, the nucleic acid is a deoxyribonucleic acid of 5-500 nt; more preferably, the nucleic acid is a deoxyribonucleic acid of 10-200 nt; Preferably, the nucleic acid is a 21nt deoxyribonucleic acid.
  • the polypeptide contains 1-500 amino acid residues. In some embodiments, the polypeptide contains 2-200 amino acid residues. In some embodiments, the polypeptide contains 5-100 amino acid residues. In some embodiments, the polypeptide contains 8 amino acid residues. In some embodiments, the polypeptide contains 10 amino acid residues.
  • nucleic acid refers to a polymer of nucleotides (such as ribonucleotides, deoxyribonucleotides, nucleotide analogs, etc.), and includes deoxyribonucleic acid (DNA), ribonucleic acid (RNA), DNA-RNA Hybrids, oligonucleotides, polynucleotides, aptamers, peptide nucleic acids (PNA), PNA-DNA conjugates, PNA-RNA conjugates, locked nucleic acids (LNA), etc., which include linear or branched co- Nucleotides linked together with valence.
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • DNA-RNA Hybrids DNA-RNA Hybrids
  • oligonucleotides polynucleotides
  • PNA peptide nucleic acids
  • PNA PNA-DNA conjugates
  • PNA-RNA conjugates locked nucleic acids
  • Nucleic acids are usually single-stranded or double-stranded, and generally contain phosphodiester bonds, although in some cases, nucleic acid analogs that may have alternative backbones are included, including, for example, phosphoramidites (Beaucage et al. (1993) Tetrahedron 49 (10 ): 1925) phosphorothioate (Mag et al. (1991) Nucleic Acids Res. 19:1437; and U.S. Patent No. 5,644,048), phosphorodithioate (Briu et al. (1989) J. Am. Chem. Soc.
  • nucleic acids containing one or more carbocyclic sugars are also included in the definition of nucleic acids (see Jenkins et al. (1995) Chem. Soc. Rev. pages 169-176), and analogs such as Rawls, C&E News Jun. 2 , 1997, described on page 35.
  • the nucleic acid is deoxyribonucleic acid or ribonucleic acid.
  • the nucleic acid is a primer or a probe.
  • flexible connection structure refers to the covalent bond that can rotate freely to form a worm-like coiled chain structure.
  • Common flexible linkers include, but are not limited to, straight chain alkyl, branched chain alkyl, and straight chain. Chain PEG group, and tetrahydrofuran five-membered ring structure.
  • the flexible coupling structure is selected from C 12 alkyl group.
  • the series of novel fluorescent compounds provided by the present invention can be used for nucleic acid and polypeptide modification, and the maximum Stokes shift can reach about 190nm, that is, there is a large wavelength difference between the maximum emission wavelength and the maximum excitation wavelength, thereby solving the measurement
  • the problems of self-quenching and measurement errors caused by crosstalk and backscattering effects can be used for nucleic acid and polypeptide modification, and the maximum Stokes shift can reach about 190nm, that is, there is a large wavelength difference between the maximum emission wavelength and the maximum excitation wavelength, thereby solving the measurement The problems of self-quenching and measurement errors caused by crosstalk and backscattering effects.
  • Figure 1 Synthetic route of DT-1, DT-2, DT-3 and DT-3-Ph.
  • Figure 2 Synthetic route of DT-4, DT-4-NHS, DT-5 and DT-5-NHS.
  • Figure 3 Synthetic route of DT-6, DT-6-NHS, DT-7 and DT-7-NHS.
  • TEAA triethylammonium acetate
  • TEAA triethylammonium acetate
  • TEAA triethylammonium acetate
  • TEAA triethylammonium acetate
  • TEAA triethylammonium acetate
  • TEAA triethylammonium acetate
  • TEAA triethylammonium acetate
  • TEAA triethylammonium acetate
  • TEAA triethylammonium acetate
  • TEAA triethylammonium acetate
  • TEAA triethylammonium acetate
  • Figure 20 Schematic diagram of DT-5 and DT-5-NHS used for oligonucleotide modification.
  • Figure 21 HPLC profile of purified product after coupling DT-5 and oligonucleotide.
  • Figure 22 Mass spectrum of the product after DT-5 and oligonucleotide coupling.
  • Figure 23 Absorption and emission spectra of the product after DT-5 and oligonucleotide coupling.
  • Figure 24 HPLC profile of the purified product after coupling DT-5-NHS with oligonucleotides.
  • Figure 25 Mass spectrum of the product after DT-5-NHS and oligonucleotide coupling.
  • Figure 26 Absorption and emission spectra of the product after DT-5-NHS and oligonucleotide coupling.
  • Figure 27 Schematic diagram of DT-6 and DT-6-NHS used for oligonucleotide modification.
  • Figure 28 HPLC profile of the purified product after coupling DT-6 with oligonucleotides.
  • Figure 29 Mass spectrum of the product after DT-6 and oligonucleotide coupling.
  • Figure 30 Absorption and emission spectra of the product after DT-6 and oligonucleotide coupling.
  • Figure 31 HPLC profile of purified product after coupling DT-6-NHS and oligonucleotide.
  • Figure 32 Mass spectrum of the product after DT-6-NHS and oligonucleotide coupling.
  • Figure 33 Absorption and emission spectra of the product after DT-6-NHS and oligonucleotide coupling.
  • Figure 34 Schematic diagram of DT-4 and DT-4-NHS used for polypeptide modification.
  • Figure 35 HPLC profile of the purified product after coupling DT-4 to the polypeptide.
  • Figure 36 Mass spectrum of the purified product after coupling DT-4 to the polypeptide.
  • Figure 37 Absorption and emission spectra of the product after coupling DT-4 and polypeptide.
  • Figure 38 HPLC profile of the purified product after coupling DT-4-NHS to the polypeptide.
  • Figure 39 Mass spectrum of the purified product after coupling DT-4-NHS to the polypeptide.
  • Figure 40 Absorption and emission spectra of the product after coupling DT-4-NHS and polypeptide.
  • Figure 41 Schematic diagram of DT-7 and DT-7-NHS used for polypeptide modification.
  • Figure 42 HPLC profile of the purified product after coupling DT-7 to the polypeptide.
  • Figure 43 The mass spectrum of the purified product after coupling DT-7 to the polypeptide.
  • Figure 44 Absorption and emission spectra of the product after coupling DT-7 and polypeptide.
  • Figure 45 HPLC profile of the purified product after coupling DT-7-NHS to the polypeptide.
  • Figure 46 Mass spectrum of the purified product after coupling DT-7-NHS to the polypeptide.
  • Figure 47 Absorption and emission spectra of the product after coupling DT-7-NHS and polypeptide.
  • the selected dyes are used for the modification of oligonucleotides and polypeptides, and the optical properties of oligonucleotides and polypeptides modified by the dyes are also further tested.
  • the results show that dyes can be efficiently modified in oligonucleotides and polypeptides. Both carboxylic acid modification sites or NHS-activated carboxylic acid modification sites can be efficiently coupled with amino groups.
  • DCM dichloromethane
  • the red shift of the maximum absorption wavelength is 544nm
  • the red shift of the maximum emission wavelength is 730nm
  • the red shift of the maximum absorption wavelength is 558nm
  • the red shift of the maximum emission wavelength is 730nm
  • the Stokes shift is due to
  • the red shift of the maximum absorption wavelength is 544nm
  • the red shift of the maximum emission wavelength is 728nm
  • the red shift of the maximum absorption wavelength is 544nm
  • the red shift of the maximum emission wavelength is 726nm
  • the maximum emission wavelength redshift is 730nm
  • the Stokes shift is 134nm.
  • Example 4 DT-5 is used for oligonucleotide modification
  • Fluorescence-labeled oligonucleotide probes convert biological recognition (hybridization, ligand binding, etc.) into fluorescent signals through a similar converter function.
  • Fluorescent labels have several advantages, such as high sensitivity and multiple transduction methods (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer and excimer-monomer light conversion). These multiple signal options, combined with the design flexibility of recognition elements (DNA, RNA, PNA, LNA) and various labeling strategies, help to develop a variety of selective and sensitive bioassays. In order to verify that the DT-5 dye can be modified in the oligonucleotide, such as a mistake! The reference source was not found.
  • the modification method is as follows:
  • EDC's DMSO solution Dissolve 4mg EDC in 60uL DMSO.
  • NHS H 2 O/DMSO solution Dissolve 2.4 mg of NHS in 30 uL DMSO/H 2 O (15 uL DMSO+15 uL H 2 O).
