WO2021253421A1 - 卫星接入的方法、卫星、终端、通信设备及存储介质 - Google Patents

卫星接入的方法、卫星、终端、通信设备及存储介质 Download PDF

Info

Publication number
WO2021253421A1
WO2021253421A1 PCT/CN2020/097164 CN2020097164W WO2021253421A1 WO 2021253421 A1 WO2021253421 A1 WO 2021253421A1 CN 2020097164 W CN2020097164 W CN 2020097164W WO 2021253421 A1 WO2021253421 A1 WO 2021253421A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
terminal
information
movement
operation information
Prior art date
Application number
PCT/CN2020/097164
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/002,402 priority Critical patent/US20230239039A1/en
Priority to PCT/CN2020/097164 priority patent/WO2021253421A1/zh
Priority to CN202080001272.7A priority patent/CN114080858A/zh
Publication of WO2021253421A1 publication Critical patent/WO2021253421A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18541Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for handover of resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present disclosure relates to the field of wireless communication technology, but is not limited to the field of wireless communication technology, and in particular to a wireless communication method, satellite, terminal, communication device, and storage medium.
  • the signal coverage of the satellite network is not continuous, but changes with the movement of the communication satellite.
  • the embodiment of the present disclosure discloses a method for accessing a satellite, wherein, when applied to a satellite, the method includes:
  • the operation information is used for the terminal to access the satellite; the operation information includes measurement configuration parameter information.
  • a method for accessing a satellite wherein, when applied to a terminal, the method includes:
  • the operation information includes measurement configuration parameter information
  • a satellite wherein the satellite includes a transmitting module, wherein,
  • the sending module is configured to send operation information of the satellite to a terminal; wherein the operation information is used for the terminal to access the satellite; the operation information includes measurement configuration parameter information.
  • the belonging terminal includes a second receiving module and an access module, wherein,
  • the second receiving module is configured to receive operation information of the satellite sent by a satellite; wherein the operation information is used for the terminal to access the satellite; the operation information includes measurement configuration parameter information;
  • the access module is configured to access the satellite according to the operation information.
  • a communication device including:
  • a memory for storing executable instructions of the processor
  • the processor is configured to implement the method described in any embodiment of the present disclosure when running the executable instruction.
  • a computer storage medium stores a computer executable program, and the executable program is executed by a processor to implement the method described in any embodiment of the present disclosure.
  • the operation information of the satellite is sent to the terminal; wherein the operation information is used for the terminal to access the satellite; the operation information includes measurement configuration parameter information.
  • the terminal can measure the parameters related to the access to the satellite based on the operation information of the satellite, and the terminal will measure the related parameters based on the operation information of the satellite.
  • the related parameter measured by this solution will be more accurate, so that the terminal can reliably access the satellite for wireless communication.
  • Figure 1 is a schematic structural diagram of a wireless communication system.
  • Fig. 2 is a schematic diagram showing the structure of a wireless communication system according to an exemplary embodiment.
  • Fig. 3 is a schematic diagram showing the structure of a wireless communication system according to an exemplary embodiment.
  • Fig. 4 is a flowchart showing a method for accessing a satellite according to an exemplary embodiment.
  • Fig. 5 is a flowchart showing a method for accessing a satellite according to an exemplary embodiment.
  • Fig. 6 is a flowchart showing a method for accessing a satellite according to an exemplary embodiment.
  • Fig. 7 is a flowchart showing a method for accessing a satellite according to an exemplary embodiment.
  • Fig. 8 is a flowchart showing a method for accessing a satellite according to an exemplary embodiment.
  • Fig. 9 is a flowchart showing a method for accessing a satellite according to an exemplary embodiment.
  • Fig. 10 is a flowchart showing a method for accessing a satellite according to an exemplary embodiment.
  • Fig. 11 is a schematic diagram showing a method for accessing a satellite according to an exemplary embodiment.
  • Fig. 12 is a schematic diagram showing a device for accessing a satellite according to an exemplary embodiment.
  • Fig. 13 is a schematic diagram showing a device for accessing a satellite according to an exemplary embodiment.
  • Fig. 14 is a block diagram showing a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or “when” or “in response to a certainty”.
  • the term “greater than” or “less than” is used herein when characterizing the size relationship. However, for those skilled in the art, it can be understood that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include: several user equipment 110 and several base stations 120.
  • the user equipment 110 may be a device that provides voice and/or data connectivity to the user.
  • the user equipment 110 can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the user equipment 110 can be an Internet of Things user equipment, such as a sensor device, a mobile phone (or called a "cellular" phone).
  • a computer with Internet of Things user equipment for example, can be a fixed, portable, pocket-sized, handheld, computer built-in device, or a vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote user equipment (remote terminal), access user equipment (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment).
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user equipment 110 may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless user equipment connected to the trip computer.
  • the user equipment 110 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 120 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as the new air interface system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 120 may be an evolved base station (eNB) used in a 4G system.
