WO2021254055A1 - 一种导光板及背光源结构 - Google Patents

一种导光板及背光源结构 Download PDF

Info

Publication number
WO2021254055A1
WO2021254055A1 PCT/CN2021/093858 CN2021093858W WO2021254055A1 WO 2021254055 A1 WO2021254055 A1 WO 2021254055A1 CN 2021093858 W CN2021093858 W CN 2021093858W WO 2021254055 A1 WO2021254055 A1 WO 2021254055A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light guide
backlight
present
Prior art date
Application number
PCT/CN2021/093858
Other languages
English (en)
French (fr)
Inventor
马骏
薛九枝
Original Assignee
江苏集萃智能液晶科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃智能液晶科技有限公司 filed Critical 江苏集萃智能液晶科技有限公司
Publication of WO2021254055A1 publication Critical patent/WO2021254055A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Definitions

  • the present invention relates to the technical field of liquid crystal display backlight sources, in particular to a light guide plate and a backlight source structure.
  • the main function of the backlight source is to form a uniform surface light source with the line light sources arranged by the LEDs.
  • the optical components include a light guide plate and various optical elements for adjusting and correcting the light emitted from the light guide plate.
  • dots or grooves are usually added on the surface of the light guide plate to destroy the light's waveguide propagation (such as the circular convex type, circular concave type, V-shaped groove, etc. on the surface of the light guide plate).
  • the light emitted from the light plate is then adjusted by the diffuser film. At this time, the horizontal/vertical light output angle will become larger.
  • the two layers of brightness enhancement film will shrink the light, and the final output light angle will be controlled within the range of 70°.
  • the existing backlight source has the following disadvantages:
  • the light of the light guide plate has a larger light exit angle after passing through the diffuser and the brightness enhancement film, the large viewing angle loses more light, and the light utilization rate is low, resulting in Face up to insufficient brightness.
  • the light output angle of the existing backlight is not conducive to the protection of user privacy.
  • the backlight with a small angle of light emission range is more in line with the requirements, while the existing anti-peep measures are increased
  • the optical element method filters out the light with a large viewing angle, and this method is at the cost of sacrificing the brightness of the backlight.
  • the traditional backlight structure is mainly composed of light source, light guide plate, diffuser, lower brightness enhancement film, upper brightness enhancement film, etc. It has many optical elements and high cost.
  • the existing backlight structure faces different light distributions. Requirements, lack of flexibility in light adjustment.
  • the purpose of the present invention is to solve the above technical problems in the prior art and propose a light guide plate and a backlight structure, which can effectively improve the light utilization rate, increase the display brightness in the front view direction, and reduce the thickness and cost of the backlight module.
  • a light guide plate the light guide plate has a light incident surface, a light exit surface, and a reflective surface.
  • the light incident surface is perpendicular to and adjacent to the light exit surface.
  • the surface is positioned opposite to the light-emitting surface, at least one of the reflective surface and the light-emitting surface has a plurality of convex or concave dot microstructures, and the tangent of any point on the surface of the dot microstructure is consistent with the reflection
  • the contact angle of the surface is not more than 7°.
  • the dot microstructure is a pyramid structure, a pyramid structure or a curved surface structure.
  • the arc structure is one of a partial sphere, an ellipsoid or an elliptical paraboloid, and the projection of the arc structure on the reflecting surface is a circle or an ellipse.
  • the diameter of the circle or the size of the major axis of the ellipse is not greater than 130 microns.
  • a backlight structure which includes the light guide plate of any one of the above, and the backlight structure further includes: a light source; On the light emitting surface side, the side of the light correction film facing away from the light guide plate has a plurality of microprism structures extending in a direction parallel to the light incident surface and arranged intermittently; a reflective sheet, where the reflective sheet is located on the One side of the reflective surface of the light guide plate.
  • the micro prism structure has a triangular cross section along the direction perpendicular to the light incident surface, and the micro prism structure has a trapezoidal cross section along the direction parallel to the light incident surface.
  • the triangle is an isosceles triangle
  • the trapezoid is an isosceles trapezoid
  • the base angles of the isosceles triangle and the isosceles trapezoid are in the range of 65°-77°.
  • the length of the base of the isosceles trapezoid is between 100-500 microns.
  • the apex of the triangle is an arc chamfer
  • the radius of curvature of the arc chamfer is less than 5 microns
  • the length of the base of the triangle is 18-40 microns.
  • the plurality of microprism structures are arranged adjacently and repeatedly in parallel along a direction perpendicular to the light incident surface.
  • it further comprises a diffusion sheet located on the side of the light correction film away from the light guide plate.
  • the light guide plate and the backlight structure of the present invention effectively improve the utilization rate of light, increase the display brightness in the front view direction, and reduce the thickness and cost of the backlight module.
  • 1 is a schematic cross-sectional structure diagram of the light guide plate and the backlight structure of the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the dot microstructure with a pyramid structure on the reflective surface of the light guide plate in the backlight structure of the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of a possible cross-sectional structure of the dot microstructure of the pyramid structure in the first embodiment of the present invention
  • FIG. 4 is a schematic diagram of the cross-sectional structure of the light correction film along the direction perpendicular to the light incident surface in the first embodiment of the present invention
  • FIG. 5 is a schematic diagram of the cross-sectional structure of the light correction film along the direction parallel to the light incident surface in the first embodiment of the present invention