  • DMSO solution of DT-5 Dissolve 2.9mg DT-5 in 21uL DMSO.
  • Oligonucleotide solution each tube of oligo is 50nmol, dissolve it in 20uL water.
  • Example 5 DT-5-NHS is used for oligonucleotide modification
  • the dye molecules whose NHS has been included in the DT-5-NHS structure can be linked to oligonucleotides more conveniently without adding activating reagents, which simplifies the operation and process of the experiment, as shown in Figure 20.
  • Oligonucleic Acid chose the unpurified product after synthesis to be directly used in the dye coupling reaction.
  • the crude product was monitored by HPLC and MS and then purified by HPLC.
  • the purified product was also subjected to HPLC purity analysis (purity of 97.8%, as shown in Figure 24) and MS (as shown in Figure 25). Rate: 8.3%.
  • Example 6 DT-6 is used for oligonucleotide modification
  • the DT-6 dye with the added conjugate system can be introduced into the oligonucleotide using the same experimental method as DT-5, as shown in Figure 27.
  • the purified product was also characterized by HPLC and MS, and the yield was 75.0%.
  • the HPLC analysis of the purified dye-modified oligonucleotide showed high purity (purity of 95.8%, as shown in Figure 28), and the mass spectrometry analysis was consistent with the theoretical value (Figure 29).
  • the maximum absorption peak is at 634 nanometers, the maximum emission is at 738 nanometers, and the Stokes shift reaches 104 nanometers. It can be seen that the overlap between the attraction and emission spectra is small, as shown in Figure 30.
  • Example 7 DT-6-NHS is used for oligonucleotide modification
  • the HPLC analysis of the purified dye-modified oligonucleotide showed high purity (purity of 96.4%, as shown in Figure 31), and the mass spectrometry analysis was consistent with the theoretical value (Figure 32).
  • the maximum absorption peak is at 638 nanometers
  • the maximum emission is at 738 nanometers
  • the Stokes shift reaches 100 nanometers. It can be seen that the overlap between the attraction and emission patterns is small, as shown in Figure 33.
  • Example 8 DT-4 is used for polypeptide modification
  • Peptides modified by fluorescent molecules are often used to detect protein activity and as a screening method for drug screening and drug development.
  • a peptide GCYIQNCPLG
  • Oxytocin a peptide containing a cyclic oxytocin (Oxytocin) structure was selected as a model reaction.
  • Oxytocin is very important in sexual reproduction, during childbirth and after childbirth. It is released in large quantities during female mammals to expand the cervix and contract the uterus to promote childbirth. After childbirth, oxytocin can also stimulate the nipples and promote milk production. Helps in childbirth, mother-to-child connection and breastfeeding.
  • EDC DMSO solution Dissolve 1.8 mg EDC in 20uL DMSO.
  • NHS H 2 O/DMSO solution Dissolve 1.1 mg of NHS in 20uL DMSO/H 2 O (10uL DMSO+10uL H 2 O).
  • Peptide solution Dissolve 1.0mg in 50uL DMSO.
  • Activation of DT-4 Mix the above-mentioned EDC, NHS and DT-4, shake and react for 20 minutes.
  • DT-4 modified polypeptide add 40uL DMF to the above activated DT-4, then add the above polypeptide solution, and shake the reaction overnight at 37°C.
  • the reaction process is monitored by HPLC until the polypeptide is completely reacted.
  • the crude product was monitored by HPLC and MS and then purified by HPLC.
  • the purified product was also subjected to HPLC purity analysis (purity of 92.3%, as shown in Figure 35), and verified by MS (as shown in Figure 36). Due to the small amount of peptides used, the product was not weighed.
  • Example 9 DT-4-NHS is used for polypeptide modification
  • DT-4-NHS is easier to be used for polypeptide modification.
  • the polypeptide of the cyclic oxytocin structure described in Example 8 above can also be modified by DT-4-NHS. Dissolve 1.0mg in 50uL DMSO, then add 10.0eq. DT-4-NHS (5.5mg dissolved in 50uL DMSO), shake the reaction overnight at 37°C. The reaction process is monitored by HPLC until the polypeptide is completely reacted. After the reaction, the crude product was monitored by HPLC and MS and then purified by HPLC. The purified product was also subjected to HPLC purity analysis (purity of 97.8%, as shown in Figure 38), and verified by MS (as shown in Figure 39) to be correct.
  • Example 10 DT-7 is used for polypeptide modification
  • DT-7 with a larger conjugated structure can also be used for polypeptide modification.
