WO2021253755A1 - 车辆bms的充电唤醒方法、装置及车辆充电系统 - Google Patents

车辆bms的充电唤醒方法、装置及车辆充电系统 Download PDF

Info

Publication number
WO2021253755A1
WO2021253755A1 PCT/CN2020/135573 CN2020135573W WO2021253755A1 WO 2021253755 A1 WO2021253755 A1 WO 2021253755A1 CN 2020135573 W CN2020135573 W CN 2020135573W WO 2021253755 A1 WO2021253755 A1 WO 2021253755A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
vehicle
bms
wake
module
Prior art date
Application number
PCT/CN2020/135573
Other languages
English (en)
French (fr)
Inventor
杨磊君
吴广涛
杨晶所
Original Assignee
上海蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海蔚来汽车有限公司 filed Critical 上海蔚来汽车有限公司
Publication of WO2021253755A1 publication Critical patent/WO2021253755A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to the technical field of battery charging control, in particular to a charging wake-up method and device of a vehicle BMS, and a vehicle charging system.
  • BMS Battery Management System
  • the present invention is proposed to provide a charging and waking method, device and a vehicle charging system for a vehicle BMS that solves or at least partially solves the problem of how to reliably wake up the vehicle BMS.
  • a charging wake-up method for a vehicle BMS includes: receiving a charging control command; generating a BMS wake-up command according to the charging control command; and controlling a preset low-voltage power supply to output to the vehicle BMS according to the BMS wake-up command A wake-up signal to wake up the vehicle BMS; wherein the charging control instruction is a wireless communication signal generated according to the current vehicle charging intention, and the wake-up signal is a wireless communication signal.
  • the charging intention of the vehicle includes the charging intention predicted according to the driving data of the vehicle, and/or the charging intention analyzed according to the charging request of the vehicle.
  • predicting the charging intention of the vehicle according to the driving data of the vehicle specifically includes: acquiring the vehicle navigation data in the driving data; judging the navigation in the vehicle navigation data Whether the destination is a vehicle charging place or is located near the vehicle charging place; if it is, it is determined that the vehicle has a charging intention; and/or, predicting the charging intention of the vehicle based on the driving data of the vehicle, which specifically includes: obtaining the The driving behavior data in the driving data; the driving behavior data includes the driving route and time from the start to the stop of the vehicle; the driving behavior data is acquired based on the one-to-one correspondence between the preset driving behavior and driving habits Corresponding driving habits; the driving habits include two pre-associated driving routes, and the respective time corresponding to each driving route; according to the driving habits, the associated driving route pre-associated with the driving route in the driving behavior data is obtained And the predicted value of power of the power battery required by the associated driving route; obtain the remaining power of the power battery after
  • the step of "generating a BMS wake-up command according to the charging control command” specifically includes: judging whether the charging control command includes the predicted time for the vehicle to start charging; When the control instruction includes the predicted time for the vehicle to start charging, obtain the state of charge and the ambient temperature of the power battery in the vehicle, and predict the optimal charging temperature of the power battery according to the state of charge; determine whether the ambient temperature is less than the The optimal charging temperature, if yes, predict the warm-up time required to heat the power battery to the optimal charging temperature based on the ambient temperature and the optimal charging temperature; calculate based on the warm-up time and the predicted time The wake-up time of waking up the BMS; acquiring the receiving time of the charging control command, judging whether the duration between the receiving time and the wake-up time is less than the warm-up time; if so, immediately generating a BMS wake-up control command to wake up the BMS, and The wake-up BMS is controlled to heat the power
  • the step of "predicting the optimal charging temperature of the power battery according to the state of charge” specifically includes: based on a preset neural network prediction model and according to the power battery The state of charge predicts the optimal charging temperature of the power battery; wherein the preset neural network prediction model is constructed based on a preset data sample and using a machine learning algorithm, and the preset data sample includes the power battery The maximum charging current at different temperatures and different states of charge.
  • the step of "controlling the preset low-voltage power supply to output a wake-up signal to the BMS in the vehicle according to the BMS wake-up instruction to wake up the BMS” specifically includes: The vehicle status information determines whether the vehicle has completed the charging preparation; if so, the preset low-voltage power supply is controlled according to the BMS wake-up instruction to output a wake-up signal to the BMS in the vehicle to wake up the BMS.
  • the method further includes: based on the one-to-one correspondence between the preset identification information and the capacity rating of the power battery and based on the current vehicle’s vehicle Identification information, matching the capacity rating of the power battery corresponding to the vehicle identification information; obtaining the capacity rating of the power battery currently installed on the vehicle, and judging whether the matched capacity rating is less than the installed power The capacity rating of the battery; if it is, the maximum charging capacity is set according to the matched capacity rating, and then the BMS is controlled to charge the installed power battery according to the maximum charging capacity.
  • a charging wake-up device for a vehicle BMS, the device comprising: an instruction acquisition module configured to receive a charging control instruction; an instruction generation module configured to generate a BMS wake-up instruction according to the charging control instruction; A wake-up control module configured to control a preset low-voltage power supply to output a wake-up signal to the vehicle BMS according to the BMS wake-up instruction to wake up the vehicle BMS; wherein the charging control instruction is generated according to the current vehicle's charging intention A wireless communication signal, and the wake-up signal is a wireless communication signal.
  • the charging intention of the vehicle includes the charging intention predicted according to the driving data of the vehicle, and/or the charging intention analyzed according to the charging request of the vehicle.
  • the charging and wake-up device includes a charging intention prediction module, and the charging intention prediction module includes a first charging intention prediction sub-module and/or a second charging intention prediction sub-module;
  • the first charging intention prediction submodule includes a navigation data acquisition unit and a first charging intention prediction unit;
  • the navigation data acquisition unit is configured to acquire vehicle navigation data in the driving data;
  • the first charging intention prediction unit Is configured to determine whether the navigation destination in the vehicle navigation data is a vehicle charging place or is located near the vehicle charging place; if so, it is determined that the vehicle has a charging intention;
  • the second electrical intention prediction submodule includes driving A behavior data acquisition unit, a driving habit acquisition unit, and a second charging intention prediction unit;
  • the driving behavior data acquisition unit is configured to acquire driving behavior data in the driving data;
  • the driving behavior data includes the process of the vehicle from starting to stopping
  • the driving habit acquisition unit is configured to acquire the driving habit corresponding to the driving behavior data based on the preset one-to-one
  • the wake-up control module includes an information judgment sub-module, a charging temperature prediction sub-module, a warm-up time prediction sub-module, and an instruction generation sub-module;
  • the information judgment sub-module is It is configured to determine whether the charging control instruction includes the predicted time for starting the charging of the vehicle; if so, the charging temperature prediction sub-module is activated;
  • the charging temperature prediction sub-module is configured to obtain the state of charge of the power battery in the vehicle and The ambient temperature predicts the optimal charging temperature of the power battery according to the state of charge;
  • the warm-up time prediction sub-module is configured to determine whether the ambient temperature is less than the optimal charging temperature, and if so, according to the The ambient temperature and the optimal charging temperature predict the warm-up time required to heat the power battery to the optimal charging temperature;
  • the instruction generation sub-module is configured to calculate the wake-up time according to the warm-up time and the predicted time The wake-up time of the BMS; obtain the receiving time
  • the charging temperature prediction sub-module is configured to predict the maximum temperature of the power battery based on a preset neural network prediction model and according to the state of charge of the power battery. Best charging temperature; wherein the preset neural network prediction model is based on preset data samples and constructed using machine learning algorithms, and the preset data samples include power batteries at different temperatures and different states of charge Maximum charging current.
  • the wake-up control module is configured to determine whether the vehicle is ready for charging according to the vehicle state information; if so, control the preset low voltage according to the BMS wake-up instruction The power supply outputs a wake-up signal to the BMS in the vehicle to wake up the BMS.
  • the device further includes a BMS charging control module, the BMS charging control module includes a battery capacity acquisition sub-module and a battery charging control sub-module; the battery capacity acquisition sub-module Is configured to match the capacity rating of the power battery corresponding to the vehicle identification information based on the one-to-one correspondence between the preset identification information and the capacity rating of the power battery and according to the current vehicle identification information of the vehicle; the battery is charged
  • the control sub-module is configured to obtain the capacity rating of the power battery installed on the current vehicle, and determine whether the capacity rating matched by the battery capacity obtaining sub-module is less than the capacity rating of the installed power battery; If yes, set the maximum charge power according to the matched capacity rating, and then control the BMS to charge the installed power battery according to the maximum charge power.
  • a storage device is provided, and a plurality of program codes are stored in the storage device, wherein the program codes are adapted to be loaded and run by a processor to execute the vehicle described in any one of the above technical solutions.
  • the charging wake-up method of BMS is provided, and a plurality of program codes are stored in the storage device, wherein the program codes are adapted to be loaded and run by a processor to execute the vehicle described in any one of the above technical solutions.
  • a control device in a fourth aspect, includes a processor and a storage device, the storage device is adapted to store a plurality of program codes, characterized in that the program code is adapted to be loaded and run by the processor To implement the charging and waking method of the vehicle BMS described in any one of the above technical solutions.
  • a charging wake-up device for a vehicle BMS includes a wireless communication module, a low-voltage power supply module, and the control device described in the above technical solution; the wireless communication module is configured to receive a charging control instruction of the vehicle BMS, and The charging control instruction is sent to the control device, and the wake-up signal output by the control device is sent to the vehicle BMS; the control device is configured to generate a BMS wake-up instruction according to the charging control instruction, and according to The BMS wake-up instruction controls the low-voltage power supply module to output a wake-up signal to the BMS in the vehicle to wake up the BMS.
  • the charging wake-up device further includes a communication multiplexing module connected to the charging equipment or the communication module in the vehicle; the communication multiplexing module is It is configured to receive the charging control instruction of the vehicle BMS through the charging device or the communication module in the vehicle and send the charging control instruction of the vehicle BMS to the control device, and to transmit the charging control instruction through the charging device or the communication module in the vehicle
  • the wake-up signal output by the control device is sent to the vehicle BMS.
  • the charging wake-up device further includes a power source multiplexing module, the power source multiplexing module is connected to the vehicle's low-voltage power supply; the power source multiplexing module is configured to The BMS wake-up control instruction output by the control device controls the on-board low-voltage power supply to output a wake-up signal to the BMS in the vehicle to wake up the BMS.
  • a vehicle charging system in a sixth aspect, includes a charging device and the charging wake-up device of the vehicle BMS according to any one of the above technical solutions, and the charging wake-up device is provided on the charging device or the vehicle.
  • the system further includes a background server configured to analyze whether the vehicle has a charging intention according to the driving data or charging request of the vehicle, and if there is a charging intention, it The charging wake-up device of the vehicle BMS sends a charging control command of the vehicle BMS.
  • the vehicle includes an on-board controller configured to analyze whether the vehicle has a charging intention according to the driving data of the vehicle, and if there is a charging intention, the vehicle The charging wake-up device of the vehicle BMS sends a charging control instruction of the vehicle BMS.
  • the charging wake-up device and the power battery of the vehicle are respectively arranged on the vehicle body independently of each other, or the charging wake-up device is provided in the power battery of the vehicle.
  • the charging control command of the vehicle BMS can be obtained based on wireless communication technology (the charging control command can be a wireless communication signal generated according to the current vehicle charging intention), and then the BMS wake-up command is generated according to the charging control command , And control the preset low-voltage power supply according to the BMS wake-up instruction (the preset low-voltage power supply includes but is not limited to: the low-voltage power supply preset in the device for performing the charging and wake-up method of the vehicle BMS, and the vehicle low-voltage power supply of the vehicle) to the BMS Output a wake-up signal (the wake-up signal can be a wireless communication signal) to wake up the BMS.
  • the preset low-voltage power supply includes but is not limited to: the low-voltage power supply preset in the device for performing the charging and wake-up method of the vehicle BMS, and the vehicle low-voltage power supply of the vehicle
  • the invention obtains the charging control instruction of the vehicle BMS and outputs the wake-up signal to the vehicle BMS through wireless communication technology, realizes the wake-up of the vehicle BMS, and overcomes the use of wired signal sources (signal lines dedicated to BMS communication/power supply control in the prior art).
  • wired signal sources signal lines dedicated to BMS communication/power supply control in the prior art.
  • the present invention does not need to provide a low-voltage power supply dedicated to supply power to the BMS on the charging device, and thus does not significantly increase the design/manufacturing cost of the charging device.
  • Fig. 1 is a schematic flow chart of the main steps of a charging wake-up method for a vehicle BMS according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the main structure of a charging and wake-up device for a vehicle BMS according to an embodiment of the present invention
  • module and “processor” may include hardware, software, or a combination of both.
  • a module can include hardware circuits, various suitable sensors, communication ports, memory, and can also include software parts, such as program codes, or a combination of software and hardware.
  • the processor may be a central processing unit, a microprocessor, an image processor, a digital signal processor, or any other suitable processor.
  • the processor has data and/or signal processing functions.
  • the processor can be implemented in software, hardware, or a combination of the two.
