WO2021253446A1 - 血氧检测装置及智能穿戴设备 - Google Patents

血氧检测装置及智能穿戴设备 Download PDF

Info

Publication number
WO2021253446A1
WO2021253446A1 PCT/CN2020/097255 CN2020097255W WO2021253446A1 WO 2021253446 A1 WO2021253446 A1 WO 2021253446A1 CN 2020097255 W CN2020097255 W CN 2020097255W WO 2021253446 A1 WO2021253446 A1 WO 2021253446A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
emitting unit
blood oxygen
emitting units
Prior art date
Application number
PCT/CN2020/097255
Other languages
English (en)
French (fr)
Inventor
蒋鹏
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/097255 priority Critical patent/WO2021253446A1/zh
Publication of WO2021253446A1 publication Critical patent/WO2021253446A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • This application relates to the field of biometrics technology, in particular to a blood oxygen detection device and smart wearable equipment.
  • Blood oxygen refers to the oxygen content in the blood, which is an important physiological parameter of respiratory and circulation.
  • the existing blood oxygen detection device includes a light source and a photoelectric receiver.
  • the light source uses two light-emitting diodes arranged side by side to emit different wavelengths.
  • the two light-emitting diodes directly emit light beams to different positions of the skin.
  • the light signals that reach the photoelectric receiver are converted into electrical signals by reflection, absorption and scattering, and the electrical signals are processed to obtain blood oxygen.
  • the inventor found that the existing blood oxygen detection device has high requirements for the use environment. It not only needs to be in close contact with the user’s skin, but also requires that the user’s skin tissue is not too thick. If it is bad or the user's skin tissue is too thick, it will easily lead to inaccurate detection results.
  • the present application provides a blood oxygen detection device and smart wearable equipment, which can improve the accuracy of blood oxygen detection results.
  • an embodiment of the present application provides a blood oxygen detection device, including:
  • Light-emitting components, light-blocking parts and light-receiving parts are Light-emitting components, light-blocking parts and light-receiving parts
  • the light-emitting assembly includes a plurality of light-emitting units, and the plurality of light-emitting units together form a light-emitting array; the plurality of light-emitting units includes at least one first light-emitting unit and at least two second light-emitting units;
  • the at least one first light-emitting unit has a centrally symmetric structure or is symmetrically distributed with one of the first light-emitting units as the center, and the entire center of the at least one first light-emitting unit coincides with the center of the light-emitting array, and the at least two Two second light-emitting units are arranged symmetrically with respect to the center of the light-emitting array, and the first light-emitting units and the second light-emitting units are spaced apart, wherein the first light-emitting units are used to emit the first light-emitting unit with a first wavelength.
  • a light beam, the second light emitting unit is used to emit a second light beam having a second wavelength, the first wavelength and the second wavelength are different;
  • the light-emitting unit is a laser, or the light-emitting unit includes a light-emitting diode and a collimator arranged on the side of the light-emitting diode close to the user, so that the light beam emitted by the light-emitting unit is perpendicular or approximately perpendicular to the skin of the user. Directed towards the user;
  • the light blocking member is arranged between the light emitting assembly and the light receiving member to block the light beam emitted by the light emitting assembly from being directed toward the light receiving member;
  • the light receiving element is used to receive the first emergent light of the first light beam processed by the user, and receive the second emergent light of the second light beam processed by the user, and receive the The optical signal of the first outgoing light and the received optical signal of the second outgoing light are converted into electrical signals for performing blood oxygen detection.
  • the first light-emitting unit and the second light-emitting unit are arranged at intervals along at least one arrangement direction, and the arrangement direction and the light-emitting direction of the light-emitting unit are perpendicular to each other.
  • the first light-emitting unit and the second light-emitting unit are arranged at intervals along a first arrangement direction and a second arrangement direction orthogonal to each other, and the first arrangement direction and the second arrangement direction are spaced apart.
  • the arrangement direction is perpendicular to the light emitting direction of the light emitting unit.
  • the first light-emitting unit and the second light-emitting unit are arranged in a matrix.
  • the light receiving element is arranged on one side of the light emitting component
  • the light receiving member is arranged around the periphery of the light-emitting component.
  • it further includes a light concentrating element; the light concentrating element is arranged on the light incident side of the light receiving element, and is used to converge the first outgoing light and the second outgoing light on the At the light receiving part.
  • the light condensing element includes a lens, the lens faces the light receiving element, the light incident surface of the lens is a convex surface, and the light output surface is a flat surface.
  • the light condensing element includes a micro lens array, and a surface of the micro lens array facing away from the light receiving element is a flat surface.
  • the microlens array and the light receiving element are an integral structure.
  • the light blocking member is arranged on the circumferential outer side of the light-emitting assembly.
  • the distance between the light-emitting component and the light-receiving element is greater than 4 mm and less than 20 mm.
  • this application provides a smart wearable device, including the blood oxygen detection device described in the first aspect of this application and any possible implementation manner.
  • the blood oxygen detection device includes a light-emitting component and a light-receiving element.
  • the light-emitting component includes a plurality of light-emitting units.
  • the multiple light-emitting units include at least one first One light-emitting unit and at least two second light-emitting units, at least one of the first light-emitting units has a centrally symmetric structure or is symmetrically distributed with one of the first light-emitting units as the center, and the entire center of the at least one first light-emitting unit is the center of the light-emitting array Coincident, and the first light-emitting unit and the second light-emitting unit are arranged at intervals,
  • the overall light beam emitted by the unit and the overall light beam emitted by all the second light-emitting units are directed to the user's skin at approximately the same position, and the first and second emitted light are obtained after the tissue processing at the approximately same position of the human body.
  • the optical signal of the first outgoing light and the optical signal of the second outgoing light of the tissue processing at the same position are converted to obtain the electrical signal for blood oxygen detection, which is compared with the prior art based on tissue processing at different positions of the human body.
  • the two optical signals are converted into electrical signals for blood oxygen detection, which can further improve the accuracy of blood oxygen detection results.
  • the present application can reduce the requirements of the blood oxygen detection device on the use environment. Even when the blood oxygen detection device is not in good contact with the user's skin or the user's skin tissue is too thick, accurate blood oxygen detection results can still be obtained.
  • FIG. 1 is a first structural diagram of a blood oxygen detection device provided by an embodiment of this application.
  • FIG. 2 is a second schematic diagram of the structure of the blood oxygen detection device provided by the embodiment of the application.
  • FIG. 3 is a first structural diagram of a light-emitting component provided by an embodiment of the application.
  • FIG. 4 is a second structural diagram of a light-emitting component provided by an embodiment of the application.
  • FIG. 5 is a third structural diagram of a light-emitting component provided by an embodiment of the application.
  • Figure 6 is a top view of a blood oxygen detection device provided by an embodiment of the application.
  • FIG. 7 is the third structural diagram of the blood oxygen detection device provided by the embodiment of this application.
  • FIG. 8 is a first structural diagram of a light concentrating element provided by an embodiment of the application.
  • FIG. 9 is a second structural diagram of a light concentrator provided by an embodiment of the application.
  • FIG. 10 is a fourth structural diagram of the blood oxygen detection device provided by an embodiment of the application.
  • first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be These terms are restricted. These terms are only used to distinguish one element, component, region, layer and/or section from other elements, components, regions, layers and/or sections. Thus, the first element, component, region, layer and/or section discussed below may be denoted as a second element, component, region, layer and/or section without departing from the teachings of the example embodiments.
  • Blood oxygen refers to the oxygen content in the blood, which is an important physiological parameter of respiratory and circulation.