  • the randomly designed chain-like structure of the polypeptide (GSTGFYNQ) proves that it can also be easily and efficiently modified.
  • the specific modification methods are as follows:
  • EDC's DMSO solution Dissolve 1.8mg EDC in 10uL DMSO.
  • NHS H 2 O/DMSO solution Dissolve 1.1 mg of NHS in 10uL DMSO/H 2 O (5uL DMSO+5uL H 2 O).
  • DMSO solution of DT-7 Dissolve 6.4mg DT-7 in 20uL DMSO.
  • Activation of DT-7 Mix the above EDC, NHS and DT-7, shake and react for 20 minutes.
  • DT-7 modified polypeptide add the above-mentioned polypeptide solution to activated DT-7, shake and react overnight at room temperature. The reaction process is monitored by HPLC until the polypeptide is completely reacted. The crude product was monitored by HPLC and MS and then purified by HPLC. The purified product was also subjected to HPLC purity analysis (purity of 98.4%, as shown in Figure 42), and verified by MS (as shown in Figure 43). Due to the small amount of peptides used, the product has not been weighed.
  • Example 11 DT-7-NHS is used for polypeptide modification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明涉及荧光染料领域,具体涉及一种具有大范围斯托克斯位移的新型荧光化合物,所述荧光化合物可用于核酸和多肽修饰,且斯托克斯位移最大可达到约190nm,即最大发射波长与最大激发波长有了较大波长差,从而解决了测量中因串扰以及后向散射效应带来的自淬灭和测量误差的问题。

Description

一种具有大范围斯托克斯位移的新型荧光化合物 技术领域
本发明涉及荧光染料领域,具体涉及一种具有大范围斯托克斯位移的新型荧光化合物。
背景技术
有机小分子荧光染料是一种具有广泛用于药物研发及临床研究。荧光修饰物具有若干优点,例如,结构与光学性质的灵活可调控性、可非侵入性测量、高细胞兼容性、实时响应及高灵敏度和多种转导方法(荧光猝灭或增强,荧光各向异性,荧光寿命,荧光共振能量转移和准分子-单体光转换)。市场中有诸多商业化染料,如罗丹明(Rhodamine)系列、BODIPY系列、荧光素(FITC)系列、香豆素(Coumarin)系列、花青素(cyanine)系列、恶嗪(oxazine)、ATTO系列、AleaxFluor、LightCycler系列等等。然而,这些染料的斯托克斯位移(Stokes shift)大都小于35纳米(nm),由于激发光与发射光之间的串扰以及后向散射效应(backscattering effects)的影响,在用于测量过程中会产生严重的自淬灭和测量误差。另外,医学生物成像要求染料最好在650-900纳米的光学范围内,因为这个范围内光散射效应、自发荧光以及器官组织的吸收现象可以大大减少。因此,为了满足市场应用于生物检测的要求,需要开发斯托克斯位移大于35纳米在650-900纳米范围内的荧光染料分子。
发明内容
为解决目前的市面上的染料的斯托克斯位移大都小于35纳米,造成于测量过程中会产生严重的自淬灭和测量误差的问题。本发明提供了一种式(Ⅰ)的荧光化合物:
Figure PCTCN2021100087-appb-000001
其中,R 1选自H、C 1-C 6烷基;
R 2、R 3、R 4各自独立地选自H、C 1-C 6的烷基、C 1-C 6的烷氧基、C 2-C 6的烯基、C 2-C 6的炔基、C 1-C 6的卤代烷基、C 1-C 6的卤代烷氧基、氨基、卤素、氰基、羟基、硝基;
R 5、R 6各自独立地选自H、C 1-C 6的烷基、C 1-C 6的烷氧基、C 2-C 6的烯基、C 2-C 6的炔基、C 1-C 6的卤代烷基、C 1-C 6的卤代烷氧基、氨基、卤素、氰基、羟基、硝基;或者R 5、R 6连同它们附接的原子形成选自以下组的环或环体系:任选地被取代的碳环基、任选地被取代的芳基、任选地被取代的杂芳基或者任选地被取代的杂环基;
R 7、R 8各自独立地选自H、C 1-C 6的烷基、C 1-C 6的烷氧基、C 2-C 6的烯基、C 2-C 6的炔基、C 1-C 6的卤代烷基、C 1-C 6的卤代烷氧基、氨基、卤素、氰基、羟基、硝基;或者R 7、R 8连同 它们附接的原子形成选自以下组的环或环体系:任选地被取代的碳环基、任选地被取代的芳基、任选地被取代的杂芳基或者任选地被取代的杂环基;
R 9选自直链烷基、支链烷基、直链PEG基团或四氢呋喃五元环基;
R 10选自酯基、炔基、叠氮基、胺基、磺酸基;
R 11选自H、N-羟基琥珀酰亚胺基;
X选自F、Cl、Br、I、乙酸根、碳酸根、碳酸氢根、硝酸根、硫酸根、柠檬酸根、苹果酸根、酒石酸根或谷氨酸根。
在一些实施方案中,所述R 1为H或者甲基。
在一些实施方案中,所述R 2为H或者甲基。
在一些实施方案中,所述R 3为H或者甲基。
在一些实施方案中,所述R 4为H或者甲基。
在一些实施方案中,所述R 2、R 3、R 4均为H。
在一些实施方案中,所述R 5、R 6均为H或者R 5、R 6连同它们附接的原子形成苯环。
在一些实施方案中,所述R 7、R 8均为H或者R 7、R 8连同它们附接的原子形成苯环。
在一些实施方案中,所述R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8均为H。
在一些实施方案中,所述R 1为甲基,所述R 2、R 3、R 4、R 5、R 6、R 7、R 8均为H。
在一些实施方案中,所述R 1、R 2、R 3、R 4、R 5、R 6均为H,所述R 7、R 8连同它们附接的原子形成苯环。
在一些实施方案中,所述R 1、R 2、R 3、R 4、R 7、R 8均为H,所述R 5、R 6连同它们附接的原子形成苯环。
在一些实施方案中,所述R 1为甲基,所述R 2、R 3、R 4、R 5、R 6均为H,所述R 7、R 8连同它们附接的原子形成苯环。
在一些实施方案中,所述R 1为甲基,所述R 2、R 3、R 4、R 7、R 8均为H,所述R 5、R 6连同它们附接的原子形成苯环。
在一些实施方案中,所述R 9选自C 1-C 20的烷基或者C 1-C 20的直链PEG基团。优选地,在一些实施方案中,所述R 9为正丁基。
在一些实施方案中,所述R 10为酯基。
在一些实施方案中,所述R 11选自H。
在一些实施方案中,所述R 11选自N-羟基琥珀酰亚胺基。
在一些实施方案中,所述X选自F、Cl、Br或I。
在一些实施方案中,所述所述X选自Br。
在一些实施方案中,所述化合物选自:
Figure PCTCN2021100087-appb-000002
在一些实施方案中,所述荧光化合物为
Figure PCTCN2021100087-appb-000003
在一些实施方案中,所述荧光化合物为
Figure PCTCN2021100087-appb-000004
在一些实施方案中,所述荧光化合物为
Figure PCTCN2021100087-appb-000005
在一些实施方案中,所述荧光化合物为
Figure PCTCN2021100087-appb-000006
在一些实施方案中,所述荧光化合物为
Figure PCTCN2021100087-appb-000007
在一些实施方案中,所述荧光化合物为
Figure PCTCN2021100087-appb-000008
在一些实施方案中,所述荧光化合物为
Figure PCTCN2021100087-appb-000009
在一些实施方案中,所述荧光化合物为
Figure PCTCN2021100087-appb-000010
在一些实施方案中,所述荧光化合物具有90-200nm范围的斯托科斯位移;优选地,具有100-195nm范围的斯托科斯位移;更优选地,具有110-186nm范围的斯托科斯位移。
在一些实施方案中,所述荧光化合物具有100nm、104nm、110nm、114nm、116nm、134nm、143nm、144nm、148nm、150nm、152nm、154nm、156nm、164nm、172nm、176nm、182nm、184nm或者186nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有100nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有104nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有110nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有114nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有116nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有134nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有143nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有144nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有148nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有150nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有152nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有154nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有156nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有164nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有172nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有176nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有182nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有184nm的斯托科斯位移。在一些实施方案中,所述荧光化合物具有186nm的斯托科斯位移。
