WO2021254231A1 - 孤网中基于储能及无功补偿系统的负荷平衡方法及装置 - Google Patents

孤网中基于储能及无功补偿系统的负荷平衡方法及装置 Download PDF

Info

Publication number
WO2021254231A1
WO2021254231A1 PCT/CN2021/099196 CN2021099196W WO2021254231A1 WO 2021254231 A1 WO2021254231 A1 WO 2021254231A1 CN 2021099196 W CN2021099196 W CN 2021099196W WO 2021254231 A1 WO2021254231 A1 WO 2021254231A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactive power
energy storage
bess
storage system
var
Prior art date
Application number
PCT/CN2021/099196
Other languages
English (en)
French (fr)
Inventor
熊敬超
张亚伟
邵雁
刘冠中
王小龙
柯焰明
刘子豪
Original Assignee
中冶南方都市环保工程技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶南方都市环保工程技术股份有限公司 filed Critical 中冶南方都市环保工程技术股份有限公司
Publication of WO2021254231A1 publication Critical patent/WO2021254231A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1892Arrangements for adjusting, eliminating or compensating reactive power in networks the arrangements being an integral part of the load, e.g. a motor, or of its control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the invention relates to the field of isolated grid system operation control, in particular to a load balancing method and device based on an energy storage and reactive power compensation system in an isolated grid.
  • the modern energy storage system is characterized by its relatively fast speed, which can not only generate electric energy, but also absorb electric energy, and in some cases can be used as a reactive power source in a regulated power distribution system. These functions enable the energy storage system to act as various roles in the isolated network, such as uninterrupted island power supply, stable frequency load, and backup power supply.
  • the characteristics of the energy storage system make the traditional power system transform from a rigid system that can only be "generation-transmission-electricity" to a flexible system with a certain degree of flexibility, which enhances the safety and reliability of isolated grid operation.
  • factories power grids cannot be connected to the national grid and can only be operated in isolated power grids. Stability will be an important consideration for a company to invest and build factories in Southeast Asia. However, there is currently no mature technology that can be adopted for this technology.
  • the existing reactive power compensation systems are often configured with the capacity required for the maximum load fluctuations of the system.
  • This configuration method makes it in general There is a long-term surplus of capacity.
  • the long-term use capacity of its reactive power compensation system is about 60% of the total capacity
  • the long-term use capacity of the energy storage system is about 40% of the total capacity ⁇ 60% is not economical, but considering that if the cost is reduced only by reducing the capacity of the reactive power compensation system and the energy storage system, the safety and stability of the isolated network will decrease, and it will be difficult to cope with extreme load fluctuations.
  • the embodiments of the present invention provide a load balancing method and device based on an energy storage and reactive power compensation system in an isolated network that overcome the above problems or at least partially solve the above problems, specifically
  • the plan is as follows:
  • a load balancing method based on energy storage and reactive power compensation system in an isolated network including:
  • the reactive power and active power required by the isolated grid system are compensated respectively through the reactive power compensation system and the energy storage system as follows:
  • the energy storage system provides active power with power ⁇ P
  • the reactive power compensation system provides reactive power with Q var
  • the remaining capacity of the energy storage system will provide A certain amount of reactive power supplements the capacity of the reactive power compensation system.
  • ⁇ Q and ⁇ P are the reactive power and active power that need to be compensated in the isolated grid system caused by the sudden load rise;
  • Q var is the total capacity of the reactive power compensation system,
  • S bess is the total capacity of the energy storage system, and
  • P bess is The energy storage system outputs active power.
  • ⁇ Q and ⁇ P are the reactive power and active power that need to be compensated in the isolated grid system caused by the sudden load rise;
  • Q var is the total capacity of the reactive power compensation system,
  • S bess is the total capacity of the energy storage system, and
  • P bess is The energy storage system outputs active power.
  • the upper limit has been exceeded by a sudden load can be absorbed by the energy storage system, apparatus and energy at this time through the PCV valve
  • the dissipating method reduces the impact on the isolated grid unit, and the required power consumption must satisfy ⁇ P loss ⁇ P-S bess , and the required reactive power compensation amount is provided by the reactive power compensation system.
  • the method further includes providing a configuration mode for the reactive power compensation system and the energy storage system to respectively compensate the reactive power and active power of the isolated grid system, which are specifically as follows:
  • Q var is the total capacity of the reactive power compensation device
  • Q bess and P bess are the reactive power and active power of the energy storage device under normal working conditions
  • ⁇ and ⁇ are the settings of reactive and active power, respectively Coefficient, the value range of which is 0 ⁇ 1, 0 ⁇ 1.
  • a load balancing device based on an energy storage and reactive power compensation system in an isolated grid
  • the device includes a sudden rise adjustment module and a sudden fall adjustment module;
  • the sudden rise adjustment module is used to compensate the reactive power and active power required by the isolated grid system through the reactive power compensation system and the energy storage system when the load of the isolated grid system suddenly rises;
  • the sudden drop adjustment module is used to absorb the excess reactive and active power of the isolated grid system through the reactive power compensation system and the energy storage system when the load of the isolated grid system suddenly drops.
  • the sudden rise adjustment module is specifically used for:
  • the energy storage system When ⁇ Q>Q var and ⁇ P>P bess , under this working condition, the energy storage system provides active power with power ⁇ P, the reactive power compensation system provides reactive power with Q var , and the remaining capacity of the energy storage system will provide A certain amount of reactive power supplements the capacity of the reactive power compensation system.
  • the energy storage system when ⁇ P>S bess , the energy storage system only outputs active power at the maximum power, and the load shedding of the system is required to ensure the stability of the system, and the load shedding power must satisfy ⁇ P load ⁇ P-S bess ;
  • ⁇ Q and ⁇ P are the reactive power and active power that need to be compensated in the isolated grid system caused by the sudden load rise;
  • Q var is the total capacity of the reactive power compensation system,
  • S bess is the total capacity of the energy storage system, and
  • P bess is The energy storage system outputs active power.
  • the upper limit has been exceeded by a sudden load can be absorbed by the energy storage system, apparatus and energy at this time through the PCV valve
  • the dissipating method reduces the impact on the isolated grid unit, and the required power consumption must satisfy ⁇ P loss ⁇ P-S bess , and the required reactive power compensation amount is provided by the reactive power compensation system.
  • the dump adjustment module is configured to: when ⁇ Q ⁇ Q var, when ⁇ P ⁇ S bess, this condition, reactive power compensation system and the energy storage system are a plurality of system reactive and active To absorb, the energy storage system is in a charging state at this time;
  • ⁇ Q and ⁇ P are the reactive power and active power that need to be compensated in the isolated grid system caused by the sudden load rise;
  • Q var is the total capacity of the reactive power compensation system,
  • S bess is the total capacity of the energy storage system, and
  • P bess is The energy storage system outputs active power.
  • the upper limit has been exceeded by a sudden load can be absorbed by the energy storage system, apparatus and energy at this time through the PCV valve