  • the base station 120 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized and distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution A physical (Physical, PHY) layer protocol stack is provided in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 120.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • distribution A physical (Physical, PHY) layer protocol stack is provided in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 120.
  • a wireless connection can be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the user equipment 110.
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian
  • the above-mentioned user equipment may be regarded as the terminal equipment of the following embodiment.
  • the above-mentioned wireless communication system may further include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), and Policy and Charging Rules functional unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • the wireless communication network is described.
  • Satellite communication can be communication between radio communication stations on the ground using a communication satellite as a relay station to forward radio waves.
  • the communication function of the communication satellite includes at least one of the following: receiving a signal, changing the frequency of the signal, amplifying the signal, retransmitting the signal, and positioning.
  • the wireless communication network may be a network that integrates a mobile communication network and a satellite communication network.
  • the mobile communication network includes a base station 21, and the satellite communication network includes a communication satellite 22 and a gateway 23 of the communication satellite.
  • the base station 21 can establish a wireless communication connection with the gateway 23.
  • the terminal 24 can establish a wireless communication connection with the base station 21.
  • the terminal 24 can establish a wireless communication connection with the satellite 22.
  • the terminal 24 may be a multi-mode terminal, which is a terminal that supports both wireless communication with the satellite 22 and communication with the base station 21.
  • the wireless communication network includes a terminal 31, a communication satellite 32, and a gateway 33.
  • the area 34 is the area covered by the signal of an antenna on the satellite, and the area 35 is the satellite cell of the communication satellite 32.
  • the moving direction of the satellite is to the left, and the moving direction of the satellite cell follows the moving direction of the satellite to the left.
  • the moving direction of the terminal is opposite to that of the satellite, and the moving direction of the terminal is to the right. At this time, as shown in FIG. 3, in the horizontal direction, the relative distance between the terminal 31 and the communication satellite 32 will get closer and closer.
  • the movement direction of the satellite is to the right, and the movement direction of the satellite cell follows the movement direction of the satellite to the right.
  • the moving direction of the terminal is opposite to the moving direction of the satellite, and the moving direction of the terminal is to the left. At this time, in the horizontal direction, the relative distance between the terminal 31 and the communication satellite 32 will be farther and farther.
  • this embodiment provides a method for accessing a satellite, where, when applied to a satellite, the method includes:
  • Step 41 Send the operation information of the satellite to the terminal;
  • the operation information is used for the terminal to access the satellite; the operation information includes measurement configuration parameter information.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a road side unit (RSU, Road Side Unit), a smart home terminal, an industrial sensor device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a road side unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensor device, and/or a medical device, etc.
  • the satellite may have the function of a base station.
  • the satellite can be an interface device for the terminal to access the network.
  • the function of the base station may be the function of various types of base stations, for example, the function of the base station of the third-generation mobile communication (3G) network, the function of the base station of the fourth-generation mobile communication (4G) network, and the function of the fifth-generation mobile communication (5G) The function of the base station of the network or the function of other evolved base stations.
  • the satellite is a flying base station.
  • flying base stations can be deployed in airspace where the density of ground base stations is small and the wireless communication environment is poor.
  • the terminal accessing the satellite can be in response to the terminal being turned on to access the satellite; it can also be in the idle state that the terminal selects a satellite cell or reselects the satellite and then accesses the satellite; it can also be in the connected state. After reselecting the satellite cell, the terminal switches from another satellite to access the satellite.
  • the terminal will measure the parameters associated with the satellite before accessing the satellite, and only when the parameters associated with the satellite meet the setting conditions, will the satellite be selected for access.
  • the parameters associated with the satellite may include the movement speed of the terminal relative to the satellite, the offset direction of the terminal relative to the satellite, and so on.
  • the setting condition includes that the movement speed of the terminal relative to the satellite is less than a speed threshold and/or the offset between the movement direction of the terminal relative to the satellite is less than the offset threshold.
  • the measurement configuration parameter information includes at least one of the following information:
  • Direction coefficient information including the offset of the direction of satellite movement relative to the reference direction, used for the terminal to measure the relative offset of the direction of terminal movement relative to the direction of satellite movement;
  • the speed coefficient information contains the ratio of the speed of the satellite movement to the reference speed, which is used for the terminal to measure the relative movement speed of the terminal relative to the satellite.
  • the parameter associated with the satellite measured by the terminal includes an offset of the moving direction of the terminal relative to the moving direction of the satellite.
  • the terminal can only measure the offset of the terminal's moving direction relative to a certain fixed reference direction. Since the satellite moves all the time, it cannot measure the offset of the terminal's moving direction relative to the satellite's moving direction.
  • the measurement configuration parameter information may include the offset of the movement direction of the satellite at any time relative to the fixed reference direction. In this way, after the terminal receives the measurement configuration parameter information, it can be based on the measured offset of the terminal's movement direction relative to a fixed reference direction and the movement direction of the satellite contained in the measurement configuration parameter information at any time relative to the fixed reference direction. Refer to the offset of the direction to determine the offset of the direction of the terminal's movement relative to the direction of the satellite's movement.
