WO2021253499A1 - 电容型微机电系统麦克风、麦克风单体及电子设备 - Google Patents

电容型微机电系统麦克风、麦克风单体及电子设备 Download PDF

Info

Publication number
WO2021253499A1
WO2021253499A1 PCT/CN2020/099425 CN2020099425W WO2021253499A1 WO 2021253499 A1 WO2021253499 A1 WO 2021253499A1 CN 2020099425 W CN2020099425 W CN 2020099425W WO 2021253499 A1 WO2021253499 A1 WO 2021253499A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
back plate
capacitive
microphone
support
Prior art date
Application number
PCT/CN2020/099425
Other languages
English (en)
French (fr)
Inventor
邹泉波
党茂强
王德信
Original Assignee
歌尔微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔微电子有限公司 filed Critical 歌尔微电子有限公司
Priority to US18/010,907 priority Critical patent/US20230353951A1/en
Publication of WO2021253499A1 publication Critical patent/WO2021253499A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/122Non-planar diaphragms or cones comprising a plurality of sections or layers
    • H04R7/125Non-planar diaphragms or cones comprising a plurality of sections or layers comprising a plurality of superposed layers in contact
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/26Damping by means acting directly on free portion of diaphragm or cone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • This specification relates to the technical field of condenser MEMS microphones, and more specifically, to a condenser MEMS microphone, a microphone unit and electronic equipment.
  • Micro-Electro-Mechanical System (MEMS) microphone is a microphone chip manufactured using micro-electro-mechanical technology. It has a small volume and can be widely used in various electronic devices, such as mobile phones, tablet computers, monitoring devices, wearable devices, etc.
  • Capacitive MEMS microphones use a double-ended capacitor structure.
  • Figure 1 shows the structure of a capacitor-type capacitive MEMS microphone.
  • the capacitive MEMS microphone includes a back plate 11, a diaphragm 12, and a spacer 13 between the back plate 11 and the diaphragm 12.
  • the spacer 13 is used to separate the back plate 11 and the diaphragm 12.
  • the spacer 13 may be a separate spacer layer or a part of the chip substrate.
  • the back plate 11, the diaphragm 12 and the spacer 13 enclose the back cavity 15 of the condenser MEMS microphone.
  • a hole 14 communicating with the back cavity 15 may be formed in the back plate 11.
  • a vent hole (not shown) may also be formed in the diaphragm 12.
  • the diaphragm 12 is bent toward the back plate 11 in a state where a working bias is applied.
  • the diaphragm 12 has a smaller static deflection, that is, the static effect of the diaphragm 12 relative to the flat position
  • the ratio of the displacement (static effective deflection) to the thickness of the diaphragm 12 is W 0 /t ⁇ 0.5, where W 0 is the effective displacement of the diaphragm 12 in a static state under the working bias, and t is the thickness of the diaphragm 12.
  • the diaphragm 12 of FIG. 2 is set to have a greater rigidity, so that the diaphragm 12 has a smaller static deflection. The sensitivity of this diaphragm is low.
  • the embodiments of this specification provide a new technical solution for a condenser MEMS microphone.
  • a capacitive microelectromechanical system microphone including: a back plate; a diaphragm; and a spacer for separating the back plate and the diaphragm.
  • the working bias When the working bias is applied, at least a part of the diaphragm is biased in advance in a direction away from the back plate relative to the flat position.
  • a microphone unit including a unit housing, the capacitive MEMS microphone and the integrated circuit chip disclosed herein, wherein the capacitive MEMS microphone and the integrated circuit chip are Set in the single housing.
  • an electronic device including the microphone monomer disclosed herein.
  • the overall nonlinearity of the microphone can be reduced.
  • any one of the embodiments of the present specification does not need to achieve all the above-mentioned effects.
  • Fig. 1 shows a schematic diagram of a microelectromechanical microphone in the prior art.
  • Fig. 2 shows a schematic diagram of a microelectromechanical microphone in the prior art, in which the diaphragm has a relatively small static deflection when a working bias is applied.
  • Fig. 3 shows a graph of the relationship between the effective displacement of the diaphragm in a static state and the working bias voltage.
  • Fig. 4 shows a schematic diagram of the acoustic overload point of the diaphragm.
  • Fig. 5 shows a schematic diagram of a capacitive microelectromechanical system microphone according to an embodiment disclosed herein.
  • Fig. 6 shows a schematic diagram of a capacitive MEMS microphone according to another embodiment disclosed herein.
  • Fig. 7 shows a schematic diagram of a capacitive MEMS microphone according to another embodiment disclosed herein.
  • Fig. 8 shows a schematic diagram of a capacitive microelectromechanical system microphone according to another embodiment disclosed herein.
  • Fig. 9 shows a schematic diagram of a capacitive microelectromechanical system microphone according to another embodiment disclosed herein.
  • Fig. 10 shows a schematic diagram of a capacitive microelectromechanical system microphone according to another embodiment disclosed herein.
  • FIG. 11 shows a schematic diagram of a capacitive MEMS microphone according to another embodiment disclosed herein.
