WO2021254041A1 - 激光发射器驱动电路、系统及高速光通信装置 - Google Patents

激光发射器驱动电路、系统及高速光通信装置 Download PDF

Info

Publication number
WO2021254041A1
WO2021254041A1 PCT/CN2021/093336 CN2021093336W WO2021254041A1 WO 2021254041 A1 WO2021254041 A1 WO 2021254041A1 CN 2021093336 W CN2021093336 W CN 2021093336W WO 2021254041 A1 WO2021254041 A1 WO 2021254041A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
laser transmitter
signal
laser
module
Prior art date
Application number
PCT/CN2021/093336
Other languages
English (en)
French (fr)
Inventor
张宁
张超
臧凯
Original Assignee
深圳市灵明光子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市灵明光子科技有限公司 filed Critical 深圳市灵明光子科技有限公司
Publication of WO2021254041A1 publication Critical patent/WO2021254041A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters

Definitions

  • This application relates to the field of optoelectronic technology, in particular to a laser transmitter drive circuit, system and high-speed optical communication device.
  • optical communication system is one of the important research directions.
  • lasers are widely used in technical fields such as high-speed optical communication systems and lidars. Since the laser power of the laser transmitter is relatively high, a driving circuit with a strong driving capability is required to drive the laser transmitter to work.
  • the present application discloses a laser transmitter driving circuit, which reduces the instantaneous power of the laser transmitter while normally driving the laser transmitter to work, so that the burden on the driving capability of the driving circuit can be reduced.
  • the present application provides a laser transmitter driving circuit applied to multiple laser transmitters.
  • the laser transmitter driving circuit includes: a selection module, a high voltage generation module, a plurality of charging and discharging modules, and a plurality of capacitors. Group, the selection module and the high voltage generation module are respectively connected to the plurality of charging and discharging modules, the selection module is configured to send selection signals to the plurality of charging and discharging modules, respectively, and the high voltage generation module is configured to Provide high voltage signals to the multiple charge and discharge modules respectively;
  • the laser transmitter includes a first electrode; wherein one end of the single capacitor group is connected to the first electrode of the corresponding laser transmitter, and the other end Grounded, the charging and discharging module charges the capacitor bank through the high voltage signal according to the selection signal, and when the capacitor bank is discharged, current is connected through the laser transmitter to drive the laser transmitter Launch the laser.
  • the charging and discharging module in the laser transmitter drive circuit of the present application can selectively drive the laser transmitter to emit laser light according to the selection signal, which reduces the number of laser transmitters at the same time.
  • the instantaneous power of the emitted laser light thereby reducing the burden of the driving capability of the laser transmitter driving circuit.
  • the present application also provides a laser transmitter driving system, the laser transmitter driving system includes a plurality of laser transmitters and the laser transmitter driving circuit as described in the first aspect, the laser transmitter driving The circuit is configured to drive the plurality of laser emitters to emit laser light.
  • the present application also provides a high-speed optical communication device, which includes the laser transmitter driving system as described in the second aspect.
  • FIG. 1 is a schematic diagram of the laser transmitter driving circuit framework provided by the first embodiment of the application.
  • FIG. 2 is a schematic diagram of a charging and discharging module circuit provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a laser transmitter provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a P-type transistor provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of an N-type transistor provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a laser transmitter driving circuit framework provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a circuit of a switch module provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a frame of a laser transmitter driving system provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the framework of a high-speed optical communication device provided by an embodiment of the application.
  • FIG. 1 is a schematic diagram of the laser transmitter drive circuit framework provided by the first embodiment of the application.
  • the laser transmitter driving circuit 1 is applied to a plurality of laser transmitters 21 and includes: a selection module 11, a high voltage generation module 12 and a plurality of charging and discharging modules 13.
  • the selection module 11 and the high voltage generation module 12 are respectively connected to the plurality of charging and discharging modules 13, and the selection module 11 is configured to send selection signals to the plurality of charging and discharging modules 13 respectively, and the high voltage generation
  • the module 12 is configured to provide high voltage signals to the plurality of charging and discharging modules 13 respectively.
  • the laser transmitter 21 includes a first electrode 211 (please refer to FIGS.
  • the charging and discharging module 13 charges the capacitor group 135 according to the selection signal and through the high voltage signal.
  • the current passes through the laser transmitter 21 to connect and drive the laser The transmitter 21 emits laser light.
  • the voltage value of the high voltage signal generated by the high voltage generation module 12 is greater than or equal to the voltage value of the power signal, and the power signal may be generated by a power supply device external to the laser transmitter driving circuit 1 , It can also be generated internally by the laser transmitter drive circuit 1.
  • the high voltage signal generated by the high voltage generating module 12 is loaded on the laser transmitter 21 through the charging and discharging module 13.
  • the selection signal generated by the selection module 11 may be a high-level signal or a low-level signal.
  • the charging and discharging module 13 transmits the high voltage signal to the laser transmitter 21 to drive the laser transmitter 21 to emit laser; when the selection signal is At the low level, the charging and discharging module 13 stops transmitting the high voltage signal to the laser emitter 21 and pulls down the voltage of the first electrode 211 to the ground voltage, and the laser emitter 21 does not emit laser light.
  • the charging and discharging module 13 may also transmit the high voltage signal to the laser transmitter 21 when the selection signal is at a low level, or the selection signal may be another form of signal . It can be understood that, as long as the charging and discharging module 13 is used to drive the laser transmitter 21 to emit laser light according to the selection signal and the high voltage signal, the present application does not impose restrictions on the form of the selection signal.
  • the charging and discharging module 13 can selectively drive the laser emitter 21 to emit laser light according to the selection signal, which reduces the instantaneous laser emission of the laser emitter 21 at the same time. Power, thereby reducing the burden on the driving capability of the laser transmitter driving circuit 1.
  • FIG. 2 is a schematic diagram of a charging and discharging module circuit provided by an embodiment of the application.
