WO2021254073A1 - 显示基板、显示装置和显示基板的制作方法 - Google Patents

显示基板、显示装置和显示基板的制作方法 Download PDF

Info

Publication number
WO2021254073A1
WO2021254073A1 PCT/CN2021/094483 CN2021094483W WO2021254073A1 WO 2021254073 A1 WO2021254073 A1 WO 2021254073A1 CN 2021094483 W CN2021094483 W CN 2021094483W WO 2021254073 A1 WO2021254073 A1 WO 2021254073A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
light
dielectric layer
emitting diodes
sub
Prior art date
Application number
PCT/CN2021/094483
Other languages
English (en)
French (fr)
Inventor
靳倩
黄维
田禹
孙倩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/921,598 priority Critical patent/US20230178524A1/en
Publication of WO2021254073A1 publication Critical patent/WO2021254073A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0756Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a manufacturing method of a display substrate, a display device, and a display substrate.
  • Red micro LEDs, green micro LEDs, and green micro LEDs of related technologies need to be grown on different wafer substrates (including sapphire, GaAs, single crystal Si, SiC, etc.) during preparation, and they must be fabricated separately.
  • wafer substrates including sapphire, GaAs, single crystal Si, SiC, etc.
  • the development of blue micro LED and green micro LED industry is relatively mature, and the electroluminescence performance is relatively good, but the development of red micro LED industry is immature and the electroluminescence efficiency is low.
  • each micro LED needs to be transferred from the wafer substrate to the array substrate to realize active matrix driving.
  • the embodiment of the present disclosure provides a display substrate, including:
  • the dielectric layer is located on one side of the base substrate, and the dielectric layer includes a plurality of recesses;
  • a plurality of first-type light-emitting diodes one of the first-type light-emitting diodes is located in one of the recesses;
  • a photoluminescence structure the photoluminescence structure is located in at least a part of the recessed portion, and is located on a side of the first type light-emitting diode away from the base substrate, and is configured to connect the first type light-emitting diode The emitted light of the first wavelength is converted into light of the second wavelength.
  • the display substrate further includes: a plurality of second-type light-emitting diodes located on a side of the dielectric layer away from the base substrate, and the second-type light-emitting diodes are located at a distance from the The height of the base substrate is different from the height of the first type of light-emitting diode from the base substrate.
  • the dielectric layer includes a first sub-dielectric layer and a second sub-dielectric layer, and the second sub-dielectric layer is located on a side of the first sub-dielectric layer away from the base substrate. side;
  • the recessed portion is a through hole penetrating the second sub-dielectric layer, and the second type light emitting diode is located on the side of the second sub-dielectric layer away from the first sub-dielectric layer and is connected to the first sub-dielectric layer.
  • One type of light-emitting diodes are arranged side by side in a direction parallel to the base substrate.
  • the light emitting diodes of the first type and the light emitting diodes of the second type are distributed in multiple rows and multiple columns;
  • first type of light emitting diodes and the second type of light emitting diodes are alternately distributed; in the same column, the first type of light emitting diodes and the second type of light emitting diodes are alternately distributed.
  • the photoluminescence structure is provided for every one of the first-type light-emitting diodes.
  • the spaced first-type light-emitting diodes are further provided with a scattering structure located in the recessed portion on the side away from the base substrate.
  • the light-emitting colors of the first-type light-emitting diodes of each of the recesses are the same; and the light-emitting colors of the second-type light-emitting diodes are the same.
  • the first type of light emitting diode is a blue light emitting diode
  • the second type of light emitting diode is a green light emitting diode
  • the material of the photoluminescence structure is excited by blue light to emit red light. Quantum dot material.
  • it further includes: a driving structure located between the base substrate and the first sub-dielectric layer, and the driving structure includes a first type of light emitting diode corresponding to the first type of electrical connection.
  • the driving structure includes a first type of light emitting diode corresponding to the first type of electrical connection.
  • a type of transistor, a second type of transistor electrically connected to the second type of light-emitting diode corresponding to the second type of transistor.
  • first-type connection pad between the first-type light-emitting diode and the first sub-dielectric layer; between the second sub-dielectric layer and the There is also a second type of connection pad between the second type of light-emitting diodes;
  • the first-type connection pad electrically connects the first-type light-emitting diode and the first-type transistor through a via hole penetrating the first sub-dielectric layer;
  • the second-type connection pad electrically connects the second-type light-emitting diode and the second-type transistor through a via hole penetrating the first sub-dielectric layer and the second sub-dielectric layer.
  • the embodiment of the present disclosure also provides a display device, including the display substrate provided in the embodiment of the present disclosure.
  • the embodiment of the present disclosure also provides a method for manufacturing the display substrate as provided in the embodiment of the present disclosure, including:
  • a photoluminescence structure is formed on at least a part of the first-type light-emitting diode in the recessed portion on a side facing away from the base substrate.
  • the forming a dielectric layer with a plurality of recesses on one side of the base substrate includes:
  • a through hole penetrating the second sub-dielectric layer is formed in the second sub-dielectric layer as the recessed portion.
  • the arranging a first-type light-emitting diode in each of the recesses includes:
  • one light-emitting diode of the first type is arranged in each of the recesses.
  • the forming a photoluminescence structure on at least a part of the recessed portion of the first-type light-emitting diode on a side facing away from the base substrate includes:
  • a photoluminescence structure covering the first type of light-emitting diode is formed in at least a part of the recessed portion.
  • the manufacturing method further includes:
  • a plurality of second-type light-emitting diodes are arranged on the side of the dielectric layer away from the base substrate.
  • a scattering structure covering the light-emitting diode of the first type is formed in the concave portion where the photoluminescence structure is not provided.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a display substrate provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of a top view structure of a display substrate provided by an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of the distribution of the first type of light-emitting diodes and the second type of light-emitting diodes provided by the embodiments of the disclosure;
  • FIG. 4 is a schematic cross-sectional structure diagram of a specific display substrate provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of a manufacturing process of a display substrate provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram of the first type of transistor and the second type of transistor in an embodiment of the disclosure
  • FIG. 7 is a schematic diagram of the structure of the second sub-dielectric layer completed in the embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of the structure of the recessed portion in the embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of the structure of the first connection pad and the second connection pad in the embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of the structure of the first type of light-emitting diode prepared in an embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of the structure of the second type of light-emitting diode in an embodiment of the disclosure.