  • FIG. 6 is a schematic diagram of the cross-sectional structure of the micro prism structure along the direction perpendicular to the light incident surface in the first embodiment of the present invention
  • FIG. 7 is another cross-sectional structure diagram of the micro prism structure along the direction perpendicular to the light incident surface in the first embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the cross-sectional structure of the microprism structure in the first embodiment of the present invention along a direction parallel to the light incident surface;
  • FIG. 9 is a schematic cross-sectional structure diagram of the backlight structure of the second embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the dot microstructure with a curved surface on the reflective surface of the light guide plate in the backlight structure of the second embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional structure diagram of the dot microstructure of the arc surface structure in the second embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional structure diagram of a backlight source structure according to a third embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional structure diagram of a backlight source structure according to a fourth embodiment of the present invention.
  • FIG. 14 is a schematic cross-sectional structure diagram of a backlight source structure according to a fifth embodiment of the present invention.
  • 15 is a schematic diagram of the light-emitting angle of the backlight source structure of the fifth embodiment of the present invention.
  • 16 is a comparison diagram of the vertical viewing angle of the first embodiment of the present invention and the structure of a traditional backlight source;
  • 17 is a comparison diagram of the horizontal field of view angle of the first embodiment of the present invention and the structure of a traditional backlight source;
  • Fig. 18 is a schematic diagram of setting different viewing direction angles according to different demand scenarios according to the present invention.
  • the backlight structure of this embodiment includes: a light source 10, a light guide plate 20, a light correction film 30, and a reflective sheet 50.
  • the light guide plate 20 of this embodiment has a light entrance surface 21, a light exit surface 22, and a reflective surface 23.
  • the light entrance surface 21 is perpendicular to and adjacent to the light exit surface 22.
  • the light entrance surface 21 is located on the side close to the light source 10, and the reflective surface 23 and the light-emitting surface 22 are positioned opposite to each other.
  • the reflective surface 23 has a plurality of convex or concave dot microstructures 24.
  • a concave (concave into the light guide plate 20 body) dot microstructure is taken as an example.
  • the dot microstructure 24 is a concave pyramid structure.
  • the light correction film 30 is located on the side of the light exit surface 22 of the light guide plate 20, and the side of the light correction film 30 away from the light guide plate 20 has a plurality of microprism structures 32 extending in a direction parallel to the light incident surface 21 and arranged intermittently, microprisms
  • the cross section of the structure 32 along the direction perpendicular to the light incident surface is a triangle or a triangle with an arc-shaped apex angle.
  • the micro prism structure 32 has a trapezoidal cross section along the direction parallel to the light incident surface.
  • the upper and bottom length of the trapezoid is the intermittently arranged micro
  • the length of the top of the prism structure 32 and the length of the bottom of the trapezoid are the length of the bottom of the intermittently arranged micro prism structure 32, and the gaps between the multiple trapezoids are the discontinuous part of the micro prism structure 32.
  • the backlight structure of this embodiment also includes a reflective sheet 50, which is located on the side of the reflective surface of the light guide plate 20, and is used to reflect the light incident on the reflective sheet 50 from the light guide plate 20. This part of the light is reused to improve The light utilization rate of the backlight module.
  • the dot microstructure may also be a pyramid structure.
  • the dot microstructures 24 having a pyramid structure are concave dots recessed into the body of the light guide plate 20.
  • 3 is a possible cross-sectional structure diagram of the dot microstructure of the pyramid structure in the first embodiment of the present invention. As shown in FIG. 3, in this embodiment, the cross section of the dot microstructure 24 is triangular, but it is not limited to this.
  • the cross section of the dot microstructure 24 is a triangle with an arc-shaped chamfered apex angle.
  • the dot microstructure 24 can also be a prism structure.
  • the cross section of the dot microstructure 24 is a trapezoid, and the dot microstructure 24 can also be a structure in which multiple prisms are superimposed.
  • the cross section of the dot microstructure is Shapes such as polygons with stepped angles.
  • the pyramid structure or the pyramid structure defined by the dot microstructure 24 includes appropriate deformation of the pyramid structure or the pyramid structure, for example, the pyramid or the pyramid structure may also be deformed such as an arc shape, and will not be repeated.
  • the contact angle between the tangent of any point on the surface of the dot microstructure and the reflecting surface is not greater than 7°.
  • the dot microstructure is now The contact angle between the tangent of any point on the surface and the reflective surface refers to the acute angle between the edge surface of the pyramid or pyramid and the reflective surface.
  • each edge of the pyramid or pyramid structure The angle ⁇ between the surface and the reflecting surface 23 is not more than 7°. If it is composed of multiple prisms, the angle between each prism surface and the reflecting surface is not more than 7°, so that the present invention has this
  • the light-emitting angle of the light guide plate 20 of the dot microstructure 24 may be between 60° and 90°.
  • the dot microstructures 24 are arranged in a direction away from the light source 10 from sparse to dense, so that the light emitted from the side close to the light source 10 to the side away from the light source 10 in the overall backlight structure is more uniform on the entire light emitting surface. .
  • the light correction film 30 includes, for example, a substrate 31 and a microprism structure 32 formed on the substrate 31.