在一些实施方案中,所述斯托科斯位移是在pH为7-8.5的条件下测得。在一些实施方案中,所述斯托科斯位移是在pH为7或者8.5的条件下测得。在一些实施方案中,所述斯托科斯位移是在pH为7的条件下测得。在一些实施方案中,所述斯托科斯位移是在pH为8.5的条件下测得。本发明所述的荧光化合物在修饰核酸或者多肽中的应用。
在一些实施方案中,所述荧光化合物与核酸之间存在柔性连接结构。
在一些实施方案中,所述核酸是1-1000nt的脱氧核糖核酸;优选地,所述核酸是5-500nt的脱氧核糖核酸;更优选地,所述核酸是10-200nt的脱氧核糖核酸;最优选地,所述核酸是21nt的脱氧核糖核酸。
在一些实施方案中,所述多肽含有1-500个氨基酸残基。在一些实施方案中,所述多肽含有2-200个氨基酸残基。在一些实施方案中,所述多肽含有5-100个氨基酸残基。在一些实施方案中,所述多肽含有8个氨基酸残基。在一些实施方案中,所述多肽含有10个氨基酸残基。
名词解释:
术语“核酸”指核苷酸(例如核糖核苷酸、脱氧核糖核苷酸、核苷酸类似物等)的聚合物,并且包含脱氧核糖核酸(DNA)、核糖核酸(RNA)、DNA-RNA杂交体、寡核苷酸、多核苷酸、适体、肽核酸(PNA)、PNA-DNA缀合物、PNA-RNA缀合物、锁核酸(LNA)等,其包含以线性或分支方式共价连接在一起的核苷酸。核酸通常是单链或双链的,并且一般含有磷酸二酯键,尽管在一些情况下,包括可以具有替代主链的核酸类似物,包括例如磷酰胺 (Beaucage等人(1993)Tetrahedron 49(10):1925)硫代磷酸酯(Mag等人(1991)Nucleic Acids Res.19:1437;和美国专利号5,644,048),二硫代磷酸酯(Briu等人(1989)J.Am.Chem.Soc.111:2321),O-甲基亚磷酰胺键(参见Eckstein,Oligonucleotides and Analogues:APractical Approach,Oxford University Press(1992)),以及肽核酸主链和键(参见Egholm(1992)J.Am.Chem.Soc.114:1895)。其他类似物核酸包括具有带正电的主链(Denpcy等(1995)Proc.Natl.Acad.Sci.USA 92:6097);非离子主链(美国专利号5386023,5637684,5602240,5216141和4469863)和非核糖主链的那些,包括在美国专利号5,235,033和5,034,506中描述的那些。含有一种或多种碳环糖的核酸也包括在核酸的定义内(参见Jenkins等人(1995)Chem.Soc.Rev.第169-176页),并且类似物例如Rawls,C&E News Jun.2,1997第35页中描述。本发明的一些实施方案中,所述核酸是脱氧核糖核酸或核糖核酸。本发明的一些实施方案中,所述核酸是引物或探针。
术语“柔性连接结构”柔性连接子是指共价键可以自由旋转,使其形成如蠕虫状卷曲链的结构,常见的柔性连接子包括,但不限于直链烷基、支链烷基、直链PEG基团、以及四氢呋喃五元环结构。在本发明的一些实施方案中,所述柔性连接结构选自C 12烷基。
发明有益效果
本发明的提供的一系列新型的荧光化合物,可用于核酸和多肽修饰,且斯托克斯位移最大可达到约190nm,即最大发射波长与最大激发波长有了较大波长差,从而解决了测量中因串扰以及后向散射效应带来的自淬灭和测量误差的问题。
附图说明
图1:DT-1、DT-2、DT-3及DT-3-Ph的合成路线图。
图2:DT-4、DT-4-NHS、DT-5及DT-5-NHS的合成路线图。
图3:DT-6、DT-6-NHS、DT-7及DT-7-NHS的合成路线图。
图4:DT-4在pH=7.0醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图5:DT-4在pH=8.5醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图6:DT-4-NHS在pH=7.0醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图7:DT-4-NHS在pH=8.5醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图8:DT-5在pH=7.0醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图9:DT-5在pH=8.5醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图10:DT-5-NHS在pH=7.0醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图11:DT-5-NHS在pH=8.5醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图12:DT-6在pH=7.0醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图13:DT-6在pH=8.5醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图14:DT-6-NHS在pH=7.0醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图15:DT-6-NHS在pH=8.5醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图16:DT-7在pH=7.0醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图17:DT-7在pH=8.5醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图18:DT-7-NHS在pH=7.0醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图19:DT-7-NHS在pH=8.5醋酸三乙铵(TEAA)溶液中的吸收光及发射光谱图。
图20:DT-5和DT-5-NHS用于寡核苷酸修饰的示意图。
图21:DT-5与寡核苷酸偶联后纯化后产物的HPLC图谱。
图22:DT-5与寡核苷酸偶联后的产物的质谱图。
图23:DT-5与寡核苷酸偶联后的产物的吸收与发射图谱。
图24:DT-5-NHS与寡核苷酸偶联后纯化后产物的HPLC图谱。
图25:DT-5-NHS与寡核苷酸偶联后的产物的质谱图。
图26:DT-5-NHS与寡核苷酸偶联后的产物的吸收与发射图谱。
图27:DT-6和DT-6-NHS用于寡核苷酸修饰的示意图。
图28:DT-6与寡核苷酸偶联后纯化后产物的HPLC图谱。
图29:DT-6与寡核苷酸偶联后的产物的质谱图。
图30:DT-6与寡核苷酸偶联后的产物的吸收与发射图谱。
图31:DT-6-NHS与寡核苷酸偶联后纯化后产物的HPLC图谱。
图32:DT-6-NHS与寡核苷酸偶联后的产物的质谱图。
图33:DT-6-NHS与寡核苷酸偶联后的产物的吸收与发射图谱。
图34:DT-4和DT-4-NHS用于多肽修饰的示意图。
图35:DT-4与多肽偶联后纯化后产物的HPLC图谱。
图36:DT-4与多肽偶联后纯化后产物的质谱图。
图37:DT-4与多肽偶联后的产物的吸收与发射图谱。
图38:DT-4-NHS与多肽偶联后纯化后产物的HPLC图谱。
图39:DT-4-NHS与多肽偶联后纯化后产物的质谱图。
图40:DT-4-NHS与多肽偶联后的产物的吸收与发射图谱。
图41:DT-7和DT-7-NHS用于多肽修饰的示意图。
图42:DT-7与多肽偶联后纯化后产物的HPLC图谱。
图43:DT-7与多肽偶联后纯化后产物的质谱图。
图44:DT-7与多肽偶联后的产物的吸收与发射图谱。
图45:DT-7-NHS与多肽偶联后纯化后产物的HPLC图谱。
图46:DT-7-NHS与多肽偶联后纯化后产物的质谱图。
图47:DT-7-NHS与多肽偶联后的产物的吸收与发射图谱。
具体实施方式
为了验证本发明合成的一系列染料在生物偶联中的作用,挑选的染料被用于寡核苷酸及多肽的修饰,经染料修饰后寡核苷酸及多肽的光学性质也被进一步检测,结果表明染料都可以被高效的修饰于寡核苷酸及多肽中,羧酸的修饰位点,或者经过NHS活化的羧酸修饰位点都可以与氨基高效的偶联。
下面通过实施例,并结合附图,对本发明的技术方案作进一步详细的说明,但本发明不限于下面的实施例。除非另有说明,本发明所用的技术和科学术语具有与本发明所属领域的普通技术员通常所理解的含义。
表1 本发明所含的染料的最大吸收/发射波长及Stokes
Figure PCTCN2021100087-appb-000011
Figure PCTCN2021100087-appb-000012
实施例1 化合物DT-1、DT-2、DT-3及DT-3-Ph的合成
1、化合物DT-1的合成
如图1合成路线,向两口圆底烧瓶中加入2.12g N,N-二甲基甲酰胺(DMF)(29.04mmol)和10mL CHCl 3,将反应体系置于冰浴中,加入7.08g PBr 3(26.14mmol),45min后加入0.95g环己酮(9.68mmol),撤去冰浴,自然升温至室温,反应16h后,将反应液倒入冰水中,并加入固体NaHCO 3直至pH至为7左右,分离有机相,水相用CH 2Cl 2萃取,合并有机层并用无水NaSO 4干燥,过滤,浓缩除去溶剂,得到红色油状物不进行纯化直接投入下一步反应。