  • FIG. 12 is a schematic structural diagram of a completed scattering structure in an embodiment of the disclosure.
  • FIG. 13 is a schematic diagram of the structure of the completed packaging layer in the embodiment of the disclosure.
  • a display substrate provided by an embodiment of the present disclosure includes:
  • the dielectric layer 2 is located on one side of the base substrate 1, and the dielectric layer includes a plurality of recesses 20;
  • the photoluminescence structure 41, the photoluminescence structure 41 is located in at least a part of the recess 20, and is located on the side of the first type of light emitting diode 31 away from the base substrate 1. Specifically, the photoluminescence structure 41 may cover the recess 20 The entire area except the first type light emitting diode 31; the photoluminescence structure 41 may specifically be a photoluminescence structure 41 that emits red light when irradiated by the light emitted by the first type light emitting diode 31.
  • the dielectric layer 2 is provided with a plurality of recesses 20, the first-type light-emitting diodes 31 are provided in the recesses 20, and the photoluminescence structure 41 is provided in the partial recesses 20.
  • the retaining wall or black matrix limits the photoluminescence structure 41, thereby simplifying the process and improving the related technology.
  • the graphical red conversion layer has the problem of complicated production methods.
  • the display substrate may further include: a plurality of second-type light-emitting diodes 32 located on the side of the dielectric layer 2 away from the base substrate 1, and the height of the second-type light-emitting diodes 32 from the base substrate 1 is the same as that of the first type.
  • the height of the LED-like diode 31 from the base substrate 1 is different.
  • the height of the second type of light emitting diode 32 from the base substrate 1 may be: the first surface S1 of the second type of light emitting diode 32 on the side facing away from the base substrate 1 and the base substrate 1.
  • the second distance h2 between the second surface S2 on the side facing the dielectric layer 2; the height of the first type of light emitting diode 31 from the base substrate 1 may be: the side of the first type of light emitting diode 31 away from the base substrate 1
  • the first distance h1 between the third surface S3 and the second surface S2, that is, the first distance h1 and the second distance h2 are different.
  • the display substrate includes a plurality of second-type light-emitting diodes 32 located on the side of the dielectric layer 2 away from the base substrate 1, that is, the second-type light-emitting diodes 32 are also provided in the plane area of the dielectric layer 2.
  • the height of the first type of light-emitting diodes 31 from the base substrate 1 is different from the height of the second type of light-emitting diodes 32 from the base substrate 1, and then when manufacturing the first type of light-emitting diodes 31 and the second type of light-emitting diodes 32, you can use
  • the step difference formed by the recessed portion 20 makes it easier to form the first-type light-emitting diode 31 in the recessed portion 20, which reduces the difficulty of distinguishing the corresponding transfer positions when transferring different types of light-emitting diodes.
  • the photoluminescence structure 41 is arranged in the partial recess 20 by using the recess 20 of the dielectric layer 2 where the first type of light-emitting diode 31 and the second type of light-emitting diode 32 are layered.
  • the photoluminescence structure 41 is used to limit the retaining wall or black matrix, thereby simplifying the process and improving the related technology.
  • it is necessary to additionally prepare a printing retaining wall or a black matrix for photolithography to limit the patterned red color.
  • the conversion layer has the problem of complicated production methods.
  • the first type of light-emitting diode 31 in the embodiment of the present disclosure may be a micro-light-emitting diode (microled) with a size range of [1 ⁇ m, 10 ⁇ m] micrometers;
  • the second type of light-emitting diode 32 may be a micro-light-emitting diode ( microled), the size range is [1 ⁇ m, 10 ⁇ m] on the order of micrometers.
  • the dielectric layer 2 may include a first sub-dielectric layer 21 and a second sub-dielectric layer 22, and the second sub-dielectric layer 22 is located on the first sub-dielectric layer 21 away from the base substrate 1.
  • the recess 20 is a through hole penetrating the second sub-dielectric layer 22, the second type of light-emitting diode 32 is located on the side of the second sub-dielectric layer 22 away from the first sub-dielectric layer 21 (ie, the second type of light-emitting diode 32 is located on the plane part of the second sub-dielectric layer 22), and is arranged side by side with the first-type light-emitting diode 31 in a direction parallel to the base substrate 1.
  • the dielectric layer 2 is a flat film layer on the base substrate 1 after the drive structure is completed.
  • the existing dielectric layer 2 of the base substrate 1 can be used to form the recess 20, and then It is possible to avoid the need to separately form a film layer for limiting the first type of light-emitting diode 31, and it can also be used to limit the photoluminescence structure 41.
  • the dielectric layer 2 may also be an integral film layer.
  • the recessed portion 20 may have a structure that does not penetrate the entire dielectric layer.
  • Figure 3 is to more clearly illustrate the distribution relationship between the first type of light-emitting diodes 31 and the second type of light-emitting diodes 32, and does not show the first type of light-emitting diodes 31
  • the photoluminescence structure 41 above the light-emitting diode 31 is covered with the photoluminescence structure 41 as shown in FIG. 2.
  • the first-type light-emitting diodes 31 and the second-type light-emitting diodes 32 are distributed in multiple rows and multiple columns; , The first type of light emitting diodes 31 and the second type of light emitting diodes 32 are alternately distributed; in the same column, the first type of light emitting diodes 31 and the second type of light emitting diodes 32 are alternately distributed.
  • the first-type light-emitting diodes 31 in the same row are provided with a photoluminescence structure 41 for each first-type light-emitting diode 31 spaced apart.
  • the first-type light-emitting diodes 31 and the second-type light-emitting diodes 32 are alternately distributed; in the same column, the first-type light-emitting diodes 31 and the second-type light-emitting diodes 32 are alternately distributed, which can be fabricated later
  • a photoluminescence structure 41 is formed above a part of the first type of light-emitting diodes 31, so as to realize the sequential arrangement of the first type of light-emitting diodes 31, the second type of light-emitting diodes 32, and the photoluminescence structures 41 of different light-emitting colors. , Realize the full-color display of the display substrate.
  • the spaced first-type light-emitting diodes 31 are further provided with a scattering structure 42 in the recess 20 on the side away from the base substrate 1.
  • the spaced first-type light-emitting diodes 31 are further provided with a scattering structure 42 on the side away from the base substrate 1, so that the position where the first-type light-emitting diode 31 is not provided with the photoluminescence structure 41 is The light is more uniform.
  • the side of the second type of light emitting diode away from the second sub-dielectric layer 22 may also be provided with an encapsulation layer 7.
  • the light-emitting colors of the first-type light-emitting diodes 31 of the recesses 20 are the same; the light-emitting colors of the second-type light-emitting diodes 32 are the same; and the photoluminescence structure 41 has the light-emitting color of the first-type light-emitting diodes 31 Excite material of another color.
  • the first type of light emitting diode 31 may be a blue light emitting diode
  • the second type of light emitting diode 32 may be a green light emitting diode