  • the existing blood oxygen detection device includes a light source and a photoelectric receiver.
  • the light source uses two light-emitting diodes arranged side by side to emit different wavelengths.
  • the two light-emitting diodes directly emit light beams to different positions of the skin. After being reflected, absorbed and scattered, it is received by the photoelectric receiver.
  • Existing blood oxygen detection devices have high requirements for the use environment, requiring the blood oxygen detection device to be in close contact with the wearer, and the skin tissue cannot be too thick to obtain accurate measurement results. The detection result may be inaccurate when the user is exercising. For example, when the user is exercising, the blood oxygen detection device is often worn too loosely, which causes the detection result to be inaccurate and affects the user experience.
  • FIG. 1 is a first structural diagram of a blood oxygen detection device provided by an embodiment of this application. As shown in FIG.
  • the light-emitting assembly 101 includes a plurality of light-emitting units, which together form a light-emitting array; the plurality of light-emitting units includes at least one first light-emitting unit 1011 and at least two second light-emitting units 1012, and at least one first light-emitting unit 1011 is centrally symmetrical
  • the structure may be symmetrically distributed with one of the first light-emitting units 1011 as the center, and the overall center of at least one first light-emitting unit 1011 coincides with the center of the light-emitting array, and at least two second light-emitting units 1012 are arranged symmetrically with respect to the center of the light-emitting array, And the first light-emitting unit 1011 and the second light-emitting unit 1012 are arranged at intervals, wherein the first light-emitting unit 1011 is used to emit a first light beam having a first wavelength, and the second light-emitting unit 1012 is used to emit a second
  • the first wavelength and the second wavelength are different.
  • the light-emitting unit is a laser, or the light-emitting unit includes a light-emitting diode and a collimator arranged on the side of the light-emitting diode close to the user, so that the light beam emitted by the light-emitting unit is directed toward the user in a direction perpendicular or approximately perpendicular to the user's skin.
  • the light blocking member 103 is disposed between the light emitting assembly 101 and the light receiving member 102 to block the light beam emitted by the light emitting assembly 101 from being directed to the light receiving member 102.
  • the light receiving element 102 is used to receive the first outgoing light after the first light beam passes through the user, and to receive the second outgoing light after the second light beam passes through the user, and to receive the received optical signal of the first outgoing light and the received second outgoing light.
  • the irradiated optical signal is converted into an electrical signal for blood oxygen detection.
  • the number of the first light-emitting unit 1011 is n
  • the number of the second light-emitting unit 1012 is m
  • n is a positive integer greater than or equal to 1
  • m is a positive integer greater than 1.
  • the n first light-emitting units 1011 and m second light-emitting units 1012 jointly form a light-emitting array.
  • the number of the first light-emitting unit 1011 is one
  • one first light-emitting unit 1011 itself has a center-symmetric structure, and the center of one first light-emitting unit coincides with the center of the light-emitting array.
  • the multiple first light-emitting units 1011 are symmetrically distributed with one of the first light-emitting units as the center, and the entire center of the multiple first light-emitting units 1011 coincides with the center of the light-emitting array.
  • the m second light-emitting units 1012 are symmetrically arranged with respect to the center of the light-emitting array.
  • the first light-emitting unit 1011 and the second light-emitting unit 1012 are arranged at intervals, that is, n first light-emitting units 1011 and m second light-emitting units 1012 are arranged at intervals, specifically referring to the preset arrangement direction, the first light-emitting unit 1011 and The second light emitting units 1012 are arranged adjacent to each other in sequence.
  • a first light-emitting unit, a second light-emitting unit, a first light-emitting unit, and a second light-emitting unit are arranged alternately, and so on.
  • the first light beam emitted by the first light-emitting unit and the second light beam emitted by the second light-emitting unit can be evenly distributed in space, so that all the first light-emitting units can emit
  • the overall light beam and the overall light beams emitted by all the second light-emitting units are directed to the user's skin at approximately the same position, and the first emergent light and the second emergent light are obtained after tissue processing at the approximately same position of the human body.
  • the first light-emitting unit 1011 includes a first light-emitting diode 201 and a first collimator 202 arranged on the side of the first light-emitting diode close to the user.
  • One first collimator 202 is correspondingly provided for each first light emitting diode 201 close to the user side.
  • the second light emitting unit 1012 includes a second light emitting diode 203 and a second collimating element 204 arranged on the side of the second light emitting diode close to the user, and each second light emitting diode 203 is provided with a second collimating element 204 on the side close to the user.
  • the divergence angle of the first light beam emitted by the first light-emitting diode 201 is reduced by the first collimator 202, so that the first light beam is directed at the user in a direction perpendicular or approximately perpendicular to the skin surface of the user, and passes through the second collimator 204
  • the divergence angle of the second light beam emitted by the second light-emitting diode 203 is reduced, so that the second light beam is directed toward the user in a direction perpendicular or approximately perpendicular to the skin surface of the user.
  • the first collimator 202 and the second collimator 204 may both be collimating lenses.
  • the first light-emitting unit 1011 is a first laser that emits a first light beam
  • the second light-emitting unit 1012 is a second laser that emits a second light beam.
  • the light beam emitted by the laser can be directed at the user in a direction perpendicular or approximately perpendicular to the surface of the user's skin.
  • the first light-emitting unit 1011 includes a first light-emitting diode 201 and a first collimator 202 disposed on the side of the first light-emitting diode 201 close to the user, and the second light-emitting unit 1012 is a second laser.
  • the first light-emitting unit 1011 is a first laser
  • the second light-emitting unit 1012 includes a second light-emitting diode 203 and a second collimator 204 arranged on the side of the second light-emitting diode 203 close to the user.
  • the light signal received by the light receiving element 102 is related to the volume change of the blood flow of the skin, and contains a DC component and an AC component, where the AC component mainly reflects the absorption of arterial blood.
  • the ratio of the AC component to the DC component is the perfusion index. The larger the perfusion index, the more accurate the blood oxygen test result.
  • the first light beam and the second light beam are directed at the user in a direction perpendicular or approximately perpendicular to the skin surface of the user, the light travels deeper in the human tissue, and the light penetrates the area containing arteries and blood vessels more easily, and the light receiving element 102 More AC components are received, which increases the perfusion index.
  • is equal to 0, the perfusion index is the largest, that is, when the first light beam and the second light beam are directed at the user in a direction perpendicular to the skin surface of the user, the perfusion index is the largest.
  • the light-emitting assembly 101 is connected with a control circuit, and the control circuit controls the n first light-emitting units 1011 and m second light-emitting units 1012 so that the n first light-emitting units 1011 and m second light-emitting units 1012 light up in time.
  • the control circuit controls n first light-emitting units 1011 to turn on and m second light-emitting units 1012 to turn off; in the second time period, the control circuit controls m second light-emitting units 1012 Turn on, and control the n first light-emitting units 1011 to turn off.
  • the first time period and the second time period may be the same or different, which is not specifically limited in the embodiment of the present application.
  • the first time period and the second time period are both 10 milliseconds.
  • Blood oxygen saturation is an important indicator of blood oxygen.
  • Blood oxygen saturation refers to the ratio of the volume of oxygenated hemoglobin (HbO 2 ) to the volume of deoxyhemoglobin (Hb) in the blood.
  • Oxyhemoglobin (HbO 2 ) and deoxyhemoglobin (Hb) in the blood have unique absorption spectra in the red light region and near-infrared light region.
  • the absorption coefficient of Hb in the red light region from 600nm to 800nm is higher.
  • the absorption coefficient of HbO 2 in the near-infrared region of 1000 nm is higher.
  • the absorption coefficient of oxygenated hemoglobin (HbO 2 ) and deoxyhemoglobin (Hb) in the blood for red light and near-infrared light is different, it can pass red light and near-infrared light. Infrared light detects blood oxygen.
  • the first light beam may be red light and the second light beam may be near-infrared light, or the first light beam may be near-infrared light and the second light beam may be red light.
  • the first wavelength of the first light beam is 650 nm