  • the measurement configuration parameter information includes: direction coefficient information, including the offset of the direction of the satellite movement relative to the reference direction, and is used for the terminal to measure the relative offset of the direction of the terminal's movement relative to the direction of the satellite's movement.
  • the reference direction may be a reference direction in which the terminal moves.
  • the reference direction of terminal movement is direction A.
  • the reference direction of the terminal movement is the A direction.
  • the offset of the satellite movement direction measured by the satellite relative to the A direction is -30° (here, -30° is 1/ of 360° 12, then the corresponding direction coefficient can be -1/12), the offset of the direction of the terminal's movement measured by the terminal relative to the direction A is 120°, then the direction of the terminal's movement measured by the terminal is relative to the direction of the satellite's movement
  • the measurement configuration parameter information includes parameter information used for terminal measurement and parameter information used for terminal calculation.
  • the direction coefficient information may be parameter information used for terminal calculation.
  • the terminal can accurately obtain the offset of the direction of the terminal's movement relative to the direction of the satellite's movement, so that the terminal can reliably access the satellite based on the offset.
  • the parameters associated with the satellite include the speed of movement of the terminal relative to the satellite.
  • the terminal can only measure the relative speed of the terminal relative to a fixed reference speed (such as the rotation speed of the earth). Because the satellite is moving all the time, it cannot measure the reference speed of the terminal relative to the satellite.
  • the measurement configuration parameter information may include the relative speed of the satellite relative to the fixed reference speed at any time. In this way, after receiving the measurement configuration parameter information, the terminal can determine the relative speed of the terminal relative to a certain fixed reference direction and the relative speed of the satellite at any time contained in the measurement configuration parameter information. The relative speed of the terminal relative to the satellite.
  • the measurement configuration parameter information includes: speed coefficient information, including the ratio of the speed of the satellite movement to the reference speed, and is used for the terminal to measure the relative movement speed of the terminal relative to the satellite.
  • the reference speed is the reference speed of the terminal movement.
  • the reference speed of the terminal movement is the rotation speed of the earth.
  • the reference speed of the terminal movement is the rotation speed of the earth.
  • the ratio of the speed of the satellite motion measured by the satellite to the reference speed is -3.
  • the measurement configuration parameter information includes parameter information used for terminal measurement and parameter information used for terminal calculation.
  • the speed coefficient information may be parameter information used for terminal calculation.
  • the terminal can accurately obtain the relative movement speed of the terminal relative to the satellite, so that the terminal can reliably access the satellite based on the relative movement speed.
  • the operation information includes at least one of the operation information of the satellite and the operation information of the satellite cell formed by the satellite.
  • the operation information of the satellite is information associated with the movement of the satellite's body. For example, satellite moving speed information, moving direction information, and/or moving position at any time.
  • the operating information of the satellite cell formed by the satellite may be the moving speed information, the moving direction information, and/or the moving position information at any time of the satellite cell.
  • the moving speed information of the satellite cell may be the moving speed information of the reference point set in the satellite cell.
  • the moving direction information of the satellite cell may be the moving direction information of the reference point set in the satellite cell.
  • the mobile location information of the satellite cell may be the coordinate information of the reference point set in the satellite cell.
  • the reference point may be the center point of the satellite cell.
  • the satellite cell is the area covered by the satellite signal.
  • the satellite cell further includes multiple sub-cells, and each sub-cell corresponds to one antenna of the satellite. There can be multiple antennas on the satellite. The signal coverage of each antenna corresponds to a sub-cell.
  • the satellite operation information includes at least one of the following information:
  • the moving direction of the satellite may be the moving direction of the satellite relative to the reference direction.
  • the reference direction here may be the direction of the earth's rotation.
  • the movement track of the satellite is preset, and the movement direction of the satellite at any time is fixed. Therefore, the satellite can send the movement direction information of the satellite at any time or time period to the terminal by measuring the configuration parameter information.
  • the moving speed of the satellite may be the moving speed of the satellite relative to the reference speed.
  • the moving speed of the satellite may be the moving speed of the satellite relative to the rotation speed of the earth.
  • the movement trajectory and movement period of the satellite are preset, and the movement speed of the satellite at any moment is fixed. Therefore, the satellite can send the mobile speed information of the satellite at any time or time period to the terminal by measuring the configuration parameter information.
  • the position of the satellite may be the position of the satellite relative to the reference coordinate system.
  • the coordinate position here is the position relative to the ground coordinate system.
  • the satellite's motion trajectory and operating period are preset, and the satellite's position at any time is fixed. Therefore, the satellite can send the position information of the satellite at any time or time period to the terminal by measuring the configuration parameter information.
  • the operation information of the satellite cell includes at least one of the following information:
  • the moving direction information of the satellite cell
  • the moving speed information of the satellite cell is the moving speed information of the satellite cell
  • the location information of the satellite cell is the location information of the satellite cell.