  • the material of the photoluminescence structure 41 may be a quantum dot material that is excited by blue light and emits red light.
  • the driving structure includes a first-type transistor 51 electrically connected to the first-type light-emitting diode 31, and The second type of light emitting diode 32 corresponds to the second type of transistor 52 electrically connected.
  • connection pad 61 between the first-type light-emitting diode 31 and the first sub-dielectric layer 21; and between the second sub-dielectric layer 22 and the second-type light-emitting diode 32
  • connection pad 62 There is a second type of connection pad 62; the first type of connection pad 61 electrically connects the first type of light-emitting diode 31 and the first type of transistor 51 through a via hole penetrating the first sub-dielectric layer 21; the second type of connection pad 62 penetrates through the first type of transistor 51 A via hole of a sub-dielectric layer 21 and a second sub-dielectric layer 22 electrically connects the second-type light-emitting diode 32 and the second-type transistor 52.
  • the display substrate further has a first-type transistor 51 for driving the first-type light-emitting diode 31, and a second-type transistor 52 for driving the second-type light-emitting diode 32, so as to realize the control of the first-type light-emitting diode 31 is driven separately, and the second type of light-emitting diode 32 is driven separately.
  • an embodiment of the present disclosure further provides a display device, including the display substrate provided by the embodiment of the present disclosure.
  • the embodiments of the present disclosure also provide a method for manufacturing a display substrate as provided by the embodiments of the present disclosure, as shown in FIG. 5, including:
  • Step S100 providing a base substrate
  • Step S200 forming a dielectric layer with multiple recesses on one side of the base substrate; specifically, this step may include: forming a first sub-dielectric layer on one side of the base substrate; A second sub-dielectric layer is formed on the side away from the base substrate; through a patterning process, a through hole penetrating the second sub-dielectric layer is formed as a recess in the second sub-dielectric layer;
  • a first-type light-emitting diode is arranged in each recess; specifically, a first-type light-emitting diode can be arranged in each recess through a fluid self-assembly process;
  • Step S400 forming a photoluminescence structure on the side of the first-type light emitting diodes facing away from the base substrate in at least part of the recess; Light-emitting diode-like photoluminescence structure.
  • the manufacturing method further includes: step 500, arranging a plurality of second-type light-emitting diodes on the side of the dielectric layer away from the base substrate.
  • the manufacturing method provided by the embodiment of the present disclosure further includes: forming a scattering structure covering the first type of light-emitting diode in the concave portion where the photoluminescence structure is not provided.
  • the scattering structure may be formed after step S500. structure.
  • Step 1 Prepare the driving structure (including the first type transistor 51 and the second type transistor 52) on the base substrate 1 (such as a glass substrate).
  • the type of transistor is not limited, and it can be an oxide transistor or a low-temperature polysilicon transistor, as shown in the figure 6 shown;
  • Step 2 After the driving structure is prepared, prepare the first sub-dielectric layer 21 (PLN1), the material of the first sub-dielectric layer 21 is resin, and the thickness can be 1um; the second sub-dielectric layer is prepared on the first sub-dielectric layer 21 22(PLN2), as shown in Fig. 7, the material of the second sub-dielectric layer 21 can also be resin, and it is better to select a second sub-dielectric layer with liquid repellency, with a thickness L of [8um, 15um];
  • Step 3 Expose using a patterning process (half-tone process), develop to form a via hole penetrating the second sub-dielectric layer 22, and turn on the subsequent first connection pad 61 and the first type transistor 51 to make the subsequent
  • the second connecting pad 62 is connected to the connecting hole 620 of the second type of transistor 52, and the via is set as the recess 20. The position of the via is shown in FIG.
  • the length of the via hole of the second sub-dielectric layer 22 in the first direction (the first direction may specifically be the row direction of the first type of light-emitting diode 31) is m, and the width in the first direction perpendicular to the first direction is n, Where m>m1, n>n1, m1 is the length of the first type of light emitting diode 31 in the first direction, n1 is the width of the first type of light emitting diode 31 in the first direction, and the difference between m-m1
  • the value range is [2um, 5um]
  • the range of the difference between n-n1 is [2um-5um] interval, that is, [2um, 5um] interval is left on each side; forming the first connection pad 61 and the second connection pad 62, as shown in Figure 9;
  • Step 4 Firstly, the position in the via hole is transferred by a fluid self-assembly method.
  • the recessed portion 20 is the first type of light-emitting diode 31 (blue light-emitting diode).
  • the first connecting pad 61 is formed by using a brush barrel.
  • the second connection pad 62 rolls on the base substrate, the liquid suspension contains blue light-emitting diodes, so that the blue light-emitting diodes fall into the corresponding recesses 20 on the base substrate to improve the yield, as shown in FIG.
  • the height of the via hole of the second sub-dielectric layer 22 in the direction perpendicular to the base substrate 1 is L
  • the height L1 of the first type of light-emitting diode 31 in the direction perpendicular to the base substrate 1 is [4um, 6um], Preferably L-L1 ⁇ 6um;
  • other transfer methods can also be used to transfer the first type of light-emitting diode 31;
  • Step 5 Perform mass transfer of the second type of light-emitting diode 32 on the upper position of the second sub-dielectric layer 22, and there is no restriction on the mass transfer method, as shown in FIG. 11;
  • Step 6 Prepare a red color quantum dot material (photoluminescence structure 41) by inkjet printing or spin coating above part of the first type light-emitting diode 31, and above the first type light-emitting diode where no red quantum dot material is made
  • the scattering particle layer (scattering structure 42) is prepared by inkjet printing or spin coating. The positions of the red quantum dot material and the scattering particles are shown in Figure 12;
  • Step 7 Perform a chemical vapor deposition process, that is, after forming the quantum dot material and the scattering particles, an inorganic encapsulation is required.
  • the inorganic encapsulation layer 7 can be SiNx or SiNOx with a thickness of 6000A or more, as shown in FIG. 13.
  • the display substrate, the display device, and the manufacturing method of the display substrate provided by the embodiments of the present disclosure, by providing a plurality of recesses in the dielectric layer of the display substrate, the first type of light-emitting diodes are arranged in the recesses, and the first type of light-emitting diodes are separated from each other.
  • the height of the base substrate is different from the height of the second type of light-emitting diode from the base substrate, and when the first type of light-emitting diode and the second type of light-emitting diode are manufactured, the step difference formed by the recess can be used to make the second type of light-emitting diode easier
  • One type of light-emitting diodes are formed in the recesses, which reduces the difficulty of distinguishing the corresponding transfer positions when different types of light-emitting diodes are transferred.
  • the photoluminescence structure is arranged in part of the recesses by using the recesses of the dielectric layer for staggering the first type of light-emitting diodes and the second type of light-emitting diodes, which eliminates the need for separate production to limit the photoluminescence structure
  • Retaining wall or black matrix can simplify the process and improve the related technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