  • the dissipating method reduces the impact on the isolated grid unit, and the required power consumption must satisfy ⁇ P loss ⁇ P-S bess , and the required reactive power compensation amount is provided by the reactive power compensation system.
  • the device further includes a configuration module; the configuration module is used to provide a configuration method for the reactive power compensation system and the energy storage system to respectively compensate the reactive and active power of the isolated grid system, specifically as follows:
  • Q var is the total capacity of the reactive power compensation device
  • Q bess and P bess are the reactive power and active power of the energy storage device under normal working conditions
  • ⁇ and ⁇ are the settings of reactive and active power, respectively Coefficient, the value range of which is 0 ⁇ 1, 0 ⁇ 1.
  • the invention realizes the full use of equipment capacity by reasonably configuring the capacity of the reactive power compensation device and the energy storage device and the reasonable active and reactive power distribution method, optimizes the construction cost, improves the economy of isolated network operation, and avoids reactive power and energy storage devices.
  • FIG. 1 is a flowchart of a load balancing method based on an energy storage and reactive power compensation system in an isolated network according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method when the load of an isolated grid system suddenly rises according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method when the load of an isolated network system suddenly drops according to an embodiment of the present invention.
  • a load balancing method based on an energy storage and reactive power compensation system in an isolated network includes:
  • the reactive power and active power required by the isolated grid system are compensated by the reactive power compensation system and the energy storage system respectively as follows:
  • the energy storage system provides active power with power ⁇ P
  • the reactive power compensation system provides reactive power with Q var
  • the remaining capacity of the energy storage system will provide A certain amount of reactive power supplements the capacity of the reactive power compensation system
  • ⁇ Q and ⁇ P are the reactive power and active power that need to be compensated in the isolated grid system caused by the sudden load rise;
  • Q var is the total capacity of the reactive power compensation system,
  • S bess is the total capacity of the energy storage system, and
  • P bess is The energy storage system outputs active power.
  • ⁇ Q and ⁇ P are the reactive and active power that needs to be absorbed in the isolated grid system caused by the sudden load drop;
  • Q var is the total capacity of the reactive power compensation system, and
  • S bess is the total capacity of the energy storage system. S bess can be regarded as the maximum value of the output active power P bess of the energy storage system;
  • ⁇ Q and ⁇ P are the reactive power and active power that need to be compensated in the isolated grid system caused by the sudden load rise;
  • Q var is the total capacity of the reactive power compensation system,
  • S bess is the total capacity of the energy storage system, and
  • P bess is The energy storage system outputs active power.
  • a configuration method for the reactive power compensation system and the energy storage system to respectively compensate the reactive power and active power of the isolated grid system is also provided, which is specifically as follows:
  • Q var is the total capacity of the reactive power compensation device
  • Q bess and P bess are the reactive power and active power of the energy storage device under normal operating conditions (non-extreme operating conditions), respectively
  • ⁇ and ⁇ respectively It is the setting coefficient of reactive power and active power, and its value range is 0 ⁇ 1, 0 ⁇ 1;
  • the reactive power compensation device When the values of ⁇ and ⁇ are both 1, it is equivalent to that the reactive power compensation device will be used to compensate the total reactive power of the system when the load fluctuates, and the energy storage device will be used to compensate the full active power of the system when the load fluctuates.
  • the total cost is expressed as:
  • C total is the total cost of configuration
  • C var is the cost required for the unit capacity of the reactive power compensation device
  • C bess is the cost required for the unit capacity of the energy storage device
  • C loss is the load shedding or the use of energy-consuming devices and PCV valves The cost of translation lost at the time.
  • formula (2) can be sorted into:
  • a load balancing device based on an energy storage and reactive power compensation system in an isolated grid
  • the device includes a sudden rise adjustment module and a sudden fall adjustment module;
  • the sudden rise adjustment module is used to compensate the reactive power and active power required by the isolated grid system through the reactive power compensation system and the energy storage system when the load of the isolated grid system suddenly rises;
  • the sudden drop adjustment module is used to absorb the excess reactive and active power of the isolated grid system through the reactive power compensation system and the energy storage system when the load of the isolated grid system suddenly drops.
  • the sudden rise adjustment module is specifically used for:
  • the energy storage system When ⁇ Q>Q var and ⁇ P>P bess , under this working condition, the energy storage system provides active power with power ⁇ P, the reactive power compensation system provides reactive power with Q var , and the remaining capacity of the energy storage system will provide A certain amount of reactive power supplements the capacity of the reactive power compensation system.
  • the energy storage system when ⁇ P>S bess , the energy storage system only outputs active power at the maximum power, and the load shedding of the system is required to ensure the stability of the system, and the load shedding power must satisfy ⁇ P load ⁇ P-S bess ;
  • ⁇ Q and ⁇ P are the reactive power and active power that need to be compensated in the isolated grid system caused by the sudden load rise;
  • Q var is the total capacity of the reactive power compensation system,
  • S bess is the total capacity of the energy storage system, and
  • P bess is The energy storage system outputs active power.
  • the dump adjustment module is configured to: when ⁇ Q ⁇ Q var, ⁇ P ⁇ S bess, this condition, reactive power compensation system and the energy storage system are a plurality of system The reactive power and active power of the energy storage system are absorbed, and the energy storage system is in a charging state;
  • ⁇ Q and ⁇ P are the reactive and active power that needs to be absorbed in the isolated grid system caused by the sudden load drop;
  • Q var is the total capacity of the reactive power compensation system, and
  • S bess is the total capacity of the energy storage system. S bess can be regarded as the maximum value of the output active power P bess of the energy storage system;
  • the device further includes a configuration module; the configuration module is used to provide a configuration method for the reactive power compensation system and the energy storage system to respectively compensate the reactive and active power of the isolated grid system, as follows:
  • Q var is the total capacity of the reactive power compensation device
  • Q bess and P bess are the reactive power and active power of the energy storage device under normal working conditions
  • ⁇ and ⁇ are the settings of reactive and active power, respectively Coefficient, the value range of which is 0 ⁇ 1, 0 ⁇ 1;
  • the reactive power compensation device When the values of ⁇ and ⁇ are both 1, it is equivalent to that the reactive power compensation device will be used to compensate the total reactive power of the system when the load fluctuates, and the energy storage device will be used to compensate the full active power of the system when the load fluctuates.
  • the total cost is expressed as:
  • C total is the total cost of configuration
  • C var is the cost required for the unit capacity of the reactive power compensation device
  • C bess is the cost required for the unit capacity of the energy storage device
  • C loss is the load shedding or the use of energy-consuming devices and PCV valves The cost of translation lost at the time.
  • formula (2) can be sorted into:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