  • the second wavelength of the second light beam is 940 nm. It should be understood that the first light beam and the second light beam may also be light beams of other wavelengths, which are not specifically limited in the embodiment of the present application.
  • the light blocking member 103 is disposed between the light-emitting assembly 101 and the light receiving member 102, and is used to block the light receiving member 102 from receiving light beams that have not been processed by the user.
  • the light beam of the light receiving element 102 prevents the light beam that has not been processed by the user from entering the light receiving element 102 and causing interference to the detection result.
  • the light blocking member 103 can be realized by using an opaque material, and the light blocking member 103 is light-absorbing and can absorb the light beam irradiated on the light blocking member 103.
  • the cross-sectional shape of the light blocking member 103 may be a bar shape, a circle shape, a diamond shape, an irregular shape, and the like.
  • the first light beam directed to the skin is reflected, absorbed and scattered by human tissues, and then emitted from the skin to obtain the first emergent light.
  • the second light beam directed to the skin is reflected, absorbed and scattered by the human tissue, and then emerges from the skin to obtain the first.
  • the second outgoing light, the first outgoing light and the second outgoing light are received by the light receiving element 102, and the light receiving element 102 converts the received optical signal of the first outgoing light and the second outgoing light into light signals for blood oxygen
  • the detected electrical signal is processed by the processor to obtain blood oxygen.
  • the light-emitting assembly in the embodiment of the present application includes a plurality of light-emitting units.
  • the light beam emitted by the light-emitting unit is directed to the user in a direction perpendicular or approximately perpendicular to the user's skin, so that the light beam emitted by the light-emitting unit travels deeper in the skin and improves the light.
  • the perfusion index of the light signal received by the receiving element can thereby improve the accuracy of the blood oxygen detection result
  • the plurality of light-emitting units include at least one first light-emitting unit and at least two second light-emitting units, and at least one first light-emitting unit is A centrally symmetric structure or a symmetrical distribution with one of the first light-emitting units as the center, and the entire center of the at least one first light-emitting unit coincides with the center of the light-emitting array, and the first light-emitting unit and the second light-emitting unit are arranged at intervals, so that the first light-emitting unit The first light beam emitted by the unit and the second light beam emitted by the second light-emitting unit are evenly distributed in space, so that the overall light beams emitted by all the first light-emitting units and the overall light beams emitted by all the second light-emitting units can be directed toward the user's skin Approximately the same position, the first
  • two optical signals obtained by processing tissues at different positions of the human body are converted into electrical signals for blood oxygen detection, which can further improve Accuracy of blood oxygen test results.
  • the present application can reduce the requirements of the blood oxygen detection device on the use environment. Even when the blood oxygen detection device is not in good contact with the user's skin or the user's skin tissue is too thick, accurate blood oxygen detection results can still be obtained.
  • the n first light-emitting units 1011 may all be red lasers with an emission wavelength of 660 nm
  • the first light beams may be red light beams with a wavelength of 660 nm
  • the m second light-emitting units 1012 may all be near-infrared lasers with an emission wavelength of 940 nm.
  • the second light beam is a near-infrared light beam with a wavelength of 940 nm.
  • the control circuit controls the n first light-emitting units 1011 to light up, and controls the m second light-emitting units 1012 to turn off.
  • first light-emitting units 1011 emit the first light beam to the user, and the light receiving element 102 receives The first emitted light after the first light beam passes the user; in the second time period, the control circuit controls m second light-emitting units 1012 to light up, and controls n first light-emitting units 1011 to turn off, and m second light-emitting units 1012
  • the second light beam is emitted to the user, and the light receiving element 102 receives the second outgoing light after the second light beam passes through the user.
  • the light receiver 102 photoelectrically converts the received first and second output light to generate an electrical signal for blood oxygen saturation detection.
  • the electrical signal includes a DC component and an AC component, and the processor uses the electrical The signal determines the blood oxygen saturation. Specifically, the processor determines the blood oxygen saturation SpO 2 according to the following formula:
  • a and B are calibration constants
  • Red AC is the AC component of the electrical signal generated by the light receiving element according to the received light signal of the first emitted light
  • Red DC is the AC component of the light receiving element according to the received first emitted light.
  • the DC component of the electrical signal generated by the optical signal IR AC is the AC component of the electrical signal generated by the light receiver according to the received optical signal of the second outgoing light
  • IR DC is the AC component of the electric signal generated by the light receiver according to the received second outgoing light
  • the direct current component of the electrical signal generated by the optical signal, R is the characteristic value of blood oxygen saturation.
  • the ratio of the DC component IR AC /IR DC can generally be regarded as constant, so the R value depends on the ratio of the AC component Red AC /Red DC size.
  • the method for determining the ratio of the AC components includes the following steps:
  • Step 1 Perform filtering processing on the original electrical signal generated according to the received optical signal of the first emergent light and the original electrical signal generated according to the received optical signal of the second emergent light respectively;
  • Step 2 Determine the DC component of the electrical signal generated by the received optical signal of the first exit light, the AC component of the electrical signal generated by the received optical signal of the first exit light, and the received optical signal of the second exit light The direct current component of the generated electrical signal and the alternating current component of the electrical signal generated by the received optical signal of the second outgoing light;
  • Step 3 Perform spectrum analysis on the AC component of the electrical signal generated by the received optical signal of the first outgoing light and the AC component of the electrical signal generated by the received optical signal of the second outgoing light to obtain the corresponding first frequency Energy distribution and second frequency energy distribution;
  • Step 4 Extract the signal corresponding to the frequency with the largest energy value from the first frequency energy distribution as the first pulse wave base signal, and extract the signal corresponding to the frequency with the largest energy value from the second frequency energy distribution as the second pulse wave base signal ,
  • Step 5 The energy ratio of the first pulse base signal to the second pulse base signal is the ratio of the AC component Red AC /Red DC .
  • the blood oxygen saturation can be obtained by the above method.
  • the light receiving element 102 may be a photoelectric conversion element.
  • the light receiving element 102 may be one photodiode, or may include multiple photodiodes, and the multiple photodiodes are arranged in an array. Multiple photodiodes can be uniformly arranged into rectangles, circles, diamonds and irregular shapes. Compared with one photodiode, multiple photodiodes can receive more light signals, thereby further improving the accuracy of blood oxygen detection results.
  • the first light-emitting unit 1011 and the second light-emitting unit 1012 emit red light and near-infrared light, respectively. Red light and near-infrared light detect blood oxygen.
  • first light-emitting unit and the second light-emitting unit are described in detail below.
  • the first light emitting unit 1011 and the second light emitting unit 1012 are arranged at intervals along at least one arrangement direction, and the arrangement direction and the light emitting direction of the light emitting unit are perpendicular to each other.
  • the number of the first light-emitting unit 1011 is 3, and the number of the second light-emitting unit 1012 is 2.
  • the units 1012 are arranged at intervals from left to right.
  • the arrangement of the first light-emitting unit and the second light-emitting unit in one direction is more compact, so that the overall light beam emitted by all the first light-emitting units arranged in one direction and the overall light beam emitted by all the second light-emitting units are arranged in one direction.
  • the spatial distribution of the light is more uniform, so that the position of the light emitted to the user's skin is closer, and the arrangement direction and the light emitting direction of the light-emitting unit are perpendicular to each other, so as to further improve the accuracy of the blood oxygen detection result.