本公开提供了一种显示基板、显示装置和显示基板的制作方法,以改善相关技术在制作全彩发光二极管面板时,需要额外制备打印挡墙或光刻用黑矩阵来限制图形化的红色转化层,存在制作方法复杂的问题。所述显示基板,包括:衬底基板;介质层,位于所述衬底基板的一侧,所述介质层包括多个凹陷部;多个第一类发光二极管,一个所述第一类发光二极管位于一个所述凹陷部内;光致发光结构,所述光致发光结构位于至少部分所述凹陷部内,且位于所述第一类发光二极管的背离所述衬底基板的一侧。

Description

显示基板、显示装置和显示基板的制作方法
相关申请的交叉引用
本公开要求在2020年06月16日提交中国专利局、申请号为202010546970.7、申请名称为“一种显示面板、显示装置和显示面板的制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板、显示装置和显示基板的制作方法。
背景技术
相关技术的红色微型LED,绿色微型LED,以及绿色微型LED,在制备时需生长在不同晶圆衬底(包括蓝宝石、GaAs、单晶Si、SiC等)上,要分别进行制作。其中,蓝色微型LED和绿色微型LED业界开发相对成熟,电致发光性能较好,但是红色微型LED业界开发不成熟,电致发光效率低。在显示器件制备时,各微型LED需要从晶圆衬底要转移到阵列基板才能实现有源矩阵驱动。
发明内容
本公开实施例提供一种显示基板,包括:
衬底基板;
介质层,位于所述衬底基板的一侧,所述介质层包括多个凹陷部;
多个第一类发光二极管,一个所述第一类发光二极管位于一个所述凹陷部内;
光致发光结构,所述光致发光结构位于至少部分所述凹陷部内,且位于所述第一类发光二极管的背离所述衬底基板的一侧,被配置为将所述第一类 发光二极管发射的第一波长的光转换为第二波长的光。
在一种可能的实施方式中,所述显示基板还包括:位于所述介质层远离所述衬底基板的一侧的多个第二类发光二极管,且所述第二类发光二极管距离所述衬底基板的高度与所述第一类发光二极管距离所述衬底基板的高度不同。
在一种可能的实施方式中,所述介质层包括第一子介质层和第二子介质层,所述第二子介质层位于所述第一子介质层的背离所述衬底基板的一侧;
所述凹陷部为贯穿所述第二子介质层的通孔,所述第二类发光二极管位于所述第二子介质层的背离所述第一子介质层的一侧,且与所述第一类发光二极管在平行于所述衬底基板的方向上并列设置。
在一种可能的实施方式中,所述第一类发光二极管和所述第二类发光二极管呈多行多列分布;
同一行中,所述第一类发光二极管与所述第二类发光二极管交替分布;同一列中,所述第一类发光二极管与所述第二类发光二极管交替分布。
在一种可能的实施方式中,同一行的各所述第一类发光二极管,每间隔一个的所述第一类发光二极管设置所述光致发光结构。
在一种可能的实施方式中,被间隔的所述第一类发光二极管在背离所述衬底基板一侧还设置有位于所在凹陷部内的散射结构。
在一种可能的实施方式中,各所述凹陷部的各所述第一类发光二极管的出光颜色相同;各所述第二类发光二极管的出光颜色相同。
在一种可能的实施方式中,所述第一类发光二极管为蓝光发光二极管,所述第二类发光二极管为绿光发光二极管,所述光致发光结构的材料为受蓝光激发出射红光的量子点材料。
在一种可能的实施方式中,还包括:位于所述衬底基板与所述第一子介质层之间的驱动结构,所述驱动结构包括与所述第一类发光二极管对应电连接的第一类晶体管,与所述第二类发光二极管对应电连接的第二类晶体管。
在一种可能的实施方式中,在所述凹陷部内,在所述第一类发光二极管 与所述第一子介质层之间还具有第一类连接垫;在所述第二子介质层与所述第二类发光二极管之间还具有第二类连接垫;
所述第一类连接垫通过贯穿所述第一子介质层的过孔将所述第一类发光二极管和所述第一类晶体管电连接;
所述第二类连接垫通过贯穿所述第一子介质层、所述第二子介质层的过孔将所述第二类发光二极管和所述第二类晶体管电连接。
本公开实施例还提供一种显示装置,包括如本公开实施例提供的所述显示基板。
本公开实施例还提供一种如本公开实施例提供的所述显示基板的制作方法,包括:
提供一衬底基板;
在衬底基板的一侧形成具有多个凹陷部的介质层;
在每一个所述凹陷部内设置一个第一类发光二极管;
在至少部分所述凹陷部内的所述第一类发光二极管的背离所述衬底基板的一侧形成光致发光结构。
在一种可能的实施方式中,所述在衬底基板的一侧形成具有多个凹陷部的介质层,包括:
在所述衬底基板的一侧形成第一子介质层;
在所述第一子介质层的背离所述衬底基板的一侧形成第二子介质层;
通过图案化工艺,在所述第二子介质层形成贯穿所述第二子介质层的通孔作为所述凹陷部。
在一种可能的实施方式中,所述在每一个所述凹陷部内设置一个第一类发光二极管,包括:
通过流体自组装工艺,在每一个所述凹陷部内设置一个所述第一类发光二极管。
在一种可能的实施方式中,所述在至少部分所述凹陷部内所述第一类发光二极管的背离所述衬底基板的一侧形成光致发光结构,包括:
通过喷墨打印工艺或旋涂工艺,在至少部分所述凹陷部内形成覆盖所述第一类发光二极管的光致发光结构。
在一种可能的实施方式中,在至少部分所述凹陷部内的所述第一类发光二极管的背离所述衬底基板的一侧形成光致发光结构后,所述制作方法还包括:
在所述介质层远离所述衬底基板的一侧设置多个第二类发光二极管。
在一种可能的实施方式中,还包括:
在未设置所述光致发光结构的所述凹陷部内形成包覆所述第一类发光二极管的散射结构。
附图说明
图1为本公开实施例提供的一种显示基板的剖视结构示意图;
图2为本公开实施例提供的一种显示基板的俯视结构示意图;
图3为本公开实施例提供的第一类发光二极管和第二类发光二极管的分布示意图;
图4为本公开实施例提供的一种具体的显示基板的剖视结构示意图;
图5为本公开实施例提供的一种显示基板的制作流程示意图;
图6为本公开实施例中,制备完成第一类晶体管和第二类晶体管的结构示意图;
图7为本公开实施例中,制备完成第二子介质层的结构示意图;