2、化合物DT-2的合成
如图1合成路线,将上步反应产物(理论上为9.68mmol)溶解在15mL DMF中,加入1.23g(8.1mmol)2-羟基-4-甲氧基苯甲醛和7.88g(24.2mmol)Cs 2CO 3,室温反应16h。过滤,滤液浓缩,浓缩后的产物溶于二氯甲烷(DCM)中,并用水洗涤两次,有机层用无水硫酸钠干燥,过滤,减压浓缩除去溶剂,过硅胶柱(PE:EtOAc=5:1,Rf=0.6)。得到亮黄色固体产物0.71g(2.9mmol),第一步和第二步反应总收率36.2%。
Mass(ESI):[M+H]+:243.27。 1H NMR(400MHz,CDCl3)δ10.32(s,1H),7.08(d,J=9.1Hz,1H),6.76–6.57(m,3H),3.84(s,3H),2.66–2.51(m,2H),2.45(t,J=6.0Hz,2H),1.78–1.68(m,2H)。
3、化合物DT-3的合成
如图1合成路线,向圆底烧瓶中加入2.37g(25mmol)4-甲基吡啶和4.50g(25mmol)5-溴戊酸,油浴加热至110℃,反应过夜。冷却至室温,加入乙酸乙酯,油状物逐渐变为固体,将固体粉碎,用大量乙酸乙酯洗。过滤即得的目标产物DT-3为土黄色产物6.1g(22.3mmol),收率89.4%。
Mass(ESI):[M-Br]+:194.24。 1H NMR(400MHz,DMSO)δ8.95(d,J=6.6Hz,2H),8.00(d,J=6.3Hz,2H),4.55(t,J=7.2Hz,2H),2.61(s,3H),2.27(t,J=7.4Hz,2H),1.97–1.82(m,2H),1.50-1.44(m,2H)。
4、化合物DT-3-Ph的合成
如图1合成路线,将3.58g(25mmol)勒皮啶和4.50g(25mmol)5-溴-1-戊酸加入圆底烧瓶中,由于加热至110℃,反应过夜。停止反应,加入50mL乙酸乙酯,将生成的固体破碎,用乙酸乙酯和丙酮洗至无原料,过滤,干燥。所得固体用乙酸乙酯与甲醇重结晶的方法进行重结晶。得到DT-3-Ph为浅绿色固体5.8g(17.9mmol),产率71.8%;
Mass(ESI):[M-Br]+:244.33。 1H NMR(400MHz,DMSO)δ9.46(d,J=6.1Hz,1H),8.58(dd,J=21.2,8.7Hz,2H),8.26(t,J=7.9Hz,1H),8.08(t,J=7.6Hz,2H),5.04(t,J=7.3Hz,2H),3.01(s,3H),2.30(t,J=7.3Hz,2H),1.99–1.95(m,2H),1.62–1.58(m,2H)。
实施例2 化合物DT-4、DT-4-NHS、DT-5及DT-5-NHS的合成
1、化合物DT-4的合成
如图2合成路线,向圆底烧瓶中加入0.18g(0.75mmol)DT-2、0.17g(0.62mmol)DT-3和10mL无水乙醇,然后向体系中滴加两滴哌啶,油浴加热至回流,TLC监测反应进度,直至DT-3转化完全(展开液为纯甲醇,Rf=0.3)。停止反应后,将反应液浓缩至干,过硅胶柱分离纯化,先用二氯甲烷(DCM)冲出DT-2,然后用DCM:MeOH=10:1~1:1冲出产物DT-4, 得到深紫色固体产物0.235g(0.47mmol),分离收率76.3%。
Mass(ESI):[M-Br]+:418.73。 1H NMR(400m,CDCl3)δ8.96(d,J=29.9Hz,2H),8.00(d,J=15.4Hz,1H),7.71(d,J=4.0Hz,2H),6.91(d,J=8.5Hz,1H),6.75(s,1H),6.53(dd,J=8.4,1.8Hz,1H),6.39(s,1H),6.22(d,J=15.4Hz,1H),4.57(s,2H),3.82(s,3H),2.53–2.18(m,6H),2.01(d,J=12.7Hz,1H),1.68(d,J=32.6Hz,4H)。
取2.5mg DT-4溶于50mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5)中,配成100uM溶液,然后取10mL加入40mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5),使其稀释至20uM。溶液在pH=7.0条件下,经过紫外吸收及荧光发射检测,如图4其最大吸收波长为518nm,最大发射波长为670nm;溶液在pH=8.5条件下,如图5最大吸收波长为516nm,最大发射波长为670nm,斯托克斯位移达到154nm。
2、化合物DT-4-NHS的合成
如图2合成路线,向反应管中加入0.75g(1.5mmol)DT-4、0.35g(3.0mmol)N-羟基丁二酰亚胺和0.43g(2.1mmol)DCC,然后加入3mL无水DMF,室温搅拌反应,反应7h后停止反应,经过柱层析分离,得到紫色固体产物DT-4-NHS 0.25g(0.42mmol),收率28%。
Mass(ESI):[M-Br]+:515.40。 1H NMR(400MHz,DMSO)δ8.72(d,J=8.7Hz,2H),8.27(d,J=15.8Hz,1H),8.11(d,J=6.8Hz,2H),7.24(d,J=8.7Hz,1H),7.01(d,J=2.3Hz,1H),6.80(s,1H),6.73(dd,J=8.5,2.5Hz,1H),6.64(d,J=15.8Hz,1H),4.48(t,J=7.0Hz,2H),3.83(s,3H),2.79-2.83(m,4H),2.59–2.53(m,2H),1.97(dd,J=15.1,7.4Hz,2H),1.80–1.72(m,2H),1.70–1.60(m,4H),1.56(dd,J=10.4,5.6Hz,2H)。
取3.0mg DT-4-NHS溶于50mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5)中,配成100uM溶液,然后取10mL加入40mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5),使其稀释至20uM。溶液在pH=7.0条件下,经过紫外吸收及荧光发射检测,如图6,其最大吸收波长为522nm,最大发射波长为672nm;溶液在pH=8.5条件下,如图7最大吸收波长为520nm,最大发射波长为672nm,斯托克斯位移达到150nm。
3、化合物DT-5的合成
如图2合成路线,向圆底烧瓶中加入2.43g(4.8mmol)DT-4和50mL二氯甲烷(DCM),搅拌溶解,在0℃下加入4.0e.q.BBr 3,自然升温至室温,反应过夜。反应结束后加入水淬灭反应,减压浓缩,过硅胶柱分离纯化。得到紫色固体1.95g(4.0mmol),收率84%。
Mass(ESI):[M-Br]+:404.40。 1H NMR(400MHz,DMSO)δ8.73(d,J=6.8Hz,2H),8.23(d,J=15.7Hz,1H),8.08(d,J=6.8Hz,2H),7.12(d,J=8.3Hz,1H),6.82–6.72(m,2H),6.66–6.53(m,2H),4.44(t,J=7.1Hz,2H),2.54-2.48(m,4H),2.29(t,J=7.2Hz,2H),1.98–1.81(m,2H),1.81–1.69(m,2H),1.51(dd,J=15.1,7.5Hz,2H)。
取2.4mg DT-5溶于50mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5)中,配成100uM溶液,然后取10mL加入40mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5),使其稀释至20uM。溶液在pH=7.0条件下,经过紫外吸收及荧光发射检测,如图8,其最大吸收波长为526nm,最大发射波长为670nm,斯托克斯位移达到144nm;溶液在pH=8.5条件下,如图9,发生红移,最大吸收波长为564nm,最大发射波长为728nm,斯托克斯位移扩大达到164nm。
4、化合物DT-5-NHS的合成
如图2合成路线,向反应管中加入0.48g(1mmol)DT-5、0.23g(2mmol)N-羟基丁二酰亚胺和0.29g(1.4mmol)DCC,然后加入5mL无水DMF,加热至37℃,搅拌反应,反应7h后停止反应。将反应液过滤(用甲醇冲洗瓶壁),减压浓缩除去甲醇,加入大量无水乙醚,放置半小时,倒去乙醚,固体用乙醚洗两次,抽干,得产物紫色固体的DT-5-NHS 0.56g,产率96%。
Mass(ESI):[M-Br]+:501.40。 1H NMR(400MHz,DMSO)δ8.71(d,J=6.6Hz,2H),8.25(d,J=15.8Hz,1H),8.09(d,J=6.6Hz,2H),7.13(d,J=8.3Hz,1H),6.78(s,2H),6.60(t,J=10.9Hz,2H),4.47(t,J=6.9Hz,2H),3.39(d,J=7.0Hz,2H),2.89–2.72(m,4H),2.61(d,J=6.9Hz,2H),1.98(s,2H),1.67–1.64(m,6H)。
取2.9mg DT-5-NHS溶于50mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5)中,配成100uM溶液,然后取10mL加入40mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5),使其稀释至20uM。溶液在pH=7.0条件下,经过紫外吸收及荧光发射检测,如图10,其最大吸收波长为520nm,最大发射波长为676nm,斯托克斯位移达到156nm;溶液在pH=8.5条件下,如图11,发生红移,最大吸收波长为566nm,最大发射波长为730nm,斯托克斯位移扩大达到164nm。
实施例3 化合物DT-6、DT-6-NHS、DT-7及DT-7-NHS的合成
1、化合物DT-6的合成
如图3合成路线,向圆底烧瓶中加入0.12g(0.6mmol)DT-2、0.16g(0.5mmol)DT-3-Ph和5mL无水乙醇,然后向体系中滴加几滴哌啶,油浴加热至回流,得到深紫色的固体0.14g(0.26mmol),收率52%。