  • the charging and discharging module 13 includes: a first voltage translation circuit 131, an inverter 132, a first switch 133, and a second switch 134.
  • the first voltage translation circuit 131 is connected to the selection module 11 and is configured to receive the selection signal and boost the selection signal to obtain a boost signal.
  • the inverter 132 is connected to the first voltage translation circuit 131 and is configured to receive the boost signal and invert the potential of the boost signal to obtain a back voltage signal.
  • the first voltage translation circuit 131 may be, but is not limited to, a boost circuit.
  • the selection signal is a signal of the power domain of the power signal
  • the first voltage shift circuit 131 boosts the selection signal to obtain the boost signal
  • the boost The signal is a signal of the power domain of the high voltage signal.
  • the so-called power domain refers to the voltage value range.
  • the power domain of the power signal refers to the maximum voltage value of the power signal from 0V. Under different requirements, the maximum voltage value of the power signal may be 2V, 3V, 5V, etc.
  • the power domain of the high-voltage signal refers to 0V to the maximum voltage value of the high-voltage signal.
  • the inverter 132 inverts the potential of the boost signal to obtain the back pressure signal. In other words, the inverter 132 inverts the phase of the boost signal by 180 degrees, that is, The phase difference between the back pressure signal and the boost signal is 180 degrees.
  • the back pressure signal can control the on or off of the first switch 133 and the second switch 134, and the high voltage signal or the ground signal can be applied to the laser transmitter respectively.
  • the turning on or off of the first switch 133 and the second switch 134 means that when the first switch 133 is turned on, the second switch 134 is turned off; or, When the first switch 133 is turned off, the second switch 134 is turned on.
  • the laser transmitter 21 includes a first electrode 211, a light-emitting component 212, and a second electrode 213.
  • the light-emitting component 212 is driven by the voltage of the first electrode 211 and the second electrode 213.
  • Launch a laser When the back pressure signal is at a low potential, the first switch 133 is turned on, the second switch 134 is turned off, and the high voltage signal is applied to the first switch of the laser transmitter 21 through the first switch 133.
  • One electrode 211 when the back pressure signal is at a high potential, the first switch 133 is turned off, the second switch 134 is turned on, and the ground signal is applied to the laser transmitter 21 through the second switch 134
  • One electrode 211 when the back pressure signal is at a high potential, the first switch 133 is turned off, the second switch 134
  • Both the first switch 133 and the second switch 134 include a gate g, a source s, and a drain d.
  • the gate g of the first switch 133 is connected to the back pressure signal and the gate g of the second switch 134, and the source s of the first switch 133 is connected to the high voltage generating module 12, and is configured to receive For the high voltage signal, the drain d of the first switch 133 is connected to the first electrode 211.
  • the source s of the second switch 134 is grounded, and the drain d of the second switch 134 is connected to the first electrode 211.
  • the first switch 133 and the second switch 134 are transistors.
  • the characteristic of the transistor is that when the gate g of the first switch 133 or the second switch 134 is loaded with a suitable voltage signal, the source s and the drain of the first switch 133 or the second switch 134 The pole d is turned on.
  • FIG. 4 is a schematic diagram of a P-type transistor provided by an embodiment of the application
  • FIG. 5 is a schematic diagram of an N-type transistor provided by an embodiment of the application.
  • the first switch 133 is a P-type transistor
  • the second switch 134 is an N-type transistor.
  • a P-type transistor is composed of a gate g and an N-type semiconductor covering two P-type semiconductors, one of which is the source s and the other is the drain d.
  • the gate g is a metal electrode, and an insulating layer I is also provided between the gate g and the source s and the drain d. Since the P-type semiconductor material is doped with trivalent element impurities, the majority of the carriers in the P-type semiconductor are holes, and the holes are positively charged.
  • the gate g of the first switch 133 is loaded with a low potential, two P-type semiconductors form a channel to conduct the source s and the drain d of the first switch 133.
  • the N-type transistor is composed of a gate g and a P-type semiconductor covering two N-type semiconductors, one of which is the source s and the other is the drain d. Since the N-type semiconductor material is doped with pentavalent element impurities, the majority of the carriers in the N-type semiconductor are electrons, and the electrons are negatively charged.
  • the gate g of the second switch 134 is loaded with a high potential, two N-type semiconductors form a channel to conduct the source s and the drain d of the first switch 133.
  • the back pressure signal when the back pressure signal is at a low level, that is, when the selection signal is at a high level, the first switch 133 is turned on and the second switch 134 is turned off.
  • the high voltage signal is applied to the first electrode 211 of the laser transmitter 21 through the first switch 133.
  • the back pressure signal is at a high potential, that is, when the selection signal is at a low potential, the first switch 133 is turned off, the second switch 134 is turned on, and the ground signal is applied through the second switch 134 To the first electrode 211 of the laser transmitter 21.
  • the first switch 133 and the second switch 134 may also be other types of switches, as long as the conduction of the first switch 133 and the second switch 134 is not affected.
  • the high voltage signal or the ground signal is respectively applied to the first electrode 211 of the laser transmitter 21, which is not limited in this application.
  • FIG. 6 is a schematic diagram of a laser transmitter driving circuit framework provided by an embodiment of the application.
  • the laser transmitter driving circuit 1 further includes: a pulse generating module 14 and a switch module 15.
  • the pulse generating module 14 is configured to generate a first pulse signal
  • the switch module 15 is connected to the pulse unit to receive the first pulse signal
  • the switch module 15 is also connected to the high voltage generating module 12 to receive The high voltage signal.
  • the switch module 15 cooperates with the charging and discharging module 13 to drive the laser transmitter 21 to emit laser light according to the first pulse signal and the high voltage signal.
  • the first pulse signal generated by the pulse generating module 14 may be a square wave, a triangle wave, a sawtooth wave, and the like.
  • the switch module 15 turns on the circuit where the laser transmitter 21 is located, so that the charge and discharge module 13 drives the laser transmitter 21 to emit laser.
  • the frequency at which the switch module 15 turns on the circuit where the laser transmitter 21 is located can be adjusted, that is to say, the frequency at which the laser transmitter 21 emits laser light can be adjusted.
  • the frequency at which the laser transmitter 21 emits laser light can be adjusted.
  • FIG. 7 is a schematic diagram of a switch module circuit provided by an embodiment of the application.
  • the switch module 15 includes: a second voltage translation circuit 151, a buffer 152, a third switch 153, and a fourth switch 154.