  • each satellite corresponds to a satellite cell.
  • the satellite cell moves following the movement of the satellite.
  • the moving direction of the satellite cell may be the moving direction of the satellite cell relative to the reference direction.
  • the reference direction here may be the direction of the earth's rotation.
  • the movement trajectory of the satellite cell is preset, and the moving direction of the satellite cell at any time is fixed. Therefore, the satellite cell can send the movement direction information of the satellite cell at any time or time period to the terminal by measuring the configuration parameter information.
  • the moving speed of the satellite cell may be the moving speed of the satellite cell relative to the reference speed.
  • the moving speed of the satellite cell may be the moving speed of the satellite cell relative to the rotation speed of the earth.
  • the movement trajectory and movement period of the satellite cell are preset, and the moving speed of the satellite cell at any time is fixed. Therefore, the satellite cell can send the mobile speed information of the satellite at any time or time period to the terminal by measuring the configuration parameter information.
  • the position of the satellite cell may be the position of the satellite cell relative to the reference coordinate system.
  • the coordinate position here is the position relative to the ground coordinate system.
  • the movement trajectory and movement period of the satellite cell are preset, and the position of the satellite cell at any time is fixed. Therefore, the satellite cell can send the position information of the satellite cell at any time or time period to the terminal through the measurement configuration parameter information.
  • the operation information carries the identity document (ID, Identity document) of the satellite.
  • the satellite ID is used to uniquely identify a satellite.
  • Satellite identification (ID) can be associated with other information about the satellite. For example, if the satellite’s identity is “A”, then “A” can be associated with the satellite’s trajectory information, satellite’s moving speed information, satellite’s moving direction information, satellite location information, and signal coverage information to establish The corresponding mapping relationship.
  • the mapping relationship may be stored in the terminal in the form of a list.
  • the satellite with the satellite identification "A” has a moving speed of S1, the moving direction is K1, and the position of the satellite is C1;
  • the satellite with a satellite identification of "B” has a moving speed of S2, the moving direction is K2, and the satellite position is C2.
  • the satellite in response to the terminal establishing a radio resource control (RRC, Radio Resource Control) connection with the satellite, the satellite sends to the terminal operation information of the satellite for the terminal to access the satellite.
  • RRC Radio Resource Control
  • the terminal in response to the terminal establishing a radio resource control (RRC, Radio Resource Control) connection with the satellite, the satellite sends to the terminal operation information of the satellite for the terminal to access the satellite.
  • the terminal at time A, the terminal establishes a radio resource control (RRC, Radio Resource Control) connection with the satellite 1, and the satellite 1 will send the terminal the operation information of the satellite 1 for the terminal to access the satellite 1.
  • the terminal in the idle state needs to access the satellite again.
  • the terminal and satellite 1 are moving in the opposite direction.
  • the moving speed of the terminal is a
  • the moving speed of satellite 1 indicated by the operation information is b.
  • the satellite stores operating information of multiple satellites.
  • a satellite that stores the operating information of multiple satellites can simultaneously send the operating information of multiple satellites to the terminal for the terminal to select one of the satellites for access.
  • the terminal after the terminal receives the operation information of the satellite sent by each satellite for the terminal to access the satellite, it will save the operation information. For example, if the terminal receives the operation information sent by satellite 1, satellite 2 and satellite 3 in sequence, the terminal will receive the operation information sent by satellite 1, satellite 2 and satellite 3 in sequence.
  • the operation information carries identification information of the corresponding satellite, and the terminal may store the operation information of the corresponding satellite according to the identification information.
  • the satellite's operating trajectory is updated, and the satellite's operating information is updated synchronously.
  • the satellite will send to the terminal updated operating information of the satellite for the terminal to access the satellite.
  • the terminal After the terminal receives the updated operation information, it will use the updated operation information to synchronize the operation information of the satellite stored in the terminal.
  • the satellite control center can update the satellite's trajectory. For example, in the A time period, the satellite is moving on the A orbit. In the B time period, according to the scheduling strategy of the satellite control center, the satellite will be controlled to operate on the B orbit. At this time, the satellite control center has updated the satellite's trajectory, and the satellite's operating information will also be updated simultaneously.
  • the terminal when the terminal establishes a radio resource control (RRC) connection with the satellite, the terminal will send a request for obtaining operation information of the satellite to the satellite, and the satellite will send the request to the terminal after receiving the request. Request the operation information of the associated satellite for the terminal to access the satellite.
  • the terminal will periodically send an acquisition request to the satellite until it receives the operation information of the satellite for the terminal to access the satellite that is associated with the acquisition request and is fed back by the satellite. In this way, the situation that the satellite cannot receive the acquisition request due to the poor wireless communication environment with the satellite is reduced, and the reliability of the acquisition request transmission is improved.
  • the satellite sends the operation information associated with the acquisition request to the terminal in response to receiving the operation information acquisition request sent to the satellite by the terminal after receiving the user's trigger instruction.