  • the non-transitory computer-readable storage medium includes any suitable medium that can store program code, such as magnetic disks, hard disks, optical disks, flash memory, read-only memory, random access memory, and so on.
  • a and/or B means all possible combinations of A and B, such as only A, only B, or A and B.
  • the term "at least one of A or B” or “at least one of A and B” has a meaning similar to “A and/or B” and may include only A, only B, or A and B.
  • the terms “a” and “this” in the singular form may also include the plural form.
  • the conventional vehicle charging method is to wake up the BMS by sending a BMS wake-up signal to the electric vehicle through a charging device such as a charging pile through its dedicated signal cable.
  • the charging equipment is also provided with a low-voltage power supply (such as a 12V low-voltage power supply). After the BMS is awakened, the low-voltage power supply is controlled to supply power to the BMS through the above-mentioned signal cable, so that the BMS can normally monitor the charging of the power battery during the vehicle charging process. state.
  • the charging wake-up method of the vehicle BMS is based on a wireless signal source and uses a preset low-voltage power supply to realize the BMS wake-up.
  • the preset low-voltage power supply includes but is not limited to: a charging wake-up for the vehicle BMS The low-voltage power supply preset in the device of the method, and the vehicle's low-voltage power supply, etc.
  • the charging control command of the vehicle BMS is acquired based on wireless communication technology (the charging control command is a wireless communication signal generated according to the current vehicle charging intention), and then the BMS wake-up command is generated according to the charging control command, and the BMS wake-up command is controlled according to the BMS wake-up command
  • the preset low-voltage power supply outputs a wake-up signal to the BMS to wake up the BMS.
  • the present invention uses wireless communication technology (including but not limited to: 4G/5G communication technology, WIFI communication technology, Bluetooth communication technology, and NFC communication technology) to obtain the charging control instructions of the vehicle BMS and output the wake-up signal to the vehicle BMS, so as to realize the control of the vehicle BMS.
  • Wake-up overcomes the problem in the prior art that when a wired signal source (a signal transmitted by a signal cable dedicated to BMS communication/power supply control) is used to wake up the BMS, the BMS cannot be normally awakened due to damage to the signal cable.
  • the present invention does not require a low-voltage power supply dedicated to supply power to the BMS on the charging device, and thus does not significantly increase the cost of the design, manufacturing, and maintenance of the charging device.
  • the charging wake-up device of the vehicle BMS is arranged on the vehicle and a 12V low-voltage power supply is preset in the charging wake-up device.
  • the charging equipment sends a charging control command to the charging wake-up device.
  • the charging wake-up device After receiving the charging control command, the charging wake-up device judges the vehicle according to the vehicle status information (such as the connection state of the vehicle and the charging device, etc.) Whether the charging preparation is completed, if the charging preparation is completed, the BMS wake-up command is generated according to the charging control command, and the above-mentioned 12V low-voltage power supply is controlled to output a wake-up signal to the BMS according to the BMS wake-up command. After the BMS wakes up, it starts to monitor the charging status of the power battery to prevent occurrence Overheating or overcharging issues.
  • the vehicle status information such as the connection state of the vehicle and the charging device, etc.
  • FIG. 1 is a schematic flowchart of main steps of a charging and waking method for a vehicle BMS according to an embodiment of the present invention.
  • the charging and waking method of the vehicle BMS in the embodiment of the present invention mainly includes the following steps:
  • Step S101 Receive a charging control instruction.
  • the charging control command is a wireless communication signal generated according to the current vehicle's charging intention.
  • the subsequent BMS wake-up operation is performed according to the wireless communication signal, which can overcome the problem of signal
  • the cable is damaged and the BMS cannot be woken up normally.
  • the charging intention of the vehicle may be the charging intention analyzed according to the charging request of the vehicle, or it may be the charging intention predicted according to the driving data of the vehicle.
  • the driving data includes but is not limited to: the driving path of the vehicle, navigation data, etc.
  • the vehicle navigation data of the vehicle includes navigation data for navigating the vehicle from its current location to a charging pile.
  • the background server can predict that the current vehicle has a charging intention based on the driving data, and then output the charging control command of the vehicle's BMS. In this way, it is possible to predict that the user will charge the vehicle without the user's request for charging, and then perform the subsequent BMS wake-up operation, so that the BMS is already awakened before the user initiates the charging request.
  • Step 11 Obtain the driving behavior data in the driving data.
  • the driving behavior data includes, but is not limited to: the driving route and time of the vehicle from starting to stopping.
  • An example: the driving behavior data of the vehicle A includes: the driving route of the vehicle A departing from the vehicle user's home at 7 am on a certain working day and driving to the vehicle user unit at 8 am.
  • Step 12 Based on the preset one-to-one correspondence between the driving behavior and the driving habit, the driving habit corresponding to the driving behavior data is obtained.
  • Driving habit refers to the user's behavioral habit of driving the current vehicle based on the big data statistics and analysis of the driving behavior data of the vehicle.
  • the driving habits may include two pre-associated driving routes, and the driving time corresponding to each driving route.
  • the driving route is "driving from address a to address b at 7 a.m.
  • Step 13 Obtain the associated driving route pre-associated with the driving route in the driving behavior data and the power battery power prediction value required by the associated driving route according to the driving habit.
  • step 11 An example: if the driving route in the driving behavior data obtained through step 11 is "Driving from address a to address b at 7-8 am every weekday", then the driving route associated with it in advance (associated driving route ) Means "Driving from address b to address a at 5-6 pm on every working day.” After the above-mentioned associated driving route is obtained, the electric power required by the vehicle to complete the associated driving route can be predicted to obtain the electric power prediction value.
  • Step 14 Obtain the remaining power of the power battery after the vehicle stops, and determine whether the remaining power is less than the above-mentioned power prediction value; if it is, it indicates that the current remaining power of the vehicle is not enough to support the vehicle to complete the corresponding associated driving route, so it is determined that the vehicle has a charging intention ; If not, it indicates that the current remaining power of the vehicle can support the vehicle to complete the corresponding associated driving route, so it is determined that the vehicle does not have a charging intention.
  • Step S102 Generate a BMS wake-up instruction according to the charging control instruction.
  • the BMS wake-up instruction can be generated immediately to wake up the BMS.
  • the present invention can determine the wake-up time for waking up the BMS according to the predicted time for the vehicle to start charging included in the charging control command, and generate the BMS wake-up command when the time reaches the wake-up time.
  • the wake-up time may be the predicted time for the vehicle to start charging included in the charging control command, or it may be a certain time before the predicted time.
  • the predicted time for starting the charging of the vehicle may be predicted based on the driving data of the vehicle. Specifically, continue to refer to the implementation in the foregoing step S101, after predicting that the vehicle has a charging intention based on the driving behavior data, driving habits, etc. in the driving data, the remaining power of the power battery after the vehicle is stopped and the associated driving route (According to the driving habit and the driving route pre-associated with the driving route in the driving behavior data) required power prediction value, the charging time required to charge the power battery from the current remaining power to the power prediction value is calculated. Then calculate the time for the power battery to start charging according to the charging time and the start time of the associated driving route. This time is the predicted time for the vehicle to start charging. An example: the charging time is 3 hours. Since the start time of the associated driving route is 5 pm, it can be calculated that the predicted time for the vehicle to start charging is 2 pm.
  • the predicted time for the vehicle to start charging may be analyzed according to the charging request of the vehicle.
  • the BMS wake-up instruction can be generated according to the following steps:
  • Step 21 Determine whether the charging control command includes the predicted time for the vehicle to start charging. If the predicted time for the vehicle to start charging is included, then go to step 22; if the predicted time for the vehicle to start charging is not included, a BMS wake-up instruction is immediately generated to wake up the BMS.
  • Step 22 Obtain the state of charge and ambient temperature of the power battery in the vehicle, and predict the optimal charging temperature of the power battery according to the state of charge.
  • the state of charge of the power battery refers to the ratio of the current remaining capacity of the power battery to its fully charged state.
  • the optimal charging temperature of the power battery refers to the ambient temperature corresponding to the maximum charging current that can be achieved when the power battery is charged under the current state of charge of the power battery.
  • a neural network prediction model can be constructed/trained based on massive amounts of battery data such as state of charge, charging temperature, and charging current using machine learning algorithms, and then the neural network prediction model can be used to determine the optimal charging temperature of the power battery Prediction.
  • the preset neural network prediction model is based on preset data samples and constructed using machine learning algorithms ,
  • the preset data sample includes the maximum charging current of the power battery at different temperatures and different states of charge.
  • the large data analysis of the massive power battery data can accurately obtain the ambient temperature corresponding to the maximum charging current that can be achieved when the power battery is charged under different states of charge.
  • Step 23 Determine whether the ambient temperature is less than the optimal charging temperature. If the ambient temperature is less than the optimal charging temperature, go to step 24. If the ambient temperature is greater than or equal to the optimal charging temperature, the BMS wake-up control command is generated after the time reaches the predicted time for the vehicle to start charging.
  • the ambient temperature is less than the optimal charging temperature, it indicates that the charging current for charging the power battery at the current ambient temperature and the current state of charge is less than the charging current for charging the power battery at the optimal charging temperature and the current state of charge Therefore, the charging time or efficiency at the current ambient temperature must be lower than the charging time or efficiency at the optimal charging temperature.
  • the power battery can be heated before charging, and its temperature can be heated to the optimal charging temperature, so that the charging current can reach the optimal charging current under the current state of charge at the initial moment of charging, and the charging efficiency of the power battery can be improved.
  • the ambient temperature is greater than or equal to the optimal charging temperature, it indicates that the charging current charged at the current ambient temperature has reached the optimal charging current under the current state of charge, so there is no need to heat the power battery.
  • Step 24 According to the ambient temperature and the optimal charging temperature, predict the preheating time required to heat the power battery to the optimal charging temperature.
  • Step 25 Calculate the wake-up time for waking up the BMS according to the warm-up time and the predicted time, obtain the receiving time of the charging control command, and determine whether the time between the receiving time and the wake-up time is less than the warm-up time. If the duration is less than the warm-up duration, the BMS wake-up control instruction is immediately generated, and the wake-up BMS is controlled to heat the power battery. If the duration is greater than or equal to the warm-up duration, a BMS wake-up control command is generated after the time reaches the wake-up time to wake up the BMS and control the wake-up BMS to heat the power battery.
  • the wake-up time can be calculated to be 4 pm. If the receiving time of the charging control command is 1 o'clock in the afternoon, the BMS wake-up control command can be generated after the time reaches 4 o'clock in the afternoon, and the wake-up BMS can be controlled to heat the power battery. If the receiving time of the charging control command is 4:10 pm, the BMS wake-up control command is immediately generated, and the wake-up BMS is controlled to heat the power battery.
  • the power battery can be quickly and efficiently charged at the optimal charging temperature, thereby saving the charging time of the power battery and improving the user's sense of charging experience.
  • Step S103 Control the preset low-voltage power supply to output a wake-up signal to the vehicle BMS according to the BMS wake-up instruction to wake up the vehicle BMS.
  • the wake-up signal can be a voltage pulse signal.
  • the preset low-voltage power supply can be controlled to charge and discharge, so that the low-voltage voltage can output a pulse signal to the BMS to wake up the BMS.
  • the wake-up signal may be a wireless communication signal generated according to a voltage pulse signal.
  • the voltage value of the wake-up signal that the preset low-voltage power supply can output depends on the voltage input value of the BMS. An example: if the voltage input value of the BMS is 12V, the wake-up signal output by the low-voltage power supply can be a 12V voltage signal.
  • the preset The low-voltage power supply outputs a wake-up signal to the BMS. Specifically, after the BMS wake-up instruction is generated, it is first determined whether the vehicle is ready for charging according to the vehicle status information. If the vehicle has completed the charging preparation, the preset low-voltage power supply is controlled to output a wake-up signal to the BMS in the vehicle according to the BMS wake-up instruction. If the vehicle has not completed the charging preparation, it will continue to determine whether the vehicle has completed the charging preparation according to the vehicle status information.
  • the vehicle status information only includes information such as the connection status of the vehicle and the charging device, if it is detected that the vehicle and the charging device have been accurately connected, it can be determined that the vehicle has completed the charging preparation, and the BMS can be awakened to start charging Up.
  • the present invention overcomes the problem in the prior art that the BMS cannot be normally awakened due to damage to the signal cable when the wired signal source (signal transmitted by the signal cable dedicated to BMS communication/power supply control) is used to wake up the BMS. And a low-voltage power supply dedicated to supply power to the BMS is set on the charging equipment, which leads to the problem of increased cost of the charging equipment.
  • the vehicle recharge method not only directly charges the vehicle, but also includes the recharge method of replacing the battery (removing the power battery with lower battery capacity on the vehicle from the vehicle, and removing other batteries with higher capacity. Replace the power battery on the current vehicle).
  • the capacity rating of the authority is used to adjust the charging strategy of the power battery.
  • the charging strategy makes the maximum charging capacity of the power battery equal to 70kWh.
  • the charging strategy of the power battery can be adjusted according to the following steps:
  • Step 31 Based on the one-to-one correspondence between the preset identification information and the capacity rating of the power battery and according to the current vehicle identification information of the vehicle, the capacity rating of the power battery corresponding to the vehicle identification information is matched.
  • Vehicle identification information refers to unique identification information that can indicate the identity of the vehicle.
  • Vehicle identification information includes but is not limited to: license plate number, vehicle VIN code and vehicle user’s ID number.
  • the one-to-one correspondence between the preset identification information and the capacity rating of the power battery can be provided by the vehicle supplier.
  • the vehicle supplier sets the corresponding capacity rating usage authority for each vehicle, and then determines each vehicle according to the usage authority.
  • the vehicle identification information of each vehicle builds a corresponding relationship with the corresponding capacity rating.
  • Step 32 Obtain the capacity rating of the power battery installed on the current vehicle, and determine whether the matched capacity rating is less than the installed capacity rating of the power battery; if so, set the charging power according to the matched capacity rating, Then control the BMS to charge the installed power battery according to the charge power.
  • the present invention also provides a charging wake-up device for a vehicle BMS.
  • FIG. 2 is a schematic diagram of the main structure of a charging and wake-up device for a vehicle BMS according to an embodiment of the present invention.
  • the charging wake-up device of the vehicle BMS in the embodiment of the present invention mainly includes an instruction acquisition module 11, an instruction generation module 12 and a wake-up control module 13.
  • one or more of the instruction acquisition module 11, the instruction generation module 12, and the wake-up control module 13 may be combined into one module.
  • the instruction acquisition module 11 may be configured to receive a charging control instruction; the charging control instruction is a wireless communication signal generated according to the current vehicle's charging intention.
  • the instruction generating module 12 may be configured to generate a BMS wake-up instruction according to the charging control instruction.
  • the wake-up control module 13 may be configured to control the preset low-voltage power supply to output a wake-up signal to the vehicle BMS according to the BMS wake-up instruction to wake up the vehicle BMS; the wake-up signal is a wireless communication signal.
  • the charging intention of the vehicle includes the charging intention predicted according to the driving data of the vehicle, and/or the charging intention analyzed according to the charging request of the vehicle. In an embodiment, for the description of the specific realized functions, refer to the description of step S101 to step S103.
  • the charging wake-up device may include a charging intention prediction module, and the charging intention prediction module includes a first charging intention prediction sub-module and/or a second charging intention prediction sub-module.
  • the first charging intention prediction sub-module may include a navigation data acquisition unit and a first charging intention prediction unit.
  • the navigation data acquisition unit may be configured to acquire vehicle navigation data in the driving data.
  • the first charging intention prediction unit may be configured to determine whether the navigation destination in the vehicle navigation data is a vehicle charging place or is located near the vehicle charging place; if so, it is determined that the vehicle has a charging intention.
  • the second electric intention prediction sub-module may include a driving behavior data acquisition unit, a driving habit acquisition unit, an associated driving route acquisition unit, and a second charging intention prediction unit.
  • the driving behavior data acquisition unit may be configured to acquire driving behavior data in the driving data; the driving behavior data may include the driving route and time of the vehicle from start to stop; the driving habits acquisition unit may be configured to be based on a preset driving behavior One-to-one correspondence with driving habits to obtain driving habits corresponding to driving behavior data; driving habits include two pre-associated driving routes and the time corresponding to each driving route; the associated driving route acquisition unit can be configured as Obtain the associated driving route pre-associated with the driving route in the driving behavior data and the power prediction value of the power battery required by the associated driving route according to driving habits; the second charging intention prediction unit may be configured to obtain the power battery information after the vehicle stops. For the remaining power, it is determined whether the remaining power is less than the power prediction value; if so, it is determined that the vehicle has an intention to charge.
  • the remaining power it is determined whether the
  • the wake-up control module 13 may include an information judgment sub-module, a charging temperature prediction sub-module, a warm-up duration prediction sub-module, and an instruction generation sub-module.
  • the information judging sub-module may be configured to judge whether the charging control command includes a predicted time for the vehicle to start charging; if so, the charging temperature prediction sub-module is activated.
  • the charging temperature prediction sub-module may be configured to obtain the state of charge and the ambient temperature of the power battery in the vehicle, and predict the optimal charging temperature of the power battery according to the state of charge.
  • the warm-up time prediction sub-module may be configured to determine whether the ambient temperature is less than the optimal charging temperature, and if so, predict the warm-up time required to heat the power battery to the optimal charging temperature based on the ambient temperature and the optimal charging temperature.
  • the instruction generation sub-module can be configured to calculate the wake-up time for waking up the BMS according to the warm-up time and the predicted time, obtain the receiving time of the charging control instruction, and determine whether the time between the receiving time and the wake-up time is less than the warm-up time; if so, immediately Generate a BMS wake-up control command to wake up the BMS and control the wake-up BMS to heat the power battery; if not, generate a BMS wake-up control command when the time reaches the wake-up time to wake up the BMS and control the wake-up BMS to heat the power battery heating.
  • the description in step S102 for the description of the specific realized functions, refer to the description in step S102.
  • the charging temperature prediction sub-module may be configured to predict the optimal charging temperature of the power battery based on a preset neural network prediction model and according to the state of charge of the power battery; wherein the preset neural network prediction model is Based on preset data samples and constructed using machine learning algorithms, the preset data samples include the maximum charging current of the power battery at different temperatures and different states of charge.
  • the preset neural network prediction model is Based on preset data samples and constructed using machine learning algorithms, the preset data samples include the maximum charging current of the power battery at different temperatures and different states of charge.
  • the wake-up control module 13 may be configured to determine whether the vehicle is ready for charging according to the vehicle status information; if so, control the preset low-voltage power supply to output a wake-up signal to the BMS in the vehicle according to the BMS wake-up instruction to wake the BMS .
  • control the preset low-voltage power supply to output a wake-up signal to the BMS in the vehicle according to the BMS wake-up instruction to wake the BMS .
  • the charging wake-up device of the vehicle BMS shown in FIG. 2 includes a BMS charging control module.
  • the BMS charging control module includes a battery capacity acquisition sub-module and a battery charging control sub-module.
  • the battery capacity acquisition submodule may be configured to match the capacity rating of the power battery corresponding to the vehicle identification information based on a one-to-one correspondence between the preset identification information and the capacity rating of the power battery and according to the current vehicle identification information of the vehicle.
  • the battery charging control sub-module can be configured to obtain the capacity rating of the power battery installed on the current vehicle, and determine whether the capacity rating matched by the battery capacity obtaining sub-module is less than the capacity rating of the installed power battery; if so, then The charging power is set according to the matched capacity rating, and then the BMS is controlled to charge the installed power battery according to the charging power.
  • the above-mentioned vehicle BMS charging and waking device is used to implement the embodiment of the vehicle BMS charging and waking method shown in FIG. It is understood that, for the convenience and brevity of description, the specific working process and related description of the charging and waking device of the vehicle BMS can refer to the content described in the embodiment of the charging and waking method of the vehicle BMS, which will not be repeated here.
  • the present invention also provides a storage device.
  • the storage device may be configured to store a program that executes the charging wake-up method of the vehicle BMS of the foregoing method embodiment, and the program may be loaded and run by the processor to realize the charging of the foregoing vehicle BMS Wake up method.
  • the storage device may be a storage device formed by various electronic devices.
  • the storage in the embodiment of the present invention is a non-transitory computer-readable storage medium.
  • the present invention also provides a control device.
  • the control device includes a processor and a storage device.
  • the storage device may be configured to store a program for performing the charging and wake-up method of the vehicle BMS of the foregoing method embodiment, and the processor may be configured to use
  • the program includes, but is not limited to, a program that executes the charging and wake-up method of the vehicle BMS in the foregoing method embodiment.
  • the control device may be a control device device formed by various electronic devices.
  • the control device in the embodiment of the present invention is a microprocessor such as a single-chip microcomputer.
  • the present invention also provides a charging wake-up device for a vehicle BMS.
  • the charging wake-up device of a vehicle BMS includes a wireless communication module, a low-voltage power supply module, and the control device described in the foregoing control device embodiment.
  • the wireless communication module is configured to receive the charging control instruction of the vehicle BMS and send the charging control instruction to the control device, and send the wake-up signal output by the control device to the vehicle BMS.
  • the control device may be configured to generate a BMS wake-up command according to the charging control command, and control the low-voltage power supply module to output a wake-up signal to the BMS in the vehicle according to the BMS wake-up command to wake up the BMS.
  • the voltage value of the low-voltage signal that the low-voltage power module can output depends on the voltage input value of the BMS. An example: if the voltage input value of the BMS is 12V, the low-voltage signal output by the low-voltage power module may be a 12V voltage signal.
  • the charging wake-up device of the vehicle BMS may include a communication multiplexing module.
  • the communication multiplexing module is connected to the charging device or the communication module in the vehicle, and the communication multiplexing module can be configured to receive the charging control command of the vehicle BMS through the charging device or the communication module in the vehicle and send the charging control command of the vehicle BMS to the control Device, and send the wake-up signal output by the control device to the vehicle BMS through the charging equipment or the communication module in the vehicle.
  • the charging wake-up device can also receive the charging control command, and the vehicle BMS can also receive the wake-up information normally, so that the BMS is normally awakened.
  • the charging wake-up device of the vehicle BMS may include a power source multiplexing module.
  • the power multiplexing module is connected to the on-board low-voltage power supply of the vehicle and the power multiplexing module can be configured to control the on-board low-voltage power supply to output a wake-up signal to the BMS in the vehicle according to the BMS wake-up control instruction output by the control device to wake up the BMS.
  • Based on the communication multiplexing module it can be ensured that the charging wake-up device can also output a wake-up signal to the BMS when the aforementioned low-voltage power supply module fails or has no power, so that the BMS can be awakened normally.
  • the present invention also provides a vehicle charging system.
  • the vehicle charging system may include a charging device and the charging wake-up device of the vehicle BMS described in the foregoing embodiment of the charging wake-up device of the vehicle BMS, and the charging wake-up device is provided in the charging device or the vehicle. superior.
  • the charging wake-up device may be configured to receive the charging control instruction of the vehicle BMS through the wireless communication module and output a wake-up signal to the vehicle BMS.
  • the vehicle charging system may include a background server.
  • the background server may be configured to analyze whether the vehicle has a charging intention according to the driving data or charging request of the vehicle, and if there is a charging intention, send the charging control instruction of the vehicle BMS to the charging wake-up device of the vehicle BMS.
  • the back-end server is a server that can process large amounts of data in real time. The back-end server can store information about a large number of charging equipment and vehicles. Even if a large amount of information about charging equipment/vehicles is received, it can quickly and accurately predict/ Analyze whether the vehicle has an intention to charge.
  • the vehicle may include an on-board controller, which may be configured to analyze whether the vehicle has a charging intention based on the driving data of the vehicle, and if there is a charging intention, send the charging of the vehicle BMS to the charging wake-up device of the vehicle BMS Control instruction. Because the on-board controller can collect the vehicle's driving data in real time and accurately, through the above configuration, the on-board controller can quickly analyze whether the vehicle has a charging intention at the current moment, and if there is a charging intention, it can quickly perform the subsequent BMS wake-up operation .
  • the charging and wake-up device and the power battery of the vehicle are respectively arranged on the vehicle body independently of each other. Further, in one embodiment, the charging wake-up device may be provided in the power battery of the vehicle. Based on this setting method, if the vehicle uses a battery replacement method to supplement energy, then the charging wake-up device can be overhauled and maintained immediately after the power battery is removed from the car, which improves the flexibility and maintenance of the charging wake-up device overhaul/maintenance. Convenience.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file, or some intermediate form.
  • the computer-readable medium may include: any entity or device, medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory, random access memory, and electrical carrier signal that can carry the computer program code. , Telecommunications signals and software distribution media, etc.
  • the content contained in the computer-readable medium can be appropriately added or deleted according to the requirements of the legislation and patent practice in the jurisdiction.
  • the computer-readable medium Does not include electrical carrier signals and telecommunication signals.
  • each module is only to illustrate the functional units of the system of the present invention
  • the physical devices corresponding to these modules may be the processor itself, or a part of the software in the processor, a part of the hardware, or Part of the combination of software and hardware. Therefore, the number of each module in the figure is only schematic.
  • each module in the system can be adaptively split or merged. Such splitting or merging of specific modules will not cause the technical solution to deviate from the principle of the present invention. Therefore, the technical solutions after splitting or merging will fall within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车辆BMS的充电唤醒方法、装置及车辆充电系统,涉及电池充电控制技术领域,旨在解决如何可靠地对车辆BMS进行充电唤醒的技术问题。车辆BMS的充电唤醒方法可以获取根据车辆充电意图生成的并基于无线通信技术获取到的车辆BMS的充电控制指令,进而根据该充电控制指令生成BMS唤醒指令,以及根据BMS唤醒指令控制预设的低压电源基于无线通信技术向车辆BMS输出唤醒信号,以此来唤醒车辆BMS。该充电唤醒方法克服了在利用有线信号源唤醒车辆BMS时,由于信号线缆损坏而无法正常唤醒车辆BMS的问题,提高了车辆BMS唤醒的可靠性。