Mass(ESI):[M-Br]+:468.40。 1H NMR(400MHz,DMSO)δ9.05(d,J=6.8Hz,1H),8.86(d,J=8.2Hz,1H),8.54(d,J=15.1Hz,1H),8.39(d,J=6.9Hz,2H),8.18–8.11(m,1H),7.95–7.86(m,1H),7.37(d,J=15.2Hz,1H),7.29(d,J=8.5Hz,1H),7.10(d,J=2.4Hz,1H),6.93(s,1H),6.77(dd,J=8.5,2.5Hz,1H),4.89(t,J=7.2Hz,2H),3.86(s,3H),2.72(t,J=5.8Hz,2H),2.62(d,J=5.5Hz,2H),2.30(t,J=7.4Hz,2H),1.93(m,2H),1.87–1.76(m,2H),1.58–1.55(m,2H)。
取2.7mg DT-6溶于5mL甲醇,再加入45mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5)中,配成100uM溶液,然后取10mL加入40mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5),使其稀释至20uM。溶液在pH=7.0条件下,经过紫外吸收及荧光发射检测,如图12,其因为增加了共轭体系,最大吸收波长红移为544nm,最大发射波长红移为730nm,斯托克斯位移因为增加了共轭体系的原因扩大到186nm;溶液在pH=8.5条件下,如图13,吸收波长红移为544nm,最大发射波长红移为730nm,斯托克斯位移因为增加了共轭体系的原因扩大到186nm。
2、化合物DT-6-NHS的合成
如图3合成路线,向圆底烧瓶中加入54.7mg(0.1mmol)DT-6、23.0mg(0.2mmol)N-羟基丁二酰亚胺和29.0mg(0.14mmol)DCC,然后加入2mL无水DMF,油浴加热至37℃搅拌反应,得到深紫色的固体61.3mg(0.095mmol),收率95%。
Mass(ESI):[M-Br]+:565.27。 1H NMR(400MHz,DMSO)δ9.03(d,J=6.7Hz,1H),8.86(d,J=8.5Hz,1H),8.55(d,J=15.1Hz,1H),8.40(t,J=7.8Hz,2H),8.15(t,J=7.7Hz,1H),7.91(t,J=7.8Hz,1H),7.38(d,J=15.2Hz,1H),7.29(d,J=8.5Hz,1H),7.09(d,J=2.1Hz,1H),6.94(s,1H),6.78(d,J=8.5,1H),4.91(t,J=7.1Hz,2H),3.86(s,3H),2.86–2.78(m,6H),2.72(d,J=6.3Hz,2H),2.66–2.59(m,2H),2.09–1.99(m,2H),1.82–1.73(m,4H)。
取3.2mg DT-6-NHS溶于5mL甲醇,再加入45mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5)中,配成100uM溶液,然后取10mL加入40mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5),使其稀释至20uM。溶液在pH=7.0条件下,经过紫外吸收及荧光发射检测,如图14,其因为增加了共轭体系,最大吸收波长红移为558nm,最大发射波长红移为730nm,斯托克斯位移因为增加了共轭体系的原因扩大到172nm;溶液在pH=8.5条件下,如图15,吸收波长红移为554nm,最大发射波长红移为730nm,斯托克斯位移因为增加了共轭体系的原因扩大到176nm。
3、化合物DT-7的合成
如图3合成路线,向反应管中加入1.04g(1.9mmol)DT-6和60mL无水DCM,搅拌溶解,在0℃下加入10.0e.q.BBr3,自然升至室温反应24h。得到深紫色的固体。反应24h后,先向体系中加入水淬灭反应,然后加入饱和碳酸氢钠调至体系pH至偏碱性,过滤,滤饼用大量水洗,然后干燥。得到0.69g(1.3mmol)紫色固体产物,收率68%。
Mass(ESI):[M-Br]+:454.47。 1H NMR(400MHz,DMSO-d6)δ8.98(d,J=6.8Hz,1H),8.83(d,J=8.6Hz,1H),8.49(d,J=15.1Hz,1H),8.34(dd,J=18.3,7.9Hz,2H),8.12(ddd,J=8.6,6.9,1.3Hz,1H),7.88(dd,J=8.5,7.0Hz,1H),7.32(d,J=15.1Hz,1H),7.19(d,J=8.3Hz,1H),6.92(s,1H),6.84(d,J=2.3Hz,1H),6.63(dd,J=8.4,2.3Hz,1H),4.85(t,J=7.3Hz,2H),2.70(T,J=7.7Hz,2H),2.60(t,J=6.0Hz,2H),2.29(t,J=7.3Hz,2H),1.97-1.89(m,2H),1.80(t,J=6.1Hz,2H),1.64-1.57(m,2H)。
取2.6mg DT-7溶于5mL甲醇,再加入45mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5)中,配成100uM溶液,然后取10mL加入40mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5),使其稀释至20uM。溶液在pH=7.0条件下,经过紫外吸收及荧光发射检测,如图16,其因为增加了共轭体系,最大吸收波长红移为544nm,最大发射波长红移为728nm,斯托克斯位移因为增加了共轭体系的原因扩大到184nm;溶液在pH=8.5条件下,如图17,吸收波长红移为620nm,最大发射波长红移为730nm,斯托克斯位移为110nm。
4、化合物DT-7-NHS的合成
如图3合成路线,向反应管中加入150mg(0.28mmol)DT-7、102mg(0.9mmol)N-羟基丁二酰亚胺和174mg(0.9mmol)EDC,然后加入4mL无水DMF,室温搅拌反应,反应5小时后停止反应。加入乙酸乙酯重结晶,得到的固体过硅胶柱纯化,得到深紫色的固体产物40mg,收率27%。
Mass(ESI):[M-Br]+:551.53。 1H NMR(400MHz,DMSO)δ9.01(d,J=6.8Hz,1H),8.83(d,J=8.5Hz,1H),8.50(d,J=15.1Hz,1H),8.38(d,J=9.0Hz,1H),8.33(d,J=6.8Hz,1H),8.13(t,J=5.3Hz,1H),7.89(t,J=5.3Hz,1H),7.32(d,J=15.1Hz,1H),7.18(d,J=8.4Hz,1H),6.94–6.85(m,2H),6.66(dd,J=8.3,2.2Hz,1H),4.89(t,J=7.1Hz,2H),2.87–2.77(m,6H),2.71(t,J=5.3Hz,2H),2.63-2.56(m,4H),2.01(m,2H),1.76(m,4H)。
取3.1mg DT-7-NHS溶于5mL甲醇,再加入45mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5)中,配成100uM溶液,然后取10mL加入40mL纯水(pH=7.0)或0.2mM TEAA溶液(pH=8.5),使其稀释至20uM。溶液在pH=7.0条件下,经过紫外吸收及荧光发射检测,如图18,其因为增加了共轭体系,最大吸收波长红移为544nm,最大发射波长红移为726nm,斯托克斯位移因为增加了共轭体系的原因扩大到182nm;溶液在pH=8.5条件下,如图19,吸收波长红移为596nm,最大发射波长红移为730nm,斯托克斯位移为134nm。
实施例4 DT-5用于寡核苷酸修饰
荧光标记的寡核苷酸探针通过类似转换器作用将生物识别(杂交,配体结合等)转化为荧光信号。荧光标记具有若干优点,例如,高灵敏度和多种转导方法(荧光猝灭或增强,荧光各向异性,荧光寿命,荧光共振能量转移和准分子-单体光转换)。这些多种信号选择与识别元件(DNA,RNA,PNA,LNA)的设计灵活性和各种标记策略相结合,有助于开发多种选择性和敏感的生物检测。为了验证DT-5染料可以被修饰于寡核苷酸中,如错误!未找到引用源。,在1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)及N-羟基琥珀酰亚胺(NHS)的活化下,DT-5染料的羧酸基团与寡核苷酸中氨基反应,将染料连接于寡核苷酸中。
修饰方法如下:
1)溶液配置:
EDC的DMSO溶液:取4mg EDC溶于60uL DMSO中。
NHS的H 2O/DMSO溶液:取2.4mg NHS溶于30uL DMSO/H 2O(15uL DMSO+15uL H 2O)中。
DT-5的DMSO溶液:取2.9mg DT-5溶于21uL DMSO中。
寡核苷酸溶液:每管oligo为50nmol,将其溶于20uL水中。
2)DT-5活化:按下表2的比例混合,震荡反应20min。
表2 DT-5修饰寡核苷酸的物料信息
原料 浓度 体积 物质的量
EDC 333mM 6uL 2000nmol
NHS 667mM 3uL 2000nmol
DT-5 285mM 7uL 2000nmol
寡核苷酸 2.5mM 8uL 20nmol
3)DT-5修饰寡核苷酸:向上述活化后的DT-5中加入34uL DMSO,然后加入8uL寡核苷酸溶液和42uL磷酸盐缓冲液(pH=7.52),在室温下震荡反应过夜。
4)上述反应液反应过夜后,向体系中加入10uL 5M NaCl和250uL无水乙醇,在-20℃放置1h沉淀,然后离心分离(12000rmp,10min),固体用250uL 85%乙醇洗涤2次,然后将固体溶于水,进行LC-MS检测,并进行HPLC纯化,纯化后的产物同样进行MS表征,产率:44.8%。
经过纯化后的染料修饰的寡核苷酸的HPLC分析,纯度较高(纯度为99.1%,如图21),及质谱分析与理论值吻合(图22),经过修饰的寡核酸的11.2uM溶液(pH=8.5)最大吸收峰在570纳米,最大发射在684纳米,Stokes位移达到114纳米,可以看到吸引与发射图谱的重叠部分小,如图23。
实施例5 DT-5-NHS用于寡核苷酸修饰
将NHS已经包含于DT-5-NHS结构中的染料分子,可以更方便地被连接于寡核苷酸中,无需加入活化试剂,简化了实验的操作与流程,如图20。为了最大程度简化实验流程,寡核酸选择了合成完毕后未经纯化的产物直接用于染料的偶联反应。操作步骤为,向合成的带有含氨基连接子的寡核酸链的反应管中(三管,每管200nmol,)加入1200uL(每管加400uL)0.2M磷酸盐缓冲液(pH=7.8),振荡溶解,然后加入100uL 30nmol/uL DT-5-NHS的DMSO溶液(每管加33uL),在37℃下反应过夜。反应后对粗品进行HPLC和MS监测后进行HPLC纯化,纯化后的产物同样进行HPLC纯度分析(纯度为97.8%,如图24)和MS(如图25)确证无误,共得到纯品50nmol,产率:8.3%。经过修饰的寡核酸的的50uM溶液(pH=8.5)最大吸收峰在568纳米,最大发射在684纳米,如图26,Stokes位移达到116纳米,可以看到吸引与发射图谱的重叠部分小。