  • Fig. 12 shows a schematic diagram of a microphone monomer according to an embodiment disclosed herein.
  • FIG. 13 shows a schematic diagram of an electronic device according to an embodiment disclosed herein.
  • the capacitive MEMS microphone includes: a back plate 21, a diaphragm 22 and a spacer 23.
  • the spacer 23 is used to space the back plate 21 and the diaphragm 22 apart.
  • the spacer 23 may be a separate spacer layer or a part of the chip substrate.
  • FIG. 5 shows the case where the operating bias voltage is not applied to the diaphragm 22.
  • the entire diaphragm 22 is biased in advance.
  • the diaphragm may be divided into multiple parts, and some of them may be biased in advance.
  • pre-deflection refers to the state of deflection before the diaphragm works under sound pressure.
  • the strength of the diaphragm can be increased, thereby improving THD (Total Harmonic Distortion) and/or AOP (Acoustic Overload Point).
  • the diaphragm since the diaphragm is pre-biased, when the working voltage is applied, the diaphragm can be prevented from being pressed to the back plate to a certain extent.
  • the pre-deflection stress on the diaphragm will also affect the stress distribution of the diaphragm itself.
  • a MEMS microphone with a smaller gap can be manufactured. This makes the manufacturing process easy and the device collapse voltage VP is low.
  • this approach can reduce the bias power supply requirements for the MEMS microphone. For example, a standard CMOS voltage below 15V can meet its bias power supply requirements without using a high-voltage BCD (Bipolar-CMOS-DMOS) process. This can reduce the chip area of the MEMS microphone and reduce the cost.
  • Figures 6 and 7 show two states of the diaphragm 22 when a working bias is applied.
  • the diaphragm 22 leaves the original position 221, but it is still located outside the flat position of the diaphragm shown by the dashed line (away from the back plate 21).
  • the diaphragm 22 leaves the original position 221 and is located within the flat position of the diaphragm shown by the dashed line (close to the back plate 21).
  • the ratio of the second static effective displacement of the diaphragm 22 relative to the flat position to the thickness of the diaphragm can be greater than or equal to 0.5, preferably , Greater than or equal to 1.
  • "static” refers to a state where no sound pressure is applied.
  • the mechanical nonlinearity of the diaphragm can be made to a degree similar to that of the capacitance detection but in the opposite direction, thereby greatly reducing the overall nonlinearity of the MEMS microphone, so as to further improve the THD and AOP performance.
  • This type of capacitive MEMS microphone can also be called a double-ended capacitive MEMS microphone.
  • the diaphragm 22 of the capacitive MEMS microphone in FIGS. 6 and 7 has a relatively large deflection.
  • the signal output can be expressed as:
  • VB is the working deviation between the back plate 21 and the diaphragm 22 Pressure.
  • the static air gap G 0 is the effective static air gap between the diaphragm and the back plate when the working bias VB is applied.
  • VB can represent the bias voltage that enables the diaphragm to be in a desired working state.
  • the nonlinearity generated by the capacitance detection can be expressed as:
  • Equation 2 shows one of the main sources of nonlinearity in double-ended capacitive MEMS microphones.
  • the positive signal output is greater than the negative signal output, and the degree of non-linearity of the microphone is directly related to x.
  • P and W are the total pressure and displacement received by the diaphragm, and a and b are positive constants.
  • the static effective displacement (effective displacement under the working bias) of the diaphragm in the static state (that is, the state where the working bias voltage VB is applied but the sound pressure p is not applied) is W 0 . Since the working bias voltage VB is applied between the diaphragm and the back plate of the condenser microphone, W 0 >0.
  • the displacement of the diaphragm is w + in the positive half period of sound pressure p (positive sound pressure), and the diaphragm is in the negative half period of sound pressure p (negative sound pressure).
  • the amount of displacement is w -, w + slightly smaller than w -.
  • Equation 4 can also be expressed as:
  • p is the sound pressure (with positive and negative half-periods)
  • P 0 > 0 is the static pressure generated by the electrostatic force
  • w is the additional diaphragm displacement generated by the sound pressure (which can be a positive or negative value).
  • Fig. 3 shows the relationship between the static effective displacement W 0 and the working bias voltage VB.
  • the abscissa is VB/VP, where VP represents the microphone's collapse voltage; the ordinate is W 0 /G 0 .
  • VB/VP the static deflection of the diaphragm 22
  • the ratio W 0 /t of the static effective displacement W 0 of the diaphragm 22 relative to the flat position and the thickness t of the diaphragm can be adjusted.
  • the overall nonlinearity of a capacitive MEMS microphone can be expressed as:
  • the nonlinearity of the capacitive MEMS microphone is considered comprehensively, it can be found that A>1 and B ⁇ 1 in formula 6. Therefore, the nonlinearity caused by the asymmetry of the positive and negative cycles of the signal output can be reduced by adjusting A or B, thereby improving THD (Total Harmonic Distortion) and AOP (Acoustic Overload Point).
  • a and B in formula 6 can be at least partially cancelled, thereby improving the degree of non-linearity of the output signal or the sound pressure level under a certain degree of non-linearity. For example, the sound pressure level of 1% THD or the AOP corresponding to 10% THD can be greatly improved.
  • Figure 4 shows the relationship between pre-offset and AOP.
  • the abscissa represents the ratio W 0 /t of the static deflection of the diaphragm to the thickness of the diaphragm
  • the ordinate represents the static pressure P 0 .
  • the solid line represents the properties of the softer diaphragm S
  • the broken line represents the properties of the harder diaphragm H.
  • the harder diaphragm H may reduce sensitivity.
  • the static deflection of the diaphragm S is set larger, for example, when the static deflection of the diaphragm S is set at a point corresponding to (W 0 , P 0 ), the AOP2 of the diaphragm S is significantly increased relative to AOP1. In this way, performance such as AOP can be increased while retaining the advantages of a softer diaphragm (for example, sensitivity).
  • the mechanical (geometric) nonlinearity of the diaphragm can be artificially introduced, that is, the asymmetry of the mechanical response in the positive and negative half cycles of the sound pressure.
  • w + is less than w -.
  • the mechanical nonlinearity of the diaphragm can be used to compensate for the nonlinearity caused by capacitance detection, thereby improving the THD and the capacitance of the capacitive MEMS microphone.
  • At least a part of the diaphragm can be pre-tensioned by a stress structure.
  • Figures 8-12 show an embodiment of pre-deflection.
  • the stress structure is realized by a stress ring 25 arranged at the periphery of the diaphragm.
  • the stress ring 25 may include a tensile stress ring and/or a compressive stress ring.
  • a layer of tensile stress silicon nitride film ring is provided on the inner periphery of the diaphragm 22 made of free polysilicon (the periphery of the back plate 21), and/or on the outer periphery (close to the back plate 21)
  • One side perimeter is provided with a laminated stress film ring.
  • the stress structure is realized by a corrugated membrane 26 arranged at the periphery of the diaphragm.
  • a corrugated membrane 26 arranged at the periphery of the diaphragm.
  • the stress structure is realized by a composite membrane structure 27 provided on the diaphragm.
  • the composite membrane structure 27 shown in FIG. 10 includes an inner membrane and an outer membrane.
  • the inner membrane has a compressive stress and the outer membrane has a tensile stress, so that the diaphragm is pre-tensioned.
  • Figures 11 and 12 show an embodiment in which the polarizing film is pre-drawn through the support structure.
  • the support 28 is located between the diaphragm and the back plate.
  • One end of the support 28 is fixed to the back plate 21, and the other end of the support 28 is fixed to the diaphragm 22 and divides the diaphragm 22 into at least two parts.
  • the supporting member 28 may be deformed and thus tilted.
  • the deformation of the support 28 causes a part of at least two parts of the diaphragm to be deflected outward relative to the back electrode plate 21 and the other part is deflected inward relative to the back electrode plate 21, as shown in FIG. 11. In this way, the diaphragm can be deflected in two different directions, and the two different directions can balance the performance of the diaphragm.
  • the support 28 may be a columnar body.
  • the support 29 is located between the diaphragm 22 and the back plate 21.
  • One end of the support 29 is fixed to the back plate, and the other end of the support 29 supports the tilting element 30.
  • the first side of the lifting element 30 is in contact with the diaphragm 22, and the second side of the lifting element 30 has an electrostatic circuit 31.
  • the electrostatic circuit 31 is attracted by the back plate 21, so that the first side of the tilting element 30 pushes the diaphragm to protrude outward, as shown in FIG. 12. In this way, the degree to which the diaphragm is pre-drawn can be controlled by controlling the amount of electricity in the electrostatic circuit 31.
  • Fig. 13 shows a schematic diagram of a microphone monomer according to an embodiment disclosed herein.
  • the microphone unit 40 includes a unit housing 41, the above-described capacitive MEMS microphone 42 and an integrated circuit chip 43.
  • the capacitive MEMS microphone 42 and the integrated circuit chip 43 are arranged in the single housing 42.
  • the capacitive MEMS microphone 42 corresponds to the air inlet of the single housing 41.
  • the capacitance-type MEMS microphone 42, the integrated circuit chip 43 and the circuit in the unit housing 41 are connected by a lead 44.
  • Fig. 14 shows a schematic diagram of an electronic device according to an embodiment disclosed herein.
  • the electronic device 50 may include the microphone unit 51 shown in FIG. 8.
  • the electronic device 50 may be a mobile phone, a tablet computer, a wearable device, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Pressure Sensors (AREA)