  • the substrate 31 and the microprism structure 32 may be made of the same material or Different materials.
  • the refractive index of the microprism structure 32 is between 1.55-1.70.
  • FIG. 6 is a schematic diagram of a cross-sectional structure of the micro prism structure in a direction perpendicular to the light incident surface in the first embodiment of the present invention
  • FIG. 7 is another cross-sectional structure of the micro prism structure in a direction perpendicular to the light incident surface in the first embodiment of the present invention
  • the cross section of the microprism structure along the direction perpendicular to the light incident surface is triangular, as shown in FIG. 6.
  • the cross-section is an isosceles triangle
  • the base angle ⁇ of the isosceles triangle that is, the included angle between the lateral inclined surface 321 and the bottom surface of the triangle in FIG. 6) is in the range of 65°-77°.
  • the cross section of the microprism structure along the direction perpendicular to the light incident surface may also be a triangle with an arc chamfered vertex.
  • the radius of curvature of the arc chamfer is less than 5 microns.
  • the base angle ⁇ of the triangle whose apex angle is an arc-shaped chamfer (that is, the angle between the lateral inclined surface 321 in Fig. 7 and the bottom surface of the triangle whose apex angle is an arc-shaped chamfer) is in the range of 65°-77°
  • the length of the base of a triangle or a triangle with an arc chamfered top angle is within the range of 18-40 microns.
  • a plurality of microprism structures 32 are arranged adjacently and repeatedly in parallel along a direction perpendicular to the light incident surface 21, and all the light entering the light correction film from the light guide plate 20 is corrected laterally, so that the lateral light exit angle is corrected It exits within ⁇ 15° perpendicular to the light exit surface, and at the same time, longitudinally corrects the light entering the light correction film, so that the longitudinal light exit angle is corrected to exit within ⁇ 20° perpendicular to the light exit surface.
  • the backlight structure of this embodiment is adopted.
  • the liquid crystal display device has a better anti-peeping effect.
  • FIG. 8 is a schematic cross-sectional structure diagram of the micro prism structure along the direction parallel to the light incident surface in the first embodiment of the present invention; as shown in FIG. 8, in this embodiment, the micro prism structure 32 extends in a direction parallel to the light incident surface 21.
  • the microprism structure 32 is arranged intermittently, and the microprism structure 32 is a trapezoid in a cross section parallel to the light incident surface.
  • the trapezoid is an isosceles trapezoid.
  • the length of the base of the trapezoid is between 100-500 microns.
  • the lengths of the upper and lower bottoms of the trapezoid and the bottom angle ⁇ of the trapezoid can be adjusted according to the requirements of different longitudinal light-emitting angles. That is, the intermittently arranged microprism structures 32 can be set up as needed. And adjust the angle between the longitudinal inclined surface 322 and the trapezoidal bottom to satisfy the adjustment of the longitudinal light-emitting angle.
  • the lengths of the multiple prism segments spaced apart from each other can be the same, or they can be randomly distributed in the range of 100-500 microns.
  • the bottom angle ⁇ and the bottom angle ⁇ of the trapezoid can be the same or different.
  • the light correcting film 30 through the light correcting film 30 disposed on the side away from the light guide plate 20, the light correcting film 30 has a plurality of microprism structures 32 extending in a direction parallel to the light incident surface 21 and arranged intermittently, so as to achieve simultaneous alignment to the transverse direction. And the adjustment of the longitudinal light-emitting angle, the specific adjustment principle meets the principle of geometric optics, and will not be repeated.
  • the light source 10 is an LED light bar, but it is not limited to this, and other light sources may also be used.
  • the dot microstructure 24 may also be convex dots protruding outward from the body of the light guide plate 20, which will not be repeated here.
  • the dot microstructure 24 is a concave arc structure.
  • FIG. 9 is a schematic cross-sectional structure diagram of the backlight structure of the second embodiment of the present invention.
  • the dot microstructure 24 is a concave (concave into the body of the light guide plate 20) arc structure.
  • FIG. 10 is a schematic diagram of the dot microstructure with a curved surface on the reflective surface of the light guide plate in the backlight structure of the second embodiment of the present invention.
  • the dot microstructures 24 are also arranged in a direction away from the light source 10. To be dense, the light emitted from the side close to the light source 10 to the side away from the light source 10 in the overall backlight structure is more uniform on the entire light-emitting surface.
  • the contact angle between the tangent line of any point on the surface of the dot microstructure and the reflective surface is not greater than 7 °, in this embodiment, the contact angle refers to the angle between the tangent at any point on the arc structure and the reflective surface. In this embodiment, the angle ⁇ between the tangent at any point on the arc structure and the reflective surface is not greater than 7°,
  • the light guide plate 20 with the dot microstructure 24 in the present invention has a light emitting angle between 60° and 90°. After the light exits through the light correction film 30, the light exit angle is corrected to be perpendicular to the light exit surface within a range of ⁇ 15°.
  • the liquid crystal display device adopting the backlight structure of this embodiment has a better anti-peeping effect.
  • the arc surface structure can be one of a partial sphere, an ellipsoid surface or an elliptical paraboloid, and the projection of the arc surface structure on the reflecting surface is a circle or an ellipse, the diameter of the circle or the size of the major axis of the ellipse Not more than 130 microns.
  • the arc structure is a partial spherical structure, the angle ⁇ between the tangent to any point on the arc structure and the reflective surface is not greater than 7°, and the projection of the arc structure on the reflective surface is circular And the size of the diameter R of the circle is not greater than 130 microns.
  • the structure of the light correction film 30 is the same as that of the first embodiment, and will not be repeated.