Description

车辆BMS的充电唤醒方法、装置及车辆充电系统 技术领域
本发明涉及电池充电控制技术领域,具体涉及一种车辆BMS的充电唤醒方法、装置及车辆充电系统。
背景技术
电动汽车在充电过程中需要通过电池管理系统(Battery Management System,BMS)来监控动力电池的充电状态,判断动力电池是否发生过热或过充等问题。当电动汽车与充电设备如充电桩连接后,充电设备会通过专用的信号线缆向电动汽车发送BMS唤醒信号,在BMS被唤醒后则控制充电设备内预置的低压电源并通过该信号线缆向BMS供电,以保证BMS能够正常运行。但是,在充电设备上设置上述专用于BMS唤醒/供电控制的信号线缆以及低压电源,不仅会增大充电设备的设计/制造成本,信号线缆也极易由于磨损和老化等原因发生损坏。
相应地,本领域需要一种新的车辆BMS的充电唤醒方案来解决上述问题。
发明内容
为了克服上述缺陷,提出了本发明,以提供解决或至少部分地解决如何可靠地对车辆BMS进行充电唤醒的问题的车辆BMS的充电唤醒方法、装置及车辆充电系统。
第一方面,提供一种车辆BMS的充电唤醒方法,该方法包括:接收充电控制指令;根据所述充电控制指令生成BMS唤醒指令;根据所述BMS唤醒指令控制预设的低压电源向车辆BMS输出唤醒信号,以唤醒所述车辆BMS;其中,所述充电控制指令是根据当前车辆的充电意图生成的无线通信信号,所述唤醒信号是无线通信信号。
在上述车辆BMS的充电唤醒方法的一个技术方案中,所述车辆的充电意图包括根据车辆的行车数据预测出的充电意图,和/或根据车辆的充电请求分析出的充电意图。
在上述车辆BMS的充电唤醒方法的一个技术方案中,根据车辆的行车数据预测所述车辆的充电意图,具体包括:获取所述行车数据中的车辆导航数据; 判断所述车辆导航数据中的导航目的地是否为车辆充电场所或位于所述车辆充电场所附近;若是,则确定所述车辆存在充电意图;并且/或者,根据车辆的行车数据预测所述车辆的充电意图,具体包括:获取所述行车数据中的行车行为数据;所述行车行为数据包括车辆从启动到停止过程中的行车路线与时间;基于预设的行车行为与行车习惯之间的一一对应关系,获取所述行车行为数据对应的行车习惯;所述行车习惯包括预先关联的两个行车路线,以及每个行车路线各自对应的时间;根据所述行车习惯获取与所述行车行为数据中的行车路线预先关联的关联行车路线以及该关联行车路线所需的动力电池的电量预测值;获取车辆停止后动力电池的剩余电量,判断所述剩余电量是否小于所述电量预测值;若是,则确定所述车辆存在充电意图。
在上述车辆BMS的充电唤醒方法的一个技术方案中,“根据所述充电控制指令生成BMS唤醒指令”的步骤具体包括:判断所述充电控制指令是否包含车辆开启充电的预测时间;当所述充电控制指令包含车辆开启充电的预测时间时,获取车辆内动力电池的荷电状态和环境温度,根据所述荷电状态预测所述动力电池的最佳充电温度;判断所述环境温度是否小于所述最佳充电温度,若是,则根据所述环境温度与最佳充电温度,预测将所述动力电池加热至所述最佳充电温度所需的预热时长;根据所述预热时长与预测时间计算唤醒BMS的唤醒时间;获取所述充电控制指令的接收时间,判断所述接收时间与唤醒时间之间的时长是否小于预热时长;若是,则立即生成BMS唤醒控制指令,以唤醒所述BMS以及控制唤醒后的BMS对所述动力电池进行加热;若否,则在时间达到所述唤醒时间后生成BMS唤醒控制指令,以唤醒所述BMS以及控制唤醒后的BMS对所述动力电池进行加热。
在上述车辆BMS的充电唤醒方法的一个技术方案中,“根据所述荷电状态预测所述动力电池的最佳充电温度”的步骤具体包括:基于预设的神经网络预测模型并根据动力电池的荷电状态预测所述动力电池的最佳充电温度;其中,所述预设的神经网络预测模型是基于预设的数据样本并利用机器学习算法构建的,所述预设的数据样本包括动力电池在不同温度以及不同荷电状态下的最大充电电流。
在上述车辆BMS的充电唤醒方法的一个技术方案中,“根据所述BMS唤醒指令控制预设的低压电源向所述车辆内的BMS输出唤醒信号,以唤醒所述BMS”的步骤具体包括:根据车辆状态信息判断车辆是否完成充电准备;若是,则根据所述BMS唤醒指令控制预设的低压电源向所述车辆内的BMS输出唤醒信号,以唤醒所述BMS。
在上述车辆BMS的充电唤醒方法的一个技术方案中,在BMS被唤醒之后,所述方法还包括:基于预设的识别信息与动力电池的容量额定值的一一对应关 系并且根据当前车辆的车辆识别信息,匹配出所述车辆识别信息对应的动力电池的容量额定值;获取当前车辆上已安装的动力电池的容量额定值,判断所述匹配出的容量额定值是否小于所述已安装的动力电池的容量额定值;若是,则根据所述匹配出的容量额定值设置最大充电电量,随后控制所述BMS根据所述最大充电电量对所述已安装的动力电池进行充电。
第二方面,提供一种车辆BMS的充电唤醒装置,该装置包括:指令获取模块,其被配置成接收充电控制指令;指令生成模块,其被配置成根据所述充电控制指令生成BMS唤醒指令;唤醒控制模块,其被配置成根据所述BMS唤醒指令控制预设的低压电源向车辆BMS输出唤醒信号,以唤醒所述车辆BMS;其中,所述充电控制指令是根据当前车辆的充电意图生成的无线通信信号,所述唤醒信号是无线通信信号。
在上述车辆BMS的充电唤醒装置的一个技术方案中,所述车辆的充电意图包括根据车辆的行车数据预测出的充电意图,和/或根据车辆的充电请求分析出的充电意图。
在上述车辆BMS的充电唤醒装置的一个技术方案中,所述充电唤醒装置包括充电意图预测模块,所述充电意图预测模块包括第一充电意图预测子模块和/或第二充电意图预测子模块;所述第一充电意图预测子模块包括导航数据获取单元和第一充电意图预测单元;所述导航数据获取单元被配置成获取所述行车数据中的车辆导航数据;所述第一充电意图预测单元被配置成判断所述车辆导航数据中的导航目的地是否为车辆充电场所或位于所述车辆充电场所附近;若是,则确定所述车辆存在充电意图;所述第二电意图预测子模块包括行车行为数据获取单元、行车习惯获取单元和第二充电意图预测单元;所述行车行为数据获取单元被配置成获取所述行车数据中的行车行为数据;所述行车行为数据包括车辆从启动到停止过程中的行车路线与时间;所述行车习惯获取单元被配置成基于预设的行车行为与行车习惯之间的一一对应关系,获取所述行车行为数据对应的行车习惯;所述行车习惯包括预先关联的两个行车路线,以及每个行车路线各自对应的时间;所述关联行车路线获取单元被配置成根据所述行车习惯获取与所述行车行为数据中的行车路线预先关联的关联行车路线以及该关联行车路线所需的动力电池的电量预测值;所述第二充电意图预测单元被配置成获取车辆停止后动力电池的剩余电量,判断所述剩余电量是否小于所述电量预测值;若是,则确定所述车辆存在充电意图。
在上述车辆BMS的充电唤醒装置的一个技术方案中,所述唤醒控制模块包括信息判断子模块、充电温度预测子模块、预热时长预测子模块、指令生成子 模块;所述信息判断子模块被配置成判断所述充电控制指令是否包含有车辆开启充电的预测时间;若是,则启动所述充电温度预测子模块;所述充电温度预测子模块被配置成获取车辆内动力电池的荷电状态和环境温度,根据所述荷电状态预测所述动力电池的最佳充电温度;所述预热时长预测子模块被配置成判断所述环境温度是否小于所述最佳充电温度,若是,则根据所述环境温度与最佳充电温度,预测将所述动力电池加热至所述最佳充电温度所需的预热时长;所述指令生成子模块被配置成根据所述预热时长与预测时间计算唤醒BMS的唤醒时间;获取所述充电控制指令的接收时间,判断所述接收时间与唤醒时间之间的时长是否小于预热时长;若是,则立即生成BMS唤醒控制指令,以唤醒所述BMS以及控制唤醒后的BMS对所述动力电池进行加热;若否,则在时间达到所述唤醒时间后生成BMS唤醒控制指令,以唤醒所述BMS以及控制唤醒后的BMS对所述动力电池进行加热。
在上述车辆BMS的充电唤醒装置的一个技术方案中,还包括:所述充电温度预测子模块被配置成基于预设的神经网络预测模型并根据动力电池的荷电状态预测所述动力电池的最佳充电温度;其中,所述预设的神经网络预测模型是基于预设的数据样本并利用机器学习算法构建的,所述预设的数据样本包括动力电池在不同温度以及不同荷电状态下的最大充电电流。
在上述车辆BMS的充电唤醒装置的一个技术方案中,还包括:所述唤醒控制模块被配置成根据车辆状态信息判断车辆是否完成充电准备;若是,则根据所述BMS唤醒指令控制预设的低压电源向所述车辆内的BMS输出唤醒信号,以唤醒所述BMS。
在上述车辆BMS的充电唤醒装置的一个技术方案中,所述装置还包括BMS充电控制模块,所述BMS充电控制模块包括电池容获取子模块和电池充电控制子模块;所述电池容量获取子模块被配置成基于预设的识别信息与动力电池的容量额定值的一一对应关系并且根据当前车辆的车辆识别信息,匹配出所述车辆识别信息对应的动力电池的容量额定值;所述电池充电控制子模块被配置成获取所述当前车辆上已安装的动力电池的容量额定值,判断所述电池容量获取子模块匹配出的容量额定值是否小于所述已安装的动力电池的容量额定值;若是,则根据所述匹配出的容量额定值设置最大充电电量,随后控制所述BMS根据所述最大充电电量对所述已安装的动力电池进行充电。
第三方面,提供一种存储装置,该存储装置中存储有多条程序代码,其特征在于,所述程序代码适于由处理器加载并运行以执行上述技术方案中任一项所述的车辆BMS的充电唤醒方法。
第四方面,提供一种控制装置,该控制装置包括处理器和存储装置,所述存储装置适于存储多条程序代码,其特征在于,所述程序代码适于由所述处理器加载并运行以执行上述技术方案中任一项所述的车辆BMS的充电唤醒方法。
第五方面,提供一种车辆BMS的充电唤醒装置,该装置包括无线通信模块、低压电源模块以及上述技术方案所述的控制装置;所述无线通信模块被配置成接收车辆BMS的充电控制指令并且将所述充电控制指令发送至所述控制装置,以及将所述控制装输出的唤醒信号发送至所述车辆BMS;所述控制装置被配置成根据所述充电控制指令生成BMS唤醒指令,以及根据所述BMS唤醒指令控制所述低压电源模块向所述车辆内的BMS输出唤醒信号,以唤醒所述BMS。
在上述车辆BMS的充电唤醒装置的一个技术方案中,所述充电唤醒装置还包括通信复用模块,所述通信复用模块与充电设备或车辆中的通信模块连接;所述通信复用模块被配置成通过所述充电设备或车辆中的通信模块接收车辆BMS的充电控制指令并且将所述车辆BMS的充电控制指令发送至所述控制装置,以及通过所述充电设备或车辆中的通信模块将所述控制装输出的唤醒信号发送至所述车辆BMS。
在上述车辆BMS的充电唤醒装置的一个技术方案中,所述充电唤醒装置还包括电源复用模块,所述电源复用模块与车辆的车载低压电源连接;所述电源复用模块被配置成根据所述控制装置输出的BMS唤醒控制指令控制所述车载低压电源向所述车辆内的BMS输出唤醒信号,以唤醒所述BMS。
第六方面,提供一种车辆充电系统,该系统包括充电设备以及上述技术方案中任一项所述的车辆BMS的充电唤醒装置,所述充电唤醒装置设置在所述充电设备或车辆上。
在上述车辆充电系统的一个技术方案中,所述系统还包括后台服务器,所述后台服务器被配置成根据车辆的行车数据或充电请求分析所述车辆是否存在充电意图,若存在充电意图则向所述车辆BMS的充电唤醒装置发送车辆BMS的充电控制指令。
在上述车辆充电系统的一个技术方案中,还包括:所述车辆包括车载控制器,所述车载控制器被配置成根据车辆的行车数据分析所述车辆是否存在充电意图,若存在充电意图则向所述车辆BMS的充电唤醒装置发送车辆BMS的充电控制指令。
在上述车辆充电系统的一个技术方案中,所述充电唤醒装置与车辆的动力电池分别相互独立地设置在车辆本体上,或者所述充电唤醒装置设置在车辆的 动力电池内。
本发明上述一个或多个技术方案,至少具有如下一种或多种有益效果:
在实施本发明的技术方案中,可以基于无线通信技术获取车辆BMS的充电控制指令(充电控制指令可以是根据当前车辆的充电意图生成的无线通信信号),进而根据该充电控制指令生成BMS唤醒指令,以及根据BMS唤醒指令控制预设的低压电源(预设的低压电源包括但不限于:用于执行车辆BMS的充电唤醒方法的装置内预置的低压电源,以及车辆的车载低压电源)向BMS输出唤醒信号(唤醒信号可以是无线通信信号),以此来唤醒BMS。本发明通过无线通信技术获取车辆BMS的充电控制指令以及向车辆BMS输出唤醒信号,实现对车辆BMS的唤醒,克服了现有技术中在利用有线信号源(专用于BMS通信/供电控制的信号线缆传输的信号)唤醒BMS时,由于信号线缆损坏而无法正常唤醒BMS的问题。此外,本发明无需在充电设备上设置专用于向BMS供电的低压电源,因而不会显著增大充电设备的设计/制造成本。
附图说明
下面参照附图来描述本发明的具体实施方式,附图中:
图1是根据本发明的一个实施例的车辆BMS的充电唤醒方法的主要步骤流程示意图;
图2是根据本发明的一个实施例的车辆BMS的充电唤醒装置的主要结构示意图;
附图标记列表:
11:指令获取模块;12:指令生成模块;13:唤醒控制模块。
具体实施方式
下面参照附图来描述本发明的一些实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