图8为本公开实施例中,制备完成凹陷部的结构示意图;
图9为本公开实施例中,制备完成第一连接垫和第二连接垫的结构示意图;
图10为本公开实施例中,制备完成第一类发光二极管的结构示意图;
图11为本公开实施例中,制备完成第二类发光二极管的结构示意图;
图12为本公开实施例中,制备完成散射结构的结构示意图;
图13为本公开实施例中,制备完成封装层的结构示意图。
具体实施方式
相关技术在制作全彩发光二极管面板时,需要额外制备打印挡墙(Bank)或光刻用黑矩阵(BM)来限制图形化的红色转化层,以出射红光,存在制作方法复杂的问题。
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
参见图1和图2所示,本公开实施例提供的一种显示基板,包括:
衬底基板1;
介质层2,位于衬底基板1的一侧,介质层包括多个凹陷部20;
多个第一类发光二极管31,一个第一类发光二极管31位于一个凹陷部20内;第一类发光二极管31具体可以为出射蓝光的蓝光发光二极管;
光致发光结构41,光致发光结构41位于至少部分凹陷部20内,且位于第一类发光二极管31的背离衬底基板1的一侧,具体地,光致发光结构41 可以覆盖凹陷部20内除第一类发光二极管31以外的全部区域;光致发光结构41具体可以为在受第一类发光二极管31出射的光照射时,出射红光的光致发光结构41。
本公开实施例提供的显示基板,通过在介质层2设置多个凹陷部20,将第一类发光二极管31设置于凹陷部20内,将光致发光结构41设置于部分凹陷部20内,可以无需单独制作对光致发光结构41进行限位的挡墙或黑矩阵,进而可以简化工艺,改善相关技术在制作全彩发光二极管面板时,需要额外制备打印挡墙或光刻用黑矩阵来限制图形化的红色转化层,存在制作方法复杂的问题。
在具体实施时,显示基板还可以包括:位于介质层2远离衬底基板1的一侧的多个第二类发光二极管32,且第二类发光二极管32距离衬底基板1的高度与第一类发光二极管31距离衬底基板1的高度不同。具体地,结合图1所示,第二类发光二极管32距衬底基板1的高度可以为:第二类发光二极管32的背离衬底基板1一侧的第一表面S1,与衬底基板1的面向介质层2一侧的第二表面S2之间的第二距离h2;第一类发光二极管31距衬底基板1的高度可以为:第一类发光二极管31的背离衬底基板1一侧的第三表面S3与第二表面S2之间的第一距离h1,即,第一距离h1与第二距离h2不同。
本公开实施例中,显示基板包括位于介质层2远离衬底基板1的一侧的多个第二类发光二极管32,即,在介质层2的平面区域还设置有第二类发光二极管32,第一类发光二极管31距衬底基板1的高度,与第二类发光二极管32距衬底基板1的高度不同,进而在制作第一类发光二极管31和第二类发光二极管32时,可以利用凹陷部20形成的台阶差,较易地将第一类发光二极管31形成于凹陷部20内,降低不同类型发光二极管转移时需区分对应转印位置的难度。同时,利用对第一类发光二极管31和第二类发光二极管32进行错层的介质层2所具有的凹陷部20,将光致发光结构41设置于部分凹陷部20内,可以无需单独制作对光致发光结构41进行限位的挡墙或黑矩阵,进而可以简化工艺,改善相关技术在制作全彩发光二极管面板时,需要额外制备 打印挡墙或光刻用黑矩阵来限制图形化的红色转化层,存在制作方法复杂的问题。
在具体实施时,本公开实施例中的第一类发光二极管31可以为微发光二极管(microled),尺寸范围为[1μm,10μm]微米量级;第二类发光二极管32可以为微发光二极管(microled),尺寸范围为[1μm,10μm]微米量级。
在具体实施时,结合图1所示,介质层2可以包括第一子介质层21和第二子介质层22,第二子介质层22位于第一子介质层21的背离衬底基板1的一侧;凹陷部20为贯穿第二子介质层22的通孔,第二类发光二极管32位于第二子介质层22的背离第一子介质层21的一侧(即,第二类发光二极管32位于第二子介质层22的平面部分),且与第一类发光二极管31在平行于衬底基板1的方向上并列设置。具体地,该介质层2为衬底基板1在制作完成驱动结构后进行平坦的膜层,即,本公开实施例中,可以利用衬底基板1已有的介质层2形成凹陷部20,进而可以避免单独需要形成对第一类发光二极管31进行限位的膜层,而且,也可以利用其对光致发光结构41进行限位。当然,在具体实施时,介质层2也可以为一个整体的膜层,该种情况时,凹陷部20可以为不贯穿介质层整体的结构。
在具体实施时,结合图2和图3所示,需要说明的是,图3是为了更清楚地说明第一类发光二极管31和第二类发光二极管32的分布关系,进而没有示出第一类发光二极管31上方的光致发光结构41,覆盖有光致发光结构41的示意图可以参见图2所示,第一类发光二极管31和第二类发光二极管32呈多行多列分布;同一行中,第一类发光二极管31与第二类发光二极管32交替分布;同一列中,第一类发光二极管31与第二类发光二极管32交替分布。同一行的各第一类发光二极管31,每间隔一个的第一类发光二极管31设置光致发光结构41。本公开实施例中,同一行中,第一类发光二极管31与第二类发光二极管32交替分布;同一列中,第一类发光二极管31与第二类发光二极管32交替分布,可以在后续制作过程中,在部分第一类发光二极管31的上方形成光致发光结构41,进而实现不同出光颜色的第一类发光二极管 31、第二类发光二极管32、光致发光结构41的依序排布,实现显示基板的全彩显示。
在具体实施时,参见图4所示,被间隔的第一类发光二极管31在背离衬底基板1一侧所在的凹陷部20内还设置有散射结构42。本公开实施例中,被间隔的第一类发光二极管31在背离衬底基板1一侧还设置有散射结构42,可以使未设置光致发光结构41处的第一类发光二极管31所在位置的出光更加均匀。具体地,第二类发光二极管的背离第二子介质层22的一侧还可以设置有封装层7。