  • both the light emitting surface 22 and the reflecting surface 23 are distributed with pyramid-shaped dot microstructures 24, and the dot microstructures 24 are the same. It is a concave (concave into the body of the light guide plate 20) dot microstructure.
  • FIG. 12 is a schematic cross-sectional structure diagram of the backlight structure of the third embodiment of the present invention.
  • light A is emitted from the light source 10 and acts on the dot microstructure 24 on the reflective surface of the light guide plate 20.
  • the light path diagram of the emitted light below, the light B is the light path diagram of the emitted light from the light source 10 through the dot microstructure 24 on the light-emitting surface of the light guide plate 20.
  • the light A and the light B are from the light guide plate 20 After the light exit surface 22 is emitted, the light exit angle is between 60° and 90°.
  • the light exit angle is corrected to be perpendicular to the light exit surface within ⁇ 15° to exit.
  • the backlight structure of this embodiment is adopted
  • the liquid crystal display device has a better anti-peeping effect, and the brightness in the front view direction is greatly improved.
  • the dot microstructure 24 may also be convex dots protruding outward from the body of the light guide plate 20, which will not be repeated.
  • both the light exit surface 22 and the reflective surface 23 are distributed with arc-shaped dot microstructures 24, and dot microstructures 24 It is also a concave (concave into the body of the light guide plate 20) dot microstructure.
  • FIG. 13 is a schematic cross-sectional structure diagram of the backlight structure of the fourth embodiment of the present invention.
  • the light exit angle is between 60° and 90°.
  • the angle of the light is corrected to be within ⁇ 15° perpendicular to the light-emitting surface.
  • the liquid crystal display device adopting the backlight structure of this embodiment has a better anti-peeping effect, and the brightness in the front view direction is large. promote.
  • the dot microstructure 24 may also be convex dots protruding outward from the body of the light guide plate 20, which will not be repeated.
  • this embodiment further includes a diffuser 40 on the side of the light correction film 30 away from the light guide plate 20.
  • FIG. 14 is a schematic cross-sectional structure diagram of the backlight structure of the fifth embodiment of the present invention. As shown in FIG. The emitted light is further adjusted.
  • FIG. 15 is a schematic diagram of the light output angle of the backlight structure of the fifth embodiment of the present invention.
  • the light output angle is corrected to ⁇ 15° perpendicular to the light output surface.
  • the light is emitted within the range, and the angle of the emitted light is relatively concentrated within this angle range.
  • the diffuser 40 is a film with a certain light diffusion effect.
  • the diffuser 40 can adjust the light emitted from the light correction film 30 twice to improve The uniformity of brightness and the adjustment of the direction of light emission can meet the application of display devices with different viewing angle requirements.
  • the backlight structure of the present invention can further flexibly and simply adjust the angle of the emitted light as required. Carry out regulation.
  • the diffusion sheet 40 can also be applied to the structures of the second to fourth embodiments, and has substantially the same technical effect, which will not be repeated.
  • the display device adopting the backlight structure of the present invention can realize the function of being visible in a specific direction.
  • 16 is a comparison diagram of the vertical field of view angle of the first embodiment of the present invention and the structure of a traditional backlight
  • FIG. 17 is a comparison diagram of the horizontal field of view angle of the first embodiment of the present invention and the structure of a conventional backlight, as shown in FIGS.
  • the backlight structure of the present invention greatly increases the forward light intensity in both the vertical field of view and the horizontal field of view (approximately twice the forward light intensity of the traditional backlight structure), and the vertical view of the backlight structure of the present invention
  • the field is mainly concentrated in the range of ⁇ 15°
  • the horizontal field of view is mainly concentrated in the range of ⁇ 20°.
  • the liquid crystal display device adopting the backlight structure of the present invention has a better anti-peeping effect.
  • FIG. 18 is a schematic diagram of the present invention that can realize different viewing direction angle settings according to different demand scenarios.
  • the backlight structure of the present invention can set the visual effect of maximum light emission with different viewing angle directions according to needs, as shown in FIG. 18, Exemplarily set the maximum light intensity exit angle distribution at several angles: the angles perpendicular to the light exit surface are 0°, 18°, 26°, and 48°, respectively.
  • Figure 16 is only an example of a few angles, and the present invention does not Limited to the angles of these several examples, the bottom angle of the microprism structure in the present invention can be set correspondingly according to the needs of different angles or different usage scenarios, and will not be repeated here.
  • the dot microstructure on the reflective surface of the light guide plate can be formed by, for example, bumping or precision processing, and the dot microstructure can be a concave dot structure or a convex dot structure.
  • the backlight structure of the present invention can effectively improve the utilization rate of light and increase the display brightness in the front view direction. Compared with the traditional backlight structure, it reduces the use of optical film, reduces the thickness and cost of the backlight module, and can be applied to low power consumption, Thin and light mobile phones, pads, notebook computers and other electronic products, or other display products with specific visual orientation requirements.
  • the light guide plate and backlight structure involved in the present invention can be applied to the field of liquid crystals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种导光板(20),其具有入光面(21)、出光面(22)和反射面(23),入光面(21)与出光面(22)垂直并相邻,入光面(21)位于靠近光源(10)的一侧,反射面(23)与出光面(22)位置相对设置,反射面(23)和出光面(22)至少其一上具有多个凸型或凹型的网点微结构(24),网点微结构(24)的表面上任一点的切线与反射面(23)的接触角不大于7°。包括导光板(20)的背光源结构包括光源(10);光线矫正膜(30),光线矫正膜(30)位于导光板(20)的出光面(22)一侧,光线矫正膜(30)背离导光板(20)的一侧具有沿平行于入光面(21)方向延伸并间断排布的多个微棱镜结构(32);反射片(50),反射片(50)位于导光板(20)的反射面(23)一侧。导光板(20)及背光源结构有效提高光线利用率,增加正视方向显示亮度,降低背光模组厚度和成本。