在本发明的描述中,“模块”、“处理器”可以包括硬件、软件或者两者的组合。一个模块可以包括硬件电路,各种合适的感应器,通信端口,存储器,也可以包括软件部分,比如程序代码,也可以是软件和硬件的组合。处理器可以是中央处理器、微处理器、图像处理器、数字信号处理器或者其他任何合适的处理器。处理器具有数据和/或信号处理功能。处理器可以以软件方式实现、硬件方式实现或 者二者结合方式实现。非暂时性的计算机可读存储介质包括任何合适的可存储程序代码的介质,比如磁碟、硬盘、光碟、闪存、只读存储器、随机存取存储器等等。术语“A和/或B”表示所有可能的A与B的组合,比如只是A、只是B或者A和B。术语“至少一个A或B”或者“A和B中的至少一个”含义与“A和/或B”类似,可以包括只是A、只是B或者A和B。单数形式的术语“一个”、“这个”也可以包含复数形式。
常规的车辆充电方法是由充电设备如充电桩通过其专用的信号线缆向电动汽车发送BMS唤醒信号,以此来唤醒BMS。此外,充电设备内还设置有低压电源(如12V低压电源),在BMS被唤醒后控制低压电源通过上述信号线缆向BMS供电,以使在车辆充电过程中BMS能够正常地监控动力电池的充电状态。然而在充电设备上设置上述专用于BMS通信/供电控制的信号线缆以及低压电源,不仅会增大充电设备的设计、制造和维护等成本,信号线缆也极易发生磨损和老化等问题,当信号线缆由于磨损和老化等原因损坏时,充电设备将无法正常唤醒BMS。
根据本发明一个实施例的车辆BMS的充电唤醒方法是基于无线信号源并利用一个预设的低压电源来实现BMS唤醒,该预设的低压电源包括但不限于:用于执行车辆BMS的充电唤醒方法的装置内预置的低压电源,以及车辆的车载低压电源等。具体而言,基于无线通信技术获取车辆BMS的充电控制指令(充电控制指令是根据当前车辆的充电意图生成的无线通信信号),进而根据该充电控制指令生成BMS唤醒指令,以及根据BMS唤醒指令控制预设的低压电源向BMS输出唤醒信号,以此来唤醒BMS。本发明通过无线通信技术(包含但不限于:4G/5G通信技术、WIFI通信技术、蓝牙通信技术和NFC通信技术)获取车辆BMS的充电控制指令以及向车辆BMS输出唤醒信号,实现对车辆BMS的唤醒,克服了现有技术中在利用有线信号源(专用于BMS通信/供电控制的信号线缆传输的信号)唤醒BMS时,由于信号线缆损坏而无法正常唤醒BMS的问题。此外,本发明无需在充电设备上设置专用于向BMS供电的低压电源,因而不会显著增大充电设备的设计、制造和维护等成本。
在本发明的一个应用场景中,车辆BMS的充电唤醒装置设置在车辆上且充电唤醒装置内预置有一个12V低压电源。当车辆驶入充电站使用充电设备充电时,充电设备向充电唤醒装置发送充电控制指令,充电唤醒装置在接收到充电控制指令后根据车辆状态信息(如车辆与充电设备的连接状态等)判断车辆是否完成充电准备,若完成充电准备则根据充电控制指令生成BMS唤醒指令,以及根据该 BMS唤醒指令控制上述12V低压电源向BMS输出唤醒信号,BMS唤醒后即刻开始监控动力电池的充电状态,防止发生过热或过充的问题。
参阅附图1,图1是根据本发明的一个实施例的车辆BMS的充电唤醒方法的主要步骤流程示意图。如图1所示,本发明实施例中车辆BMS的充电唤醒方法主要包括以下步骤:
步骤S101:接收充电控制指令。
在本实施例中充电控制指令是根据当前车辆的充电意图生成的无线通信信号,根据该无线通信信号来执行后续的BMS唤醒操作,能够克服现有技术中利用有线信号源唤醒BMS时,由于信号线缆损坏而无法正常唤醒BMS的问题。
车辆的充电意图可以是根据车辆的充电请求分析出的充电意图,也可以是根据车辆的行车数据预测出的充电意图。行车数据包括但不限于:车辆的行驶路径、导航数据等。
一个实施方式中,可以根据车辆的行车数据并按照以下步骤来预测车辆是否存在充电意图:获取行车数据中的车辆导航数据,判断该车辆导航数据中的导航目的地是否为车辆充电场所或位于车辆充电场所附近;如果导航目的地是车辆充电场所或位于车辆充电场所附近,则确定当前车辆存在充电意图;如果导航目的地不是车辆充电场所或没有位于车辆充电场所附近,则确定当前车辆不存在充电意图。一个例子:车辆的行车数据包括车辆由当前位置导航至某个充电桩的导航数据,后台服务器根据该行车数据可以预测出当前车辆存在充电意图,随后输出车辆BMS的充电控制指令。通过这种方式,无需用户进行充电请求,即可预判出用户会对车辆进行充电,进而执行后面的BMS唤醒操作,使得用户在发起充电请求之前BMS就已经被唤醒。
进一步,一个实施方式中,可以根据车辆的行车数据并按照以下步骤来预测车辆是否存在充电意图:
步骤11:获取行车数据中的行车行为数据。
行车行为数据包括但不限于:车辆从启动到停止过程中的行车路线与时间。一个例子:车辆A的行车行为数据包括:车辆A在某个工作日的上午7点由车辆用户家中出发并于上午8点行驶至车辆用户单位的行车路线。
步骤12:基于预设的行车行为与行车习惯之间的一一对应关系,获取行车行为数据对应的行车习惯。
行车习惯指的是,根据车辆的行车行为数据进行大数据统计与分析得出的用户驾驶当前车辆的行为习惯。在本实施方式中,行车习惯可以包括预先关联的两个行车路线,以及每个行车路线各自对应的行车时间。
一个例子:获取一段较长时间如14天内车辆的行车数据,对这些行车数据进行统计得出当前车辆在每个工作日的上午7点-8点由地址a(如用户家)行驶至地址b(如用户单位),并且在下午5点-6点由地址b行驶至地址a,进而可以分析得出当前车辆的行车习惯包括:“在每个工作日的上午7点-8点由地址a行驶至地址b,并且在下午5点-6点由地址b行驶至地址a”。其中,行车路线“在每个工作日的上午7点-8点由地址a行驶至地址b”,以及行车路线“在每个工作日的下午5点-6点由地址b行驶至地址a”就是上述行车习惯中预先关联的两个行车路线。
步骤13:根据行车习惯获取与行车行为数据中的行车路线预先关联的关联行车路线以及该关联行车路线所需的动力电池的电量预测值。
一个例子:如果经过步骤11得到的行车行为数据中的行车路线是“在每个工作日的上午7点-8点由地址a行驶至地址b”,那么与其预先关联的行车路线(关联行车路线)就是“在每个工作日的下午5点-6点由地址b行驶至地址a”。在获取到上述关联行车路线后,可以对车辆行驶完成该关联行车路线需要的电量进行预测,得到电量预测值。
步骤14:获取车辆停止后动力电池的剩余电量,判断剩余电量是否小于上述电量预测值;若是,则表明当前车辆的剩余电量不足以支持车辆行驶完成相应的关联行车路线,因而确定车辆存在充电意图;若否,则表明当前车辆的剩余电量可以支持车辆行驶完成相应的关联行车路线,因而确定车辆不存在充电意图。
通过上述步骤11-14,无需用户进行充电请求,即可预判出用户会对车辆进行充电(当前车辆存在充电意图),进而执行后面的BMS唤醒操作,使得用户在发起充电请求之前BMS就已经被唤醒。
步骤S102:根据充电控制指令生成BMS唤醒指令。
在接收到车辆BMS的充电控制指令后表明当前车辆有充电需求,需要唤醒BMS来监控充电过程中动力电池的充电状态。因此,在接收到车辆BMS的充电控制指令后可以立即生成BMS唤醒指令对BMS进行唤醒。然而在实际应用中受限于充电设备数量、工作状态等因素,需要用户对车辆进行预约充电,当时间到达预约的充电时间后再对车辆进行充电。对此,本发明可以根据充电控制指令中包含的车辆开启充电的预测时间,确定唤醒BMS的唤醒时间,当时间到达唤醒时间后 再生成BMS唤醒指令。唤醒时间可以是充电控制指令中包含的车辆开启充电的预测时间,也可以是该预测时间之前的某个时刻。
在本实施例中车辆开启充电的预测时间可以是根据车辆的行车数据预测出的。具体而言,继续参阅前述步骤S101中的实施方式,在根据行车数据中的行车行为数据、行车习惯等预测出车辆存在充电意图后,可以先根据车辆停止后动力电池的剩余电量以及关联行车路线(根据行车习惯获取到的与行车行为数据中的行车路线预先关联的行车路线)所需的电量预测值,计算将动力电池的电量由当前剩余电量充电至电量预测值需要的充电时长。然后根据该充电时长以及关联行车路线的开始时间计算动力电池开始充电的时间,该时间就是辆开启充电的预测时间。一个例子:充电时长是3小时,由于关联行车路线的开始时间是下午5点,因此可以计算得到辆开启充电的预测时间是下午2点。
进一步,在本实施例中车辆开启充电的预测时间可以是根据车辆的充电请求分析出来的。一个例子:车辆用户可以在发起充电请求时进行充电时间预约,该预约时间就是车辆开启充电的预测时间。
在一个实施方式中,在接收到车辆BMS的充电控制指令后可以按照以下步骤生成BMS唤醒指令:
步骤21:判断充电控制指令是否包含车辆开启充电的预测时间。若包含车辆开启充电的预测时间,则转至步骤22;若不包含车辆开启充电的预测时间,则立即生成BMS唤醒指令对BMS进行唤醒。
步骤22:获取车辆内动力电池的荷电状态和环境温度,根据荷电状态预测动力电池的最佳充电温度。
动力电池的荷电状态指的是,动力电池当前的剩余容量与其完全充电状态的容量的比值。
动力电池的最佳充电温度指的是,在动力电池的当前荷电状态下,对动力电池进行充电时能够实现的最大充电电流对应的环境温度。
在一个实施方式中,可以基于海量的荷电状态、充电温度、充电电流等电池数据并利用机器学习算法构建/训练一个神经网络预测模型,然后利用该神经网络预测模型进行动力电池最佳充电温度的预测。具体而言,基于预设的神经网络预测模型并根据动力电池的荷电状态预测动力电池的最佳充电温度,预设的神经网络预测模型是基于预设的数据样本并利用机器学习算法构建的,预设的数据样本包括动力电池在不同温度以及不同荷电状态下的最大充电电流。基于机器学习算法对 海量的动力电池数据进行大数据分析,能够准确得出在不同荷电状态下对动力电池进行充电时能够实现的最大充电电流对应的环境温度。
步骤23:判断环境温度是否小于最佳充电温度。若环境温度小于最佳充电温度,则转至步骤24。若环境温度大于等于最佳充电温度,则在时间达到车辆开启充电的预测时间后生成BMS唤醒控制指令。
若环境温度小于最佳充电温度,表明在当前环境温度以及当前荷电状态下对动力电池进行充电的充电电流,要小于在最佳充电温度以及当前荷电状态下对动力电池进行充电的充电电流,因而在当前环境温度下的充电时间或效率必然要低于在最佳充电温度下的充电时间或效率。对此,可以在充电之前对动力电池进行加热,将其温度加热至最佳充电温度,从而在充电初始时刻充电电流就能到达当前荷电状态下的最佳充电电流,提高动力电池的充电效率。若环境温度大于等于最佳充电温度,表明在当前环境温度下充电的充电电流已经能够达到当前荷电状态下的最佳充电电流,因而无需对动力电池进行加热。
步骤24:根据环境温度与最佳充电温度,预测将动力电池加热至最佳充电温度所需的预热时长。
步骤25:根据预热时长与预测时间计算唤醒BMS的唤醒时间,获取充电控制指令的接收时间,判断该接收时间与唤醒时间之间的时长是否小于预热时长。若该时长小于预热时长,则立即生成BMS唤醒控制指令,以及控制唤醒后的BMS对动力电池进行加热。若该时长大于等于预热时长,则在时间达到唤醒时间后生成BMS唤醒控制指令,以唤醒BMS以及控制唤醒后的BMS对动力电池进行加热。
一个例子:若预热时长是30min,预测时间是下午4点30分,那么根据上述预热时长和预测时间,可以计算得到唤醒时间是下午4点。若充电控制指令的接收时间是下午1点,则可以在时间到达下午4点后生成BMS唤醒控制指令,以及控制唤醒后的BMS对动力电池进行加热。若充电控制指令的接收时间是下午4点10分,则立即生成BMS唤醒控制指令,以及控制唤醒后的BMS对动力电池进行加热。
通过上述步骤21-24所述的BMS唤醒指令生成方式,能够使动力电池在最佳充电温度下进行快速与高效的充电,从而节省动力电池的充电时间,提高用户的充电体验感。
步骤S103:根据BMS唤醒指令控制预设的低压电源向车辆BMS输出唤醒信号,以唤醒车辆BMS。
唤醒信号可以是一个电压脉冲信号,在接收到BMS唤醒指令后可以控制预设的低压电源进行充放电,以此使低压电压向BMS输出脉冲信号来唤醒BMS。一个实施例中,唤醒信号可以是根据电压脉冲信号生成的无线通信信号。
预设的低压电源能够输出的唤醒信号的电压值取决于BMS的电压输入值。一个例子:若BMS的电压输入值是12V,则低压电源输出的唤醒信号可以是12V电压信号。
在一个实施方式中,为了保证BMS被唤醒即可启动充电,避免BMS被唤醒后需要等待较长时间才开始充电,可以先判断车辆是否完成充电准备,如果车辆已完成充电准备,再控制预设的低压电源向BMS输出唤醒信号。具体而言,在生成BMS唤醒指令之后,先根据车辆状态信息判断车辆是否完成充电准备。如果车辆已经完成充电准备,则根据BMS唤醒指令控制预设的低压电源向车辆内的BMS输出唤醒信号。如果车辆没有完成充电准备,则继续根据车辆状态信息判断车辆是否完成充电准备。
一个例子:若车辆状态信息仅包括车辆与充电设备的连接状态这一类信息,那么如果检测到车辆与充电设备已经准确连接,就可以判断为车辆已经完成了充电准备,可以唤醒BMS,开始充电了。
通过上述步骤,本发明克服了现有技术中在利用有线信号源(专用于BMS通信/供电控制的信号线缆传输的信号)唤醒BMS时,由于信号线缆损坏而无法正常唤醒BMS的问题,以及在充电设备上设置专用于向BMS供电的低压电源,导致充电设备成本增大的问题。
进一步,在实际应用中车辆补能方式除了直接对车辆进行充电,还包括对车辆进行换电的补能方式(将车辆上电池容量较低的动力电池从车辆拆下,将其他电池容量较高的动力电池更换到当前车辆上)。但是由于不同车辆对不同容量额定值的动力电池的使用权限不同,如果将容量额定值高于当前车辆具有使用权限的容量额定值的动力电池,更换到当前车辆上,就需要根据当前车辆具有使用权限的容量额定值来调整动力电池的充电策略。一个例子:若当前车辆具有使用权限的容量额定值是70kWh,而更换到当前车辆的动力电池的容量额定值是84kWh,由于当前车辆不具有84kWh的使用权限,则需要调整当前车辆的动力电池的充电策略,使动力电池的最大充电电量等于70kWh。具体而言,在一个实施方式中可以按照以下步骤调整动力电池的充电策略:
步骤31:基于预设的识别信息与动力电池的容量额定值的一一对应关系并且根据当前车辆的车辆识别信息,匹配出车辆识别信息对应的动力电池的容量额定值。
车辆识别信息指的是,能够表明车辆身份的唯一标识信息。车辆识别信息包括但不限于:车牌号、车辆VIN码和车辆用户的身份证号码。
预设的识别信息与动力电池的容量额定值的一一对应关系,可以是由车辆供应商提供的,车辆供应商为每个车辆设置相应的容量额定值使用权限,然后根据这个使用权限对每个车辆的车辆识别信息与相应的容量额定值构建对应关系。要说明的是,本发明虽然仅提供了一种获取上述对应关系的具体实施方式,但是本领域技术人员能够理解的是,本发明的保护范围并不限于这一具体实施方式。本领域技术人员可以采用其他能够获取车辆的容量额定值使用权限的方法来为每个车辆设置相应的容量额定值,进而根据容量额定值设置车辆识别信息与容量额定值的对应关系。这些特征更改或替换后的方案都将落入本发明的保护范围。
步骤32:获取当前车辆上已安装的动力电池的容量额定值,判断匹配出的容量额定值是否小于已安装的动力电池的容量额定值;若是,则根据匹配出的容量额定值设置充电电量,随后控制BMS根据充电电量对已安装的动力电池进行充电。
一个例子:若当前车辆上已安装的动力电池的容量额定值是84kWh,上述步骤31匹配出的容量额定值是70kWh,则将当前车辆上已安装的动力电池的最大充电电量设置为70kWh。
需要指出的是,尽管上述实施例中将各个步骤按照特定的先后顺序进行了描述,但是本领域技术人员可以理解,为了实现本发明的效果,不同的步骤之间并非必须按照这样的顺序执行,其可以同时(并行)执行或以其他顺序执行,这些变化都在本发明的保护范围之内。
进一步,本发明还提供了一种车辆BMS的充电唤醒装置。
参阅附图2,图2是根据本发明的一个实施例的车辆BMS的充电唤醒装置的主要结构示意图。如图2所示,本发明实施例中车辆BMS的充电唤醒装置主要包括指令获取模块11、指令生成模块12和唤醒控制模块13。在一些实施例中,指令获取模块11、指令生成模块12和唤醒控制模块13中的一个或多个可以合并在一起成为一个模块。在一些实施例中,指令获取模块11可以被配置成接收充电控制指令;充电控制指令是根据当前车辆的充电意图生成的无线通信信号。指令生成模块12可以被配置成根据充电控制指令生成BMS唤醒指令。唤醒控制模块13可以被配置成根据 BMS唤醒指令控制预设的低压电源向车辆BMS输出唤醒信号,以唤醒车辆BMS;唤醒信号是无线通信信号。一个实施方式中,车辆的充电意图包括根据车辆的行车数据预测出的充电意图,和/或根据车辆的充电请求分析出的充电意图。一个实施方式中,具体实现功能的描述可以参见步骤S101-步骤S103所述。
在一个实施方式中,充电唤醒装置可以包括充电意图预测模块,充电意图预测模块包括第一充电意图预测子模块和/或第二充电意图预测子模块。
第一充电意图预测子模块可以包括导航数据获取单元和第一充电意图预测单元。导航数据获取单元可以被配置成获取行车数据中的车辆导航数据。第一充电意图预测单元可以被配置成判断车辆导航数据中的导航目的地是否为车辆充电场所或位于车辆充电场所附近;若是,则确定车辆存在充电意图。
第二电意图预测子模块可以包括行车行为数据获取单元、行车习惯获取单元、关联行车路线获取单元、第二充电意图预测单元。行车行为数据获取单元可以被配置成获取行车数据中的行车行为数据;行车行为数据可以包括车辆从启动到停止过程中的行车路线与时间;行车习惯获取单元可以被配置成基于预设的行车行为与行车习惯之间的一一对应关系,获取行车行为数据对应的行车习惯;行车习惯包括预先关联的两个行车路线,以及每个行车路线各自对应的时间;关联行车路线获取单元可以被配置成根据行车习惯获取与行车行为数据中的行车路线预先关联的关联行车路线以及该关联行车路线所需的动力电池的电量预测值;第二充电意图预测单元可以被配置成获取车辆停止后动力电池的剩余电量,判断剩余电量是否小于电量预测值;若是,则确定车辆存在充电意图。一个实施方式中,具体实现功能的描述可以参见步骤S101所述。
在一个实施方式中,唤醒控制模块13可以包括信息判断子模块、充电温度预测子模块、预热时长预测子模块、指令生成子模块。
信息判断子模块可以被配置成判断充电控制指令是否包含有车辆开启充电的预测时间;若是,则启动充电温度预测子模块。充电温度预测子模块可以被配置成获取车辆内动力电池的荷电状态和环境温度,根据荷电状态预测动力电池的最佳充电温度。预热时长预测子模块可以被配置成判断环境温度是否小于最佳充电温度,若是,则根据环境温度与最佳充电温度,预测将动力电池加热至最佳充电温度所需的预热时长。指令生成子模块可以被配置成根据预热时长与预测时间计算唤醒BMS的唤醒时间,获取充电控制指令的接收时间,判断接收时间与唤醒时间之间的时长是否小于预热时长;若是,则立即生成BMS唤醒控制指令,以唤醒BMS以及控制唤醒后的BMS对动力电池进行加热;若否,则在时间达到唤醒时间后生成BMS 唤醒控制指令,以唤醒BMS以及控制唤醒后的BMS对动力电池进行加热。一个实施方式中,具体实现功能的描述可以参见步骤S102所述。
在一个实施方式中,充电温度预测子模块可以被配置成基于预设的神经网络预测模型并根据动力电池的荷电状态预测动力电池的最佳充电温度;其中,预设的神经网络预测模型是基于预设的数据样本并利用机器学习算法构建的,预设的数据样本包括动力电池在不同温度以及不同荷电状态下的最大充电电流。一个实施方式中,具体实现功能的描述可以参见步骤S102所述。
在一个实施方式中,唤醒控制模块13可以被配置成根据车辆状态信息判断车辆是否完成充电准备;若是,则根据BMS唤醒指令控制预设的低压电源向车辆内的BMS输出唤醒信号,以唤醒BMS。一个实施方式中,具体实现功能的描述可以参见步骤S103所述。
在一个实施方式中,图2所示的车辆BMS的充电唤醒装置包括BMS充电控制模块。在该实施方式中,BMS充电控制模块包括电池容获取子模块和电池充电控制子模块。电池容量获取子模块可以被配置成基于预设的识别信息与动力电池的容量额定值的一一对应关系并且根据当前车辆的车辆识别信息,匹配出车辆识别信息对应的动力电池的容量额定值。电池充电控制子模块可以被配置成获取当前车辆上已安装的动力电池的容量额定值,判断电池容量获取子模块匹配出的容量额定值是否小于已安装的动力电池的容量额定值;若是,则根据匹配出的容量额定值设置充电电量,随后控制BMS根据所述充电电量对已安装的动力电池进行充电。
上述车辆BMS的充电唤醒装置以用于执行图1所示的车辆BMS的充电唤醒方法实施例,两者的技术原理、所解决的技术问题及产生的技术效果相似,本技术领域技术人员可以清楚地了解到,为了描述的方便和简洁,车辆BMS的充电唤醒装置的具体工作过程及有关说明,可以参考车辆BMS的充电唤醒方法的实施例所描述的内容,此处不再赘述。
进一步,本发明还提供了一种存储装置。在根据本发明的一个存储装置实施例中,存储装置可以被配置成存储执行上述方法实施例的车辆BMS的充电唤醒方法的程序,该程序可以由处理器加载并运行以实现上述车辆BMS的充电唤醒方法。为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。该存储装置可以是包括各种电子设备形成的存储装置设备,可选的,本发明实施例中存储是非暂时性的计算机可读存储介质。
进一步,本发明还提供了一种控制装置。在根据本发明的一个控制装置实施例中,控制装置包括处理器和存储装置,存储装置可以被配置成存储执行上 述方法实施例的车辆BMS的充电唤醒方法的程序,处理器可以被配置成用于执行存储装置中的程序,该程序包括但不限于执行上述方法实施例的车辆BMS的充电唤醒方法的程序。为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。该控制装置可以是包括各种电子设备形成的控制装置设备,可选的,本发明实施例中控制装置是单片机等微处理器。
进一步,本发明还提供了一种车辆BMS的充电唤醒装置。在根据本发明的一个车辆BMS的充电唤醒装置实施例中,车辆BMS的充电唤醒装置包括无线通信模块、低压电源模块以及上述控制装置实施例所述的控制装置。在本实施例中,无线通信模块被配置成接收车辆BMS的充电控制指令并且将充电控制指令发送至控制装置,以及将控制装输出的唤醒信号发送至车辆BMS。控制装置可以被配置成根据充电控制指令生成BMS唤醒指令,以及根据BMS唤醒指令控制低压电源模块向车辆内的BMS输出唤醒信号,以唤醒BMS。其中,低压电源模块能够输出的低压信号的电压值取决于BMS的电压输入值。一个例子:若BMS的电压输入值是12V,则低压电源模块输出的低压信号可以是12V电压信号。
在一个实施方式中,车辆BMS的充电唤醒装置可以包括通信复用模块。通信复用模块与充电设备或车辆中的通信模块连接并且通信复用模块可以被配置成通过充电设备或车辆中的通信模块接收车辆BMS的充电控制指令并且将车辆BMS的充电控制指令发送至控制装置,以及通过充电设备或车辆中的通信模块将控制装输出的唤醒信号发送至车辆BMS。基于该通信复用模块可以保证在前述无线通信模块发生故障的情况下,充电唤醒装置还能够接收到充电控制指令,以及车辆BMS也能够正常接收到唤醒信息,从而使BMS被正常唤醒。
在一个实施方式中,车辆BMS的充电唤醒装置可以包括电源复用模块。电源复用模块与车辆的车载低压电源连接并且电源复用模块可以被配置成根据控制装置输出的BMS唤醒控制指令控制车载低压电源向车辆内的BMS输出唤醒信号,以唤醒BMS。基于该通信复用模块可以保证在前述低压电源模块发生故障或没有电量的情况下,充电唤醒装置还能够向BMS输出唤醒信号,使BMS被正常唤醒。
进一步,本发明还提供了一种车辆充电系统。在根据本发明的一个车辆充电系统实施例中,车辆充电系统可以包括充电设备以及前述车辆BMS的充电唤醒装置实施例所述的车辆BMS的充电唤醒装置,该充电唤醒装置设置在充电设备或车辆上。一个实施方式中,充电唤醒装置可以被配置成通过无线通信模块接收车辆BMS的充电控制指令以及向车辆BMS输出唤醒信号。通过无线通信技术获取车辆BMS的充电控制指令,进而根据该充电控制指令执行后续的BMS唤醒操作,克服了 现有技术中在利用有线信号源唤醒BMS时,由于信号线缆损坏而无法正常唤醒BMS的问题。
在一个实施方式中,车辆充电系统可以包括后台服务器。该后台服务器可以被配置成根据车辆的行车数据或充电请求分析车辆是否存在充电意图,若存在充电意图则向车辆BMS的充电唤醒装置发送车辆BMS的充电控制指令。在本实施方式中后台服务器是能够实时进行大数据量处理的服务器,后台服务器能够存储大量充电设备以及车辆的信息,即使接收到大量的充电设备/车辆的信息,也能够快速以及准确地预测/分析出车辆是否存在充电意图。要说明的是,本实施方式中根据车辆的行车数据或充电请求分析车辆是否存在充电意图的具体实现方法与前述车辆BMS的充电唤醒方法实施例中所述的方法类似,为了描述简洁,在此不再赘述。
在一个实施方式中,车辆可以包括车载控制器,该车载控制器可以被配置成根据车辆的行车数据分析车辆是否存在充电意图,若存在充电意图则向车辆BMS的充电唤醒装置发送车辆BMS的充电控制指令。由于车载控制器能够实时且准确地采集到车辆的行车数据,因而通过上述配置,车载控制器能够快速分析出在当前时刻车辆是否存在充电意图,若存在充电意图就能够快速执行后续的BMS唤醒操作。要说明的是,本实施方式中根据车辆的行车数据分析车辆是否存在充电意图的具体实现方法与前述车辆BMS的充电唤醒方法实施例中所述的方法类似,为了描述简洁,在此不再赘述。
在一个实施方式中,充电唤醒装置与车辆的动力电池分别相互独立地设置在车辆本体上。进一步,一个实施方式中,充电唤醒装置可以设置在车辆的动力电池内。基于这种设置方式,如果车辆采用换电方式补能,那么就可以在动力电池从车上被拆下后即刻对充电唤醒装置进行检修以及维护,提高了充电唤醒装置检修/维护的灵活性与便捷性。
本领域技术人员能够理解的是,本发明实现上述一实施例的方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器、随机存取存储器、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例 如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
进一步,应该理解的是,由于各个模块的设定仅仅是为了说明本发明的系统的功能单元,这些模块对应的物理器件可以是处理器本身,或者处理器中软件的一部分,硬件的一部分,或者软件和硬件结合的一部分。因此,图中的各个模块的数量仅仅是示意性的。
本领域技术人员能够理解的是,可以对系统中的各个模块进行适应性地拆分或合并。对具体模块的这种拆分或合并并不会导致技术方案偏离本发明的原理,因此,拆分或合并之后的技术方案都将落入本发明的保护范围内。
至此,已经结合附图所示的一个实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (23)