  • the terminal works in a remote mountainous environment, the density of base stations is low, and the signal coverage is poor, resulting in a poor signal environment, and users often have abnormal network connections when using the terminal.
  • the user can trigger the terminal to send a request for obtaining operation information to the satellite.
  • the satellite After receiving the acquisition request, the satellite sends the operation information associated with the acquisition request to the terminal. In this way, the terminal can use the operating information to access the satellite. Since the satellite communication signal is less affected by the mountain environment, wireless communication by the terminal through the satellite can improve the user's communication experience.
  • the satellite in response to the terminal detecting that the wireless communication signal intensity sent by the base station is less than the first signal threshold, the satellite sends the operation information acquisition request to the satellite and sends the operation information associated with the acquisition request to the terminal.
  • the terminal works in a remote mountainous environment, the density of base stations is low, and the signal coverage is poor, resulting in a poor signal environment.
  • the strength of the wireless communication signal detected by the terminal is less than the first signal threshold, it will trigger the terminal to send a request for obtaining operation information to the satellite.
  • the satellite After receiving the acquisition request, the satellite sends the operation information associated with the acquisition request to the terminal. In this way, the terminal can use the operating information to access the satellite. In this way, the terminal can use the operating information to establish a wireless communication connection with the satellite. Since the satellite communication signal is less affected by the mountain environment, wireless communication by the terminal through the satellite can improve the user's communication experience.
  • the first signal threshold is less than the second signal threshold
  • the second signal threshold is set for switching from communicating with the first base station to communicating with the second base station due to the weakening of the signal strength when the terminal communicates with the first base station.
  • the signal threshold for base station communication. In this way, since the first signal threshold is less than the second signal threshold, the handover condition for handover from the first base station to the second base station will be satisfied first. When there is a second base station available for connection, the terminal will switch from communicating with the first base station to communicating with the second base station. Instead of sending an acquisition request to the satellite to obtain the operation information of the satellite to obtain the operation information and access the satellite. In this way, the situation of unnecessary satellite access when the terminal has a second base station available for handover is reduced.
  • the satellite receives the operation information acquisition request sent by the terminal to the satellite when the terminal is turned on, and sends the operation information associated with the acquisition request to the terminal. After receiving the acquisition request sent by the base station, the satellite sends operation information associated with the handover request to the terminal. In this way, the terminal can select a satellite cell of a satellite to camp on according to the operation information.
  • the satellite receives the operation information acquisition request sent to the satellite by the terminal that needs to perform cell handover, and sends the operation information associated with the acquisition request to the terminal. In this way, the terminal can select a satellite cell of a satellite for handover based on the operation information.
  • the satellite sends operation information associated with the handover request to the terminal in response to receiving the handover request sent by the base station. For example, if the load number of the base station connection exceeds the number threshold, in order to reduce the load of the base station, the base station sends a handover request to the satellite requesting the satellite to allow the terminal to establish a wireless communication connection with the satellite. After receiving the handover request sent by the base station, the satellite sends operation information associated with the handover request to the terminal. In this way, the terminal can use the operating information to establish wireless communication with the satellite, alleviating the pressure that the number of base station connection loads exceeds the number threshold.
  • the handover request sent by the base station to the satellite carries identification information of the terminal.
  • the satellite In response to receiving the handover request sent by the base station, the satellite sends the operation information associated with the handover request to the terminal indicated by the identification information.
  • the identification information is used to uniquely identify the terminal.
  • the identification information of the terminal may be a subscriber identity module (SIM) number of a subscriber identity module (SIM, Subscriber Identity Module) included in the terminal.
  • the satellite sends operating information of the satellite for the terminal to access the satellite to all terminals within the coverage area of the satellite signal.
  • the terminal when the terminal needs to access the satellite, the terminal can measure the parameters related to the access satellite based on the operation information of the satellite, and the terminal will measure the related parameters based on the operation information of the satellite.
  • the measurement of the related parameters is performed in consideration of the movement of the satellite, and the related parameters measured by this solution will be more accurate, so that the terminal can reliably access the satellite for wireless communication.
  • this embodiment provides a method for accessing a satellite, wherein the method further includes:
  • Step 51 Receive operation information sent by the base station; where the operation information is determined by the satellite control center and sent to the base station;
  • the base station can establish a communication connection with the satellite.
  • the satellite control center can determine the trajectory and movement period of the satellite.
  • the operation information may include speed information, direction information, position information and/or movement period information of the satellite operation.
  • the base station sends the operation information to the satellite.
  • the satellite may send an acquisition request for the operation information to the base station, and the base station sends the operation information to the satellite in response to and receiving the acquisition request.
  • the satellite control center can establish a communication connection with the satellite.
  • the base station can determine the satellite's trajectory and movement period.
  • the operation information may include speed information, direction information, position information and/or movement period information of the satellite operation.
  • the satellite control center sends the operation information to the satellite.
  • the satellite may send an acquisition request for the operation information to the satellite control center, and the satellite control center responds and receives the acquisition request to send the operation information to the satellite.