Abstract

本说明书实施例提供电容型微机电系统麦克风、麦克风单体及电子设备。该电容型微机电系统麦克风包括:背极板;振膜;以及间隔件,用于使得所述背极板和振膜间隔开,其中,在未施加工作偏压的状态下,相对于平整位置,沿背离所述背极板的方向,所述振膜的至少一部分被预先拉偏。

Description

电容型微机电系统麦克风、麦克风单体及电子设备 技术领域
本说明书涉及电容型微机电系统麦克风技术领域,更具体地,涉及一种电容型微机电系统麦克风、麦克风单体及电子设备。
背景技术
微机电系统(MEMS)麦克风是采用微机电技术制造的麦克风芯片。它具有较小的体积,并可以广泛应用于各种电子设备,例如,手机、平板电脑、监控设备、可穿戴设备等。
电容型微机电系统麦克风使用双端电容的结构。图1示出了一种电容型电容型微机电系统麦克风的结构。如图1所示,电容型微机电系统麦克风包括背极板11、振膜12以及位于背极板11和振膜12之间的间隔件13。间隔件13用于将背极板11和振膜12隔开。间隔件13可以单独的间隔层也可以是芯片衬底的一部分。
在图1中,背极板11、振膜12和间隔件13围成电容型微机电系统麦克风的后腔15。在背极板11中可以形成连通到后腔15的孔14。在振膜12中还可以形成泄气孔(未示出)。
如图2所示,振膜12在施加工作偏压的状态下向背极板11弯曲。为了保证振膜12的机械线性性能,在施加工作偏压的情况下,当振膜12处于静止状态时,振膜12具有较小的静态挠度,即,振膜12相对于平整位置的静态有效位移(静态有效挠度)与振膜12的厚度的比值W 0/t<0.5,其中,W 0是在工作偏压下振膜12在静止状态下的有效位移,t是振膜12的厚度。
图2的振膜12被设置成具有较大的硬度,以使得振膜12具有较小的静态挠度。这种振膜的灵敏度较低。
因此,需要提供一种新的电容型微机电系统麦克风。
发明内容
本说明书的实施例提供用于电容型微机电系统麦克风的新技术方案。
根据本说明书的第一方面,提供了一种电容型微机电系统麦克风,包括:背极板;振膜;以及间隔件,用于使得所述背极板和振膜间隔开,其中,在未施加工作偏压的状态下,相对于平整位置,沿背离所述背极板的方向,所述振膜的至少一部分被预先拉偏。
根据本说明书的第二方面,提供了一种麦克风单体,包括单体外壳、这里公开的电容型微机电系统麦克风以及集成电路芯片,其中,所述电容型微机电系统麦克风以及集成电路芯片被设置在所述单体外壳中。
根据本说明书的第三方面,提供了一种电子设备,包括这里公开的麦克风单体。
在不同实施例中,通过使用较大静态挠度的振膜,可以降低麦克风的整体非线性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本说明书实施例。
此外,本说明书实施例中的任一实施例并不需要达到上述的全部效果。
通过以下参照附图对本说明书的示例性实施例的详细描述,本说明书的实施例的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1示出了现有技术的微机电麦克风的示意图。
图2示出了现有技术的微机电麦克风的示意图,其中,振膜在施加工作偏压的状态下具有较小的静态挠度。
图3示出了振膜在静止状态下的有效位移与工作偏压的关系的曲线图。
图4示出了关于振膜的声学过载点的示意图。
图5示出了根据这里公开的一个实施例的电容型微机电系统麦克风的示意图。
图6示出了根据这里公开的另一个实施例的电容型微机电系统麦克风的示意图。
图7示出了根据这里公开的又一个实施例的电容型微机电系统麦克风的示意图。
图8示出了根据这里公开的又一个实施例的电容型微机电系统麦克风的示意图。
图9示出了根据这里公开的又一个实施例的电容型微机电系统麦克风的示意图。
图10示出了根据这里公开的又一个实施例的电容型微机电系统麦克风的示意图。
图11示出了根据这里公开的又一个实施例的电容型微机电系统麦克风的示意图。
图12示出了根据这里公开的一个实施例的麦克风单体的示意图。
图13示出了根据这里公开的一个实施例的电子设备的示意图。
具体实施方式
现在将参照附图来详细描述各种示例性实施例。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
下面,参照附图描述本说明书的不同实施例和例子。
在这里,提出了一种电容型微机电系统麦克风。如图5所示,电容型微机电系统麦克风包括:背极板21、振膜22以及间隔件23。间隔件23用 于使得背极板21和振膜22间隔开。间隔件23可以是单独的间隔层,也可以是芯片衬底的一部分。
图5示出了未对振膜22施加工作偏压的情况。在未施加工作偏压的状态下,相对于图5中虚线所示的平整位置,沿背离所述背极板的方向(即,使得振膜22和背极板21之间的间距增大的方向),振膜22的至少一部分被预先拉偏。在图5中,振膜22整体被预先拉偏。但是,在其他实施例中,可以将振膜分成多个部分,并且可以将其中的一部分预先拉偏。在这里,预先拉偏指的是在振膜在声压下进行工作之前的拉偏状态。
振膜22的至少一部分被预先拉偏的第一静态有效位移W 00与振膜的厚度t的比值大于等于0.2且小于等于3,即,0.2<=W 00/t>=3。
例如,在图5中的MEMS麦克风中,虚线所示的平整位置与背极板21之间的空气间隙G 00=1-5um,振膜22的厚度t=0.1-1.5um。