  1. 一种车辆BMS的充电唤醒方法,其特征在于,所述方法包括:
    接收充电控制指令;
    根据所述充电控制指令生成BMS唤醒指令;
    根据所述BMS唤醒指令控制预设的低压电源向车辆BMS输出唤醒信号,以唤醒所述车辆BMS;
    其中,所述充电控制指令是根据当前车辆的充电意图生成的无线通信信号,所述唤醒信号是无线通信信号。
  2. 根据权利要求1所述的车辆BMS的充电唤醒方法,其特征在于,所述车辆的充电意图包括根据车辆的行车数据预测出的充电意图,和/或根据车辆的充电请求分析出的充电意图。
  3. 根据权利要求2所述的车辆BMS的充电唤醒方法,其特征在于,根据车辆的行车数据预测所述车辆的充电意图,具体包括:
    获取所述行车数据中的车辆导航数据;
    判断所述车辆导航数据中的导航目的地是否为车辆充电场所或位于所述车辆充电场所附近;若是,则确定所述车辆存在充电意图;
    并且/或者,
    根据车辆的行车数据预测所述车辆的充电意图,具体包括:
    获取所述行车数据中的行车行为数据;所述行车行为数据包括车辆从启动到停止过程中的行车路线与时间;
    基于预设的行车行为与行车习惯之间的一一对应关系,获取所述行车行为数据对应的行车习惯;所述行车习惯包括预先关联的两个行车路线以及每个行车路线各自对应的时间;
    根据所述行车习惯获取与所述行车行为数据中的行车路线预先关联的关联行车路线以及该关联行车路线所需的动力电池的电量预测值;
    获取车辆停止后动力电池的剩余电量,判断所述剩余电量是否小于所述电量预测值;若是,则确定所述车辆存在充电意图。
  4. 根据权利要求1所述的车辆BMS的充电唤醒方法,其特征在于,“根据所述 充电控制指令生成BMS唤醒指令”的步骤具体包括:
    判断所述充电控制指令是否包含车辆开启充电的预测时间;
    当所述充电控制指令包含车辆开启充电的预测时间时,获取车辆内动力电池的荷电状态和环境温度,根据所述荷电状态预测所述动力电池的最佳充电温度;
    判断所述环境温度是否小于所述最佳充电温度,若是,则根据所述环境温度与最佳充电温度,预测将所述动力电池加热至所述最佳充电温度所需的预热时长;
    根据所述预热时长与预测时间计算唤醒BMS的唤醒时间;
    获取所述充电控制指令的接收时间,判断所述接收时间与唤醒时间之间的时长是否小于预热时长;若是,则立即生成BMS唤醒控制指令,以唤醒所述BMS以及控制唤醒后的BMS对所述动力电池进行加热;若否,则在时间达到所述唤醒时间后生成BMS唤醒控制指令,以唤醒所述BMS以及控制唤醒后的BMS对所述动力电池进行加热。
  5. 根据权利要求4所述的车辆BMS的充电唤醒方法,其特征在于,“根据所述荷电状态预测所述动力电池的最佳充电温度”的步骤具体包括:
    基于预设的神经网络预测模型并根据动力电池的荷电状态预测所述动力电池的最佳充电温度;
    其中,所述预设的神经网络预测模型是基于预设的数据样本并利用机器学习算法构建的,所述预设的数据样本包括动力电池在不同温度以及不同荷电状态下的最大充电电流。
  6. 根据权利要求1所述的车辆BMS的充电唤醒方法,其特征在于,“根据所述BMS唤醒指令控制预设的低压电源向所述车辆内的BMS输出唤醒信号,以唤醒所述BMS”的步骤具体包括:
    根据车辆状态信息判断车辆是否完成充电准备;若是,则根据所述BMS唤醒指令控制预设的低压电源向所述车辆内的BMS输出唤醒信号,以唤醒所述BMS。
  7. 根据权利要求1至6中任一项所述的车辆BMS的充电唤醒方法,其特征在于,在BMS被唤醒之后,所述方法还包括:
    基于预设的识别信息与动力电池的容量额定值的一一对应关系并且根据当前车辆的车辆识别信息,匹配出所述车辆识别信息对应的动力电池的容量额定值;
    获取当前车辆上已安装的动力电池的容量额定值,判断所述匹配出的容量额定 值是否小于所述已安装的动力电池的容量额定值;若是,则根据所述匹配出的容量额定值设置最大充电电量,随后控制所述BMS根据所述最大充电电量对所述已安装的动力电池进行充电。
  8. 一种车辆BMS的充电唤醒装置,其特征在于,所述装置包括:
    指令获取模块,其被配置成接收充电控制指令;
    指令生成模块,其被配置成根据所述充电控制指令生成BMS唤醒指令;
    唤醒控制模块,其被配置成根据所述BMS唤醒指令控制预设的低压电源向所述车辆BMS输出唤醒信号,以唤醒所述车辆BMS;
    其中,所述充电控制指令是根据当前车辆的充电意图生成的无线通信信号,所述唤醒信号是无线通信信号。
  9. 根据权利要求8所述的车辆BMS的充电唤醒装置,其特征在于,所述车辆的充电意图包括根据车辆的行车数据预测出的充电意图,和/或根据车辆的充电请求分析出的充电意图。
  10. 根据权利要求9所述的车辆BMS的充电唤醒装置,其特征在于,所述充电唤醒装置包括充电意图预测模块,所述充电意图预测模块包括第一充电意图预测子模块和/或第二充电意图预测子模块;
    所述第一充电意图预测子模块包括导航数据获取单元和第一充电意图预测单元;所述导航数据获取单元被配置成获取所述行车数据中的车辆导航数据;所述第一充电意图预测单元被配置成判断所述车辆导航数据中的导航目的地是否为车辆充电场所或位于所述车辆充电场所附近;若是,则确定所述车辆存在充电意图;
    所述第二电意图预测子模块包括行车行为数据获取单元、行车习惯获取单元、关联行车路线获取单元、第二充电意图预测单元;所述行车行为数据获取单元被配置成获取所述行车数据中的行车行为数据;所述行车行为数据包括车辆从启动到停止过程中的行车路线与时间;所述行车习惯获取单元被配置成基于预设的行车行为与行车习惯之间的一一对应关系,获取所述行车行为数据对应的行车习惯;所述行车习惯包括预先关联的两个行车路线,以及每个行车路线各自对应的时间;所述关联行车路线获取单元被配置成根据所述行车习惯获取与所述行车行为数据中的行车路线预先关联的关联行车路线以及该关联行车路线所需的动力电池的电量预测值;所述第二充电意图预测单元被配置成获取车辆停止后动力电池的剩余电量,判断所 述剩余电量是否小于所述电量预测值;若是,则确定所述车辆存在充电意图。
  11. 根据权利要求8所述的车辆BMS的充电唤醒装置,其特征在于,所述唤醒控制模块包括信息判断子模块、充电温度预测子模块、预热时长预测子模块、指令生成子模块;
    所述信息判断子模块被配置成判断所述充电控制指令是否包含有车辆开启充电的预测时间;若是,则启动所述充电温度预测子模块;
    所述充电温度预测子模块被配置成获取车辆内动力电池的荷电状态和环境温度,根据所述荷电状态预测所述动力电池的最佳充电温度;
    所述预热时长预测子模块被配置成判断所述环境温度是否小于所述最佳充电温度,若是,则根据所述环境温度与最佳充电温度,预测将所述动力电池加热至所述最佳充电温度所需的预热时长;
    所述指令生成子模块被配置成根据所述预热时长与预测时间计算唤醒BMS的唤醒时间;获取所述充电控制指令的接收时间,判断所述接收时间与唤醒时间之间的时长是否小于预热时长;若是,则立即生成BMS唤醒控制指令,以唤醒所述BMS以及控制唤醒后的BMS对所述动力电池进行加热;若否,则在时间达到所述唤醒时间后生成BMS唤醒控制指令,以唤醒所述BMS以及控制唤醒后的BMS对所述动力电池进行加热。
  12. 根据权利要求11所述的车辆BMS的充电唤醒装置,其特征在于,还包括:
    所述充电温度预测子模块被配置成基于预设的神经网络预测模型并根据动力电池的荷电状态预测所述动力电池的最佳充电温度;
    其中,所述预设的神经网络预测模型是基于预设的数据样本并利用机器学习算法构建的,所述预设的数据样本包括动力电池在不同温度以及不同荷电状态下的最大充电电流。
  13. 根据权利要求8所述的车辆BMS的充电唤醒装置,其特征在于,还包括:
    所述唤醒控制模块被配置成根据车辆状态信息判断车辆是否完成充电准备;若是,则根据所述BMS唤醒指令控制预设的低压电源向所述车辆内的BMS输出唤醒信号,以唤醒所述BMS。
  14. 根据权利要求8至13中任一项所述的车辆BMS的充电唤醒装置,其特征在于, 所述装置还包括BMS充电控制模块,所述BMS充电控制模块包括电池容获取子模块和电池充电控制子模块;
    所述电池容量获取子模块被配置成基于预设的识别信息与动力电池的容量额定值的一一对应关系并且根据当前车辆的车辆识别信息,匹配出所述车辆识别信息对应的动力电池的容量额定值;
    所述电池充电控制子模块被配置成获取所述当前车辆上已安装的动力电池的容量额定值,判断所述电池容量获取子模块匹配出的容量额定值是否小于所述已安装的动力电池的容量额定值;若是,则根据所述匹配出的容量额定值设置最大充电电量,随后控制所述BMS根据所述最大充电电量对所述已安装的动力电池进行充电。
  15. 一种存储装置,其中存储有多条程序代码,其特征在于,所述程序代码适于由处理器加载并运行以执行权利要求1至7中任一项所述的车辆BMS的充电唤醒方法。
  16. 一种控制装置,包括处理器和存储装置,所述存储装置适于存储多条程序代码,其特征在于,所述程序代码适于由所述处理器加载并运行以执行权利要求1至7中任一项所述的车辆BMS的充电唤醒方法。
  17. 一种车辆BMS的充电唤醒装置,其特征在于,所述装置包括无线通信模块、低压电源模块以及权利要求16所述的控制装置;
    所述无线通信模块被配置成接收车辆BMS的充电控制指令并且将所述充电控制指令发送至所述控制装置,以及将所述控制装输出的唤醒信号发送至所述车辆BMS;
    所述控制装置被配置成根据所述充电控制指令生成BMS唤醒指令,以及根据所述BMS唤醒指令控制所述低压电源模块向所述车辆内的BMS输出唤醒信号,以唤醒所述BMS。
  18. 根据权利要求17所述的车辆BMS的充电唤醒装置,其特征在于,所述充电唤醒装置还包括通信复用模块,所述通信复用模块与充电设备或车辆中的通信模块连接;
    所述通信复用模块被配置成通过所述充电设备或车辆中的通信模块接收车辆BMS的充电控制指令并且将所述车辆BMS的充电控制指令发送至所述控制装置,以及通过所述充电设备或车辆中的通信模块将所述控制装输出的唤醒信号发送至所述 车辆BMS。
  19. 根据权利要求17所述的车辆BMS的充电唤醒装置,其特征在于,所述充电唤醒装置还包括电源复用模块,所述电源复用模块与车辆的车载低压电源连接;
    所述电源复用模块被配置成根据所述控制装置输出的BMS唤醒控制指令控制所述车载低压电源向所述车辆内的BMS输出唤醒信号,以唤醒所述BMS。
  20. 一种车辆充电系统,其特征在于,所述系统包括充电设备以及权利要求17至19中任一项所述的车辆BMS的充电唤醒装置,所述充电唤醒装置设置在所述充电设备或车辆上。
  21. 根据权利要求20所述的车辆充电系统,其特征在于,所述系统还包括后台服务器,所述后台服务器被配置成根据车辆的行车数据或充电请求分析所述车辆是否存在充电意图,若存在充电意图则向所述车辆BMS的充电唤醒装置发送车辆BMS的充电控制指令。
  22. 根据权利要求20所述的车辆充电系统,其特征在于,还包括:
    所述车辆包括车载控制器,所述车载控制器被配置成根据车辆的行车数据分析所述车辆是否存在充电意图,若存在充电意图则向所述车辆BMS的充电唤醒装置发送车辆BMS的充电控制指令。
  23. 根据权利要求20至22中任一项所述的车辆充电系统,其特征在于,所述充电唤醒装置与车辆的动力电池分别相互独立地设置在车辆本体上,或者所述充电唤醒装置设置在车辆的动力电池内。
PCT/CN2020/135573 2020-06-17 2020-12-11 车辆bms的充电唤醒方法、装置及车辆充电系统 WO2021253755A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010553432.0 2020-06-17
CN202010553432.0A CN111645567A (zh) 2020-06-17 2020-06-17 车辆bms的充电唤醒方法、装置及车辆充电系统