  • this embodiment provides a method for accessing a satellite, wherein, in step 41, sending operation information of the satellite to the terminal includes:
  • Step 61 Use unicast signaling or broadcast signaling to send satellite operation information to the terminal.
  • the unicast signaling and/or broadcast signaling is radio resource control RRC signaling.
  • the existing radio resource control (RRC) signaling can be used to carry operation information, the multiplexing of the radio resource control (RRC) signaling is realized, and the compatibility of the signaling is improved.
  • a method for accessing a satellite where, when applied to a terminal, the method includes:
  • Step 71 Receive satellite operation information sent by the satellite; wherein the operation information is for the terminal to access the satellite; the operation information includes measurement configuration parameter information;
  • Step 72 Access the satellite according to the operation information.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a road side unit (RSU, Road Side Unit), a smart home terminal, an industrial sensor device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a road side unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensor device, and/or a medical device, etc.
  • the satellite may have the function of a base station.
  • the satellite can be an interface device for the terminal to access the network.
  • the function of the base station may be the function of various types of base stations, for example, the function of the base station of the third-generation mobile communication (3G) network, the function of the base station of the fourth-generation mobile communication (4G) network, and the function of the fifth-generation mobile communication (5G) The function of the base station of the network or the function of other evolved base stations.
  • the satellite is a flying base station.
  • flying base stations can be deployed in airspace where the density of ground base stations is small and the wireless communication environment is poor.
  • the terminal accessing the satellite can be in response to the terminal being turned on to access the satellite; it can also be in the idle state that the terminal selects a satellite cell or reselects the satellite and then accesses the satellite; it can also be in the connected state. After reselecting the satellite cell, the terminal switches from another satellite to access the satellite.
  • the terminal will measure the parameters associated with the satellite before accessing the satellite, and only when the parameters associated with the satellite meet the setting conditions, will the satellite be selected for access.
  • the parameters associated with the satellite may include the movement speed of the terminal relative to the satellite, the offset direction of the terminal relative to the satellite, and so on.
  • the setting condition includes that the movement speed of the terminal relative to the satellite is less than a speed threshold and/or the movement direction offset of the terminal relative to the satellite is less than the offset threshold.
  • the measurement configuration parameter information includes at least one of the following information:
  • Direction coefficient information including the offset of the direction of satellite movement relative to the reference direction, used for the terminal to measure the relative offset of the direction of terminal movement relative to the direction of satellite movement;
  • the speed coefficient information contains the ratio of the speed of the satellite movement to the reference speed, which is used for the terminal to measure the relative movement speed of the terminal relative to the satellite.
  • the parameter associated with the satellite measured by the terminal includes an offset of the moving direction of the terminal relative to the moving direction of the satellite.
  • the terminal can only measure the offset of the terminal's moving direction relative to a certain fixed reference direction. Since the satellite moves all the time, it cannot measure the offset of the terminal's moving direction relative to the satellite's moving direction.
  • the measurement configuration parameter information may include the offset of the movement direction of the satellite at any time relative to the fixed reference direction. In this way, after the terminal receives the measurement configuration parameter information, it can be based on the measured offset of the terminal's movement direction relative to a fixed reference direction and the movement direction of the satellite contained in the measurement configuration parameter information at any time relative to the fixed reference direction. Refer to the offset of the direction to determine the offset of the direction of the terminal's movement relative to the direction of the satellite's movement.
  • the measurement configuration parameter information includes: direction coefficient information, including the offset of the direction of the satellite movement relative to the reference direction, and is used for the terminal to measure the relative offset of the direction of the terminal's movement relative to the direction of the satellite's movement.
  • the reference direction may be the reference direction of the terminal movement.
  • the reference direction of terminal movement is direction A.
  • the reference direction of the terminal movement is the A direction.
  • the offset of the satellite movement direction measured by the satellite relative to the A direction is -30° (here, -30° is 1/ of 360° 12, then the corresponding direction coefficient can be -1/12), the offset of the direction of the terminal's movement measured by the terminal relative to the direction A is 120°, then the direction of the terminal's movement measured by the terminal is relative to the direction of the satellite's movement
  • the measurement configuration parameter information includes parameter information used for terminal measurement and parameter information used for terminal calculation.
  • the direction coefficient information may be parameter information used for terminal calculation.
  • the terminal can accurately obtain the offset of the direction of the terminal's movement relative to the direction of the satellite's movement, so that the terminal can reliably access the satellite based on the offset.
  • the parameters associated with the satellite include the speed of movement of the terminal relative to the satellite.
  • the terminal can only measure the relative speed of the terminal relative to a fixed reference speed (such as the rotation speed of the earth). Because the satellite is moving all the time, it cannot measure the reference speed of the terminal relative to the satellite.
  • the measurement configuration parameter information may include the relative speed of the satellite relative to the fixed reference speed at any time. In this way, after receiving the measurement configuration parameter information, the terminal can determine the relative speed of the terminal relative to a certain fixed reference direction and the relative speed of the satellite at any time contained in the measurement configuration parameter information. The relative speed of the terminal relative to the satellite.