  • the second voltage translation circuit 151 is connected to the pulse generating module 14 and is configured to receive the first pulse signal and boost the first pulse signal to obtain a second pulse signal.
  • the buffer 152 is connected to the second voltage translation circuit 151 and is configured to receive the second pulse signal and buffer the second pulse signal to obtain a third pulse signal.
  • the first pulse signal is a signal of the power domain of the power signal
  • the second voltage shift circuit 151 boosts the first pulse signal to obtain the second pulse signal
  • the second pulse signal The signal is a signal of the power domain of the high voltage signal.
  • the buffer 152 delays the output time of the third pulse signal and functions as a buffer circuit.
  • Both the third switch 153 and the fourth switch 154 include a gate g, a source s, and a drain d.
  • the gate g of the third switch 153 is connected to the third pulse signal and the gate g of the fourth switch 154.
  • the source s of the third switch 153 is connected to the high voltage generating module 12 and is configured to receive the high voltage signal.
  • the laser transmitter 21 further includes a second electrode 213, the drain d of the third switch 153 is connected to the second electrode 213, the source s of the fourth switch 154 is grounded, and the fourth switch 154 is grounded.
  • the drain d is connected to the second electrode 213.
  • the second electrodes 213 of the multiple laser transmitters 21 are connected to the drain d of the third switch 153 and the drain d of the fourth switch 154 at the same time. That is to say, the switch module 15 can control whether a plurality of the laser transmitters 21 are turned on at the same time by controlling the difference of the voltage signal loaded on the second electrode 213 of the laser transmitter 21.
  • the first electrodes 211 of the multiple laser emitters 21 may be simultaneously connected to the drain d of the third switch 153 and the drain d of the fourth switch 154, and the The second electrodes 213 of the plurality of laser emitters 21 are connected to the plurality of charging and discharging modules 13 in a one-to-one correspondence.
  • the third switch 153 and the fourth switch 154 are transistors. Please refer to the above description for the characteristics of the transistor, which will not be repeated here.
  • the third switch 153 is a P-type transistor
  • the fourth switch 154 is an N-type transistor.
  • the buffer signal can control the on or off of the third switch 153 and the fourth switch 154, and can load the high voltage signal or the ground signal to the laser transmitter, respectively 21 of the second electrode 213.
  • the turning on or off of the third switch 153 and the fourth switch 154 means that when the third switch 153 is turned on, the fourth switch 154 is turned off; or, When the third switch 153 is turned off, the fourth switch 154 is turned on.
  • the third pulse signal when the third pulse signal is at a low potential, that is, when the first pulse signal is at a low potential, the first switch 133 is turned on and the second switch 134 is turned off.
  • the high voltage signal is applied to the second electrode 213 of the laser transmitter 21 through the first switch 133.
  • the third pulse signal is at a high potential, that is, when the first pulse signal is at a high potential, the first switch 133 is turned off, the second switch 134 is turned on, and the ground signal passes through the second
  • the switch 134 is loaded on the second electrode 213 of the laser transmitter 21.
  • the third switch 153 and the fourth switch 154 may also be other types of switches, as long as the conduction of the third switch 153 and the fourth switch 154 is not affected.
  • the high voltage signal or the ground signal is respectively applied to the second electrode 213 of the laser transmitter 21, which is not limited in this application.
  • the charging and discharging module 13 further includes a plurality of capacitor groups 135. One end of the single capacitor group 135 is connected to the first electrode 211 of the corresponding laser transmitter 21, and the other end is grounded.
  • the charging and discharging module 13 charges the capacitor group 135 through the high voltage signal according to the selection signal.
  • the switch module 15 controls the path where the laser transmitter 21 is opened, the capacitor group 135 discharges, and current passes through the laser transmitter 21.
  • the charging and discharging module 13 charges the capacitor bank 135 according to the selection signal and the high voltage signal. For example, when the selection signal is at a high level, that is, the back pressure signal is When the potential is low, the first switch 133 is turned on, and the high voltage signal is applied to one end of the capacitor group 135 to charge the capacitor group 135.
  • the switch module 15 controls the path where the laser transmitter 21 is opened, that is, when the first pulse signal is at a high potential, that is, when the third pulse signal is at a high potential, the ground
  • the signal is applied to the other end of the capacitor group 135 and the second electrode 213 of the laser transmitter 21.
  • the electric charge stored in the capacitor group 135 flows through the laser emitter 21, so that the laser emitter 21 emits laser light.
  • the capacitor group 135 is composed of one or more capacitors.
  • the capacitors when the number of capacitors in the capacitor group 135 is greater than or equal to two, the capacitors can be connected in series or in parallel to form the capacitor group 135 with different capacitance values to meet the current requirements for driving different laser transmitters 21 .
  • the laser emitter driving system 2 includes a plurality of laser emitters 21 and the laser emitter driving circuit 1 as described above.
  • the laser emitter driving circuit 1 is used to drive the plurality of laser emitters 21 to emit laser light.
  • the laser transmitter 21 can emit laser light when driven. Due to the directional light emission, high brightness, pure color and high energy characteristics of the laser, the laser has a wide range of applications in many fields. In contrast, the driving circuit required to drive the laser transmitter 21 has higher requirements.
  • the laser transmitter driving circuit 1 selectively drives any one of the plurality of laser transmitters 21 to emit laser light, thereby reducing the instantaneous power of the laser transmitter 21 and reducing the burden of the driving circuit. Please refer to the above description for the laser transmitter driving circuit 1, which will not be repeated here.
  • FIG. 9 is a schematic diagram of a high-speed optical communication device frame provided by an embodiment of the application.
  • the high-speed optical communication device 3 includes the laser transmitter driving system 2 as described above.
  • the high-speed optical communication device 3 usually further includes a receiving module 31, the laser light emitted by the laser transmitter 21 can be used as a carrier of communication data, and the receiving module 31 is used for receiving The laser emitted by the laser transmitter 21 converts the laser signal into a data electrical signal, so as to achieve the technical effect of high-speed optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光发射器驱动电路(1),应用于多个激光发射器(21),激光发射器驱动电路(1)包括:选择模块(11)、高电压产生模块(12)、多个充放电模块(13)及多个电容组(135),选择模块(11)及高电压产生模块(12)分别连接多个充放电模块(13),选择模块(11)用于向多个充放电模块(13)分别发送选择信号,高电压产生模块(12)用于向多个充放电模块(13)分别提供高电压信号;激光发射器(21)包括第一电极(211);其中,单个电容组(135)的一端与对应的激光发射器(21)的第一电极(211)连接,且另一端接地,充放电模块(13)根据选择信号并通过高电压信号对电容组(135)充电,当电容组(135)放电时,电流经过激光发射器(21)连接,以驱动激光发射器(21)发射激光。激光发射器驱动电路(1)减轻驱动激光发射器(21)的负担。还提供了一种激光发射器驱动系统(2)及高速光通信装置(3)。