Description

一种导光板及背光源结构 技术领域
本发明涉及液晶显示背光源技术领域,特别涉及一种导光板及背光源结构。
背景技术
目前,背光源的主要作用是将LED排布的线光源形成均匀的面光源,其中的光学组件包括导光板和将导光板出射光线进行调整矫正的多种光学元件。在传统的背光源结构中,通常在导光板的表面增加网点或沟槽等结构破坏光的波导传播(例如导光板表面的圆形外凸型、圆形内凹型、V型槽等),导光板出射的光线之后经过扩散膜进行再调整,这时横/纵向的出光角度会变大,最后经过两层增亮膜,将光线进行收缩,最终的出射光线角度控制在70°范围内。但现有的背光源存在以下方面的缺点:现有背光源结构中,导光板的光线经扩散片、增亮膜后出光角度较大,大视角损失光线占比较多,光线利用率低,造成正视亮度不足。另一方面,现有背光的出光角度不利于用户隐私的保护,对于亮度要求高以及有防窥要求的产品,具有小角度出光范围的背光更加符合要求,而现有的防窥手段是通过增加光学元件的方式过滤掉大视角的光线,而这种方法是以牺牲背光亮度为代价。传统的背光源结构主要由光源、导光板、扩散片、下增亮膜、上增亮膜等构成,光学元件多,成本较高,另外,现有的背光源结构,面对不同的出光分布要求,缺少光线调整的灵活性。
发明内容
本发明的目的在于针对现有技术中存在的以上技术问题,提出一种导光板及背光源结构,有效提高光线利用率,增加正视方向显示亮度,降低背光模组厚度和成本。
本发明采用以下技术方案:
一种导光板,所述导光板具有入光面、出光面和反射面,所述入光面与所述出光面垂直并相邻,所述入光面位于靠近光源的一侧,所述反射面与所述出光面位置相对设置,所述反射面和所述出光面至少其一上具有多个凸型或凹型的网点微结构,所述网点微结构的表面上任一点的切线与所述反射面的接触角不大于7°。
优选地,所述网点微结构为棱锥结构、棱台结构或弧面结构。
优选地,所述弧面结构为部分球面、椭球面或椭圆抛物面中的一种,所述弧面结构在所述反射面上的投影为圆形或椭圆形。
优选地,所述圆形的直径或所述椭圆形的长轴的尺寸不大于130微米。
另一方面,提供一种背光源结构,其包括上述任一项所述的导光板,所述背光源结 构还包括:光源;光线矫正膜,所述光线矫正膜位于所述导光板的所述出光面一侧,所述光线矫正膜背离所述导光板的一侧具有沿平行于所述入光面方向延伸并间断排布的多个微棱镜结构;反射片,所述反射片位于所述导光板的所述反射面一侧。
优选地,所述微棱镜结构沿垂直于入光面方向的剖面为三角形,所述微棱镜结构沿平行于入光面方向的剖面为梯形。
优选地,所述三角形为等腰三角形,所述梯形为等腰梯形,所述等腰三角形和所述等腰梯形的底角在65°-77°范围内。
优选地,所述等腰梯形的底边长度在100-500微米之间。
优选地,所述三角形的顶角为弧形倒角,所述弧形倒角的曲率半径小于5微米,所述三角形的底边长度为18-40微米。
优选地,所述多个微棱镜结构沿垂直于入光面方向相邻并平行地重复排列。
优选地,还包括位于所述光线矫正膜背离所述导光板一侧的扩散片。
本发明的导光板及背光源结构,有效提高光线利用率,增加正视方向显示亮度,降低背光模组厚度和成本。
附图说明
通过参照本发明的实施方案的图示说明可以更好地理解本发明,在附图中:
图1是本发明第一实施例的导光板及背光源结构的剖面结构示意图;
图2是本发明第一实施例的背光源结构中的导光板反射面具有棱锥结构的网点微结构示意图;
图3是本发明第一实施例中棱锥结构的网点微结构可能的剖面结构示意图;
图4是本发明第一实施例中光线矫正膜沿垂直于入光面方向的剖面结构示意图;
图5是本发明第一实施例中光线矫正膜沿平行于入光面方向的剖面结构示意图;
图6是本发明第一实施例中微棱镜结构沿垂直于入光面方向的剖面结构示意图;
图7是本发明第一实施例中微棱镜结构沿垂直于入光面方向的另一剖面结构示意图;
图8是本发明第一实施例中微棱镜结构沿平行于入光面方向的剖面结构示意图;
图9是本发明第二实施例的背光源结构的剖面结构示意图;
图10是本发明第二实施例的背光源结构中的导光板反射面具有弧面结构的网点微结构示意图;
图11是本发明第二实施例中弧面结构的网点微结构的剖面结构示意图;
图12是本发明第三实施例的背光源结构的剖面结构示意图;
图13是本发明第四实施例的背光源结构的剖面结构示意图;
图14是本发明第五实施例的背光源结构的剖面结构示意图;
图15是本发明第五实施例的背光源结构的出光角度示意图;
图16是本发明第一实施例的垂直视场角度与传统背光源结构对比图;
图17是本发明第一实施例的水平视场角度与传统背光源结构对比图;
图18是本发明可根据不同需求场景实现不同可视方向角度设置示意图。
具体实施方式
在以下的描述中,为了达到解释说明的目的以对本发明有一个全面的认识,阐述了大量的具体细节,然而,很明显的,对本领域技术人员而言,无需这些具体细节也可以实现本发明。本发明所列举的说明性的示例实施方案仅为了说明,并不对本发明造成限制。因此,本发明的保护范围并不受具体实施方案所限,仅以所附的权利要求书的范围为准。
下面结合附图对本发明具体实施方式的背光源结构做详细描述。
第一实施例:
图1是本发明第一实施例的导光板及背光源结构的剖面结构示意图,如图1所示,本实施例的背光源结构包括:光源10、导光板20、光线矫正膜30和反射片50,本实施例的导光板20具有入光面21、出光面22和反射面23,入光面21与出光面22垂直并相邻,入光面21位于靠近光源10的一侧,反射面23与出光面22位置相对设置,本实施例中,反射面23上具有多个凸型或凹型的网点微结构24。本实施例中,以凹型(凹入导光板20本体内)的网点微结构为例,本实施例中,如图1所示,网点微结构24为凹型的棱锥结构。光线矫正膜30位于导光板20的出光面22一侧,光线矫正膜30背离导光板20的一侧具有多个沿平行于入光面21方向延伸并间断排布的微棱镜结构32,微棱镜结构32沿垂直于入光面方向的剖面为三角形或顶角为弧形的三角形,微棱镜结构32沿平行于入光面方向的剖面为梯形,梯形的上底长即为间断排布的微棱镜结构32的顶部的长,梯形的下底长即为间断排布的微棱镜结构32的底部的长,多个梯形之间的缝隙即为微棱镜结构32的间断部分。本实施例的背光源结构还包括反射片50,反射片50位于导光板20的反射面一侧,用于反射从导光板20入射到反射片50上的光线,对这部分光线重新利用以提高背光源模组的光利用率。