  • the first light-emitting unit 1011 and the second light-emitting unit 1012 are arranged at intervals along a first arrangement direction and a second arrangement direction orthogonal to each other, and the first arrangement direction Both the second arrangement direction and the light emitting direction of the light emitting unit are perpendicular to each other.
  • the first arrangement direction may be transverse and the second arrangement direction may be longitudinal; or, the first arrangement direction may be longitudinal, and the second arrangement direction may be transverse.
  • the number of the first light-emitting unit 1011 is one, and the number of the second light-emitting unit 1012 is four.
  • the four second light-emitting units 1012 are respectively arranged in the first light-emitting unit 1011.
  • the circumferential outer side of a light emitting unit 1011 that is, in the first arrangement direction, the second light emitting unit 1012 is provided on both sides of the first light emitting unit 1011, and in the second arrangement direction, the second light emitting unit 1011 is respectively provided on both sides of the first light emitting unit 1011.
  • the second light emitting unit 1012 is provided.
  • the first light-emitting unit and the second light-emitting unit are arranged more compactly, so that all the first light-emitting units in the certain area are arranged more compactly.
  • the positions of the overall light beam emitted by the light-emitting unit and the overall light beams emitted by all the second light-emitting units are closer to the skin of the user, which further improves the accuracy of the blood oxygen detection result.
  • the first light-emitting unit and the second light-emitting unit are arranged in a matrix.
  • the number of first light-emitting units 1011 is 5, and the number of second light-emitting units 1012 is 4, with one first light-emitting unit 1011 being the center C, and the remaining 4 first light-emitting units 1011 And the four second light-emitting units 1012 are arranged in a circular array along the circumferential direction of the first light-emitting unit 1011 at intervals.
  • the first light-emitting unit and the second light-emitting unit array are arranged to ensure that the first light-emitting unit and the second light-emitting unit are The positions are closer to ensure that the size of the overall light beams emitted by all the first light-emitting units is similar to that of the overall light beams emitted by all the second light-emitting units, and is directed at the similar position of the user's skin, which further improves the accuracy of the blood oxygen detection result.
  • the distribution modes of the first light-emitting unit 1011 and the second light-emitting unit 1012 are not limited to the above.
  • the light receiving element 102 may be arranged on one side of the light emitting assembly 101, and correspondingly, the light blocking element 103 is also arranged on one side of the light emitting assembly 101, and is arranged on the light emitting assembly 101 and the light receiving element 102. between. As shown in FIG. 1, the light blocking member 103 and the light receiving member 102 are sequentially arranged from the side close to the light-emitting assembly 101 to the side far away from the light-emitting assembly 101. The light receiving element 102 is arranged on one side of the light-emitting assembly 101, which can reduce the size of the blood oxygen detection device.
  • the light receiving element 102 may also be arranged around the periphery of the light-emitting assembly 101, and the light receiving element 102 may be arranged around the periphery of the light-emitting assembly 101 in a ring shape or a "mouth" shape.
  • the light receiving element 102 is arranged around the periphery of the light-emitting assembly 101, which can increase the area of the light receiving element 102 to receive light signals, so that the light receiving element 102 can receive more light signals, thereby further improving the accuracy of the blood oxygen detection result.
  • the light blocking member 103 is arranged around the periphery of the light emitting assembly 101. As shown in FIG. 6, the light blocking member 103 and the light receiving member 102 are sequentially enclosed outside the light emitting assembly 101.
  • the light blocking member 103 may be arranged around the periphery of the light-emitting assembly 101 in a ring shape or a "mouth" shape.
  • the light blocking member 103 is arranged around the periphery of the light-emitting assembly 101, which can improve the light blocking effect, thereby reducing the intensity of the interference signal received by the light receiving member 102, and further improving the accuracy of the biometric detection result.
  • FIG. 7 is the third structural schematic diagram of the blood oxygen detection device provided by the embodiment of the present application.
  • the device of the embodiment of the present application further includes a light concentrating member 104.
  • the light condensing element 104 is arranged on the light incident side of the light receiving element 102 and is used to converge the first outgoing light and the second outgoing light at the light receiving element 102.
  • the light collecting member 104 completely covers the light receiving member 102.
  • the light-receiving member 102 can receive more light signals, and the anti-interference ability of the blood oxygen detection device is improved.
  • the installation method of the light-concentrating member 104 may be direct bonding, injection molding, nano-imprinting, pouring, etc.
  • the specific installation method is not an improvement of the embodiment of the present application, and will not be repeated in the embodiment of the present application.
  • FIG. 8 is a schematic diagram 1 of the structure of the light concentrating element provided by the embodiment of the application.
  • the light concentrating element 104 in the embodiment of the present application includes a lens, the lens faces the light receiving element 102, and the light incident surface of the lens is convex.
  • the light-emitting surface is flat.
  • the lens may be a collimating microlens.
  • the light incident surface of the lens that is, the side facing the outside of the blood oxygen detection device, is set as a convex surface. Since the shape of the light incident surface is not limited by the internal space of the device, the convex surface can have a larger curvature to achieve better The light-gathering effect improves the anti-interference ability of the blood oxygen detection device.
  • the focal point f of the lens coincides with the center point c of the upper surface of the light receiving element 102, that is, the light receiving element 102 is arranged at the focal point of the lens, so that the condensing element 104 can be further improved.
  • the light-gathering effect further improves the anti-interference ability of the blood oxygen detection device.
  • Fig. 9 is a second structural diagram of the light concentrating element provided by the embodiment of the application.
  • the light concentrating element 104 includes a micro lens array, and the side of the micro lens array facing away from the light receiving element 102 is a flat surface.
  • the microlens array has a plurality of microlenses that are convex toward the light receiving element 102. Compared with the lenses, the microlens array has a better light-gathering effect.
  • the side of the microlens array facing away from the light receiving element 102 is a flat surface, that is, the side of the microlens array facing the user's skin is a flat surface, which can prevent the microlens array from hiding dirt and facilitate keeping the microlens array clean.
  • the micro lens array and the light receiving element can be an integral structure.
  • the microlens array and the light receiving element 102 may be formed simultaneously by injection molding, for example, polymethyl methacrylate (PMMA) or polycarbonate (PC) is directly integrated.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • the type of micro lens array and the light receiving element 102 is easy to install.
  • the distance between the light emitting component 101 and the light receiving element 102 is greater than 4 mm and less than 20 mm.
  • the distance d between the light-emitting component 101 and the light-receiving component 102 refers to the distance between the edge of the light-emitting component 101 on the side close to the light-receiving component 102 and the edge of the light-receiving component 102 on the side close to the light-emitting component 101, if The distance between the light-emitting component 101 and the light-receiving component 102 is less than or equal to 4 mm, which will cause the light-receiving component 102 to receive more light transmitted by the skin surface; if the distance between the light-emitting component 101 and the light-receiving component 102 is greater than or equal to 20 mm, it will cause The intensity of the light signal received by the light receiving element 102 decreases.
  • the distance between the light-emitting component 101 and the light-receiving component 102 is greater than 4 mm and less than 20 mm.
  • the light transmitted by the skin surface layer received by the light-receiving component 102 is reduced, on the other hand, It is ensured that the light receiving element 102 receives more of the emitted light after skin treatment.
  • An embodiment of the present application also provides a smart wearable device, which includes the blood oxygen detection device described in any of the above embodiments, and has the beneficial effects of any of the above embodiments.
  • smart wearable devices include, but are not limited to, bracelets and smart watches.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种血氧检测装置(10)及包括该血氧检测装置(10)的智能穿戴设备,血氧检测装置(10)包括发光组件(101)、挡光件(103)和光接收件(102);发光组件(101)包括多个发光单元,多个发光单元共同形成发光阵列;多个发光单元包括至少一个第一发光单元(1011)和至少两个第二发光单元(1012),至少一个第一发光单元(1011)为中心对称结构或以其中一个第一发光单元(1011)为中心对称分布,至少两个第二发光单元(1012)相对于发光阵列的中心对称设置,且第一发光单元(1011)和第二发光单元(1012)间隔设置;发光单元发射的光束垂直或近似垂直射向用户。该血氧检测装置能够提高血氧检测结果的准确性。