Description

激光发射器驱动电路、系统及高速光通信装置
本申请要求于2020年6月20日提交中国专利局,申请号为202010569423.0,申请名称为“激光发射器驱动电路、系统及高速光通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,尤其是涉及一种激光发射器驱动电路、系统及高速光通信装置。
背景技术
目前,光通信系统是重要的研究方向之一。激光作为光通信系统中常用的信息载体之一,被广泛应用在高速光通信系统、激光雷达等技术领域中。由于激光发射器的发射激光功率较高,需要具有较强的驱动能力的驱动电路驱动激光发射器工作。
发明内容
本申请公开了一种激光发射器驱动电路,在正常驱动激光发射器工作的同时,降低激光发射器的瞬时功率,使得驱动电路的驱动能力的负担得以减轻。
第一方面,本申请提供了一种激光发射器驱动电路,应用于多个激光发射器,所述激光发射器驱动电路包括:选择模块、高电压产生模块、多个充放电模块及多个电容组,所述选择模块及所述高电压产生模块分别连接所述 多个充放电模块,所述选择模块配置为向所述多个充放电模块分别发送选择信号,所述高电压产生模块配置为向所述多个充放电模块分别提供高电压信号;所述激光发射器包括第一电极;其中,单个所述电容组的一端与对应的所述激光发射器的第一电极连接,且另一端接地,所述充放电模块根据所述选择信号并通过所述高电压信号对所述电容组充电,当所述电容组放电时,电流经过所述激光发射器连接,以驱动所述激光发射器发射激光。
相较于现有技术,本申请的激光发射器驱动电路中的所述充放电模块可根据所述选择信号选择性地驱动所述激光发射器发射激光,降低了同一时间内所述激光发射器发射激光的瞬时功率,从而减轻了激光发射器驱动电路的驱动能力的负担。
第二方面,本申请还提供了一种激光发射器驱动系统,所述激光发射器驱动系统包括多个激光发射器及如第一方面所述的激光发射器驱动电路,所述激光发射器驱动电路配置为驱动所述多个激光发射器发射激光。
第三方面,本申请还提供了一种高速光通信装置,所述高速光通信装置包括如第二方面所述的激光发射器驱动系统。
附图说明
为了更清楚的说明本申请实施方式中的技术方案,下面将对实施方式中所需要使用的附图作简单的介绍,显而易见的,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施方式提供的激光发射器驱动电路框架示意图。
图2为本申请一实施例提供的充放电模块电路示意图。
图3为本申请一实施例提供的激光发射器示意图。
图4为本申请一实施例提供的P型晶体管示意图。
图5为本申请一实施例提供的N型晶体管示意图。
图6为本申请一实施例提供的激光发射器驱动电路框架示意图。
图7为本申请一实施例提供的开关模块电路示意图。
图8为本申请一实施例提供的激光发射器驱动系统框架示意图。
图9为本申请一实施例提供的高速光通信装置框架示意图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整的描述,显然,所描述的实施方式仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
本申请提供了一种激光发射器驱动电路1,请参阅图1,图1为本申请第一实施方式提供的激光发射器驱动电路框架示意图。所述激光发射器驱动电路1应用于多个激光发射器21,且包括:选择模块11、高电压产生模块12及多个充放电模块13。所述选择模块11及所述高电压产生模块12分别连接所述多个充放电模块13,所述选择模块11配置为向所述多个充放电模块13分别发送选择信号,所述高电压产生模块12配置为向所述多个充放电模块13分别提供高电压信号。所述激光发射器21包括第一电极211(请参阅图2及图3);其中,单个所述电容组135的一端与对应的所述激光发射器21的第一电极211连接,且另一端接地,所述充放电模块13根据所述选择信号并通过所述高电压信号 对所述电容组135充电,当所述电容组135放电时,电流经过所述激光发射器21连接驱动所述激光发射器21发射激光。
需要说明的是,所述高电压产生模块12产生的所述高电压信号的电压值大于等于电源信号的电压值,所述电源信号可以是所述激光发射器驱动电路1外接的电源设备所产生的,也可以是所述激光发射器驱动电路1内部产生的。
可以理解的,所述高电压产生模块12产生的所述高电压信号通过所述充放电模块13加载于所述激光发射器21上。在一实施例中,所述选择模块11产生的所述选择信号可以为高电平信号,或者低电平信号。例如,当所述选择信号为高电平时,所述充放电模块13将所述高电压信号传输至所述激光发射器21,以驱动所述激光发射器21发射激光;当所述选择信号为低电平时,所述充放电模块13停止将所述高电压信号传输至所述激光发射器21并将第一电极211电压下拉到地电压,所述激光发射器21不发射激光。
在其他实施例中,所述充放电模块13也可以在所述选择信号为低电平时,将所述高电压信号传输至所述激光发射器21,或者,所述选择信号为其他形式的信号。可以理解的,只要不影响所述充放电模块13用于根据所述选择信号及所述高电压信号驱动所述激光发射器21发射激光,本申请对所述选择信号的形式不加以限制。
可以理解的,在一实施例中,所述充放电模块13可根据所述选择信号选择性的驱动所述激光发射器21发射激光,降低了同一时间内所述激光发射器21发射激光的瞬时功率,从而减轻了激光发射器驱动电路1的驱动能力的负担。
在一实施例中,请一并参阅图2,图2为本申请一实施例提供的充放电模块电路示意图。所述充放电模块13包括:第一电压平移电路131、反相器 132、第一开关133及第二开关134。所述第一电压平移电路131连接所述选择模块11,配置为接收所述选择信号,并将所述选择信号进行升压以得到升压信号。所述反相器132连接所述第一电压平移电路131,配置为接收所述升压信号,并将所述升压信号的电位进行反相以得到反压信号。