  • the measurement configuration parameter information includes: speed coefficient information, including the ratio of the speed of the satellite movement to the reference speed, and is used for the terminal to measure the relative movement speed of the terminal relative to the satellite.
  • the reference speed is the reference speed of the terminal movement.
  • the reference speed of the terminal movement is the rotation speed of the earth.
  • the reference speed of the terminal movement is the rotation speed of the earth.
  • the measurement configuration parameter information includes parameter information used for terminal measurement and parameter information used for terminal calculation.
  • the speed coefficient information may be parameter information used for terminal calculation.
  • the terminal can accurately obtain the relative movement speed of the terminal relative to the satellite, so that the terminal can reliably access the satellite based on the relative movement speed.
  • the operation information includes at least one of the operation information of the satellite and the operation information of the satellite cell formed by the satellite.
  • the operation information of the satellite is information associated with the movement of the satellite's body. For example, satellite moving speed information, moving direction information, and/or moving position at any time.
  • the operating information of the satellite cell formed by the satellite may be the moving speed information, the moving direction information, and/or the moving position information at any time of the satellite cell.
  • the moving speed information of the satellite cell may be the moving speed information of the reference point set in the satellite cell.
  • the moving direction information of the satellite cell may be the moving direction information of the reference point set in the satellite cell.
  • the mobile location information of the satellite cell may be the coordinate information of the reference point set in the satellite cell.
  • the reference point may be the center point of the satellite cell.
  • the satellite cell is the area covered by the satellite signal.
  • the satellite cell further includes multiple sub-cells, and each sub-cell corresponds to one antenna of the satellite. There can be multiple antennas on the satellite. The signal coverage of each antenna corresponds to a sub-cell.
  • the satellite operation information includes at least one of the following information:
  • the moving direction of the satellite may be the moving direction of the satellite relative to the reference direction.
  • the reference direction here may be the direction of the earth's rotation.
  • the movement track of the satellite is preset, and the movement direction of the satellite at any time is fixed. Therefore, the satellite can send the movement direction information of the satellite at any time or time period to the terminal by measuring the configuration parameter information.
  • the moving speed of the satellite may be the moving speed of the satellite relative to the reference speed.
  • the moving speed of the satellite may be the moving speed of the satellite relative to the rotation speed of the earth.
  • the movement trajectory and movement period of the satellite are preset, and the movement speed of the satellite at any moment is fixed. Therefore, the satellite can send the mobile speed information of the satellite at any time or time period to the terminal by measuring the configuration parameter information.
  • the position of the satellite may be the position of the satellite relative to the reference coordinate system.
  • the coordinate position here is the position relative to the ground coordinate system.
  • the movement trajectory and movement period of the satellite are preset, and the position of the satellite at any time is fixed. Therefore, the satellite can send the position information of the satellite at any time or time period to the terminal by measuring the configuration parameter information.
  • the operation information of the satellite cell includes at least one of the following information:
  • the moving direction information of the satellite cell
  • the moving speed information of the satellite cell is the moving speed information of the satellite cell
  • the location information of the satellite cell is the location information of the satellite cell.
  • each satellite corresponds to a satellite cell.
  • the satellite cell moves following the movement of the satellite.
  • the moving direction of the satellite cell may be the moving direction of the satellite cell relative to the reference direction.
  • the reference direction here may be the direction of the earth's rotation.
  • the movement trajectory of the satellite cell is preset, and the moving direction of the satellite cell at any time is fixed. Therefore, the satellite cell can send the movement direction information of the satellite cell at any time or time period to the terminal by measuring the configuration parameter information.
  • the moving speed of the satellite cell may be the moving speed of the satellite cell relative to the reference speed.
  • the moving speed of the satellite cell may be the moving speed of the satellite cell relative to the rotation speed of the earth.
  • the movement trajectory and movement period of the satellite cell are preset, and the moving speed of the satellite cell at any time is fixed. Therefore, the satellite cell can send the mobile speed information of the satellite at any time or time period to the terminal by measuring the configuration parameter information.
  • the position of the satellite cell may be the position of the satellite cell relative to the reference coordinate system.
  • the coordinate position here is the position relative to the ground coordinate system.
  • the movement trajectory and movement period of the satellite cell are preset, and the position of the satellite cell at any time is fixed. Therefore, the satellite cell can send the position information of the satellite cell at any time or time period to the terminal through the measurement configuration parameter information.
  • the operation information carries the identity document (ID, Identity document) of the satellite.
  • the satellite ID is used to uniquely identify a satellite.
  • Satellite identification (ID) can be associated with other information about the satellite. For example, if the satellite’s identity is “A”, then “A” can be associated with the satellite’s trajectory information, satellite’s moving speed information, satellite’s moving direction information, satellite location information, and signal coverage information to establish The corresponding mapping relationship.