Description

血氧检测装置及智能穿戴设备 技术领域
本申请涉及生物识别技术领域,尤其涉及一种血氧检测装置及智能穿戴设备。
背景技术
血氧是指血液中的氧含量,它是呼吸循环的重要生理参数。
现有的血氧检测装置包括光源和光电接收器,光源采用两个并排设置的发射不同波长的发光二极管,两个发光二极管分别直接向皮肤的不同位置发射光束,发射光束将在皮肤组织和血液中反射、吸收和散射,到达光电接收器上的光信号被转换为电信号,对电信号进行处理即得到血氧。
然而,发明人发现,现有的血氧检测装置对使用环境的要求较高,不仅需要与用户的皮肤紧密接触,而且要求用户的皮肤组织不能太厚,在血氧检测装置与用户的皮肤接触不良或用户的皮肤组织太厚时,容易导致检测结果不准确。
发明内容
本申请提供一种血氧检测装置及智能穿戴设备,能够提高血氧检测结果的准确性。
第一方面,本申请实施例提供一种血氧检测装置,包括:
发光组件、挡光件和光接收件;
所述发光组件包括多个发光单元,多个所述发光单元共同形成发光阵列;多个所述发光单元包括至少一个第一发光单元和至少两个第二发光单元;
所述至少一个第一发光单元为中心对称结构或以其中一个第一发光单元为中心对称分布,且所述至少一个第一发光单元整体的中心与所述发光阵列的中心重合,所述至少两个第二发光单元相对于所述发光阵列的中心对称设置,且所述第一发光单元和所述第二发光单元间隔设置,其中,所述第一发光单元用于发射具有第一波长的第一光束,所述第二发光单元用于发射具有 第二波长的第二光束,所述第一波长和所述第二波长不同;
所述发光单元为激光器,或者,所述发光单元包括发光二极管和设置在所述发光二极管靠近用户侧的准直件,以使所述发光单元发射的光束以与用户的皮肤垂直或近似垂直的方向射向所述用户;
所述挡光件设置在所述发光组件与所述光接收件之间,以阻挡所述发光组件发出的光束射向所述光接收件;
所述光接收件用于接收所述第一光束经过所述用户处理后的第一出射光,以及接收所述第二光束经过所述用户处理后的第二出射光,并将接收的所述第一出射光的光信号和接收的所述第二出射光的光信号转化为用于进行血氧检测的电信号。
一种可能的实现方式中,所述第一发光单元和所述第二发光单元沿着至少一个排列方向间隔排列,所述排列方向和所述发光单元的出光方向相互垂直。
一种可能的实现方式中,所述第一发光单元和所述第二发光单元沿着相互正交的第一排列方向和第二排列方向间隔排列,所述第一排列方向和所述第二排列方向均与所述发光单元的出光方向相互垂直。
一种可能的实现方式中,所述第一发光单元和所述第二发光单元呈矩阵式排列。
一种可能的实现方式中,所述光接收件设置于所述发光组件的一侧;
或者,所述光接收件围设在所述发光组件的外围。
一种可能的实现方式中,还包括聚光件;所述聚光件设置在所述光接收件的入光侧,用于将所述第一出射光和所述第二出射光汇聚在所述光接收件处。
一种可能的实现方式中,所述聚光件包括透镜,所述透镜面向所述光接收件,所述透镜的入光面为凸面,出光面为平面。
一种可能的实现方式中,所述聚光件包括微透镜阵列,所述微透镜阵列的背离所述光接收件的一面为平面。
一种可能的实现方式中,所述微透镜阵列与所述光接收件为一体式结构。
一种可能的实现方式中,所述挡光件围设在所述发光组件的周向外侧。
一种可能的实现方式中,所述发光组件到所述光接收件的距离大于4毫米且小于20毫米。
第二方面,本申请提供一种智能穿戴设备,包括本申请第一方面以及任一种可能的实现方式所述的血氧检测装置。
本申请提供一种血氧检测装置及智能穿戴设备,血氧检测装置包括发光组件和光接收件,发光组件包括多个发光单元,发光单元发射的光束以与用户的皮肤垂直或近似垂直的方向射向用户,使发光单元发出的光束在皮肤内传输的深度更深,提高光接收件接收的光信号的灌注指数,从而能够提高血氧检测结果的准确性,并且,多个发光单元包括至少一个第一发光单元和至少两个第二发光单元,至少一个第一发光单元为中心对称结构或以其中一个第一发光单元为中心对称分布,且至少一个第一发光单元整体的中心与发光阵列的中心重合,且第一发光单元和第二发光单元间隔设置,使得第一发光单元发出的第一光束和第二发光单元发出的第二光束在空间上是均匀分布的,进而能够使所有第一发光单元发出的整体光束和所有第二发光单元发出的整体光束射向用户皮肤近似相同的位置,经人体近似相同位置处的组织处理后得到第一出射光和第二出射光,由于是利用人体近似相同位置处的组织处理的第一出射光的光信号和第二出射光的光信号转化得到用于进行血氧检测的电信号,相比于现有技术根据人体不同位置处的组织处理得到的两束光信号转化为用于进行血氧检测的电信号,能够进一步提高血氧检测结果的准确性。本申请能够降低血氧检测装置对使用环境的要求,即便是在血氧检测装置与用户的皮肤接触不够好或用户的皮肤组织太厚的情况下,依然能够得到准确的血氧检测结果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的血氧检测装置的结构示意图一;
图2为本申请实施例提供的血氧检测装置的结构示意图二;
图3为本申请实施例提供的发光组件的结构示意图一;
图4为本申请实施例提供发光组件的结构示意图二;
图5为本申请实施例提供发光组件的结构示意图三;
图6为本申请实施例提供的血氧检测装置的俯视图;
图7为本申请实施例提供的血氧检测装置的结构示意图三;
图8为本申请实施例提供的聚光件的结构示意图一;
图9为本申请实施例提供的聚光件的结构示意图二;
图10为本申请实施例提供的血氧检测装置的结构示意图四。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解,虽然这里可以使用术语“第一”、“第二”等来描述各种元件、组件、区域、层和/或部分,但这些元件、组件、区域、层和/或部分不应当被这些术语限制。这些术语仅仅用于将一个元件、组件、区域、层和/或部分与其他元件、组件、区域、层和/或部分区分。因而,下面讨论的第一元件、组件、区域、层和/或部分可以被记作第二元件、组件、区域、层和/或部分而不背离示例实施例的教导。
这里使用的术语仅仅用于描述特定示范性实施例的目的,而非意在限制示范性实施例。这里使用的单数形式“一个”、“一”和“该”同样包括复数形式,除非上下文清楚地另有指明。还应当理解,术语“包括”和/或“包含”当在说明书中使用时,表示存在所述特征、整数、步骤、操作、元件、和/或组件,但不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件、和/或其群组。
血氧是指血液中的氧含量,它是呼吸循环的重要生理参数。现有的血氧检测装置包括光源和光电接收器,光源采用两个并排设置的发射不同波长的发光二极管,两个发光二极管分别直接向皮肤的不同位置发射光束,发 射光束将在皮肤组织和血液中反射、吸收和散射后由光电接收器接收。现有的血氧检测装置对使用环境要求较高,需要血氧检测装置与佩戴者紧密接触,且皮肤组织不能太厚的情况下才能得到准确的测量结果,在佩戴过松或皮肤组织太厚时,会导致检测结果不准确,例如,用户在运动时,常会出现血氧检测装置佩戴过松的情况,从而导致检测结果不准确,影响用户体验。
而本申请的技术方案,旨在解决现有技术的如上问题。
图1为本申请实施例提供的血氧检测装置的结构示意图一,如图1所示,本申请的血氧检测装置10包括:发光组件101、光接收件102和挡光件103。
发光组件101包括多个发光单元,多个发光单元共同形成发光阵列;多个发光单元包括至少一个第一发光单元1011和至少两个第二发光单元1012,至少一个第一发光单元1011为中心对称结构或以其中一个第一发光单元1011为中心对称分布,且至少一个第一发光单元1011整体的中心与发光阵列的中心重合,至少两个第二发光单元1012相对于发光阵列的中心对称设置,且第一发光单元1011和第二发光单元1012间隔设置,其中,第一发光单元1011用于发射具有第一波长的第一光束,第二发光单元1012用于发射具有第二波长的第二光束,第一波长和第二波长不同。发光单元为激光器,或者,发光单元包括发光二极管和设置在发光二极管靠近用户侧的准直件,以使发光单元发射的光束以与用户的皮肤垂直或近似垂直的方向射向用户。挡光件103设置在发光组件101与光接收件102之间,以阻挡发光组件101发出的光束射向光接收件102。光接收件102用于接收第一光束经过用户后的第一出射光,以及接收第二光束经过用户后的第二出射光,并将接收的第一出射光的光信号和接收的第二出射光的光信号转化为用于进行血氧检测的电信号。
在本申请实施例中,第一发光单元1011的数量为n个,第二发光单元1012的数量为m个,n为大于或等于1的正整数,m为大于1的正整数。n个第一发光单元1011和m个第二发光单元1012共同形成发光阵列。第一发光单元1011的数量为一个时,一个第一发光单元1011自身为中心对称结构,一个第一发光单元的中心与发光阵列的中心重合。第一发光单 元1011的数量为多个时,多个第一发光单元1011以其中一个第一发光单元为中心对称分布,且多个第一发光单元1011整体的中心与发光阵列的中心重合。m个第二发光单元1012相对于发光阵列的中心对称设置。
第一发光单元1011和第二发光单元1012间隔设置,即n个第一发光单元1011和m个第二发光单元1012间隔设置,具体指的是在预设排列方向上,第一发光单元1011与第二发光单元1012依次相邻设置。例如,按照一个第一发光单元,一个第二发光单元,再一个第一发光单元,再一个第二发光单元,以此类推的交替设置。
多个发光单元在这种排布方式下,能够使第一发光单元发出的第一光束和第二发光单元发出的第二光束在空间上是均匀分布的,进而能够使所有第一发光单元发出的整体光束和所有第二发光单元发出的整体光束射向用户皮肤近似相同的位置,经人体近似相同位置处的组织处理后得到第一出射光和第二出射光。