在一实施例中,所述第一电压平移电路131可以为但不限于为升压电路。在一实施例中,所述选择信号为所述电源信号的电源域的信号,所述第一电压平移电路131将所述选择信号进行升压以得到所述升压信号,且所述升压信号为所述高电压信号的电源域的信号。所谓电源域是指电压值范围,例如,所述电源信号的电源域是指0V至所述电源信号的最大电压值,在不同需求的情况下,所述电源信号的最大电压值可以是2V、3V、5V等。同理,所述高电压信号的电源域是指0V至所述高电压信号的最大电压值。所述反相器132将所述升压信号的电位进行反相以得到所述反压信号,换句话说,所述反相器132将所述升压信号的相位反转180度,即所述反压信号与所述升压信号的相位差为180度。
在一实施例中,所述反压信号可以控制所述第一开关133及所述第二开关134的导通或断开,可分别将所述高电压信号或者所述接地信号加载到激光发射器21的第一电极211。
在一实施例中,所述第一开关133及所述第二开关134的导通或断开是指,当所述第一开关133导通时,所述第二开关134断开;或者,当所述第一开关133断开时,所述第二开关134导通。
在一实施例中,请一并参阅图3,图3为本申请一实施例提供的激光发射器示意图。如图3所示,所述激光发射器21包括第一电极211、发光组件212及第二电极213,所述发光组件212在所述第一电极211及所述第二电极213的 电压驱动下,发射激光。当所述反压信号为低电位时,所述第一开关133导通,所述第二开关134断开,所述高电压信号通过所述第一开关133被加载到激光发射器21的第一电极31;当所述反压信号为高电位时,所述第一开关133断开,所述第二开关134导通,接地信号通过所述第二开关134加载到激光发射器21的第一电极211。
在一实施例中,请再次参阅图2,所述第一开关133及所述第二开关134均包括栅极g、源极s及漏极d。所述第一开关133的栅极g连接所述反压信号及所述第二开关134的栅极g,所述第一开关133的源极s连接所述高电压产生模块12,配置为接收所述高电压信号,所述第一开关133的漏极d连接所述第一电极211。所述第二开关134的源极s接地,所述第二开关134的漏极d连接所述第一电极211。
在一实施例中,所述第一开关133及所述第二开关134为晶体管。晶体管的特性在于,当所述第一开关133或所述第二开关134的栅极g加载有合适的电压信号时,所述第一开关133或所述第二开关134的源极s与漏极d导通。
在一实施例中,请一并参阅图4及图5,图4为本申请一实施例提供的P型晶体管示意图;图5为本申请一实施例提供的N型晶体管示意图。所述第一开关133为P型晶体管,所述第二开关134为N型晶体管。
在一实施例中,如图4所示,P型晶体管由栅极g及一个N型半导体包覆两个P型半导体构成,其中一个P型半导体为源极s,另一个为漏极d。栅极g为金属电极,且栅极g与源极s及漏极d之间还设置有绝缘层I。由于P型半导体材料中掺入了三价元素杂质,P型半导体中多数载流子为空穴,且空穴带正电荷。在所述第一开关133的栅极g加载低电位时,两个P型半导体形成沟道导通所述第一开关133的源极s及漏极d。
在一实施例中,如图5所示,N型晶体管由栅极g及一个P型半导体包覆两个N型半导体构成,其中一个N型半导体为源极s,另一个为漏极d。由于N型半导体材料中掺入了五价元素杂质,N型半导体中多数载流子为电子,且电子带负电荷。在所述第二开关134的栅极g加载高电位时,两个N型半导体形成沟道导通所述第一开关133的源极s及漏极d。
也就是说,在一实施例中,当所述反压信号为低电位时,也就是所述选择信号为高电位时,所述第一开关133导通,所述第二开关134断开,所述高电压信号通过所述第一开关133被加载到激光发射器21的第一电极211。当所述反压信号为高电位时,也就是所述选择信号为低电位时,所述第一开关133断开,所述第二开关134导通,接地信号通过所述第二开关134加载到激光发射器21的第一电极211。
可以理解的,在其他实施例中,所述第一开关133及所述第二开关134还可以是其他类型的开关,只要不影响根据所述第一开关133及所述第二开关134的导通或断开,分别将所述高电压信号或者所述接地信号加载到激光发射器21的第一电极211,本申请对此不加以限制。
在一实施例中,请一并参阅图6,图6为本申请一实施例提供的激光发射器驱动电路框架示意图。所述激光发射器驱动电路1还包括:脉冲产生模块14、开关模块15。所述脉冲产生模块14配置为产生第一脉冲信号,所述开关模块15连接所述脉冲单元以接收所述第一脉冲信号,所述开关模块15还连接所述高电压产生模块12,以接收所述高电压信号。所述开关模块15根据所述第一脉冲信号及所述高电压信号且与所述充放电模块13配合,以驱动所述激光发射器21发射激光。
在一实施例中,所述脉冲产生模块14产生的所述第一脉冲信号可以是方 波、三角波及锯齿波等。在一实施例中,当所述第一脉冲信号为高电位时,所述开关模块15导通所述激光发射器21所在的电路,使得所述充放电模块13驱动所述激光发射器21发射激光。
可以理解的,通过调整所述第一脉冲信号的频率,可调整所述开关模块15导通所述激光发射器21所在电路的频率,也就是说可调整所述激光发射器21发射激光的频率,以达到高速光通信或激光雷达等技术效果。
在一实施例中,请一并参阅图7,图7为本申请一实施例提供的开关模块电路示意图。所述开关模块15包括:第二电压平移电路151、缓冲器152、第三开关153及第四开关154。所述第二电压平移电路151连接所述脉冲产生模块14,配置为接收所述第一脉冲信号,并将所述第一脉冲信号进行升压以得到第二脉冲信号。所述缓冲器152连接所述第二电压平移电路151,配置为接收所述第二脉冲信号,并将所述第二脉冲信号进行缓冲以得到第三脉冲信号。