在具体实施时,各凹陷部20的各第一类发光二极管31的出光颜色相同;各第二类发光二极管32的出光颜色相同;光致发光结构41具有受第一类发光二极管31的出光颜色激发出射另一颜色的材料。具体地,第一类发光二极管31可以为蓝光发光二极管,第二类发光二极管32可以为绿光发光二极管,光致发光结构41的材料可以为受蓝光激发出射红光的量子点材料。
在具体实施时,结合图4所示,衬底基板1与第一子介质层21之间还具有驱动结构,驱动结构包括与第一类发光二极管31对应电连接的第一类晶体管51,与第二类发光二极管32对应电连接的第二类晶体管52。具体地,凹陷部20内,在第一类发光二极管31与第一子介质层21之间还具有第一类连接垫61;在第二子介质层22与第二类发光二极管32之间还具有第二类连接垫62;第一类连接垫61通过贯穿第一子介质层21的过孔将第一类发光二极管31和第一类晶体管51电连接;第二类连接垫62通过贯穿第一子介质层21和第二子介质层22的过孔将第二类发光二极管32和第二类晶体管52电连接。本公开实施例中,显示基板还具有对第一类发光二极管31进行驱动的第一类晶体管51,对第二类发光二极管32进行驱动的第二类晶体管52,进而实现对第一类发光二极管31的单独驱动,以及对第二类发光二极管32的单独驱动。
基于同一发明构思,本公开实施例还提供一种显示装置,包括如本公开实施例提供的显示基板。
基于同一发明构思,本公开实施例还提供一种如本公开实施例提供的显示基板的制作方法,如图5所示,包括:
步骤S100、提供一衬底基板;
步骤S200、在衬底基板的一侧形成具有多个凹陷部的介质层;具体地,该步骤可以包括:通过在衬底基板的一侧形成第一子介质层;在第一子介质层的背离衬底基板的一侧形成第二子介质层;通过图案化工艺,在第二子介质层形成贯穿第二子介质层的通孔作为凹陷部;
步骤S300、在每一个凹陷部内设置一个第一类发光二极管;具体地,可以通过流体自组装工艺,在每一个凹陷部内设置一个第一类发光二极管;
步骤S400、在至少部分凹陷部内第一类发光二极管的背离衬底基板的一侧形成光致发光结构;具体地,可以通过喷墨打印工艺或旋涂工艺,在至少部分凹陷部内形成覆盖第一类发光二极管的光致发光结构。
在具体实施时,在步骤S400之后,制作方法还包括:步骤500、在介质层远离衬底基板的一侧设置多个第二类发光二极管。
在具体实施时,本公开实施例提供的制作方法还包括:在未设置光致发光结构的凹陷部内形成包覆第一类发光二极管的散射结构,具体地,可以是在步骤S500之后,形成散射结构。
以下结合图6-图13所示,对本公开实施例提供的显示基板的制作方法进行进一步详细说明如下:
步骤一、在衬底基板1(如玻璃基板)上制备驱动结构(包括第一类晶体管51、第二类晶体管52),晶体管类型不做限制,可以为氧化物晶体管或低温多晶硅晶体管,如图6所示;
步骤二、驱动结构制备完成后,制备第一子介质层21(PLN1),第一子介质层21的材料为树脂,厚度可以为1um;在第一子介质层21上制备第二子介质层22(PLN2),如图7所示,第二子介质层21的材料也可以为树脂,最好选取具有疏液性的第二子介质层,厚度L为[8um,15um];
步骤三、使用图案化工艺(half-tone工艺)进行曝光,显影形成贯穿第二 子介质层22的过孔,以及使后续的第一连接垫61与第一类晶体管51导通、使后续的第二连接垫62与第二类晶体管52导通的连接孔620,并将该过孔设置为凹陷部20,过孔位置如图8所示,第二子介质层22的过孔间隔排布,第二子介质层22的过孔在第一方向(该第一方向具体可以为第一类发光二极管31的行向)上的长度为m,在垂直于第一方向上的宽度为n,其中,m>m1,n>n1,m1为第一类发光二极管31在第一方向上的长度,n1为第一类发光二极管31在垂直于第一方向上的宽度,且m-m1的差值的范围为[2um,5um],n-n1的差值的范围为[2um-5um]间隔,即,每边留出[2um,5um]间隔;形成第一连接垫61和第二连接垫62,如图9所示;
步骤四、先对过孔内位置采用流体自组装方式进行巨量转移,凹陷部20为第一类发光二极管31(蓝色发光二极管),具体地,利用刷桶在形成有第一连接垫61、第二连接垫62的衬底基板上滚动,液体悬浮液中含有蓝色发光二极管,进而让蓝色发光二极管落入衬底基板上的对应凹陷部20中,提高良率,如图10所示;第二子介质层22的过孔在垂直于衬底基板1方向上的高度为L,第一类发光二极管31在垂直于衬底基板1方向上的高度L1为[4um,6um],最好L-L1≥6um;当然,也可以采用其它转印方式进行转印第一类发光二极管31;
步骤五、对第二子介质层22的上方位置进行第二类发光二极管32的巨量转移,对巨量转移方式不做限制,如图11所示;
步骤六、在部分第一类发光二极管31的上方通过喷墨打印或旋涂方式制备红色彩量子点材料(光致发光结构41),在未制作红色量子点材料的第一类发光二极管的上方通过喷墨打印或旋涂方式制备散射粒子层(散射结构42),红色量子点材料及散射粒子的位置如图12所示;
步骤七、进行化学气相沉积工艺,即,在形成量子点材料和散射粒子后,需要进行无机封装,无机封装层7可为SiNx或SiNOx,厚度为6000A以上,如图13所示。
本公开实施例提供的显示基板、显示装置和显示基板的制作方法,通过 在显示基板的介质层设置多个凹陷部,将第一类发光二极管设置于凹陷部内,并使第一类发光二极管距衬底基板的高度,与第二类发光二极管距衬底基板的高度不同,进而在制作第一类发光二极管和第二类发光二极管时,可以利用凹陷部形成的台阶差,较易地将第一类发光二极管形成于凹陷部内,降低不同类型发光二极管转移时需区分对应转印位置的难度。同时,利用对第一类发光二极管和第二类发光二极管进行错层的介质层所具有的凹陷部,将光致发光结构设置于部分凹陷部内,可以无需单独制作对光致发光结构进行限位的挡墙或黑矩阵,进而可以简化工艺,改善相关技术在制作全彩发光二极管面板时,需要额外制备打印挡墙或光刻用黑矩阵来限制图形化的红色转化层,存在制作方法复杂的问题。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (17)