实施例6 DT-6用于寡核苷酸修饰
增加共轭体系的DT-6染料可以用与DT-5相同的实验方法引入寡核苷酸中,如图27。纯化后的产物同样进行HPLC及MS表征,产率:75.0%。经过纯化后的染料修饰的寡核苷酸的HPLC分析,纯度较高(纯度为95.8%,如图28),及质谱分析与理论值吻合(图29), 经过修饰的寡核酸的6.8uM溶液(pH=8.5)最大吸收峰在634纳米,最大发射在738纳米,Stokes位移达到104纳米,可以看到吸引与发射图谱的重叠部分小,如图30。
实施例7 DT-6-NHS用于寡核苷酸修饰
DT-6-NHS可以用与DT-5-NHS相同的实验方法寡引物核苷酸中,如图27。不同的在于,寡核酸选择了合成完毕后经HPLC纯化的产物用于染料的偶联反应。向合成的带有含氨基连接子的寡核酸链的反应管中(50nmol,)加入100uL的0.2M磷酸盐缓冲液(pH=7.8),振荡溶解,然后加入10uL的30nmol/uL的DT-6-NHS的DMSO溶液,在37℃下反应过夜。反应后对粗品进行HPLC和MS监测后进行HPLC纯化,产率:57.3%。经过纯化后的染料修饰的寡核苷酸的HPLC分析,纯度较高(纯度为96.4%,如图31),及质谱分析与理论值吻合(图32),经过修饰的寡核酸的5.3uM溶液(pH=8.5)最大吸收峰在638纳米,最大发射在738纳米,Stokes位移达到100纳米,可以看到吸引与发射图谱的重叠部分小,如图33。
实施例8 DT-4用于多肽修饰
荧光分子修饰的多肽常被用来检测蛋白的活性以及用作筛选手段进行药物筛选和药物开发。为了验证染料分子可以被引入多肽,一个含有环状催产素(Oxytocin)结构的多肽(GCYIQNCPLG)被选择作为模型反应。催产素在有性生殖、在分娩中及分娩后都相当的重要,在雌性哺乳动物生产时大量释放,扩张子宫颈和收缩子宫,促进分娩,分娩后催产素也会刺激乳头,促进乳汁产生有助于生产、母婴连结及哺乳。
如图34,修饰方法如下:
1)溶液配置:
EDC的DMSO溶液:取1.8mgEDC溶于20uL DMSO中。
NHS的H 2O/DMSO溶液:取1.1mg NHS溶于20uL DMSO/H 2O(10uL DMSO+10uL H 2O)中。
DT-4的DMF溶液:取4.8mg DT-4溶于20uL DMSO中。
多肽溶液:取1.0mg溶于50uL DMSO中。
DT-4的活化:将上述EDC,NHS和DT-4混合,震荡反应20min。
2)DT-4修饰多肽:向上述活化后的DT-4中加入40uL DMF,然后加入上述多肽溶液,在37℃下震荡反应过夜。反应过程通过HPLC监测,直至多肽被反应完全。对粗品进行HPLC和MS监测后进行HPLC纯化,纯化后的产物同样进行HPLC纯度分析(纯度为92.3%,如图35),并经过MS(如图36)确证无误。由于所用的多肽量较少,产物未经过称量,将产物的水溶液进行光学表征表明(pH=8.5)最大吸收峰在528纳米,最大发射在676纳米,Stokes位移达到148纳米,可以看到吸引与发射图谱的重叠部分小,如图37。
实施例9 DT-4-NHS用于多肽修饰
DT-4-NHS则更容易被用于多肽修饰,如图34所示,上述实施例8中所述的环状催产素结构的多肽也可被DT-4-NHS修饰。取1.0mg溶于50uL DMSO中,然后加入10.0eq.DT-4-NHS(5.5mg溶于50uL DMSO中),在37℃下震荡反应过夜。反应过程通过HPLC监测,直至多肽被反应完全。反应后对粗品进行HPLC和MS监测后进行HPLC纯化,纯化后的产物同样进行HPLC纯度分析(纯度为97.8%,如图38),并经过MS(如图39)确证无误。由于所用的多肽量较少,产物未经过称量,将产物的水溶液进行光学表征表明(pH=8.5)最大吸收峰在526纳米,最大发射在676纳米,Stokes位移达到150纳米,可以看到吸引与发射图谱的重叠部分小,如图40。
实施例10 DT-7用于多肽修饰
如图41,具有更大共轭结构的DT-7也可以被用于多肽修饰,随机设计的链状结构的多 肽(GSTGFYNQ)验证了其也可以被容易、高效的修饰。具体的修饰方法如下:
修饰方法:
EDC的DMSO溶液:取1.8mg EDC溶于10uL DMSO中。
NHS的H 2O/DMSO溶液:取1.1mg NHS溶于10uL DMSO/H 2O(5uL DMSO+5uL H 2O)中。
DT-7的DMSO溶液:取6.4mg DT-7溶于20uL DMSO中。
多肽溶液:取1.0mg溶于60uL 0.1M碳酸氢钠溶液(pH=8.38)中。
DT-7的活化:将上述EDC,NHS和DT-7混合,震荡反应20min。
DT-7修饰多肽:向活化后的DT-7中加入上述多肽溶液,在室温下震荡反应过夜。反应过程通过HPLC监测,直至多肽被反应完全。对粗品进行HPLC和MS监测后进行HPLC纯化,纯化后的产物同样进行HPLC纯度分析(纯度为98.4%,如图42),并经过MS(如图43)确证无误。由于所用的多肽量较少,产物未经过称量,将产物的水溶液进行光学表征表明(pH=8.5)最大吸收峰在588纳米,最大发射在736纳米,Stokes位移达到148纳米,可以看到吸引与发射图谱的重叠部分小,如图44。
实施例11 DT-7-NHS用于多肽修饰
反应式如图41所示。DT-7-NHS修饰多肽方法:取1.0mg溶于50uL 0.1M碳酸氢钠溶液(pH=8.38)中,然后加入10.0eq.DT-7-NHS(7.1mg溶于50uL DMSO中),在室温下震荡反应过夜。反应过程通过HPLC监测,直至多肽被反应完全。对粗品进行HPLC和MS监测后进行HPLC纯化,纯化后的产物同样进行HPLC纯度分析(纯度为96.4%,如图45),并经过MS(如图46)确证无误。由于所用的多肽量较少,产物未经过称量,将产物的水溶液进行光学表征表明(pH=8.5)最大吸收峰在590纳米,最大发射在733纳米,Stokes位移达到143纳米,可以看到吸引与发射图谱的重叠部分小,如图47。
表3 实施例中所用化学品的来源
名称 厂家 货号
环己酮 上海阿拉丁生化科技股份有限公司 C116449
三溴化磷 上海阿拉丁生化科技股份有限公司 P108403
三溴化硼 上海阿拉丁生化科技股份有限公司 104688
N,N-二甲基甲酰胺 百灵威科技有限公司 983353
氯仿 国药集团化学试剂有限公司 10006818
碳酸铯 上海阿拉丁生化科技股份有限公司 C105061
2-羟基-4-甲氧基苯甲醛 上海皓鸿生物医药科技有限公司 1039550
4-甲基吡啶 上海阿拉丁生化科技股份有限公司 P105226
5-溴戊酸 上海阿拉丁生化科技股份有限公司 B106966
N-羟基琥珀酰亚胺(NHS) 上海阿拉丁生化科技股份有限公司 H109330
N,N'-二环己基碳二亚胺(DCC) 上海阿拉丁生化科技股份有限公司 D106074
无水乙醇 国药集团化学试剂有限公司 100092683
二氯甲烷 国药集团化学试剂有限公司 800473603
勒皮啶 百灵威科技有限公司 131729

Claims (25)

  1. 一种如式(Ⅰ)所示的荧光化合物:
    Figure PCTCN2021100087-appb-100001
    其中,R 1选自H、C 1-C 6的烷基;
    R 2、R 3、R 4各自独立地选自H、C 1-C 6的烷基、C 1-C 6的烷氧基、C 2-C 6的烯基、C 2-C 6的炔基、C 1-C 6的卤代烷基、C 1-C 6的卤代烷氧基、氨基、卤素、氰基、羟基、硝基;
    R 5、R 6各自独立地选自H、C 1-C 6的烷基、C 1-C 6的烷氧基、C 2-C 6的烯基、C 2-C 6的炔基、C 1-C 6的卤代烷基、C 1-C 6的卤代烷氧基、氨基、卤素、氰基、羟基、硝基;或者R 5、R 6连同它们附接的原子形成选自以下组的环或环体系:任选地被取代的碳环基、任选地被取代的芳基、任选地被取代的杂芳基或者任选地被取代的杂环基;
    R 7、R 8各自独立地选自H、C 1-C 6的烷基、C 1-C 6的烷氧基、C 2-C 6的烯基、C 2-C 6的炔基、C 1-C 6的卤代烷基、C 1-C 6的卤代烷氧基、氨基、卤素、氰基、羟基、硝基;或者R 7、R 8连同它们附接的原子形成选自以下组的环或环体系:任选地被取代的碳环基、任选地被取代的芳基、任选地被取代的杂芳基或者任选地被取代的杂环基;
    R 9选自直链烷基、支链烷基、直链PEG基团或四氢呋喃五元环基;
    R 10选自酯基、炔基、叠氮基、胺基、磺酸基;
    R 11选自H或N-羟基琥珀酰亚胺基;
    X选自F、Cl、Br、I、乙酸根、碳酸根、碳酸氢根、硝酸根、硫酸根、柠檬酸根、苹果酸根、酒石酸根或谷氨酸根。
  2. 如权利要求1所述的荧光化合物,其特征在于,所述R 1为H或者甲基。
  3. 如权利要求1所述的化合物,其特征在于,所述R 2为H或者甲基。
  4. 如权利要求1所述的化合物,其特征在于,所述R 3为H或者甲基。
  5. 如权利要求1所述的化合物,其特征在于,所述R 4为H或者甲基。
  6. 如权利要求1-5中任一项所述的荧光化合物,其特征在于,所述R 2、R 3、R 4均为H。
  7. 如权利要求1-6中任一项所述的荧光化合物,其特征在于,所述R 5、R 6均为H或者R 5、R 6连同它们附接的原子形成苯环。
  8. 如权利要求1-6中任一项所述的荧光化合物,其特征在于,所述R 7、R 8均为H或者R 7、R 8连同它们附接的原子形成苯环。
  9. 如权利要求1-8中任一项所述的荧光化合物,其特征在于,所述R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8均为H。
  10. 如权利要求1-8中任一项所述的荧光化合物,其特征在于,所述R 1为甲基,所述R 2、R 3、R 4、R 5、R 6、R 7、R 8均为H。
  11. 如权利要求1-8中任一项所述的荧光化合物,其特征在于,所述R 1、R 2、R 3、R 4、R 5、R 6均为H,所述R 7、R 8连同它们附接的原子形成苯环。
  12. 如权利要求1-8中任一项所述的荧光化合物,其特征在于,所述R 1、R 2、R 3、R 4、R 7、R 8均为H,所述R 5、R 6连同它们附接的原子形成苯环。
  13. 如权利要求1-8中任一项所述的荧光化合物,其特征在于,所述R 1为甲基,所述R 2、R 3、R 4、R 5、R 6均为H,所述R 7、R 8连同它们附接的原子形成苯环。