在一实施例中,所述第二电压平移电路151请参阅上文的描述,在此不再赘述。所述第一脉冲信号为所述电源信号的电源域的信号,所述第二电压平移电路151将所述第一脉冲信号进行升压以得到所述第二脉冲信号,且所述第二脉冲信号为所述高电压信号的电源域的信号。所述缓冲器152延缓了所述第三脉冲信号的输出时间,起到了缓冲电路的作用。
在一实施例中,请再次参阅图7,所述第三开关153及所述第四开关154均包括栅极g、源极s及漏极d。所述第三开关153的栅极g连接所述第三脉冲信号及所述第四开关154的栅极g。所述第三开关153的源极s连接所述高电压产生模块12,配置为接收所述高电压信号。所述激光发射器21还包括第二电极213,所述第三开关153的漏极d连接所述第二电极213,所述第四开关154的源极s接地,所述第四开关154的漏极d连接所述第二电极213。
可以理解的,在一实施例中,多个所述激光发射器21的第二电极213同时连接于所述第三开关153的漏极d和所述第四开关154的漏极d。也就是说,所述开关模块15通过控制加载于所述激光发射器21的所述第二电极213的电压信号的不同,可同时控制多个所述激光发射器21是否开启。
在其他实施例中,也可以是所述多个激光发射器21的第一电极211同时连接于所述第三开关153的漏极d和所述第四开关154的漏极d,且所述多个激光发射器21的第二电极213与所述多个充放电模块13一一对应连接。
在一实施例中,所述第三开关153及所述第四开关154为晶体管。晶体管的特性请参阅上文描述,在此不再赘述。在一实施例中,所述第三开关153为P型晶体管,所述第四开关154为N型晶体管。
在一实施例中,所述缓冲信号可以控制所述第三开关153及所述第四开关154的导通或断开,可分别将所述高电压信号或者所述接地信号加载到激光发射器21的第二电极213。
在一实施例中,所述第三开关153及所述第四开关154的导通或断开是指,当所述第三开关153导通时,所述第四开关154断开;或者,当所述第三开关153断开时,所述第四开关154导通。
在一实施例中,P型晶体管及N型晶体管的特征请参阅上文描述,在此不再赘述。在本实施例中,当所述第三脉冲信号为低电位时,也就是所述第一脉冲信号为低电位时,所述第一开关133导通,所述第二开关134断开,所述高电压信号通过所述第一开关133被加载到激光发射器21的第二电极213。当所述第三脉冲信号为高电位时,也就是所述第一脉冲信号为高电位时,所述第一开关133断开,所述第二开关134导通,接地信号通过所述第二开关134加载到激光发射器21的第二电极213。
可以理解的,在其他实施例中,所述第三开关153及所述第四开关154还可以是其他类型的开关,只要不影响根据所述第三开关153及所述第四开关154的导通或断开,分别将所述高电压信号或者所述接地信号加载到激光发射器21的第二电极213,本申请对此不加以限制。
在一实施例中,请再次参阅图6。所述充放电模块13还包括多个电容组135。单个所述电容组135的一端与对应的所述激光发射器21的第一电极211连接,且另一端接地。所述充放电模块13根据所述选择信号并通过所述高电压信号对所述电容组135充电。当所述开关模块15控制所述激光发射器21所在的通路开启时,所述电容组135放电,且电流经过所述激光发射器21。
在一实施例中,所述充放电模块13根据所述选择信号及所述高电压信号对所述电容组135充电,例如,当所述选择信号为高电位,也就是所述反压信号为低电位时,所述第一开关133导通,所述高电压信号加载至所述电容组135的一端,为所述电容组135充电。
在一实施例中,当所述开关模块15控制所述激光发射器21所在的通路开启,也就是当所述第一脉冲信号为高电位,即第三脉冲信号为高电位时,所述接地信号加载至所述电容组135的另一端及所述激光发射器21的第二电极213上。所述电容组135中储存的电荷流过所述激光发射器21,使得所述激光发射器21发射激光。
在一实施例中,所述电容组135由一个或多个电容构成。
在一实施例中,当所述电容组135中的电容数量大于等于两个时,电容可以串联或并联构成电容值不同的所述电容组135,以满足驱动不同激光发射器21所需要的电流。
本申请还提供了一种激光发射器驱动系统2,请一并参阅图8,图8为本 申请一实施例提供的激光发射器驱动系统框架示意图。所述激光发射器驱动系统2包括多个激光发射器21及如上文所述的激光发射器驱动电路1。所述激光发射器驱动电路1用于驱动所述多个激光发射器21发射激光。
在一实施例中,所述激光发射器21在驱动下可发射激光,由于激光的定向发光、亮度高、颜色纯及能量大等特性,激光在许多领域具有广泛的用途。相对的,驱动所述激光发射器21所需要的驱动电路要求较高。所述激光发射器驱动电路1通过选择性的驱动所述多个激光发射器21中的任意个发射激光,降低了所述激光发射器21的瞬时功率,减小了驱动电路的负担。所述激光发射器驱动电路1请参阅上文描述,在此不再赘述。
本申请还提供了一种高速光通信装置3,请一并参阅图9,图9为本申请一实施例提供的高速光通信装置框架示意图。所述高速光通信装置3包括如上文所述的激光发射器驱动系统2。
在一实施例中,如图9所示,所述高速光通信装置3通常还包括接收模块31,所述激光发射器21发射的激光可作为通信数据的载体,所述接收模块31用于接收所述激光发射器21发射的激光,并将激光信号转换为数据电信号,以达到高速光通信的技术效果。
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (12)