在本申请实施例中,一种可能的结构中,如图2所示,第一发光单元1011包括第一发光二极管201和设置在第一发光二极管靠近用户侧的第一准直件202,每一个第一发光二极管201靠近用户侧均对应设置一个第一准直件202。第二发光单元1012包括第二发光二极管203和设置在第二发光二极管靠近用户侧的第二准直件204,每一个第二发光二极管203靠近用户侧均对应设置一个第二准直件204。通过第一准直件202减小第一发光二极管201发射的第一光束的发散角,使第一光束以与用户的皮肤表面垂直或近似垂直的方向射向用户,通过第二准直件204减小第二发光二极管203发射的第二光束的发散角,使第二光束以与用户的皮肤表面垂直或近似垂直的方向射向用户。第一准直件202和第二准直件204可以均为准直透镜。
另一种可能的结构中,第一发光单元1011为发射第一光束的第一激光器,第二发光单元1012为发射第二光束的第二激光器。激光器发射的光束能够以与用户的皮肤表面垂直或近似垂直的方向射向用户。
另一种可能的结构中,第一发光单元1011包括第一发光二极管201和设置在第一发光二极管201靠近用户侧的第一准直件202,第二发光单元1012为第二激光器。
另一种可能的结构中,第一发光单元1011为第一激光器,第二发光单元1012包括第二发光二极管203和设置在第二发光二极管203靠近用户侧的第二准直件204。
光接收件102接收的光信号与皮肤血流容积变化相关,并包含直流分量和交流分量,其中,交流分量主要反映动脉血的吸收情况。交流分量与直流分量的比值为灌注指数,灌注指数越大,检测的血氧结果越准确。当第一光束和第二光束以与用户的皮肤表面垂直或近似垂直的方向射向用户时,光在人体组织中传播的深度更深,光更容易穿透包含动脉血管的区域,光接收件102接收到更多交流分量,使灌注指数增大。θ等于0时,灌注指数最大,即第一光束和第二光束以与用户的皮肤表面垂直的方向射向用户时,灌注指数最大。
发光组件101与控制电路连接,控制电路控制n个第一发光单元1011和m个第二发光单元1012,以使n个第一发光单元1011和m个第二发光单元1012分时点亮。例如,在第一时间周期内,控制电路控制n个第一发光单元1011点亮,以及控制m个第二发光单元1012熄灭;在第二时间周期内,控制电路控制m个第二发光单元1012点亮,以及控制n个第一发光单元1011熄灭。第一时间周期与第二时间周期可以相同也可以不同,本申请实施例不做具体限定。例如,第一时间周期和第二时间周期均为10毫秒。
血氧饱和度是血氧的一个重要指标,血氧饱和度是指血液中氧合血红蛋白(HbO 2)的容量与脱氧血红蛋白(Hb)的容量的比值。血液中氧合血红蛋白(HbO 2)和脱氧血红蛋白(Hb)在红光区和近红外光区有独特的吸收光谱,在波长600nm至800nm的红光区Hb的吸收系数更高,在波长800nm至1000nm的近红外光区HbO 2的吸收系数更高,由于血液中氧合血红蛋白(HbO 2)和脱氧血红蛋白(Hb)对红光和近红外光的吸收系数不相同,所以可以通过红光和近红外光检测血氧。第一光束可以为红光,第二光束可以为近红外光,或者,第一光束为近红外光,第二光束为红光。例如,第一光束的第一波长为650nm,第二光束的第二波长为940nm。应理解的是,第一光束和第二光束也可以采用其他波长的光束,本申请实施例不做具体限定。
挡光件103设置在发光组件101与光接收件102之间,用于阻挡光接收件102接收未经用户处理的光束,即,挡光件103阻挡光接收件102接收从发光组件101射向光接收件102的光束,从而避免未经用户处理的光束射入光接收件102而对检测结果造成干扰。挡光件103可以使用不透光材料实现,挡光件103具有吸光性,能吸收照射到挡光件103上的光束。挡光件103的截面形状可以为条形、圆形、菱形以及不规则形状等。
射向皮肤的第一光束经人体组织反射、吸收和散射后,由皮肤射出,得到第一出射光,射向皮肤的第二光束经人体组织反射、吸收和散射后,由皮肤射出,得到第二出射光,第一出射光和第二出射光被光接收件102接收,由光接收件102将接收的第一出射光的光信号和第二出射光的光信号转化为用于进行血氧检测的电信号,并由处理器对该电信号进行处理得到血氧。
本申请实施例中的发光组件包括多个发光单元,发光单元发射的光束以与用户的皮肤垂直或近似垂直的方向射向用户,使发光单元发出的光束在皮肤内传输的深度更深,提高光接收件接收的光信号的灌注指数,从而能够提高血氧检测结果的准确性,并且,多个发光单元包括至少一个第一发光单元和至少两个第二发光单元,至少一个第一发光单元为中心对称结构或以其中一个第一发光单元为中心对称分布,且至少一个第一发光单元整体的中心与发光阵列的中心重合,且第一发光单元和第二发光单元间隔设置,使得第一发光单元发出的第一光束和第二发光单元发出的第二光束在空间上是均匀分布的,进而能够使所有第一发光单元发出的整体光束和所有第二发光单元发出的整体光束射向用户皮肤近似相同的位置,经人体近似相同位置处的组织处理后得到第一出射光和第二出射光,由于是利用人体近似相同位置处的组织处理的第一出射光的光信号和第二出射光的光信号转化得到用于进行血氧检测的电信号,相比于现有技术根据人体不同位置处的组织处理得到的两束光信号转化为用于进行血氧检测的电信号,能够进一步提高血氧检测结果的准确性。本申请能够降低血氧检测装置对使用环境的要求,即便是在血氧检测装置与用户的皮肤接触不够好或用户的皮肤组织太厚的情况下,依然能够得到准确的血氧检测结果。
下面,以血氧饱和度为例,详细描述血氧饱和度的检测方法。
n个第一发光单元1011可以均为发光波长为660nm的红光激光器,第一光束为波长660nm的红光光束,m个第二发光单元1012可以均为发光波长为940nm的近红外光激光器,第二光束为波长940nm的近红外光光束。在第一时间周期内,控制电路控制n个第一发光单元1011点亮,以及控制m个第二发光单元1012熄灭,n个第一发光单元1011向用户发射第一光束,光接收件102接收第一光束经过用户后的第一出射光;在第二时间周期内,控制电路控制m个第二发光单元1012点亮,以及控制n个第一发光单元1011熄灭,m个第二发光单元1012向用户发射第二光束,光接收件102接收第二光束经过用户后的第二出射光。光接收件102将接收到的第一出射光和第二出射光进行光电转换,生成用于进行血氧饱和度检测的电信号,该电信号分别包括直流分量和交流分量,处理器根据该电信号确定血氧饱和度。具体的,处理器根据以下公式确定血氧饱和度SpO 2
SpO 2=A+BR,
Figure PCTCN2020097255-appb-000001
其中,A和B均为标定常数,Red AC为光接收件根据接收到的第一出射光的光信号生成的电信号的交流分量,Red DC为光接收件根据接收到的第一出射光的光信号生成的电信号的直流分量,IR AC为光接收件根据接收到的第二出射光的光信号生成的电信号的交流分量,IR DC为光接收件根据接收到的第二出射光的光信号生成的电信号的直流分量,R为血氧饱和度的特征值。
一般情况下,人体的骨骼、皮肤及静脉的光吸收特性很少发生变化,因此直流分量的比值IR AC/IR DC一般可以认为是恒定的,所以R值的大小取决于交流分量的比值Red AC/Red DC的大小。
一种可能的实现方式中,交流分量的比值的确定方法包括以下步骤:
步骤1,分别对根据接收到的第一出射光的光信号生成的原始电信号和根据接收到的第二出射光的光信号生成的原始电信号进行滤波处理;
步骤2,确定接收到的第一出射光的光信号生成的电信号的直流分量、接收到的第一出射光的光信号生成的电信号的交流分量、接收到的第二出 射光的光信号生成的电信号的直流分量和接收到的第二出射光的光信号生成的电信号的交流分量;
步骤3,分别对接收到的第一出射光的光信号生成的电信号的交流分量和接收到的第二出射光的光信号生成的电信号的交流分量进行频谱分析,得到对应的第一频率能量分布和第二频率能量分布;
步骤4,从第一频率能量分布中提取能量值最大的频率对应的信号作为第一脉搏波基信号,从第二频率能量分布中提取能量值最大的频率对应的信号作为第二脉搏波基信号,
步骤5,第一脉搏基信号与第二脉搏基信号的能量比即为交流分量的比值Red AC/Red DC
通过上述方法即可得到血氧饱和度。
作为本申请的一个实施例,光接收件102可以为光电转换元件,具体的,光接收件102可以为一个光电二极管,也可以包括多个光电二极管,多个光电二极管呈阵列设置。多个光电二极管可以均匀排列成矩形、圆形、菱形以及不规则形状等。与一个光电二极管相比,多个光电二极管能够接收更多光信号,从而进一步提高生血氧检测结果的准确性。
由于血液中氧合血红蛋白(HbO 2)和脱氧血红蛋白(Hb)对红光和近红外光的吸收系数不相同,第一发光单元1011和第二发光单元1012分别发射红光和近红外光,通过红光和近红外光检测血氧。
下面详细描述第一发光单元和第二发光单元的几种可能的排列方式。
作为本申请的一个实施例,一种可选的结构中,第一发光单元1011和第二发光单元1012沿着至少一个排列方向间隔排列,排列方向和发光单元的出光方向相互垂直。
例如,如图3所示,第一发光单元1011的数量为3个,第二发光单元1012的数量为2个,沿与发光单元的出光方向垂直的方向,第一发光单元1011和第二发光单元1012从左向右依次间隔设置。
在本申请实施例中,第一发光单元和第二发光单元在一个方向上的排列更紧凑,使在一个方向排列的所有第一发光单元发出的整体光束和所有第二发光单元发出的整体光束的空间分布更均匀,从而射向用户皮肤的位置更相近,且排列方向和发光单元的出光方向相互垂直,以进一步提高血氧检测结 果的准确性。