通过这种预先拉偏的设置,可以增大了振膜强度,从而改善THD(总谐波失真)和/或AOP(声学过载点)。
此外,由于对振膜进行预先拉偏,因此,当施加工作电压时,可以在一定程度上避免振膜被压到背极板。另外,对振膜进行预先拉偏的应力也会对振膜本身的应力分布产生影响。通过预先拉偏的方式,可以制造较小间隙的MEMS麦克风。这使得制作工艺容易、器件下塌电压VP较低。此外,这种方式可以降低对MEMS麦克风的偏压供电要求。例如,15V以下的标准CMOS电压可以满足它的偏压供电要求,而无需使用高压BCD(Bipolar-CMOS-DMOS)工艺。这可以减小MEMS麦克风的芯片面积,并降低成本。
图6、7示出了在施加工作偏压的情况下振膜22的两种状态。如图6所示,在施加工作偏压的情况下,振膜22离开原始的位置221,但是,仍然位于虚线所示的振膜平整位置之外(远离背极板21)。在图7中,在施加工作偏压的情况下,振膜22离开原始的位置221,并且位于虚线所示的振膜平整位置之内(靠近背极板21)。
在图6、7所示的实施例中,在施加工作偏压的状态下,可以将振膜22相对于平整位置的第二静态有效位移与振膜的厚度的比值大于或等于0.5,优选地,大于或等于1。这里,“静态”指的是未施加声压的状态。
通过这种方式,可以使得振膜的机械非线性达到与电容检测的非线性幅度近似但方向相反的程度,从而大大降低MEMS麦克风的整体非线性,以进一步改善THD和AOP性能。
下面,结合图3、4解释图6、7所示的包含背极板21和振膜22的电容型MEMS麦克风的工作原理及性能。这种电容型MEMS麦克风又可以称为双端电容型微机电系统麦克风。图6、7的电容型MEMS麦克风的振膜22具有较大的挠度。
在电容型微机电系统麦克风中,电荷总量是常量(固定的),即,在音频频率下,电量Q=CV为常数,其中,C、V分别为振膜和背极板之间的电容、电压。所以,信号输出可以表示为:
vo=-x/(1-x)·VB               (公式1)
其中x=w/G 0,它是振膜22的位移w与背极板21和振膜22之间静态空气间隙G 0的比值,VB为背极板21和振膜22之间的工作偏压。静态空气间隙G 0是在施加工作偏压VB下振膜和背极板之间的有效静态空气间隙。VB可以表示使得振膜能够处于期望工作状态的偏置电压。
在通过背极板和振膜之间电容检测来获取输出信号时,电容检测所产生的非线性可以表示为:
|vo +/vo -|=[(1-x -)/(1-x +)]·(x +/x -)         (公式2)
其中,公式2中的vo和x的含义如上所述,以及上标+、-分别对应振膜所接受的声压的正、负半周期。当声压为正时,x朝向空气间隙G减小的方向变化。公式2表明了双端电容型MEMS麦克风的非线性的主要来源之一。
传统的麦克风利用振膜的机械线性性能,即,尽量使得振膜的位移w正比于声压p,即,x -=-x +,x +=x>0,其中,对于x,朝向空气间隙G减小的方向为正。此时,麦克风的非线性可以表示为:
|vo +/vo -|=(1+x)/(1-x)          (公式3)
在公式3中,正信号输出大于负信号输出,并且麦克风的非线性程度和x直接相关。
此外,振膜本身的机械非线性可以表示为:
P=aW+bW 3                (公式4)
其中,P、W为振膜所接受的总压力、总位移量,a、b正的常数。
振膜在静态状态(即,在施加工作偏压VB但是未施加声压p的状态)下的静态有效位移(工作偏压下的有效位移)是W 0。由于在电容型麦克风的振膜和背极板之间施加工作偏压VB,因此,W 0>0。当有声压p施加到振膜上时,在声压p的正半周期(正声压)时振膜的位移量是w +,在声压p的负半周期(负声压)时振膜的位移量是w -,w +略小于w -
公式4还可以表示为:
p+P 0=a(W 0+w)+b(W 0+w)3             (公式5)
其中,p为声压(具有正、负半周期)),P 0>0为由静电力产生的静态压力,w为声压所产生的额外振膜位移(可以是正或负的值)。
图3示出了静态有效位移W 0和工作偏压VB的关系。在图3中,横坐标是VB/VP,其中,VP表示麦克风的下塌电压;纵坐标是W 0/G 0。为保证麦克风器件的可靠性,通常设置VB/VP<75%,对应的W 0/G 0约为16%。通过设置VB可以调整振膜22的静态挠度,或者调整振膜22相对于平整位置的静态有效位移W 0与振膜的厚度t的比值W 0/t。
在传统的电容型MEMS麦克风中,为了追求机械线性,需要选择在静态(未施加声压)时具有较小静态挠度的振膜,或者振膜22相对于平整位置的静态有效位移W 0与振膜的厚度t的比值W 0/t<=0.5。这种麦克风的非线性主要来自电容检测。
在这里,我们提出通过增大振膜的静态挠度来抵消电容检测的非线性。
具体来说,综合考虑上面的公式1-5,电容型MEMS麦克风的总体非线性可以表示为:
|vo +/vo -|=A·B                  (公式6)
其中,A=(1-x-)/(1-x+)~(1+x)/(1-x)>1,
B=(x +/x -)=[a+3b(W 0+w -)2]/[a+3b(W 0+w +) 2]
~[a+3b(W 0-w)]/[a+3b(W 0+w)]<1,其中w+=w~-w->0。