孤网中基于储能及无功补偿系统的负荷平衡方法及装置,方法包括:当孤网系统负荷突升时,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿;当孤网系统负荷突降时,通过无功补偿系统及储能系统分别对孤网系统多出的无功及有功进行吸收。本发明根据孤网运行中负荷的波动情况进行不同调节方案的设置,其中通过利用储能系统结合无功补偿系统共同承担系统负荷波动时无功的补偿,避免了传统方式设备容量长期的闲置,降低无功补偿设备的总容量,使其更具经济性。

Description

孤网中基于储能及无功补偿系统的负荷平衡方法及装置 技术领域
本发明涉及孤网系统运行控制领域,具体涉及一种孤网中基于储能及无功补偿系统的负荷平衡方法及装置。
背景技术
现代储能系统特点在于其相应速度较快,既可以发出电能,又可以吸收电能,并且在某些情况下可以作为调节配电系统中的无功电源。这些功能使得储能系统能够充当孤网内的各种角色,例如不间断的孤岛电源、稳定频率的负载以及备用电源等。储能系统的特性使得传统电力系统由只能从“发电‐输电‐用电”的刚性系统转变成了具有一定弹性的柔性系统,增强了孤网运行的安全性及可靠。随着越来越多的企业到东南亚国家投资建厂,而东南亚国家由于其特殊的地理条件,导致很多工厂的电网无法与国家电网连接,只能采用孤立电网的方式运行,而孤立电网运行的稳定性将是一个企业在东南亚投资建厂的一个重要考量指标。而该项技术目前尚无成熟的技术可以采用。
由于孤网的特性,负荷波动对系统的稳定性有很大影响,因此现有的无功补偿系统往往是以系统最大负荷波动时所需的容量进行配置,该种配置方式使得其在一般情况下均长期存在容量的富余,据在印尼某些项目的情况可知,其无功补偿系统长期使用的容量约为总容量的60%,储能系统长期使用的容量约为总容量的40%~60%,不具有经济性,但考虑如果仅仅通过降低无功补偿系统及储能系统的容量来降低成本,将会使得孤网的安全稳定性下降,难以应对极端的负荷波动。
发明内容
鉴于现有技术中存在的技术缺陷和技术弊端,本发明实施例提供克服上述问题或者至少部分地解决上述问题的一种孤网中基于储能及无功补偿系统的负荷平衡方法及装置,具体方案如下:
作为本发明的第一方面,提供一种孤网中基于储能及无功补偿系统的负荷平衡方法,所述方法包括:
当孤网系统负荷突升时,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿;
当孤网系统负荷突降时,通过无功补偿系统及储能系统分别对孤网系统多出的无功及有功进行吸收。
进一步地,当孤网系统负荷突升时,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿具体为:
当△Q≤Q var,△P≤S bess时,此工况下,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿,此时储能系统处于放电状态,此时的S bess可视为储能系统输出有功功率P bess的最大值;
当△Q≤Q var,△P>S bess时,此工况下,负荷的突升已超过储能系统所能提供的上限,通过切 断部分负荷的方式降低对孤网系统的冲击,所切断负荷功率△P load≥△P‐S bess,所需的无功补偿量由无功补偿系统提供,此时的S bess可视为储能系统输出有功功率P bess的最大值,储能系统处于满功率放电状态;
当△Q>Q var,△P≤P bess时,此工况下,超出无功补偿系统容量的无功则通过储能系统提供,储能系统输出的无功功率Q bess=△Q‐Q var,同时系统所需的有功功率△P也由储能系统提供;
当△Q>Q var,△P>P bess时,此工况下,储能系统以功率△P向系统提供有功,无功补偿系统以Q var提供无功,同时储能系统剩余容量将提供一定的无功来补充无功补偿系统的容量。
其中,△Q、△P分别为负荷突升导致孤网系统中所需补偿的无功及有功;Q var为无功补偿系统的总容量,S bess为储能系统的总容量,P bess为储能系统输出有功功率。
进一步地,当△Q>Q var,△P>P bess,且△P>S bess时,储能系统以最大功率输出有功,同时通过切断部分负荷的方式降低对孤网系统的冲击,所切断负荷功率△P load≥△P‐S bess,从而保证系统的稳定。
进一步地,当孤网系统负荷突降时,通过无功补偿系统及储能系统分别对孤网系统多出的无功及有功进行吸收具体为:
当△Q≤Q var,△P≤S bess时,此工况下,无功补偿系统及储能系统分别对系统多出的无功及有功进行吸收,此时储能系统处于充电状态;
当△Q≤Q var,△P>S bess时,此工况下,由于负荷的突降已超过储能系统所能吸收的上限,通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,耗能装置及PCV阀所需消耗的功率需满足△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供,此时的S bess可视为储能系统输出有功功率P bess的最大值,储能系统处于满功率充电状态。
当△Q>Q var,△P≤P bess时,此工况下,超出无功补偿系统容量的无功则通过储能系统吸收,储能系统吸收的无功功率Q bess=△Q‐Q var,同时系统所需消耗的有功功率△P也由储能系统吸收,此时储能系统处于充电状态;
当△Q>Q var,△P>P bess时,此工况下,为了保证系统有功的平衡,避免发电机组出现超速的危险,此时储能系统将首先以△P保证有功功率的吸收,同时吸收剩余容量的无功;
其中,△Q、△P分别为负荷突升导致孤网系统中所需补偿的无功及有功;Q var为无功补偿系统的总容量,S bess为储能系统的总容量,P bess为储能系统输出有功功率。
进一步地,当△Q>Q var,△P>P bess,且△P>S bess时,由于负荷的突降已超过储能系统所能吸收的上限,此时将通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,其所需消耗的功率需满足△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供。
进一步地,所述方法还包括提供无功补偿系统及储能系统分别对孤网系统的无功及有功进行补偿的配置方式,具体如下:
令孤网系统中负荷突变导致所需的无功及有功的最大值分别为△Q max、△P max,则配置方式的公式为:
Figure PCTCN2021099196-appb-000001
式中,Q var为无功补偿装置的总容量;Q bess、P bess分别为储能装置在正常工况下工作时的无功功率及有功功率;α、β分别为无功及有功的设置系数,其取值范围为0≤α≤1,0≤β≤1。
作为本发明的另一方面,提供一种孤网中基于储能及无功补偿系统的负荷平衡装置,所述装置包括突升调节模块和突降调节模块;