图2是本发明第一实施例的背光源结构中的导光板反射面具有棱锥结构的网点微结构示意图,但并不限于此,本实施例中,网点微结构还可以是棱台结构。如图2所示,本实施例中,具有棱锥结构的网点微结构24为凹入导光板20本体内的凹型网点。图3是本发明第一实施例中棱锥结构的网点微结构可能的剖面结构示意图,如图3所示,本实施例中,网点微结构24的剖面为三角形,但不限于此,网点微结构24若采用类棱锥结构,例如棱锥的 顶点为弧面,则网点微结构24的剖面为顶角为弧形倒角的三角形。本实施例中,网点微结构24还可以是棱台结构,此时网点微结构24的剖面为梯形,网点微结构24还可以是多个棱台叠加的结构,此时网点微结构的剖面为角度阶梯变化的多边形等形状。本发明中,网点微结构24所限定的棱锥结构或棱台结构包括棱锥结构或棱台结构的适当变形,例如棱锥或棱台的棱还可以为弧形形状等变形,不再赘述。本发明中,网点微结构的表面上任一点的切线与反射面的接触角不大于7°,本发明中,对于网点微结构24的剖面为棱锥或棱台的结构而言,此时网点微结构的表面上任一点的切线与反射面的接触角指的是棱锥或棱台的棱面与反射面之间的锐角夹角,针对本实施例,具体地,只要棱锥或棱台结构的每个棱面与反射面23的夹角α均不大于7°即可,若是由多个棱台叠加组成,则每个棱面与反射面的夹角均不大于7°,从而使得本发明中具有该网点微结构24的导光板20的出光角度在60°-90°之间即可。本发明中,网点微结构24沿着远离光源10的方向排布由疏到密,使得整体背光源结构中从靠近光源10一侧到远离光源10一侧的出射光线在整个出光面上更均匀。
图4是本发明第一实施例中光线矫正膜沿垂直于入光面方向的剖面结构示意图,图5是本发明第一实施例中光线矫正膜沿平行于入光面方向的剖面结构示意图,结合图4和图5所示,本实施例中,光线矫正膜30例如包括基材31和形成于基材31上的微棱镜结构32,基材31可以与微棱镜结构32采用相同的材料或不同材料。优选地,微棱镜结构32的折射率在1.55-1.70之间。图6是本发明第一实施例中微棱镜结构沿垂直于入光面方向的剖面结构示意图,图7是本发明第一实施例中微棱镜结构沿垂直于入光面方向的另一剖面结构示意图,本实施例中,微棱镜结构沿垂直于入光面方向的剖面为三角形,如图6所示。优选地,剖面为等腰三角形,等腰三角形的底角β(即图6中横向倾斜面321与三角形底面之间的夹角)在65°-77°范围内。如图7所示,微棱镜结构沿垂直于入光面方向的剖面也可以是顶角为弧形倒角的三角形,优选地,弧形倒角的曲率半径小于5微米。图7中,顶角为弧形倒角的三角形的底角β(即图7中横向倾斜面321与顶角为弧形倒角的三角形底面之间的夹角)在65°-77°范围内,三角形或顶角为弧形倒角的三角形的底边长度在18-40微米范围内。
本实施例中,多个微棱镜结构32沿着垂直于入光面21的方向相邻并平行地重复排列,对所有从导光板20进入光线矫正膜的光线进行横向矫正,使得横向出光角度矫正到垂直于出光面±15°范围内出射,同时,对进入光线矫正膜的光线进行纵向矫正,使得纵向出光角度矫正到垂直于出光面±20°范围内出射,采用本实施例背光源结构的液晶显示器件具有较佳的防窥效果。
图8是本发明第一实施例中微棱镜结构沿平行于入光面方向的剖面结构示意图;如 图8所示,本实施例中,微棱镜结构32沿平行于入光面21方向延伸并间断排布,微棱镜结构32沿平行于入光面方向的剖面为梯形,优选地,该梯形为等腰梯形,梯形的底角γ(即纵向倾斜面322与梯形下底之间的夹角)在65°-77°范围内,梯形的底边长度在100-500微米之间。本实施例中,可以根据不同纵向出光角度的要求对梯形的上底和下底的长度以及梯形的底角γ做相应调整设置,即可以根据需要设置间断排布的微棱镜结构32设置间断之间的距离和调整纵向倾斜面322与梯形下底之间的夹角,以满足对纵向出光角度进行调整。本实施例中,相互间隔的多个棱镜段长度可以相同,也可以是长度在100-500微米范围内随机分布,梯形的底角γ和底角β可以角度相同,也可以为不同角度,
本发明中,通过设置在背离导光板20的一侧的光线矫正膜30,光线矫正膜30具有多个沿平行于入光面21方向延伸并间断排布的微棱镜结构32,达到同时对横向和纵向出光角度的调节,具体调节原理满足几何光学原理,不再赘述。
本实施例中,优选地,光源10为LED灯条,但不限于此,也可以采用其他光源。网点微结构24还可以为从导光板20本体向外凸出的凸型网点,不再赘述。
第二实施例:
本实施例与第一实施例相同之处不再赘述,其不同之处在于,本实施例中,网点微结构24为凹型的弧面结构。
图9是本发明第二实施例的背光源结构的剖面结构示意图,如图9所示,本实施例中,网点微结构24为凹型(凹入导光板20本体内)的弧面结构。图10是本发明第二实施例的背光源结构中的导光板反射面具有弧面结构的网点微结构示意图,本实施例中,网点微结构24同样沿着远离光源10的方向排布由疏到密,使得整体背光源结构中从靠近光源10一侧到远离光源10一侧的出射光线在整个出光面上更均匀。