如果综合考虑电容型MEMS麦克风的非线性,可以发现公式6中的A>1,而B<1。因此,可以通过调整A或B来降低信号输出的正负周期的不对称所造成的非线性,从而改善THD(总谐波失真)和AOP(声学过载点)。
在这个发明中,通过利用工作偏压VB和/或预先拉偏,调整“预偏移量”(振膜静态挠度),使得W 0/t>=0.5,优选地,W 0/t>=1。通过这种预偏移方式,可以使得公式6中的A和B至少部分抵消,从而改善输出信号的非线性程度或特定非线性程度下的声压级。例如,1%THD的声压级或10%THD对应的AOP都可大幅提高。
图4示出了预偏移量与AOP的关系。在图4中,横坐标表示振膜的静态挠度与振膜厚度的比值W 0/t,纵坐标表示静态压力P 0。在图4中,实线表示较软的振膜S的性质,虚线表示较硬的振膜H的性质。如图4所示,在振膜S的初始静态挠度较小的情况下,振膜S的AOP1较小。如果采用较硬的振膜H,在较小的静态挠度下,振膜H的AOP3较小。但是,较硬的振膜H可能会降低灵敏度。当将振膜S的静态挠度设置得较大时,例如,当将振膜S的静态挠度设置在与(W 0,P 0)对应的点时,振膜S的AOP2相对于AOP1显著增加。通过这种方式,可以在保留较软振膜的优点(例如,灵敏度)的情况下增加AOP等性能。
在这里,可以通过预先拉偏,使得振膜预先处于具有较大挠度的状态。如图6所示,当施加工作电压时,振膜22向背极板21移动,但是,仍然位于虚线所示的平整位置之外。此外,如图7所示,也可以通过施加工作偏压,使得振膜22位于虚线所示的平整位置之内。在施加工作电压的情况下,图6和图7所示的振膜都具有加大的挠度。这样,可以可以人为地引进振膜机械(几何)非线性,即,声压正、负半周期内机械响应的不对称性。当施加正声压(压向背极板)时振膜的变形是w +,当施加负声压(背离背极板)时振膜的变形是w -,w +小于w -。这可以弥补由于电容检测引进来的非线性,即,输出信号可以表示为v out~-x/(1-x)VB,其中x=w/G 0,w为声压造成的振膜位移,G 0为在施加工作偏压且未施加声压的情况下的静 态等效的空气间隙,VB为工作偏压。在正声压下,x>0,输出信号大于x*VB;而在负声压下,输出信号小于x*VB。考虑在特定声压级下w+/w-~(1-x)/(1+x),可以利用振膜的机械非线性来弥补电容检测造成的非线性,从而改善电容型MEMS麦克风的THD和AOP。
可以通过应力结构,对所述振膜的至少一部分进行预先拉偏。图8-12示出了进行预先拉偏的实施例。
在图8所示的实施例中,通过设置在所述振膜周边的应力环25来实现所述应力结构。应力环25可以包括张应力环和/或压应力环。例如,在由自由多晶硅制成的振膜22的内侧周边(靠近背极板21的一侧周边)设置一层张应力氮化硅薄膜环,和/或在外侧周边(靠近背极板21的一侧周边)设置一层压应力薄膜环。
在图9所示的实施例中,通过设置在所述振膜周边的纹膜26来实现所述应力结构。通过设置纹膜的不同方向,可以向振膜22提供不同的应力。例如,可以通过朝向内侧(朝向背极板21)的纹提供张应力,以及通过朝向外侧的纹提供压应力。
在图10所示的实施例中,通过设置在所述振膜上的复合膜结构27来实现所述应力结构。例如,在图10所示的复合膜结构27包括内侧膜和外侧膜,内侧膜具有压应力,外侧膜具有张应力,从而使得振膜被预先拉偏。
图11、12示出了通过支撑结构来预先拉偏振膜的实施例。
在图11的实施例中,支撑件28位于振膜和背极板之间的支撑件。支撑件28的一端被固定到背极板21,支撑件28的另一端被固定到振膜22并将振膜22分成至少两部分。在加工时,由于应力作用,支撑件28可以发生形变,从而发生倾斜。支撑件28的形变使得振膜的至少两部分中的一部分相对于背极板21向外拉偏并使得另一部分相对于背极板21向内拉偏,如图11所示。通过这种方式,可以使得振膜产生两种不同方向的拉偏,并且,两种不同方向的拉偏可以平衡振膜的性能。
此外,为了减小寄生电容,支撑件28可以是柱状体。
在图12的例子中,支撑件29位于振膜22和背极板21之间。支撑件29的一端被固定到背极板,支撑件29的另一端支撑翘起元件30。翘起元 件30的第一侧与振膜22接触,翘起元件30的第二侧具有静电电路31。当施加工作偏压时,静电电路31被背极板21吸引,以使得翘起元件30的第一侧推动所述振膜向外侧凸起,如图12所示。在这种方式中,可以通过控制静电电路31中的电量来控制振膜被预先拉偏的程度。
图13示出了根据这里公开的一个实施例的麦克风单体的示意图。
如图13所示,麦克风单体40包括单体外壳41、上面描述的电容型MEMS麦克风42以及集成电路芯片43。电容型MEMS麦克风42以及集成电路芯片43被设置在所述单体外壳42中。电容型MEMS麦克风42与单体外壳41的进气口对应。电容型MEMS麦克风42、集成电路芯片43和单体外壳41中的电路通过引线44连接。
图14示出了根据这里公开的一个实施例的电子设备的示意图。
如图14所示,电子设备50可以包括图8所示的麦克风单体51。电子设备50可以是手机、平板电脑、可穿戴设备等。
以上所述仅是本说明书实施例的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本说明书实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本说明书实施例的保护范围。