所述突升调节模块,用于当孤网系统负荷突升时,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿;
所述突降调节模块,用于当孤网系统负荷突降时,通过无功补偿系统及储能系统分别对孤网系统多出的无功及有功进行吸收。
进一步地,所述突升调节模块具体用于:
当△Q≤Q var,△P≤S bess时,此工况下,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿,此时储能系统处于放电状态,此时的S bess可视为储能系统输出有功功率P bess的最大值;
当△Q≤Q var,△P>S bess时,此工况下,负荷的突升已超过储能系统所能提供的上限,通过切断部分负荷的方式降低对孤网系统的冲击,所切断负荷功率△P load≥△P‐S bess,所需的无功补偿量由无功补偿系统提供,此时的S bess可视为储能系统输出有功功率P bess的最大值,储能系统处于满功率放电状态;
当△Q>Q var,△P≤P bess时,此工况下,超出无功补偿系统容量的无功则通过储能系统提供,储能系统输出的无功功率Q bess=△Q‐Q var,同时系统所需的有功功率△P也由储能系统提供;
当△Q>Q var,△P>P bess时,此工况下,储能系统以功率△P向系统提供有功,无功补偿系统以Q var提供无功,同时储能系统剩余容量将提供一定的无功来补充无功补偿系统的容量。特别的,当△P>S bess时,储能系统只以最大功率输出有功,并需要系统切负荷来保证系统的稳定,其所切负荷功率需满足△P load≥△P‐S bess
其中,△Q、△P分别为负荷突升导致孤网系统中所需补偿的无功及有功;Q var为无功补偿系统的总容量,S bess为储能系统的总容量,P bess为储能系统输出有功功率。
进一步地,当△Q>Q var,△P>P bess,且△P>S bess时,由于负荷的突降已超过储能系统所能吸收的上限,此时将通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,其所需消耗的功率需满足△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供。
进一步地,所述突降调节模块具体用于:当△Q≤Q var,△P≤S bess时,此工况下,无功补偿系统及储能系统分别对系统多出的无功及有功进行吸收,此时储能系统处于充电状态;
当△Q≤Q var,△P>S bess时,此工况下,由于负荷的突降已超过储能系统所能吸收的上限,通 过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,耗能装置及PCV阀所需消耗的功率需满足△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供,此时的S bess可视为储能系统输出有功功率P bess的最大值,储能系统处于满功率充电状态。
当△Q>Q var,△P≤P bess时,此工况下,超出无功补偿系统容量的无功则通过储能系统吸收,储能系统吸收的无功功率Q bess=△Q‐Q var,同时系统所需消耗的有功功率△P也由储能系统吸收,此时储能系统处于充电状态;
当△Q>Q var,△P>P bess时,此工况下,为了保证系统有功的平衡,避免发电机组出现超速的危险,此时储能系统将首先以△P保证有功功率的吸收,同时吸收剩余容量的无功。
其中,△Q、△P分别为负荷突升导致孤网系统中所需补偿的无功及有功;Q var为无功补偿系统的总容量,S bess为储能系统的总容量,P bess为储能系统输出有功功率。
进一步地,当△Q>Q var,△P>P bess,且△P>S bess时,由于负荷的突降已超过储能系统所能吸收的上限,此时将通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,其所需消耗的功率需满足△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供。
进一步地,所述装置还包括配置模块;所述配置模块用于提供无功补偿系统及储能系统分别对孤网系统的无功及有功进行补偿的配置方式,具体如下:
令孤网系统中负荷突变导致所需的无功及有功的最大值分别为△Q max、△P max,则配置方式的公式为:
Figure PCTCN2021099196-appb-000002
式中,Q var为无功补偿装置的总容量;Q bess、P bess分别为储能装置在正常工况下工作时的无功功率及有功功率;α、β分别为无功及有功的设置系数,其取值范围为0≤α≤1,0≤β≤1。
本发明具有以下有益效果:
本发明通过合理配置无功补偿装置及储能装置的容量以及合理的有功无功分配方式实现设备容量的充分使用,优化建设成本,提高孤网运行的经济性,同时避免无功及储能装置容量配置不足导致的安全稳定性下降的问题。
附图说明
图1为本发明实施例提供的孤网中基于储能及无功补偿系统的负荷平衡方法流程图;
图2为本发明实施例提供的孤网系统负荷突升时的方法流程图;
图3为本发明实施例提供的孤网系统负荷突降时的方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分,而不是全部的实施例。基于本发明中的实施例,本 领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1所示,作为本发明的第一方面,提供一种孤网中基于储能及无功补偿系统的负荷平衡方法,所述方法包括:
当孤网系统负荷突升时,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿;
当孤网系统负荷突降时,通过无功补偿系统及储能系统分别对孤网系统多出的无功及有功进行吸收。
如图2所示,作为本发明的优选实施例,当孤网系统负荷突升时,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿具体为:
当△Q≤Q var,△P≤S bess时,此工况下,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿,此时储能系统处于放电状态,且此时的S bess可视为储能系统输出的有功功率P bess的最大值;
当△Q≤Q var,△P>S bess时,此工况下,负荷的突升已超过储能系统所能提供的上限,通过切断部分负荷的方式降低对孤网系统的冲击,所切断负荷功率△P load≥△P‐S bess,所需的无功补偿量由无功补偿系统提供,此时的S bess可视为储能系统输出有功功率P bess的最大值,储能系统处于最大功率放电状态;
当△Q>Q var,△P≤P bess时,此工况下,超出无功补偿系统容量的无功通过储能系统提供,储能系统输出的无功功率Q bess=△Q‐Q var,同时系统所需的有功功率△P也由储能系统提供;