图11是本发明第二实施例中弧面结构的网点微结构的剖面结构示意图,如图11所示,本发明中,网点微结构的表面上任一点的切线与反射面的接触角不大于7°,本实施例中,接触角指的是弧面结构上任一点的切线与反射面的夹角,本实施例中弧面结构上任一点的切线与反射面的夹角θ均不大于7°,使得本发明中具有该网点微结构24的导光板20的出光角度在60°-90°之间,出射光线之后经过光线矫正膜30后,出光角度矫正到垂直于出光面±15°范围内出射,采用本实施例背光源结构的液晶显示器件具有较佳的防窥效果。
本发明中,弧面结构可以为部分球面、椭球面或椭圆抛物面中的一种,弧面结构在反射面上的投影为圆形或椭圆形,圆形的直径或椭圆形的长轴的尺寸不大于130微米。本实施例中如图11所示,弧面结构为部分球面结构,弧面结构上任一点的切线与反射面的夹角 θ均不大于7°,弧面结构在反射面上的投影为圆形并且圆形的直径R的尺寸不大于130微米。
本实施例中,如图11所示,弧形结构上任意点的坐标需满足以下方程:
Ax 2+By 2=z
其中,0≤z≤6.5;0≤A≤6.2×10 -3;0≤B≤6.2×10 -3
本实施例中,光线矫正膜30的结构与第一实施例相同,不再赘述。
第三实施例:
本实施例与第一实施例相同之处不再赘述,其不同之处在于,本实施例中,出光面22和反射面23上均分布有棱锥结构的网点微结构24,网点微结构24同样为凹型(凹入导光板20本体内)的网点微结构。
图12是本发明第三实施例的背光源结构的剖面结构示意图,如图12所示,本实施例中,光线A为光源10出射的经导光板20的反射面上的网点微结构24作用下的出射光线光路图,光线B为光源10出射的经导光板20的出光面上的网点微结构24作用下的出射光线光路图,本实施例中,光线A和光线B从导光板20的出光面22出射后,出光角度在60°-90°之间,出射光线之后经过光线矫正膜30后,出光角度矫正到垂直于出光面±15°范围内出射,采用本实施例背光源结构的液晶显示器件具有较佳的防窥效果,正视方向亮度大幅提升。
本实施例中,网点微结构24还可以为从导光板20本体向外凸出的凸型网点,不再赘述。
第四实施例:
本实施例与第二实施例相同之处不再赘述,其不同之处在于,本实施例中,出光面22和反射面23上均分布有弧形结构的网点微结构24,网点微结构24同样为凹型(凹入导光板20本体内)的网点微结构。
图13是本发明第四实施例的背光源结构的剖面结构示意图,如图13所示,本实施例中,光线从导光板20的出光面22出射后,出光角度在60°-90°之间,出射光线之后经过光线矫正膜30后,出光角度矫正到垂直于出光面±15°范围内出射,采用本实施例背光源结构的液晶显示器件具有较佳的防窥效果,正视方向亮度大幅提升。
本实施例中,网点微结构24还可以为从导光板20本体向外凸出的凸型网点,不再赘述。
第五实施例:
本实施例与第一实施例相同之处不再赘述,其不同之处在于,本实施例中,还包括位于光线矫正膜30背离导光板20一侧的扩散片40。
图14是本发明第五实施例的背光源结构的剖面结构示意图,如图14所示,本实施例的背光源结构中,进一步在光线矫正膜30的外侧设置扩散片40,对背光源结构的出射光进一步调整。
图15是本发明第五实施例的背光源结构的出光角度示意图,如图15所示,本实施例中,由于出射光线经过光线矫正膜30后,出光角度矫正到垂直于出光面±15°范围内出射,出射光角度相对集中在该角度范围内,扩散片40是具有一定光线扩散作用的膜片,通过扩散片40可以对从光线矫正膜30出射的光线进行二次调整,起到提高亮度均一性和对出光方向调整的作用,以满足具有不同视角要求的显示器件方面的应用。由于传统的背光源结构在扩散片之后光束的角度范围较大,对光线可以调整的程度有限,难度也较大,而本发明的背光源结构则可以根据需要对出射光角度进一步灵活而简易地进行调控。
本发明中,扩散片40同时还可以应用于第二至第四实施例的结构中,起到大致相同的技术效果,不再赘述。
本发明中,通过在导光板的反射面上设置具有特定结构和角度分布的网点微结构,并设置具有特定结构的光线矫正膜,使得从导光板出射具有一定角度的光进入光线矫正膜后将出射光线矫正到所需要的方向上,采用本发明背光源结构的显示器件可以实现具有特定方向可视的功能。图16是本发明第一实施例的垂直视场角度与传统背光源结构对比图,图17是本发明第一实施例的水平视场角度与传统背光源结构对比图,由图16和图17可以看出,本发明的背光源结构在垂直视场和水平视场均大幅提高正向出光强度(大约为传统背光源结构正向出光强度的两倍),本发明的背光源结构的垂直视场主要集中在±15°范围内,水平视场主要集中在±20°范围内,采用本发明背光源结构的液晶显示器件具有较佳的防窥效果。
图18是本发明可根据不同需求场景实现不同可视方向角度设置示意图,本发明的背光源结构,可以根据需要设定具有不同视角方向最大光强出射的可视效果,如图18所示,举例性地设置几种角度的最大光强出射角度分布:与出光面的垂直方向夹角分别为0°、18°、26°、48°,图16仅是几个角度的举例,本发明不限于这几种举例的角度,可以根据不同角度的需要或不同使用场景对本发明中的微棱镜结构的底角进行相应设置,不再赘述。
本发明中导光板的反射面上的网点微结构可以例如采用撞点或精密加工工艺形成,网点微结构可以是凹型网点结构或凸型网点结构。本发明的背光源结构,可以有效提高光线利用率,增加正视方向显示亮度,相比传统背光源结构,减少了光学膜层的使用,降低背光 模组厚度和成本,可以应用于低功耗、轻薄的手机、pad、笔记本电脑等电子产品领域或其他具有特定可视方向要求的显示产品。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其他具体实施方式,这些方式都将落入本发明的保护范围之内。
工业实用性
本发明所涉及的一种导光板及背光源结构可以应用于液晶领域。