Claims (10)

  1. 一种电容型微机电系统麦克风,包括:
    背极板;
    振膜;以及
    间隔件,用于使得所述背极板和振膜间隔开,
    其中,在未施加工作偏压的状态下,相对于平整位置,沿背离所述背极板的方向,所述振膜的至少一部分被预先拉偏。
  2. 根据权利要求1所述的电容型微机电系统麦克风,其中,所述振膜的至少一部分被预先拉偏的第一静态有效位移与振膜的厚度的比值大于等于0.2且小于等于3。
  3. 根据权利要求1或2所述的电容型微机电系统麦克风,其中,在施加工作偏压的状态下,所述振膜相对于平整位置的第二静态有效位移与振膜的厚度的比值大于或等于0.5。
  4. 根据权利要求3所述的电容型电容型微机电系统麦克风,其中,第二静态有效位移与振膜的厚度的比值大于或等于1。
  5. 根据权利要求1所述的电容型微机电系统麦克风,其中,通过应力结构,对所述振膜的至少一部分进行预先拉偏。
  6. 根据权利要求5所述的电容型微机电系统麦克风,其中,所述应力结构包括如下结构中的至少一个:
    设置在所述振膜周边的应力环;
    设置在所述振膜周边的纹膜;以及
    设置在所述振膜上的复合膜结构。
  7. 根据权利要求5所述的电容型微机电系统麦克风,其中,所述应力结构包括位于振膜和背极板之间的支撑件,该支撑件的一端被固定到背极板,该支撑件的另一端被固定到振膜并将振膜分成至少两部分,所述支撑件的形变使得所述至少两部分中的一部分相对于背极板向外拉偏并使得所述至少两部分中的另一部分相对于背极板向内拉偏。
  8. 根据权利要求5所述的电容型微机电系统麦克风,其中,所述应力结构包括位于振膜和背极板之间的支撑件,该支撑件的一端被固定到背极板,该支撑件的另一端支撑翘起元件,该翘起元件的第一侧与振膜接触,该翘起元件的第二侧具有静电电路,以及当施加工作偏压时,所述静电电路被背极板吸引,以使得所述翘起元件的第一侧推动所述振膜向外侧凸起。
  9. 一种麦克风单体,包括单体外壳、根据权利要求1所述的电容型微机电系统麦克风以及集成电路芯片,其中,所述电容型微机电系统麦克风以及集成电路芯片被设置在所述单体外壳中。
  10. 一种电子设备,包括根据权利要求9所述的麦克风单体。
PCT/CN2020/099425 2020-06-16 2020-06-30 电容型微机电系统麦克风、麦克风单体及电子设备 WO2021253499A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/010,907 US20230353951A1 (en) 2020-06-16 2020-06-30 Capacitive mems microphone, microphone unit and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010548789.X 2020-06-16
CN202010548789.XA CN111885471B (zh) 2020-06-16 2020-06-16 电容型微机电系统麦克风、麦克风单体及电子设备