当△Q>Q var,△P>P bess时,此工况下,储能系统以功率△P向系统提供有功,无功补偿系统以Q var提供无功,同时储能系统剩余容量将提供一定的无功来补充无功补偿系统的容量;
当△Q>Q var,△P>P bess,且△P>S bess时,储能系统以最大功率输出有功,同时通过切断部分负荷的方式降低对孤网系统的冲击,所切断负荷功率△P load≥△P‐S bess,从而保证系统的稳定。
其中,△Q、△P分别为负荷突升导致孤网系统中所需补偿的无功及有功;Q var为无功补偿系统的总容量,S bess为储能系统的总容量,P bess为储能系统输出有功功率。
如图3所示,作为本发明的优选实施例,当孤网系统负荷突降时,通过无功补偿系统及储能系统分别对孤网系统多出的无功及有功进行吸收具体为:
当△Q≤Q var,△P≤S bess时,此工况下,无功补偿系统及储能系统分别对系统多出的无功及有功进行吸收,此时储能系统处于充电状态;
式中,△Q、△P为负荷突降导致孤网系统中所需吸收的无功及有功;Q var为无功补偿系统的总容量,S bess为储能系统的总容量,此时的S bess可视为储能系统输出有功功率P bess的最大值;
当△Q≤Q var,△P>S bess时,此工况下,由于负荷的突降已超过储能系统所能吸收的上限,通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,耗能装置及PCV阀所需消耗的功率需满足△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供,此时的S bess可视为储能系统输出有功功率P bess的最大值,储能系统处于满功率充电状态。
当△Q>Q var,△P≤P bess时,此工况下,超出无功补偿系统容量的无功则通过储能系统吸收,储能系统吸收的无功功率Q bess=△Q‐Q var,同时系统所需消耗的有功功率△P也由储能系统吸收,此时储能系统处于充电状态;
当△Q>Q var,△P>P bess时,此工况下,为了保证系统有功的平衡,避免发电机组出现超速的危险,此时储能系统将首先以△P保证有功功率的吸收,同时吸收剩余容量的无功;
当△Q>Q var,△P>P bess,且△P>S bess时,由于负荷的突降已超过储能系统所能吸收的上限,此时将通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,其所需消耗的功率需满足△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供;
其中,△Q、△P分别为负荷突升导致孤网系统中所需补偿的无功及有功;Q var为无功补偿系统的总容量,S bess为储能系统的总容量,P bess为储能系统输出有功功率。
作为本发明的优选实施例,还提供无功补偿系统及储能系统分别对孤网系统的无功及有功进行补偿的配置方式,具体如下:
令孤网系统中负荷突变导致所需的无功及有功的最大值分别为△Q max、△P max,则配置方式的公式为:
Figure PCTCN2021099196-appb-000003
式中,Q var为无功补偿装置的总容量;Q bess、P bess分别为储能装置在正常工况下(非极端工况下)工作时的无功功率及有功功率;α、β分别为无功及有功的设置系数,其取值范围为0≤α≤1,0≤β≤1;
上述实施例中,当α、β均取值为0时,其等同于没有设置无功补偿设备。负荷突升时,此时系统中的无功补偿量将全部由储能装置承担,在维持机组发出有功不变的情况下,将通过切断负荷的方式实现孤网系统的平衡,该种工况只在理论出现,实际不予存在;负荷突降时,首先维持有功的平衡,储能装置主要吸收有功功率,结合耗能装置及PCV阀来实现有功的平衡。
当α、β均取值为1时,其等同于无功补偿装置将用于补偿负荷波动时系统全部的无功功率,储能装置将用于补偿负荷波动时系统全部的有功功率。
根据以上的配置方式将其总费用表达为:
C total=C var·Q var+C bess·S bess+(1-α)(1-β)C loss    (2)
式中,C total为配置总费用;C var为无功补偿装置单位容量所需的费用;C bess为储能装置单位容量所需的费用;C loss为切负荷或利用耗能装置及PCV阀时所损失的折算费用。
根据式(1)将式(2)可整理为:
Figure PCTCN2021099196-appb-000004
通过式(3)中的内容可知,当外界条件一定时,对目标函数的优化可得到适用于该孤网中储能装置及无功补偿装置的最佳配置方式,即得出优配的α、β值,提高孤网运行的经济性。
作为本发明的第二方面,提供一种孤网中基于储能及无功补偿系统的负荷平衡装置,所述装置包括突升调节模块和突降调节模块;
所述突升调节模块,用于当孤网系统负荷突升时,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿;
所述突降调节模块,用于当孤网系统负荷突降时,通过无功补偿系统及储能系统分别对孤网系统多出的无功及有功进行吸收。
作为本发明的优选实施例,所述突升调节模块具体用于:
当△Q≤Q var,△P≤S bess时,此工况下,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿,此时储能系统处于放电状态,此时的S bess可视为储能系统输出有功功率P bess的最大值;
当△Q≤Q var,△P>S bess时,此工况下,负荷的突升已超过储能系统所能提供的上限,通过切断部分负荷的方式降低对孤网系统的冲击,所切断负荷功率△P load≥△P‐S bess,所需的无功补偿量由无功补偿系统提供,此时的S bess可视为储能系统输出有功功率P bess的最大值,储能系统处于满功率放电状态;
当△Q>Q var,△P≤P bess时,此工况下,超出无功补偿系统容量的无功则通过储能系统提供,储能系统输出的无功功率Q bess=△Q‐Q var,同时系统所需的有功功率△P也由储能系统提供;
当△Q>Q var,△P>P bess时,此工况下,储能系统以功率△P向系统提供有功,无功补偿系统以Q var提供无功,同时储能系统剩余容量将提供一定的无功来补充无功补偿系统的容量。特别的,当△P>S bess时,储能系统只以最大功率输出有功,并需要系统切负荷来保证系统的稳定,其所切负荷功率需满足△P load≥△P‐S bess
当△Q>Q var,△P>P bess,且△P>S bess时,由于负荷的突降已超过储能系统所能吸收的上限,此时将通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,其所需消耗的功率需满足△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供;
其中,△Q、△P分别为负荷突升导致孤网系统中所需补偿的无功及有功;Q var为无功补偿系统的总容量,S bess为储能系统的总容量,P bess为储能系统输出有功功率。