  1. 一种激光发射器驱动电路,应用于多个激光发射器,所述激光发射器驱动电路包括:选择模块、高电压产生模块、多个充放电模块及多个电容组,所述选择模块及所述高电压产生模块分别连接所述多个充放电模块,所述选择模块配置为向所述多个充放电模块分别发送选择信号,所述高电压产生模块配置为向所述多个充放电模块分别提供高电压信号;所述激光发射器包括第一电极;其中,单个所述电容组的一端与对应的所述激光发射器的第一电极连接,且另一端接地,所述充放电模块根据所述选择信号并通过所述高电压信号对所述电容组充电,当所述电容组放电时,电流经过所述激光发射器连接,以驱动所述激光发射器发射激光。
  2. 如权利要求1所述的激光发射器驱动电路,其中,所述充放电模块包括:第一电压平移电路、反相器、第一开关及第二开关,所述第一电压平移电路连接所述选择模块,配置为接收所述选择信号,并将所述选择信号进行升压以得到升压信号,所述反相器连接所述第一电压平移电路,配置为接收所述升压信号,并将所述升压信号的电位进行反相以得到反压信号。
  3. 如权利要求2所述的激光发射器驱动电路,其中,所述第一开关及所述第二开关均包括栅极、源极及漏极,所述第一开关的栅极连接所述反压信号及所述第二开关的栅极,所述第一开关的源极连接所述高电压产生模块,用于接收所述高电压信号,所述第一开关的漏极连接所述第一电极,所述第二开关的源极接地,所述第二开关的漏极连接所述第一电极。
  4. 如权利要求3所述的激光发射器驱动电路,其中,所述第一开关为P型晶体管,所述第二开关为N型晶体管。
  5. 如权利要求1所述的激光发射器驱动电路,其中,所述激光发射器驱动电路还包括:脉冲产生模块、开关模块,所述脉冲产生模块配置为产生第一脉冲信号,所述开关模块连接所述脉冲单元以接收所述第一脉冲信号,所述开关模块还连接所述高电压产生模块,以接收所述高电压信号,所述开关模块根据所述第一脉冲信号及所述高电压信号且与所述充放电模块配合,以驱动所述激光发射器发射激光。
  6. 如权利要求5所述的激光发射器驱动电路,其中,所述开关模块包括:第二电压平移电路、缓冲器、第三开关及第四开关,所述第二电压平移电路连接所述脉冲产生模块,配置为接收所述第一脉冲信号,并将所述第一脉冲信号进行升压以得到第二脉冲信号,所述缓冲器连接所述第二电压平移电路,配置为接收所述第二脉冲信号,并将所述第二脉冲信号进行缓冲以得到第三脉冲信号。
  7. 如权利要求6所述的激光发射器驱动电路,其中,所述第三开关及所述第四开关均包括栅极、源极及漏极,所述第三开关的栅极连接所述第三脉冲信号及所述第四开关的栅极,所述第三开关的源极连接所述高电压产生模块,配置为接收所述高电压信号,所述激光发射器还包括第二电极,所述第三开关的漏极连接所述第二电极,所述第四开关的源极接地,所述第四开关的漏极连接所述第二电极。
  8. 如权利要求7所述的激光发射器驱动电路,其中,多个所述激光发射器的第二电极同时连接于所述第三开关的漏极和所述第四开关的漏极。
  9. 如权利要求7所述的激光发射器驱动电路,其中,所述第三开关为P型晶体管,所述第四开关为N型晶体管。
  10. 如权利要求1所述的激光发射器驱动电路,其中,所述电容组由一个或多个电容构成。
  11. 一种激光发射器驱动系统,所述激光发射器驱动系统包括多个激光发射器及如权利要求1-10任意一项所述的激光发射器驱动电路,所述激光发射器驱动电路配置为驱动所述多个激光发射器发射激光。
  12. 一种高速光通信装置,其特征在于,所述高速光通信装置包括如权利要求11所述的激光发射器驱动系统。
PCT/CN2021/093336 2020-06-20 2021-05-12 激光发射器驱动电路、系统及高速光通信装置 WO2021254041A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010569423.0A CN111682399B (zh) 2020-06-20 2020-06-20 激光发射器驱动电路、系统及高速光通信装置
CN202010569423.0 2020-06-20