  14. 如权利要求1-8中任一项所述的荧光化合物,其特征在于,所述R 1为甲基,所述R 2、R 3、R 4、R 7、R 8均为H,所述R 5、R 6连同它们附接的原子形成苯环。
  15. 如权利要求1-14中任一项所述的荧光化合物,其特征在于,所述R 9选自C 1-C 20的烷基或者C 1-C 20的直链PEG基团。
  16. 如权利要求15所述的荧光化合物,其特征在于,所述R 9为正丁基。
  17. 如权利要求1-16所述的荧光化合物,其特征在于,所述R 10为酯基。
  18. 如权利要求1-17中任一项所述的荧光化合物,其特征在于,所述R 11选自H。
  19. 如权利要求1-17中任一项所述的荧光化合物,其特征在于,所述R 11选自N-羟基琥珀酰亚胺基。
  20. 如权利要求1-19中任一项所述的荧光化合物,其特征在于,所述X选自F、Cl、Br或I。
  21. 如权利要求20所述的荧光化合物,其特征在于,所述X选自Br。
  22. 如权利要求1-21中任一项所述的荧光化合物,其特征在于,所述化合物选自:
    Figure PCTCN2021100087-appb-100002
  23. 如权利要求1-22所述的荧光化合物,其特征在于,所述荧光化合物具有90-200nm范围的斯托科斯位移;优选地,具有100-195nm范围的斯托科斯位移;更优选地,具有110-186nm范围的斯托科斯位移。
  24. 如权利要求23所述的荧光化合物,其特征在于,所述斯托科斯位移是在pH为7.0-8.5的条件下测得的。
  25. 权利要求1-24中任一项所述的荧光化合物在修饰核酸或者多肽中的应用。
PCT/CN2021/100087 2020-06-15 2021-06-15 一种具有大范围斯托克斯位移的新型荧光化合物 WO2021254321A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180042636.0A CN115697998A (zh) 2020-06-15 2021-06-15 一种具有大范围斯托克斯位移的新型荧光化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010540604 2020-06-15
CN202010540604.0 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021254321A1 true WO2021254321A1 (zh) 2021-12-23

Family

ID=79268485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100087 WO2021254321A1 (zh) 2020-06-15 2021-06-15 一种具有大范围斯托克斯位移的新型荧光化合物

Country Status (2)

Country Link
CN (1) CN115697998A (zh)
WO (1) WO2021254321A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094473A1 (en) * 2000-06-07 2001-12-13 Lightup Technologies Ab Solid phase synthesis of cyanine dyes
CN102942566A (zh) * 2005-03-17 2013-02-27 百奥提姆股份有限公司 二聚和三聚核酸染料以及相关的系统和方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094473A1 (en) * 2000-06-07 2001-12-13 Lightup Technologies Ab Solid phase synthesis of cyanine dyes
CN102942566A (zh) * 2005-03-17 2013-02-27 百奥提姆股份有限公司 二聚和三聚核酸染料以及相关的系统和方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAI YANPENG; ZHENG YU; XUE TIANZI; HE FANGRU; JI HEFANG; QI ZHENGJIAN: "A novel fluorescent probe for rapidly detection cysteine in cystinuria urine, living cancer/normal cells and BALB/c nude mice", SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, ELSEVIER, AMSTERDAM, NL, vol. 225, 27 August 2019 (2019-08-27), AMSTERDAM, NL, XP085961493, ISSN: 1386-1425, DOI: 10.1016/j.saa.2019.117490 *
IKEDA SHUJI, YANAGISAWA HIROYUKI, NAKAMURA AKIKO, WANG DAN OHTAN, YUKI MIZUE, OKAMOTO AKIMITSU: "Hybridization-sensitive fluorescence control in the near-infrared wavelength range", ORGANIC & BIOMOLECULAR CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, vol. 9, 1 January 2011 (2011-01-01), pages 4199 - 4204, XP055822137, ISSN: 1477-0520, DOI: 10.1039/c1ob05252g *
ZHANG SHUWEI; WU DONGDONG; WU JUANJUAN; XIA QIANWEN; JIA XIAODONG; SONG XIAOLI; ZENG LINTAO; YUAN YU: "A water-soluble near-infrared fluorescent probe for sensitive and selective detection of cysteine", TALANTA, ELSEVIER, AMSTERDAM, NL, vol. 204, 19 June 2019 (2019-06-19), NL , pages 747 - 752, XP085747178, ISSN: 0039-9140, DOI: 10.1016/j.talanta.2019.06.074 *

Also Published As

Publication number Publication date
CN115697998A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
US6902900B2 (en) Nucleic acid probes and methods to detect and/or quantify nucleic acid analytes
EP0684239A1 (en) A method for detecting a target substance in a sample, utilizing pyrylium compound
WO2005049849A2 (en) Fluorescence quenching azo dyes, their methods of preparation and use
CA3060690C (en) Multisignal labeling reagents and processes and uses therefor
JP6297035B2 (ja) 新規アゾ化合物、これの利用及びこれの製造方法
WO2020221217A1 (zh) 一种荧光染料及其制备方法和用途
Furukawa et al. Reduction-triggered red fluorescent probes for dual-color detection of oligonucleotide sequences
CA3038688C (en) Fluorescent dyes
JPWO2009034790A1 (ja) 蛍光発生分子
ES2621507T3 (es) Nuevos complejos a base de iridio para EQL
WO2021254321A1 (zh) 一种具有大范围斯托克斯位移的新型荧光化合物
EP2397464B1 (en) Synthesis of novel azo-dyes and their use in oligonucleotide synthesis
ES2386530T3 (es) Moléculas bloqueadoras de la fluorescencia así como los métodos y utilizaciones que las implican
US6743588B2 (en) Fluorescent dye and method of measuring nucleic acid
EP3247710B1 (en) Coumarin-based compounds and related methods
WO2006054426A1 (ja) 高蛍光量子収率型疎水性蛍光プローブ、それを用いる生体高分子検出法ならびに生体高分子間相互作用検出法
CN108732147A (zh) 基于fret效应探测细胞凋亡过程的方法
CN114958025A (zh) 一种有机小分子荧光染料及其制备方法和用途
KR102682109B1 (ko) 신규한 화합물 및 이의 용도
RU2506293C2 (ru) Соединения-диады, содержащие в молекуле азогруппы и ядра ферроцена, и их использование в качестве тушителей флуоресценции
JP2009132705A (ja) 標的核酸配列に基づく目的分子の放出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826390

Country of ref document: EP

Kind code of ref document: A1