作为本发明的优选实施例,所述突降调节模块具体用于:当△Q≤Q var,△P≤S bess时,此工况下,无功补偿系统及储能系统分别对系统多出的无功及有功进行吸收,此时储能系统处于充电状态;
式中,△Q、△P为负荷突降导致孤网系统中所需吸收的无功及有功;Q var为无功补偿系统的总容量,S bess为储能系统的总容量,此时的S bess可视为储能系统输出有功功率P bess的最大值;
当△Q≤Q var,△P>S bess时,此工况下,由于负荷的突降已超过储能系统所能吸收的上限,通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,耗能装置及PCV阀所需消耗的功率需满足△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供,此时的S bess可视为储能系统输出有功功率P bess的最大值,储能系统处于满功率充电状态。
当△Q>Q var,△P≤P bess时,此工况下,超出无功补偿系统容量的无功则通过储能系统吸收,储能系统吸收的无功功率Q bess=△Q‐Q var,同时系统所需消耗的有功功率△P也由储能系统吸收,此时储能系统处于充电状态;
当△Q>Q var,△P>P bess时,此工况下,为了保证系统有功的平衡,避免发电机组出现超速的危险,此时储能系统将首先以△P保证有功功率的吸收,同时吸收剩余容量的无功;
当△Q>Q var,△P>P bess,且△P>S bess时,由于负荷的突降已超过储能系统所能吸收的上限,此时将通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,其所需消耗的功率需满足△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供。
作为本发明的优选实施例,所述装置还包括配置模块;所述配置模块用于提供无功补偿系统及储能系统分别对孤网系统的无功及有功进行补偿的配置方式,具体如下:
令孤网系统中负荷突变导致所需的无功及有功的最大值分别为△Q max、△P max,则配置方式的公式为:
Figure PCTCN2021099196-appb-000005
式中,Q var为无功补偿装置的总容量;Q bess、P bess分别为储能装置在正常工况下工作时的无功功率及有功功率;α、β分别为无功及有功的设置系数,其取值范围为0≤α≤1,0≤β≤1;
上述实施例中,当α、β均取值为0时,其等同于没有设置无功补偿设备。负荷突升时,此时系统中的无功补偿量将全部由储能装置承担,在维持机组发出有功不变的情况下,将通过切断负荷的方式实现孤网系统的平衡,该种工况只在理论出现,实际不予存在;负荷突降时,首先维持有功的平衡,储能装置主要吸收有功功率,结合耗能装置及PCV阀来实现有功的平衡。
当α、β均取值为1时,其等同于无功补偿装置将用于补偿负荷波动时系统全部的无功功率,储能装置将用于补偿负荷波动时系统全部的有功功率。
根据以上的配置方式将其总费用表达为:
C total=C var·Q var+C bess·S bess+(1-α)(1-β)C loss    (2)
式中,C total为配置总费用;C var为无功补偿装置单位容量所需的费用;C bess为储能装置单位容量所需的费用;C loss为切负荷或利用耗能装置及PCV阀时所损失的折算费用。
根据式(1)将式(2)可整理为:
Figure PCTCN2021099196-appb-000006
通过式(3)中的内容可知,当外界条件一定时,对目标函数的优化可得到适用于该孤网中储能装置及无功补偿装置的最佳配置方式,即得出优配的α、β值,提高孤网运行的经济性。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种孤网中基于储能及无功补偿系统的负荷平衡方法,其特征在于,所述方法包括:
    当孤网系统负荷突升时,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿;
    当孤网系统负荷突降时,通过无功补偿系统及储能系统分别对孤网系统多出的无功及有功进行吸收。
  2. 根据权利要求1所述的孤网中基于储能及无功补偿系统的负荷平衡方法,其特征在于,当孤网系统负荷突升时,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿具体为:
    当△Q≤Q var,△P≤S bess时,此工况下,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿;
    当△Q≤Q var,△P>S bess时,此工况下,负荷的突升已超过储能系统所能提供的上限,通过切断部分负荷的方式降低对孤网系统的冲击,所切断负荷功率△P load≥△P‐S bess,所需的无功补偿量由无功补偿系统提供,且储能系统处于满功率放电状态;
    当△Q>Q var,△P≤P bess时,此工况下,超出无功补偿系统容量的无功通过储能系统提供,储能系统输出的无功功率Q bess=△Q‐Q var,同时系统所需的有功功率△P也由储能系统提供;
    当△Q>Q var,△P>P bess时,此工况下,储能系统以功率△P向系统提供有功,无功补偿系统以Q var提供无功,同时储能系统剩余容量将提供一定的无功来补充无功补偿系统的容量;
    当△Q>Q var,△P>P bess,且△P>S bess时,储能系统以最大功率输出有功,同时通过切断部分负荷的方式降低对孤网系统的冲击,所切断负荷功率△P load≥△P‐S bess,从而保证系统的稳定;
    其中,△Q、△P分别为负荷突升导致孤网系统中所需补偿的无功及有功;Q var为无功补偿系统的总容量,S bess为储能系统的总容量,P bess为储能系统输出有功功率。
  3. 根据权利要求1所述的孤网中基于储能及无功补偿系统的负荷平衡方法,其特征在于,当孤网系统负荷突降时,通过无功补偿系统及储能系统分别对孤网系统多出的无功及有功进行吸收具体为:
    当△Q≤Q var,△P≤S bess时,此工况下,无功补偿系统及储能系统分别对系统多出的无功及有功进行吸收;
    当△Q≤Q var,△P>S bess时,此工况下,由于负荷的突降已超过储能系统所能吸收的上限,因此, 通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,耗能装置及PCV阀所需消耗的功率△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供,且储能系统处于满功率充电状态;
    当△Q>Q var,△P≤P bess时,此工况下,超出无功补偿系统容量的无功则通过储能系统吸收,储能系统吸收的无功功率Q bess=△Q‐Q var,同时系统所需消耗的有功功率△P由储能系统吸收;