作为本申请的一个实施例,另一种可选的结构中,第一发光单元1011和第二发光单元1012沿着相互正交的第一排列方向和第二排列方向间隔排列,第一排列方向和第二排列方向均与发光单元的出光方向相互垂直。第一排列方向可以为横向,第二排列方向可以为纵向;或者,第一排列方向可以纵向,第二排列方向可以为横向。
例如,如图4所示,第一发光单元1011的数量为1个,第二发光单元1012的数量为4个,以第一发光单元1011为中心,4个第二发光单元1012分别设置在第一发光单元1011的周向外侧,即,在第一排列方向上,第一发光单元1011的两侧分别设置第二发光单元1012,在第二排列方向上,第一发光单元1011的两侧分别设置第二发光单元1012。
在本申请实施例中,在相互正交的第一排列方向和第二排列方向确定的区域内,第一发光单元和第二发光单元排列的更紧凑,使得在确定的区域内的所有第一发光单元发出的整体光束和所有第二发光单元发出的整体光束射向用户的皮肤的位置更相近,进一步提高血氧检测结果的准确性。
作为本申请的一个实施例,另一种可选的结构中,第一发光单元和第二发光单元呈矩阵式排列。
例如,如图5所示,第一发光单元1011的数量为5个,第二发光单元1012的数量为4个,以其中一个第一发光单元1011为中心C,其余4个第一发光单元1011以及4个第二发光单元1012以圆周阵列的方式沿第一发光单元1011的周向依次间隔设置。
在本申请实施例中,通过第一发光单元和第二发光单元阵列设置,保证在相互正交的第一排列方向和第二排列方向确定的区域内,第一发光单元和第二发光单元的位置更相近,保证所有第一发光单元发出的整体光束的尺寸与所有第二发光单元发出的整体光束尺寸相近,且射向用户皮肤的相近位置,进一步提高血氧检测结果的准确性。
应理解的是,第一发光单元1011和第二发光单元1012的分布方式不限于以上几种。
作为本申请的一个实施例,光接收件102可以设置在发光组件101的一侧,相应的,挡光件103也设置在发光组件101的一侧,且设置于发光 组件101与光接收件102之间。如图1所示,从靠近发光组件101的一侧到远离发光组件101的一侧依次设置挡光件103和光接收件102。光接收件102设置在发光组件101的一侧,能够减小血氧检测装置的尺寸。
光接收件102还可以围设在发光组件101外围,光接收件102可以呈环形或“口”字形等形状围设在发光组件101外围。光接收件102围设在发光组件101外围,能够增加光接收件102接收光信号的面积,使光接收件102能够接收更多的光信号,从而进一步提高血氧检测结果的准确性。
作为本申请的一个实施例,挡光件103围设在发光组件101外围,如图6所示,发光组件101外依次围设挡光件103和光接收件102。挡光件103可以呈环形或“口”字形等形状围设在发光组件101外围。挡光件103围设在发光组件101的外围,能够提高挡光效果,从而降低光接收件102接收到的干扰信号强度,进一步提高生物特征检测结果的准确性。
图7为本申请实施例提供的血氧检测装置的结构示意图三,本申请实施例的装置还包括聚光件104。聚光件104设置在光接收件102的入光侧,用于将第一出射光和第二出射光汇聚在光接收件102处。聚光件104完全覆盖光接收件102。本申请实施例通过聚光件104的聚光作用,能够使光接收件102接收到更多的光信号,提高血氧检测装置的抗干扰能力。
聚光件104的安装方式可以是直接贴合、注塑、纳米压印、浇筑等,具体的安装方式不作为本申请实施例的改进,本申请实施例不再赘述。
图8为本申请实施例提供的聚光件的结构示意图一,如图8所示,本申请实施例中的聚光件104包括透镜,透镜面向光接收件102,透镜的入光面为凸面,出光面为平面。透镜可以为准直微透镜。将透镜的入光面,也就是朝向血氧检测装置外侧的一面设置为凸面,由于入光面的形状不会受到装置内部空间的限制,所以凸面能够具有较大的弧度,以达到更好的聚光效果,从而提高血氧检测装置的抗干扰能力。
作为本申请的一个实施例,继续参考图8,透镜的焦点f与光接收件102上表面的中心点c重合,即光接收件102设置在透镜的焦点处,从而能够进一步提高聚光件104的聚光效果,更进一步提高血氧检测装置的抗干扰能力。
图9为本申请实施例提供的聚光件的结构示意图二,如图9所示,聚 光件104包括微透镜阵列,微透镜阵列背离光接收件102的一面为平面。
微透镜阵列具有多个凸向光接收件102的微透镜,与透镜相比,微透镜阵列的聚光效果更好。微透镜阵列的背离光接收件102的一面为平面,即微透镜阵列朝向用户皮肤的一面为平面,从而能够避免微透镜阵列藏污纳垢,便于保持微透镜阵列的清洁。
微透镜阵列与光接收件可以为一体式结构。在一些实施例中,可以通过注塑成型的方式来同时形成微透镜阵列和光接收件102,例如是使用聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)或聚碳酸酯(Polycarbonate,PC)直接形成一体式的微透镜阵列和光接收件102,以便于安装。
作为本申请的一个实施例,发光组件101与光接收件102的距离大于4毫米且小于20毫米。如图10所示,发光组件101与光接收件102的距离d是指发光组件101靠近光接收件102一侧的边缘与光接收件102靠近发光组件101一侧的边缘之间的距离,若发光组件101与光接收件102的距离小于或等于4毫米,会导致光接收件102接收更多皮肤表层传输的光;若发光组件101与光接收件102的距离大于或等于20毫米,会导致光接收件102接收到的光信号强度降低。通过调整发光组件101和光接收件102的位置关系,使发光组件101与光接收件102的距离大于4毫米且小于20毫米,一方减少光接收件102接收到的皮肤表层传输的光,另一方面保证光接收件102接收更多的经皮肤处理后的出射光。
本申请实施例还提供一种智能穿戴设备,包括上述任一实施例所述的血氧检测装置,并具有上述任一实施例的有益效果。
在本申请实施例中,智能穿戴设备包括但不限于手环、智能手表。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种血氧检测装置,其特征在于,包括:
    发光组件、挡光件和光接收件;
    所述发光组件包括多个发光单元,多个所述发光单元共同形成发光阵列;多个所述发光单元包括至少一个第一发光单元和至少两个第二发光单元;
    所述至少一个第一发光单元为中心对称结构或以其中一个第一发光单元为中心对称分布,且所述至少一个第一发光单元整体的中心与所述发光阵列的中心重合,所述至少两个第二发光单元相对于所述发光阵列的中心对称设置,且所述第一发光单元和所述第二发光单元间隔设置,其中,所述第一发光单元用于发射具有第一波长的第一光束,所述第二发光单元用于发射具有第二波长的第二光束,所述第一波长和所述第二波长不同;
    所述发光单元为激光器,或者,所述发光单元包括发光二极管和设置在所述发光二极管靠近用户侧的准直件,以使所述发光单元发射的光束以与用户的皮肤垂直或近似垂直的方向射向所述用户;
    所述挡光件设置在所述发光组件与所述光接收件之间,以阻挡所述发光组件发出的光束射向所述光接收件;
    所述光接收件用于接收所述第一光束经过所述用户后的第一出射光,以及接收所述第二光束经过所述用户后的第二出射光,并将接收的所述第一出射光的光信号和接收的所述第二出射光的光信号转化为用于进行血氧检测的电信号。
  2. 根据权利要求1所述的装置,其特征在于,所述第一发光单元和所述第二发光单元沿着至少一个排列方向间隔排列,所述排列方向和所述发光单元的出光方向相互垂直。
  3. 根据权利要求2所述的装置,其特征在于,所述第一发光单元和所述第二发光单元沿着相互正交的第一排列方向和第二排列方向间隔排列,所述第一排列方向和所述第二排列方向均与所述发光单元的出光方向相互垂直。
  4. 根据权利要求3所述的装置,其特征在于,所述第一发光单元和所述第二发光单元呈矩阵式排列。
  5. 根据权利要求1所述的装置,其特征在于,所述光接收件设置于 所述发光组件的一侧;或者,所述光接收件围设在所述发光组件的外围。
  6. 根据权利要求1所述的装置,其特征在于,还包括聚光件;所述聚光件设置在所述光接收件的入光侧,用于将所述第一出射光和所述第二出射光汇聚在所述光接收件处。
  7. 根据权利要求6所述的装置,其特征在于,所述聚光件包括透镜,所述透镜面向所述光接收件,所述透镜的入光面为凸面,出光面为平面。
  8. 根据权利要求6所述的装置,其特征在于,所述聚光件包括微透镜阵列,所述微透镜阵列的背离所述光接收件的一面为平面。
  9. 根据权利要求8所述的装置,其特征在于,所述微透镜阵列与所述光接收件为一体式结构。
  10. 根据权利要求1至9任一项所述的装置,其特征在于,所述挡光件围设在所述发光组件的外围。
  11. 根据权利要求1至9任一项所述的装置,其特征在于,所述发光组件到所述光接收件的距离大于4毫米且小于20毫米。
  12. 一种智能穿戴设备,其特征在于,包括如权利要求1至11任一项所述的血氧检测装置。
PCT/CN2020/097255 2020-06-19 2020-06-19 血氧检测装置及智能穿戴设备 WO2021253446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097255 WO2021253446A1 (zh) 2020-06-19 2020-06-19 血氧检测装置及智能穿戴设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097255 WO2021253446A1 (zh) 2020-06-19 2020-06-19 血氧检测装置及智能穿戴设备