  1. 一种显示基板,其中,包括:
    衬底基板;
    介质层,位于所述衬底基板的一侧,所述介质层包括多个凹陷部;
    多个第一类发光二极管,一个所述第一类发光二极管位于一个所述凹陷部内;
    光致发光结构,所述光致发光结构位于至少部分所述凹陷部内,且位于所述第一类发光二极管的背离所述衬底基板的一侧,被配置为将所述第一类发光二极管发射的第一波长的光转换为第二波长的光。
  2. 如权利要求1所述的显示基板,其中,所述显示基板还包括:位于所述介质层远离所述衬底基板的一侧的多个第二类发光二极管,且所述第二类发光二极管距离所述衬底基板的高度与所述第一类发光二极管距离所述衬底基板的高度不同。
  3. 如权利要求2所述的显示基板,其中,所述介质层包括第一子介质层和第二子介质层,所述第二子介质层位于所述第一子介质层的背离所述衬底基板的一侧;
    所述凹陷部为贯穿所述第二子介质层的通孔,所述第二类发光二极管位于所述第二子介质层的背离所述第一子介质层的一侧,且与所述第一类发光二极管在平行于所述衬底基板的方向上并列设置。
  4. 如权利要求3所述的显示基板,其中,所述第一类发光二极管和所述第二类发光二极管呈多行多列分布;
    同一行中,所述第一类发光二极管与所述第二类发光二极管交替分布;同一列中,所述第一类发光二极管与所述第二类发光二极管交替分布。
  5. 如权利要求4所述的显示基板,其中,同一行的各所述第一类发光二极管,每间隔一个的所述第一类发光二极管设置所述光致发光结构。
  6. 如权利要求5所述的显示基板,其中,被间隔的所述第一类发光二极 管在背离所述衬底基板一侧还设置有位于所在凹陷部内的散射结构。
  7. 如权利要求2-6任一项所述的显示基板,其中,各所述凹陷部的各所述第一类发光二极管的出光颜色相同;各所述第二类发光二极管的出光颜色相同。
  8. 如权利要求7所述的显示基板,其中,所述第一类发光二极管为蓝光发光二极管,所述第二类发光二极管为绿光发光二极管,所述光致发光结构的材料为受蓝光激发出射红光的量子点材料。
  9. 如权利要求3-6任一项所述的显示基板,其中,还包括:位于所述衬底基板与所述第一子介质层之间的驱动结构,所述驱动结构包括与所述第一类发光二极管对应电连接的第一类晶体管,与所述第二类发光二极管对应电连接的第二类晶体管。
  10. 如权利要求9所述的显示基板,其中,在所述凹陷部内,在所述第一类发光二极管与所述第一子介质层之间还具有第一类连接垫;
    在所述第二子介质层与所述第二类发光二极管之间还具有第二类连接垫;
    所述第一类连接垫通过贯穿所述第一子介质层的过孔将所述第一类发光二极管和所述第一类晶体管电连接;
    所述第二类连接垫通过贯穿所述第一子介质层、所述第二子介质层的过孔将所述第二类发光二极管和所述第二类晶体管电连接。
  11. 一种显示装置,其中,包括如权利要求1-10任一项所述的显示基板。
  12. 一种如权利要求1-10任一项所述的显示基板的制作方法,其中,包括:
    提供一衬底基板;
    在衬底基板的一侧形成具有多个凹陷部的介质层;
    在每一个所述凹陷部内设置一个第一类发光二极管;
    在至少部分所述凹陷部内的所述第一类发光二极管的背离所述衬底基板的一侧形成光致发光结构。
  13. 如权利要求12所述的制作方法,其中,所述在衬底基板的一侧形成 具有多个凹陷部的介质层,包括:
    在所述衬底基板的一侧形成第一子介质层;
    在所述第一子介质层的背离所述衬底基板的一侧形成第二子介质层;
    通过图案化工艺,在所述第二子介质层形成贯穿所述第二子介质层的通孔作为所述凹陷部。
  14. 如权利要求13所述的制作方法,其中,所述在每一个所述凹陷部内设置一个第一类发光二极管,包括:
    通过流体自组装工艺,在每一个所述凹陷部内设置一个所述第一类发光二极管。
  15. 如权利要求14所述的制作方法,其中,所述在至少部分所述凹陷部内的所述第一类发光二极管的背离所述衬底基板的一侧形成光致发光结构,包括:
    通过喷墨打印工艺或旋涂工艺,在至少部分所述凹陷部内形成覆盖所述第一类发光二极管的光致发光结构。
  16. 如权利要求12-15任一项所述的制作方法,其中,在至少部分所述凹陷部内的所述第一类发光二极管的背离所述衬底基板的一侧形成光致发光结构后,所述制作方法还包括:
    在所述介质层远离所述衬底基板的一侧设置多个第二类发光二极管。
  17. 如权利要求12-15任一项所述的制作方法,其中,还包括:
    在未设置所述光致发光结构的所述凹陷部内形成包覆所述第一类发光二极管的散射结构。
PCT/CN2021/094483 2020-06-16 2021-05-19 显示基板、显示装置和显示基板的制作方法 WO2021254073A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/921,598 US20230178524A1 (en) 2020-06-16 2021-05-19 Display substrate, display device, and manufacturing method for display substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010546970.7A CN111564121B (zh) 2020-06-16 2020-06-16 一种显示面板、显示装置和显示面板的制作方法
CN202010546970.7 2020-06-16