    当△Q>Q var,△P>P bess时,此工况下,为了保证系统有功的平衡,避免发电机组出现超速的危险,此时储能系统将首先以△P保证有功功率的吸收,同时吸收剩余容量的无功;
    其中,△Q、△P分别为负荷突升导致孤网系统中所需补偿的无功及有功;Q var为无功补偿系统的总容量,S bess为储能系统的总容量,P bess为储能系统输出有功功率。
  4. 根据权利要求3所述的孤网中基于储能及无功补偿系统的负荷平衡方法,其特征在于,当△Q>Q var,△P>P bess,且△P>S bess时,由于负荷的突降已超过储能系统所能吸收的上限,此时将通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,其所需消耗的功率需满足△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供。
  5. 根据权利要求1所述的孤网中基于储能及无功补偿系统的负荷平衡方法,其特征在于,所述方法还包括提供无功补偿系统及储能系统分别对孤网系统的无功及有功进行补偿的配置方式,具体如下:
    令孤网系统中负荷突变导致所需的无功及有功的最大值分别为△Q max、△P max,则配置方式的公式为:
    Figure PCTCN2021099196-appb-100001
    式中,Q var为无功补偿装置的总容量;Q bess、P bess分别为储能装置在正常工况下工作时的无功功率及有功功率;α、β分别为无功及有功的设置系数,其取值范围为0≤α≤1,0≤β≤1。
  6. 一种孤网中基于储能及无功补偿系统的负荷平衡装置,其特征在于,所述装置包括突升调节模块和突降调节模块;
    所述突升调节模块,用于当孤网系统负荷突升时,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿;
    所述突降调节模块,用于当孤网系统负荷突降时,通过无功补偿系统及储能系统分别对孤网系统 多出的无功及有功进行吸收。
  7. 根据权利要求6所述的孤网中基于储能及无功补偿系统的负荷平衡装置,其特征在于,所述突升调节模块具体用于:
    当△Q≤Q var,△P≤S bess时,此工况下,通过无功补偿系统及储能系统分别对孤网系统所需的无功及有功进行补偿;
    当△Q≤Q var,△P>S bess时,此工况下,负荷的突升已超过储能系统所能提供的上限,通过切断部分负荷的方式降低对孤网系统的冲击,所切断负荷功率△P load≥△P‐S bess,所需的无功补偿量由无功补偿系统提供,且储能系统处于满功率放电状态;
    当△Q>Q var,△P≤P bess时,此工况下,超出无功补偿系统容量的无功则通过储能系统提供,储能系统输出的无功功率Q bess=△Q‐Q var,同时系统所需的有功功率△P也由储能系统提供;
    当△Q>Q var,△P>P bess时,此工况下,储能系统以功率△P向系统提供有功,无功补偿系统以Q var提供无功,同时储能系统剩余容量将提供一定的无功来补充无功补偿系统的容量;
    其中,△Q、△P分别为负荷突升导致孤网系统中所需补偿的无功及有功;Q var为无功补偿系统的总容量,S bess为储能系统的总容量,P bess为储能系统输出有功功率。
  8. 根据权利要求7所述的孤网中基于储能及无功补偿系统的负荷平衡装置,其特征在于,当△Q>Q var,△P>P bess,且△P>S bess时,由于负荷的突降已超过储能系统所能吸收的上限,此时将通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,其所需消耗的功率需满足△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供。
  9. 根据权利要求6所述的孤网中基于储能及无功补偿系统的负荷平衡装置,其特征在于,所述突降调节模块具体用于:当△Q≤Q var,△P≤S bess时,此工况下,无功补偿系统及储能系统分别对系统多出的无功及有功进行吸收,此时储能系统处于充电状态;
    当△Q≤Q var,△P>S bess时,此工况下,由于负荷的突降已超过储能系统所能吸收的上限,通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,耗能装置及PCV阀所需消耗的功率△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供,且储能系统处于满功率充电状态;
    当△Q>Q var,△P≤P bess时,此工况下,超出无功补偿系统容量的无功则通过储能系统吸收,储能系统吸收的无功功率Q bess=△Q‐Q var,同时系统所需消耗的有功功率△P也由储能系统吸收;
    当△Q>Q var,△P>P bess时,此工况下,为了保证系统有功的平衡,避免发电机组出现超速的危险,此时储能系统将首先以△P保证有功功率的吸收,同时吸收剩余容量的无功;
    当△Q>Q var,△P>P bess,且△P>S bess时,由于负荷的突降已超过储能系统所能吸收的上限,此时将通过耗能装置及PCV阀放散的方式降低对孤网机组的冲击,其所需消耗的功率需满足△P loss≥△P‐S bess,所需的无功补偿量由无功补偿系统提供;
    其中,△Q、△P分别为负荷突升导致孤网系统中所需补偿的无功及有功;Q var为无功补偿系统的总容量,S bess为储能系统的总容量,P bess为储能系统输出有功功率。
  10. 根据权利要求6所述的孤网中基于储能及无功补偿系统的负荷平衡装置,其特征在于,所述装置还包括配置模块;所述配置模块用于提供无功补偿系统及储能系统分别对孤网系统的无功及有功进行补偿的配置方式,具体如下:
    令孤网系统中负荷突变导致所需的无功及有功的最大值分别为△Q max、△P max,则配置方式的公式为:
    Figure PCTCN2021099196-appb-100002
    式中,Q var为无功补偿装置的总容量;Q bess、P bess分别为储能装置在正常工况下工作时的无功功率及有功功率;α、β分别为无功及有功的设置系数,其取值范围为0≤α≤1,0≤β≤1。
PCT/CN2021/099196 2020-06-19 2021-06-09 孤网中基于储能及无功补偿系统的负荷平衡方法及装置 WO2021254231A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010566136.4 2020-06-19
CN202010566136.4A CN111817322B (zh) 2020-06-19 2020-06-19 孤网中基于储能及无功补偿系统的负荷平衡方法及装置