Publications (1)

Publication Number Publication Date
WO2021253446A1 true WO2021253446A1 (zh) 2021-12-23

Family

ID=79269062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097255 WO2021253446A1 (zh) 2020-06-19 2020-06-19 血氧检测装置及智能穿戴设备

Country Status (1)

Country Link
WO (1) WO2021253446A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120253149A1 (en) * 2011-03-30 2012-10-04 Steuer Robert Method and apparatus for non-invasive photometric blood constituent diagnosis
CN105979871A (zh) * 2014-01-10 2016-09-28 格鲁科威斯塔公司 用于测量物质浓度的非侵入式系统和方法
CN207679431U (zh) * 2017-05-12 2018-08-03 杭州兆观传感科技有限公司 一种双光路传感器模组
US10080504B2 (en) * 2013-11-08 2018-09-25 University Of Houston System Imaging system for intra-operative and post-operative blood perfusion monitoring
CN109875572A (zh) * 2018-11-09 2019-06-14 唐庆圆 一种生理参数测量装置及方法
CN110367946A (zh) * 2019-08-28 2019-10-25 杭州兆观传感科技有限公司 一种可控阵列反射式光电传感器模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120253149A1 (en) * 2011-03-30 2012-10-04 Steuer Robert Method and apparatus for non-invasive photometric blood constituent diagnosis
US10080504B2 (en) * 2013-11-08 2018-09-25 University Of Houston System Imaging system for intra-operative and post-operative blood perfusion monitoring
CN105979871A (zh) * 2014-01-10 2016-09-28 格鲁科威斯塔公司 用于测量物质浓度的非侵入式系统和方法
CN207679431U (zh) * 2017-05-12 2018-08-03 杭州兆观传感科技有限公司 一种双光路传感器模组
CN109875572A (zh) * 2018-11-09 2019-06-14 唐庆圆 一种生理参数测量装置及方法
CN110367946A (zh) * 2019-08-28 2019-10-25 杭州兆观传感科技有限公司 一种可控阵列反射式光电传感器模组

Similar Documents

Publication Publication Date Title
US11751773B2 (en) Emitter arrangement for physiological measurements
TWI594445B (zh) 包含特徵以幫助減少雜光及/或光學串擾之光電模組
JP7152538B2 (ja) 生理学的測定デバイス
US10117612B2 (en) Detecting device
RU2720663C2 (ru) Оптический датчик жизненных показателей
US20120176599A1 (en) Optical transceiver
KR102033914B1 (ko) 혈당 측정방법 및 이를 이용한 인체착용형 혈당 측정장치
CN110393514A (zh) 可穿戴设备及光电式脉搏传感组件
JP2010540964A (ja) 光学デバイス構成要素
KR101717060B1 (ko) 헬스케어 기능을 가지는 모바일 플래쉬 모듈장치
WO2021253445A1 (zh) 生物特征检测装置及智能穿戴设备
WO2021253446A1 (zh) 血氧检测装置及智能穿戴设备
CN210871603U (zh) 一种血氧参数检测模组及其电子设备
CN213551804U (zh) 血氧检测装置及智能穿戴设备
CN213551703U (zh) 生物特征检测装置及智能穿戴设备
WO2021253451A1 (zh) 生物特征检测装置及智能穿戴设备
CN213551774U (zh) 生物特征检测装置及智能穿戴设备
JP7245774B2 (ja) 生理学的パラメータ検出のためのデバイス及び方法
US20210038080A1 (en) Optical diagnostic sensor systems and methods
WO2021232375A1 (zh) 一种血氧参数检测模组及其电子设备
WO2023100536A1 (ja) 測定装置
CN118340504A (zh) 一种光学模组、生理信号检测装置及穿戴式设备
TWI546056B (zh) Multifocal focused physiological sensing device
JP2022187539A (ja) スマートリング
CN116098600A (zh) 更聚光的指环

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940975

Country of ref document: EP

Kind code of ref document: A1