Publications (1)

Publication Number Publication Date
WO2021254073A1 true WO2021254073A1 (zh) 2021-12-23

Family

ID=72072708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094483 WO2021254073A1 (zh) 2020-06-16 2021-05-19 显示基板、显示装置和显示基板的制作方法

Country Status (3)

Country Link
US (1) US20230178524A1 (zh)
CN (1) CN111564121B (zh)
WO (1) WO2021254073A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564121B (zh) * 2020-06-16 2022-04-12 京东方科技集团股份有限公司 一种显示面板、显示装置和显示面板的制作方法
CN114927437A (zh) * 2022-05-25 2022-08-19 星源电子科技(深圳)有限公司 一种MiniLED和MicroLED的巨量转移技术

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952899A (zh) * 2015-06-16 2015-09-30 友达光电股份有限公司 发光二极管显示器及其制造方法
CN108878626A (zh) * 2018-06-29 2018-11-23 京东方科技集团股份有限公司 一种显示面板及制作方法、显示装置
CN109979958A (zh) * 2019-04-23 2019-07-05 深圳市华星光电半导体显示技术有限公司 MicroLED显示面板
CN110136595A (zh) * 2019-05-17 2019-08-16 上海九山电子科技有限公司 一种显示面板及其制备方法、显示装置
CN209496866U (zh) * 2018-10-22 2019-10-15 隆达电子股份有限公司 显示装置
CN110880522A (zh) * 2019-10-14 2020-03-13 厦门大学 基于极性面和非极性面生长的微型led集成全色显示芯片及其制备方法
CN111244075A (zh) * 2018-11-28 2020-06-05 深圳Tcl新技术有限公司 Led阵列及led显示屏
CN111564121A (zh) * 2020-06-16 2020-08-21 京东方科技集团股份有限公司 一种显示面板、显示装置和显示面板的制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952899A (zh) * 2015-06-16 2015-09-30 友达光电股份有限公司 发光二极管显示器及其制造方法
CN108878626A (zh) * 2018-06-29 2018-11-23 京东方科技集团股份有限公司 一种显示面板及制作方法、显示装置
CN209496866U (zh) * 2018-10-22 2019-10-15 隆达电子股份有限公司 显示装置
CN111244075A (zh) * 2018-11-28 2020-06-05 深圳Tcl新技术有限公司 Led阵列及led显示屏
CN109979958A (zh) * 2019-04-23 2019-07-05 深圳市华星光电半导体显示技术有限公司 MicroLED显示面板
CN110136595A (zh) * 2019-05-17 2019-08-16 上海九山电子科技有限公司 一种显示面板及其制备方法、显示装置
CN110880522A (zh) * 2019-10-14 2020-03-13 厦门大学 基于极性面和非极性面生长的微型led集成全色显示芯片及其制备方法
CN111564121A (zh) * 2020-06-16 2020-08-21 京东方科技集团股份有限公司 一种显示面板、显示装置和显示面板的制作方法

Also Published As

Publication number Publication date
CN111564121B (zh) 2022-04-12
US20230178524A1 (en) 2023-06-08
CN111564121A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
US10304901B1 (en) Micro light-emitting diode display device and manufacturing method thereof
CN109860241B (zh) 高分辨率Micro-OLED显示模组及其制备方法
WO2021254073A1 (zh) 显示基板、显示装置和显示基板的制作方法
WO2018227680A1 (zh) Micro LED彩色显示器件
KR20200062863A (ko) 디스플레이 장치 및 제조 방법
US10756144B2 (en) Electroluminescent device having stacked micro light emitting diode unit and organic light emitting diode unit, display device and manufacturing method thereof
WO2017173683A1 (zh) 电致光致混合发光显示器件及其制作方法
WO2023207438A1 (zh) 显示器件及其制备方法
CN110911537B (zh) 共阴极led芯片及其制作方法
WO2021114389A1 (zh) 一种显示面板及其制备方法
US10658423B2 (en) Method of manufacturing light emitting device
US20230135964A1 (en) Integrated micro led chip and fabrication method therefor
US10381400B2 (en) Method of manufacturing light emitting device
WO2018120710A1 (zh) Oled显示面板及其制造方法、显示装置
CN107359183B (zh) 顶发射全彩硅基有机电致发光微显示器及其制造工艺
CN117976693A (zh) 一种芯片结构、制作方法和显示装置
WO2002015292A2 (en) Organic light emitting diode display devices having barrier structures between sub-pixels
US11374072B2 (en) Display panel with quantom dot and manufacturing method thereof
CN114788002A (zh) 多色led像素单元和微型led显示面板
CN113611730A (zh) 一种硅基微显示器及其制备方法
WO2023108633A1 (zh) 显示面板和显示面板的制作方法
US11329187B2 (en) Method of aligning micro LEDs and method of manufacturing micro LED display using the same
TWI754283B (zh) 顯示面板的製備方法
CN110808262B (zh) 微型led显示器件及其制备方法
WO2023123113A1 (zh) 显示基板、显示装置及显示基板的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825324

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 07/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21825324

Country of ref document: EP

Kind code of ref document: A1