Publications (1)

Publication Number Publication Date
WO2021254231A1 true WO2021254231A1 (zh) 2021-12-23

Family

ID=72845272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099196 WO2021254231A1 (zh) 2020-06-19 2021-06-09 孤网中基于储能及无功补偿系统的负荷平衡方法及装置

Country Status (2)

Country Link
CN (1) CN111817322B (zh)
WO (1) WO2021254231A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117691618A (zh) * 2023-12-12 2024-03-12 国网青海省电力公司清洁能源发展研究院 一种电网运行过程的暂态无功电压控制方法
CN118054428A (zh) * 2024-04-16 2024-05-17 福建时代星云科技有限公司 一种储能系统的无功补偿方法及终端

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111817322B (zh) * 2020-06-19 2021-09-03 中冶南方都市环保工程技术股份有限公司 孤网中基于储能及无功补偿系统的负荷平衡方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480130A (zh) * 2010-11-29 2012-05-30 比亚迪股份有限公司 用于风电系统的功率补偿方法及系统
JP2014083900A (ja) * 2012-10-22 2014-05-12 Mitsubishi Electric Corp 電気鉄道用電力給電システムの制御装置
CN106099986A (zh) * 2016-08-03 2016-11-09 中广核研究院有限公司 一种孤岛综合能源供给及保障系统
CN210724215U (zh) * 2019-12-11 2020-06-09 滨州学院 一种无功补偿及谐波抑制机柜
CN111817322A (zh) * 2020-06-19 2020-10-23 中冶南方都市环保工程技术股份有限公司 孤网中基于储能及无功补偿系统的负荷平衡方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7800348B2 (en) * 2007-11-21 2010-09-21 Rockwell Automation Technologies, Inc. Motor drive with VAR compensation
CN102299520B (zh) * 2011-09-02 2013-08-14 北京四方华能电气设备有限公司 微电网无功功率补偿方法和系统
CN103490428B (zh) * 2013-09-16 2015-02-11 中国能源建设集团广东省电力设计研究院 微电网无功补偿容量配置方法及系统
CN107534294B (zh) * 2014-12-30 2021-07-30 弗莱斯金电力系统公司 具有有功和无功功率控制的暂态功率稳定化设备
CN105490305A (zh) * 2016-02-02 2016-04-13 国网上海市电力公司 分布式能源接入系统及其电网功率因数提高方法
CN105811435A (zh) * 2016-05-24 2016-07-27 成都欣维保科技有限责任公司 一种智能储能发电系统的无功补偿方法
CN105896618A (zh) * 2016-05-24 2016-08-24 成都欣维保科技有限责任公司 一种可用于调节无功的储能发电系统的运行方法
CN106549406B (zh) * 2016-12-08 2019-05-31 中山大洋电机股份有限公司 一种新能源微电网电动汽车充电站的控制方法
CN109510215A (zh) * 2018-12-25 2019-03-22 陈君诚 有源无源混合型无功功率动态补偿装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480130A (zh) * 2010-11-29 2012-05-30 比亚迪股份有限公司 用于风电系统的功率补偿方法及系统
JP2014083900A (ja) * 2012-10-22 2014-05-12 Mitsubishi Electric Corp 電気鉄道用電力給電システムの制御装置
CN106099986A (zh) * 2016-08-03 2016-11-09 中广核研究院有限公司 一种孤岛综合能源供给及保障系统
CN210724215U (zh) * 2019-12-11 2020-06-09 滨州学院 一种无功补偿及谐波抑制机柜
CN111817322A (zh) * 2020-06-19 2020-10-23 中冶南方都市环保工程技术股份有限公司 孤网中基于储能及无功补偿系统的负荷平衡方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117691618A (zh) * 2023-12-12 2024-03-12 国网青海省电力公司清洁能源发展研究院 一种电网运行过程的暂态无功电压控制方法
CN117691618B (zh) * 2023-12-12 2024-05-10 国网青海省电力公司清洁能源发展研究院 一种电网运行过程的暂态无功电压控制方法
CN118054428A (zh) * 2024-04-16 2024-05-17 福建时代星云科技有限公司 一种储能系统的无功补偿方法及终端

Also Published As

Publication number Publication date
CN111817322B (zh) 2021-09-03
CN111817322A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2021254231A1 (zh) 孤网中基于储能及无功补偿系统的负荷平衡方法及装置
CN107769273B (zh) 一种汽轮机负荷分配控制方法及系统
CN111969610B (zh) 基于储能变流器四象限运行特性的电压功率综合控制系统
CN108649564B (zh) 一种考虑安全裕度的快速频率响应备用优化配置方法
CN102646980A (zh) 新型单元火力发电机组一次调频补偿控制方法
CN103269079B (zh) 一种基于静态、暂态电压稳定约束的无功补偿配置方法
WO2014063413A1 (zh) 一种通过调整电压辅助调节电网频率的方法
CN112018785A (zh) 基于频率扰动互补的受端电网飞轮储能调频方法及系统
CN204858556U (zh) 一种数据中心光伏发配电装置
US20120035780A1 (en) Intelligent power saving system
WO2022227319A1 (zh) 一种源储荷调切联动的紧急控制方法及系统
CN113300415A (zh) 一种基于发电厂新能源发电技术的辅助调频系统
CN108808713B (zh) 提升新能源发电消纳能力的工业热负荷控制系统及方法
CN110429657A (zh) 基于配网多子站集群协调的分布式柔性新能源发电系统
CN110048450A (zh) 孤岛微电网光伏-储能自主协调控制策略和控制系统
CN112134291B (zh) 一种大型风电场的无功调压控制方法
CN112436510B (zh) 一种风-光-火特高压直流外送调度方法及系统
CN110011351A (zh) 一种基于约束函数的效率控制方法
CN110417064B (zh) 基于agc机组有功能力监控的调节速率动态调控方法及系统
CN202127365U (zh) 一种边防稳压稳频电源器
CN207518286U (zh) 电站内储能系统协同汽轮机组调节级全负荷运行系统
CN113507114B (zh) 含高比例可再生能源电力系统调节能力需求评估方法
KR100646685B1 (ko) 슈퍼 캐패시터를 이용한 전력계통 안정화 장치
CN219623312U (zh) 一种氢冷发电机供油系统的安全装置
CN215733513U (zh) 一种基于发电厂新能源发电技术的辅助调频系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21824875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21824875

Country of ref document: EP

Kind code of ref document: A1