Publications (1)

Publication Number Publication Date
WO2021253755A1 true WO2021253755A1 (zh) 2021-12-23

Family

ID=72349999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135573 WO2021253755A1 (zh) 2020-06-17 2020-12-11 车辆bms的充电唤醒方法、装置及车辆充电系统

Country Status (2)

Country Link
CN (1) CN111645567A (zh)
WO (1) WO2021253755A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114615295A (zh) * 2022-02-25 2022-06-10 岳阳耀宁新能源科技有限公司 一种用于基站储能系统的数据传输系统及方法
CN114801880A (zh) * 2022-05-25 2022-07-29 中国第一汽车股份有限公司 动力电池补电的控制方法及装置、车辆和处理器
WO2024066371A1 (zh) * 2022-09-26 2024-04-04 中国第一汽车股份有限公司 一种换电型新能源汽车动力电池数据存储方法、装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111645567A (zh) * 2020-06-17 2020-09-11 上海蔚来汽车有限公司 车辆bms的充电唤醒方法、装置及车辆充电系统
CN116160897A (zh) * 2021-11-24 2023-05-26 比亚迪股份有限公司 充电控制方法及装置、车辆、计算机可读存储介质
CN114400746B (zh) * 2022-01-22 2023-01-17 安徽统凌科技新能源有限公司 一种电动自行车bms的充电唤醒控制方法
CN114604131A (zh) * 2022-03-02 2022-06-10 阿尔特汽车技术股份有限公司 车辆的电池充电的方法、装置、电子设备及可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106921200A (zh) * 2017-05-04 2017-07-04 北京新能源汽车股份有限公司 一种电动汽车无线充电电路、电动汽车及充电系统
CN108177541A (zh) * 2017-12-28 2018-06-19 上汽通用五菱汽车股份有限公司 地面无线充电控制方法、装置、存储介质及设备
CN109159680A (zh) * 2018-08-31 2019-01-08 北京新能源汽车股份有限公司 一种车端充电控制装置、车辆及无线充电系统
WO2019087822A1 (ja) * 2017-11-02 2019-05-09 株式会社オートネットワーク技術研究所 充電通信制御装置、車載機、充電通信制御システム及び充電通信制御方法
CN110014898A (zh) * 2017-12-25 2019-07-16 中惠创智无线供电技术有限公司 一种无线充电的方法、车载电池管理系统以及电动车辆
CN111025160A (zh) * 2019-12-25 2020-04-17 保定长安客车制造有限公司 基于无线通信的电池管理系统及方法
CN111645567A (zh) * 2020-06-17 2020-09-11 上海蔚来汽车有限公司 车辆bms的充电唤醒方法、装置及车辆充电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106921200A (zh) * 2017-05-04 2017-07-04 北京新能源汽车股份有限公司 一种电动汽车无线充电电路、电动汽车及充电系统
WO2019087822A1 (ja) * 2017-11-02 2019-05-09 株式会社オートネットワーク技術研究所 充電通信制御装置、車載機、充電通信制御システム及び充電通信制御方法
CN110014898A (zh) * 2017-12-25 2019-07-16 中惠创智无线供电技术有限公司 一种无线充电的方法、车载电池管理系统以及电动车辆
CN108177541A (zh) * 2017-12-28 2018-06-19 上汽通用五菱汽车股份有限公司 地面无线充电控制方法、装置、存储介质及设备
CN109159680A (zh) * 2018-08-31 2019-01-08 北京新能源汽车股份有限公司 一种车端充电控制装置、车辆及无线充电系统
CN111025160A (zh) * 2019-12-25 2020-04-17 保定长安客车制造有限公司 基于无线通信的电池管理系统及方法
CN111645567A (zh) * 2020-06-17 2020-09-11 上海蔚来汽车有限公司 车辆bms的充电唤醒方法、装置及车辆充电系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114615295A (zh) * 2022-02-25 2022-06-10 岳阳耀宁新能源科技有限公司 一种用于基站储能系统的数据传输系统及方法
CN114801880A (zh) * 2022-05-25 2022-07-29 中国第一汽车股份有限公司 动力电池补电的控制方法及装置、车辆和处理器
WO2024066371A1 (zh) * 2022-09-26 2024-04-04 中国第一汽车股份有限公司 一种换电型新能源汽车动力电池数据存储方法、装置

Also Published As

Publication number Publication date
CN111645567A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2021253755A1 (zh) 车辆bms的充电唤醒方法、装置及车辆充电系统
KR101439265B1 (ko) 전기자동차 충전 시스템 및 그 충전 방법
US9487102B2 (en) Charging method of green car
KR102621905B1 (ko) 전기차 예약 충전 시스템 및 방법
US20110047102A1 (en) Vehicle battery charging system and method
US20130134940A1 (en) Power control apparatus
CN105680541B (zh) 一种低温充电策略的充电方法
JP6402255B2 (ja) 充放電装置及び輸送機器
KR102128363B1 (ko) 에너지 거래 관리 시스템 및 그 방법
KR101214448B1 (ko) 충전기 간 통신 네트워크를 포함하여 구성되는 충전 설비와 그 충전 제어 방법
CN102317103A (zh) 电池充电管理系统和方法
CN108183518B (zh) 电池组均衡控制方法和装置、以及均衡控制设备
US20190214693A1 (en) On-board battery temperature regulating apparatus, the on-board battery temperature regulating method, and non-transitory tangible recording medium storing therein on-board battery temperature regulating program
CN105324884A (zh) 用于控制充电电力的方法、用于控制充电电力的系统和程序
JP2021158838A (ja) 制御装置、管理サーバ、制御方法、およびプログラム
KR20190068358A (ko) 전기자동차 충방전 시스템과 그 방법
CN104024035A (zh) 适用于电池优化充电的方法和设备
US20150165918A1 (en) Charging system control apparatus, program, and control method
JP7142291B2 (ja) 充電方法、及び、充電システム
JP2020018104A (ja) 充電制御装置、充電管理システム、方法及びプログラム
KR102502120B1 (ko) 최소 요구 충전량을 이용한 충전 장치
JPH08111909A (ja) 充電システム
KR20140058864A (ko) 전기 자동차를 위한 충전 방법, 충전 서버 및 충전 시스템
CN112918326A (zh) 一种电池管理系统、方法、车辆及介质
KR101348916B1 (ko) 충전 장치 및 충전 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20941037

Country of ref document: EP

Kind code of ref document: A1