Claims (11)

  1. 一种导光板,其特征在于,所述导光板具有入光面、出光面和反射面,所述入光面与所述出光面垂直并相邻,所述入光面位于靠近光源的一侧,所述反射面与所述出光面位置相对设置,所述反射面和所述出光面至少其一上具有多个凸型或凹型的网点微结构,所述网点微结构的表面上任一点的切线与所述反射面的接触角不大于7°。
  2. 根据权利要求1所述的导光板,其特征在于,所述网点微结构为棱锥结构、棱台结构或弧面结构。
  3. 根据权利要求2所述的导光板,其特征在于,所述弧面结构为部分球面、椭球面或椭圆抛物面中的一种,所述弧面结构在所述反射面上的投影为圆形或椭圆形。
  4. 根据权利要求3所述的导光板,其特征在于,所述圆形的直径或所述椭圆形的长轴的尺寸不大于130微米。
  5. 一种背光源结构,其特征在于,包括如权利要求1-4中任一项所述的导光板,所述背光源结构还包括:
    光源;
    光线矫正膜,所述光线矫正膜位于所述导光板的所述出光面一侧,所述光线矫正膜背离所述导光板的一侧具有沿平行于所述入光面方向延伸并间断排布的多个微棱镜结构;
    反射片,所述反射片位于所述导光板的所述反射面一侧。
  6. 根据权利要求5所述的背光源结构,其特征在于,所述微棱镜结构沿垂直于入光面方向的剖面为三角形,所述微棱镜结构沿平行于入光面方向的剖面为梯形。
  7. 根据权利要求6所述的背光源结构,其特征在于,所述三角形为等腰三角形,所述梯形为等腰梯形,所述等腰三角形和所述等腰梯形的底角在65°-77°范围内。
  8. 根据权利要求7所述的背光源结构,其特征在于,所述等腰梯形的底边长度在100-500微米之间。
  9. 根据权利要求6所述的背光源结构,其特征在于,所述三角形的顶角为弧形倒角,所述弧形倒角的曲率半径小于5微米,所述三角形的底边长度为18-40微米。
  10. 根据权利要求5所述的背光源结构,其特征在于,所述多个微棱镜结构沿垂直于入光面方向相邻并平行地重复排列。
  11. 根据权利要求5所述的背光源结构,其特征在于,还包括位于所述光线矫正膜背离所述导光板一侧的扩散片。
PCT/CN2021/093858 2020-06-15 2021-05-14 一种导光板及背光源结构 WO2021254055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010542314.XA CN113805267A (zh) 2020-06-15 2020-06-15 一种导光板及背光源结构
CN202010542314.X 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021254055A1 true WO2021254055A1 (zh) 2021-12-23

Family

ID=78892337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093858 WO2021254055A1 (zh) 2020-06-15 2021-05-14 一种导光板及背光源结构

Country Status (2)

Country Link
CN (1) CN113805267A (zh)
WO (1) WO2021254055A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509843A (zh) * 2021-12-30 2022-05-17 苏州天禄光科技股份有限公司 侧入式导光板及侧入式背光模组
CN115166891A (zh) * 2022-07-20 2022-10-11 福州大学 基于全内反射自由曲面的Mini-LED背光模组

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000779A1 (zh) * 2022-06-27 2024-01-04 盐城维旺科技有限公司 导光板及显示组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069879A (ja) * 2002-08-05 2004-03-04 Hitachi Ltd 液晶表示装置
CN205746366U (zh) * 2016-06-20 2016-11-30 苏州鹏富光电科技有限公司 一种新型背光模组
CN107942431A (zh) * 2018-01-05 2018-04-20 京东方科技集团股份有限公司 准直背光源、显示装置及其光致聚合物层制备方法
CN109765725A (zh) * 2019-03-26 2019-05-17 合肥京东方光电科技有限公司 一种准直膜、准直背光模组、显示模组及显示装置
CN209803492U (zh) * 2019-03-19 2019-12-17 深圳市隆利科技股份有限公司 屏下指纹识别液晶显示装置及终端设备
CN212341509U (zh) * 2020-06-15 2021-01-12 江苏集萃智能液晶科技有限公司 一种导光板及背光源结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069879A (ja) * 2002-08-05 2004-03-04 Hitachi Ltd 液晶表示装置
CN205746366U (zh) * 2016-06-20 2016-11-30 苏州鹏富光电科技有限公司 一种新型背光模组
CN107942431A (zh) * 2018-01-05 2018-04-20 京东方科技集团股份有限公司 准直背光源、显示装置及其光致聚合物层制备方法
CN209803492U (zh) * 2019-03-19 2019-12-17 深圳市隆利科技股份有限公司 屏下指纹识别液晶显示装置及终端设备
CN109765725A (zh) * 2019-03-26 2019-05-17 合肥京东方光电科技有限公司 一种准直膜、准直背光模组、显示模组及显示装置
CN212341509U (zh) * 2020-06-15 2021-01-12 江苏集萃智能液晶科技有限公司 一种导光板及背光源结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509843A (zh) * 2021-12-30 2022-05-17 苏州天禄光科技股份有限公司 侧入式导光板及侧入式背光模组
CN115166891A (zh) * 2022-07-20 2022-10-11 福州大学 基于全内反射自由曲面的Mini-LED背光模组
CN115166891B (zh) * 2022-07-20 2023-10-27 福州大学 基于全内反射自由曲面的Mini-LED背光模组

Also Published As

Publication number Publication date
CN113805267A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2021254055A1 (zh) 一种导光板及背光源结构
US9766391B2 (en) Light guide plate and light source module
JP5193987B2 (ja) 導光板及びバックライトモジュール
US9778405B2 (en) Light guide plate and light source module
CN212341509U (zh) 一种导光板及背光源结构
TWI615659B (zh) 光源模組及其稜鏡片
US20060039670A1 (en) Light guide device and backlight module using the same
KR20060061257A (ko) 면광원 장치 및 표시장치
JP2008209928A (ja) 光源装置及びそれに用いる光偏向素子
JP2002197908A (ja) 光制御シート、面光源装置及び液晶ディスプレイ
TW201307965A (zh) 顯示裝置
JP4172008B2 (ja) 面光源装置
KR101692888B1 (ko) 도광판과 이를 이용한 백라이트 유닛
US20160238777A1 (en) Light guide plate ,light source module and display device
TW201234086A (en) Display device
US20130063975A1 (en) Asymmetric serrated edge light guide film having elliptical base segments
US7295261B2 (en) Light guide plate with W-shaped structures and backlight module using the same
US9223079B2 (en) Light guide plate and backlight module
JP2008257900A (ja) 面発光装置
US8439548B2 (en) Symmetric serrated edge light guide having circular base segments
KR100977941B1 (ko) 광 편향 소자 및 광원 장치
US20080130318A1 (en) Backlight unit
US20170123130A1 (en) Light guide plate, backlight module and display device
US8858058B2 (en) Asymmetric serrated edge light guide film having circular base segments
TWI385418B (zh) 光學膜片及背光模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826803

Country of ref document: EP

Kind code of ref document: A1