Publications (1)

Publication Number Publication Date
WO2021253499A1 true WO2021253499A1 (zh) 2021-12-23

Family

ID=73158365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099425 WO2021253499A1 (zh) 2020-06-16 2020-06-30 电容型微机电系统麦克风、麦克风单体及电子设备

Country Status (3)

Country Link
US (1) US20230353951A1 (zh)
CN (1) CN111885471B (zh)
WO (1) WO2021253499A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113613151B (zh) * 2021-07-30 2023-08-04 歌尔微电子股份有限公司 微机电系统麦克风、麦克风单体及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060280319A1 (en) * 2005-06-08 2006-12-14 General Mems Corporation Micromachined Capacitive Microphone
US20150014797A1 (en) * 2013-07-12 2015-01-15 Robert Bosch Gmbh Mems device having a microphone structure, and method for the production thereof
CN108367908A (zh) * 2015-12-18 2018-08-03 罗伯特·博世有限公司 中心固定的mems麦克风膜
US20180352339A1 (en) * 2017-05-31 2018-12-06 Cirrus Logic International Semiconductor Ltd. Mems devices and processes
CN110351641A (zh) * 2018-04-02 2019-10-18 鑫创科技股份有限公司 微机电系统麦克风

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101150186B1 (ko) * 2009-12-04 2012-05-25 주식회사 비에스이 멤스 마이크로폰 및 그 제조방법
US8629011B2 (en) * 2011-06-15 2014-01-14 Robert Bosch Gmbh Epitaxial silicon CMOS-MEMS microphones and method for manufacturing
DE102012200957A1 (de) * 2011-07-21 2013-01-24 Robert Bosch Gmbh Bauelement mit einer mikromechanischen Mikrofonstruktur
US9462389B2 (en) * 2013-08-06 2016-10-04 Goertek Inc. Anti-impact silicon based MEMS microphone, a system and a package with the same
CN107105377B (zh) * 2017-05-15 2021-01-22 潍坊歌尔微电子有限公司 一种mems麦克风
CN206932407U (zh) * 2017-06-30 2018-01-26 歌尔科技有限公司 Mems麦克风

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060280319A1 (en) * 2005-06-08 2006-12-14 General Mems Corporation Micromachined Capacitive Microphone
US20150014797A1 (en) * 2013-07-12 2015-01-15 Robert Bosch Gmbh Mems device having a microphone structure, and method for the production thereof
CN108367908A (zh) * 2015-12-18 2018-08-03 罗伯特·博世有限公司 中心固定的mems麦克风膜
US20180352339A1 (en) * 2017-05-31 2018-12-06 Cirrus Logic International Semiconductor Ltd. Mems devices and processes
CN110351641A (zh) * 2018-04-02 2019-10-18 鑫创科技股份有限公司 微机电系统麦克风

Also Published As

Publication number Publication date
US20230353951A1 (en) 2023-11-02
CN111885471B (zh) 2021-10-08
CN111885471A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
CN110745771B (zh) Mems器件和mems真空扩音器
US10477322B2 (en) MEMS device and process
US10393606B2 (en) Dynamic pressure sensor
US20200239302A1 (en) Double-membrane MEMS Component and Production Method for a Double-membrane MEMS Component
US10433070B2 (en) Sensitivity compensation for capacitive MEMS device
TWI667925B (zh) 壓電傳感器
JP2018137297A (ja) 圧電素子
US20120248554A1 (en) Micromechanical Sound Transducer Having a Membrane Support with Tapered Surface
US10312427B2 (en) Piezoelectric device
CN109511067A (zh) 电容式麦克风
WO2022142507A1 (zh) Mems麦克风及其振膜结构
WO2023005952A1 (zh) 微机电系统麦克风、麦克风单体及电子设备
TW201808783A (zh) Mems裝置與製程
WO2021253499A1 (zh) 电容型微机电系统麦克风、麦克风单体及电子设备
WO2021253498A1 (zh) 电容型微机电系统麦克风、麦克风单体及电子设备
CN115334389B (zh) 一种麦克风组件及电子设备
WO2021253501A1 (zh) 绝对压力感测微机电系统麦克风、麦克风单体及电子设备
US20210029469A1 (en) Mems transducer and method for operating the same
JP4605470B2 (ja) コンデンサマイクロホン
US10730747B2 (en) MEMS devices and processes
JP2008022501A (ja) コンデンサマイクロホン及びその製造方法
WO2023185736A1 (zh) 一种微机电系统麦克风及电子设备
CN114339557B (zh) 一种mems麦克风芯片及其制备方法、mems麦克风
US20230312335A1 (en) Mems transducer
WO2023185106A1 (zh) 一种微机电系统麦克风及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 29.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20940785

Country of ref document: EP

Kind code of ref document: A1