Publications (1)

Publication Number Publication Date
WO2021254041A1 true WO2021254041A1 (zh) 2021-12-23

Family

ID=72456008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093336 WO2021254041A1 (zh) 2020-06-20 2021-05-12 激光发射器驱动电路、系统及高速光通信装置

Country Status (2)

Country Link
CN (1) CN111682399B (zh)
WO (1) WO2021254041A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115343694A (zh) * 2022-10-18 2022-11-15 深圳市速腾聚创科技有限公司 激光发射模块和激光雷达设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682399B (zh) * 2020-06-20 2021-07-20 深圳市灵明光子科技有限公司 激光发射器驱动电路、系统及高速光通信装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208798A (ja) * 1999-01-13 2000-07-28 Kanegafuchi Chem Ind Co Ltd 薄膜構成体の加工方法
CN103227413A (zh) * 2013-04-28 2013-07-31 中国科学院半导体研究所 半导体激光器驱动电路
CN105762647A (zh) * 2016-04-06 2016-07-13 北京航天发射技术研究所 一种功率可调式半导体激光恒流调制驱动电路
CN106602865A (zh) * 2016-12-26 2017-04-26 中国电子科技集团公司第十研究所 一种储能电容充电电路及脉冲激光电源
CN107005020A (zh) * 2014-10-15 2017-08-01 朗美通经营有限责任公司 激光系统以及调谐激光系统的输出功率的方法
CN110011180A (zh) * 2017-11-17 2019-07-12 夏普株式会社 发光元件驱动电路以及便携式电子设备
CN111682399A (zh) * 2020-06-20 2020-09-18 深圳市灵明光子科技有限公司 激光发射器驱动电路、系统及高速光通信装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW267267B (zh) * 1994-04-14 1996-01-01 Cosmo Laser Inc
US8358080B2 (en) * 2010-01-29 2013-01-22 Canon Kabushiki Kaisha Light emitting element driving circuit
CN201726313U (zh) * 2010-06-02 2011-01-26 青岛海信电器股份有限公司 一种升压电路及具有该电路的液晶驱动电路
WO2013160787A1 (en) * 2012-04-23 2013-10-31 Koninklijke Philips N.V. Separately controllable array of radiation elements
CN103633556A (zh) * 2012-08-28 2014-03-12 国神光电科技(上海)有限公司 基于缓冲器/线驱动器的激光二极管驱动电路
US20140226688A1 (en) * 2013-02-11 2014-08-14 Raytheon Company Multiple output diode driver with independent current control and output current modulation
CN104022440B (zh) * 2014-05-30 2017-02-01 绵阳科创园区精机电子有限公司 一种激光二极管微秒脉冲驱动电路及驱动方法
US9667022B1 (en) * 2014-08-01 2017-05-30 Nlight, Inc. Distributed laser power architecture for laser diode arrays
WO2018123122A1 (ja) * 2016-12-28 2018-07-05 住友電気工業株式会社 光送信器、光トランシーバおよび光送信器の製造方法
CN108631151A (zh) * 2018-06-05 2018-10-09 成都楼兰科技有限公司 激光驱动电路
CN209389446U (zh) * 2018-12-20 2019-09-13 北京万集科技股份有限公司 一种半导体激光器驱动电路及激光雷达
CN109728501A (zh) * 2019-03-14 2019-05-07 深圳市镭神智能系统有限公司 一种激光器的驱动电路、驱动方法及激光雷达系统
CN210109317U (zh) * 2019-03-26 2020-02-21 深圳市路畅智能科技有限公司 一种激光器驱动电路、激光电路及激光雷达

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208798A (ja) * 1999-01-13 2000-07-28 Kanegafuchi Chem Ind Co Ltd 薄膜構成体の加工方法
CN103227413A (zh) * 2013-04-28 2013-07-31 中国科学院半导体研究所 半导体激光器驱动电路
CN107005020A (zh) * 2014-10-15 2017-08-01 朗美通经营有限责任公司 激光系统以及调谐激光系统的输出功率的方法
CN105762647A (zh) * 2016-04-06 2016-07-13 北京航天发射技术研究所 一种功率可调式半导体激光恒流调制驱动电路
CN106602865A (zh) * 2016-12-26 2017-04-26 中国电子科技集团公司第十研究所 一种储能电容充电电路及脉冲激光电源
CN110011180A (zh) * 2017-11-17 2019-07-12 夏普株式会社 发光元件驱动电路以及便携式电子设备
CN111682399A (zh) * 2020-06-20 2020-09-18 深圳市灵明光子科技有限公司 激光发射器驱动电路、系统及高速光通信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115343694A (zh) * 2022-10-18 2022-11-15 深圳市速腾聚创科技有限公司 激光发射模块和激光雷达设备
CN115343694B (zh) * 2022-10-18 2023-03-24 深圳市速腾聚创科技有限公司 激光发射模块和激光雷达设备

Also Published As

Publication number Publication date
CN111682399A (zh) 2020-09-18
CN111682399B (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2021254041A1 (zh) 激光发射器驱动电路、系统及高速光通信装置
US20190229493A1 (en) Circuit for Driving a Laser and Method Therefor
CN111462685A (zh) 一种像素驱动电路及其驱动方法、显示面板和显示装置
US9054704B2 (en) Method, system, and apparatus for efficiently driving a transistor with a booster in voltage supply
CN103312133B (zh) 具电压箝位功能的栅极驱动电路
CN110728952B (zh) 像素驱动电路及其驱动方法、显示装置
CN112805587B (zh) 激光发射电路和激光雷达
US20190222211A1 (en) Switching power module combining a gate driver with a photonic isolated power source
WO2020215647A1 (zh) 像素驱动电路以及显示面板
CN108847176A (zh) 一种阵列基板、显示面板及显示装置
CN109417273B (zh) 生成信号脉冲以用于操作发光二极管的驱动电路
TW202025606A (zh) 基於GaN之可調整驅動器電流電路
ITMI950750A1 (it) Dispositivo di controllo per laser a semiconduttore impulsato compatto ad elevata frequenza di ripetizione degli impulsi e
CN114513179B (zh) 一种高压驱动器及其驱动方法
CN101739937B (zh) 栅极驱动电路
GB2286483A (en) High power, pulsed laser diode driver incorporating low impedance storage capacitor
US5406572A (en) High power, high pulse repetition frequency, compact, pulsed laser diode driver
CN108336923B (zh) 一种脉冲电路及具有该脉冲电路的矩形波脉冲源
US4754176A (en) Miniature high voltage solid state relay
TW200412005A (en) Programmable photocoupler-isolated wide band modulator fore high voltage power supply
CN110308312B (zh) 能实现高压测试中高压隔离的方法及装置
CN112805586A (zh) 激光发射电路和激光雷达
CN220528258U (zh) 光源驱动电路以及投影设备
US4496852A (en) Low power clock generator
US7605632B2 (en) High-power electric pulse generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825323

Country of ref document: EP

Kind code of ref document: A1