  • the mapping relationship may be stored in the terminal in the form of a list.
  • the satellite with the satellite identification "A” has a moving speed of S1, the moving direction is K1, and the position of the satellite is C1;
  • the satellite with a satellite identification of "B” has a moving speed of S2, the moving direction is K2, and the satellite position is C2.
  • the satellite in response to the terminal establishing a radio resource control (RRC, Radio Resource Control) connection with the satellite, the satellite sends to the terminal operation information of the satellite for the terminal to access the satellite.
  • RRC Radio Resource Control
  • the terminal in response to the terminal establishing a radio resource control (RRC, Radio Resource Control) connection with the satellite, the satellite sends to the terminal operation information of the satellite for the terminal to access the satellite.
  • the terminal at time A, the terminal establishes a radio resource control (RRC, Radio Resource Control) connection with the satellite 1, and the satellite 1 will send the terminal the operation information of the satellite 1 for the terminal to access the satellite 1.
  • RRC Radio Resource Control
  • the terminal in the idle state needs to access the satellite again.
  • the terminal and satellite 1 are traveling in opposite directions.
  • the moving speed of the terminal is a
  • the moving speed of satellite 1 indicated by the operation information is b.
  • the satellite stores operating information of multiple satellites.
  • the terminal receives the operation information of multiple satellites sent by the satellite, and the terminal selects one of the satellites for access.
  • the terminal after the terminal receives the operation information of the satellite sent by each satellite for the terminal to access the satellite, it will save the operation information. For example, if the terminal receives the operation information sent by satellite 1, satellite 2 and satellite 3 in sequence, the terminal will receive the operation information sent by satellite 1, satellite 2 and satellite 3 in sequence.
  • the operation information carries identification information of the corresponding satellite, and the terminal may store the operation information of the corresponding satellite according to the identification information.
  • the satellite's operating trajectory is updated, and the satellite's operating information is updated synchronously.
  • the satellite will send to the terminal updated operating information of the satellite for the terminal to access the satellite.
  • the terminal After the terminal receives the updated operation information, it will use the updated operation information to synchronize the operation information of the satellite stored in the terminal.
  • the satellite control center can update the satellite's trajectory. For example, in the A time period, the satellite is moving on the A orbit. In the B time period, according to the scheduling strategy of the satellite control center, the satellite will be controlled to operate on the B orbit. At this time, the satellite control center has updated the satellite's trajectory, and the satellite's operating information will also be updated simultaneously.
  • the terminal when the terminal establishes a radio resource control (RRC) connection with the satellite, the terminal will send a request for obtaining operation information of the satellite to the satellite, and the satellite will send the request to the terminal after receiving the request. Request the operation information of the associated satellite for the terminal to access the satellite.
  • the terminal will periodically send an acquisition request to the satellite until it receives the operation information of the satellite for the terminal to access the satellite that is associated with the acquisition request and is fed back by the satellite. In this way, the situation that the satellite cannot receive the acquisition request due to the poor wireless communication environment with the satellite is reduced, and the reliability of the acquisition request transmission is improved.
  • the satellite sends the operation information associated with the acquisition request to the terminal in response to receiving the operation information acquisition request sent to the satellite by the terminal after receiving the user's trigger instruction.
  • the terminal works in a remote mountainous environment, the density of base stations is low, and the signal coverage is poor, resulting in a poor signal environment, and users often have abnormal network connections when using the terminal.
  • the user can trigger the terminal to send a request for obtaining operation information to the satellite.
  • the satellite After receiving the acquisition request, the satellite sends the operation information associated with the acquisition request to the terminal. In this way, the terminal can use the operating information to access the satellite. Since the satellite communication signal is less affected by the mountain environment, wireless communication by the terminal through the satellite can improve the user's communication experience.
  • the satellite in response to the terminal detecting that the wireless communication signal strength sent by the base station is less than the first signal threshold, the satellite sends to the satellite an acquisition request for operating information, and sends the operating information associated with the acquisition request to the terminal.
  • the terminal works in a remote mountainous environment, the density of base stations is low, and the signal coverage is poor, resulting in a poor signal environment.
  • the strength of the wireless communication signal detected by the terminal is less than the first signal threshold, it will trigger the terminal to send a request for obtaining operation information to the satellite.
  • the satellite After receiving the acquisition request, the satellite sends the operation information associated with the acquisition request to the terminal. In this way, the terminal can use the operating information to access the satellite. In this way, the terminal can use the operating information to establish a wireless communication connection with the satellite. Since the satellite communication signal is less affected by the mountain environment, wireless communication by the terminal through the satellite can improve the user's communication experience.
  • the first signal threshold is less than the second signal threshold
  • the second signal threshold is set for switching from communicating with the first base station to communicating with the second base station due to the weakening of the signal strength when the terminal communicates with the first base station.
  • the signal threshold for base station communication. In this way, since the first signal threshold is less than the second signal threshold, the handover condition for handover from the first base station to the second base station will be satisfied first. When there is a second base station available for connection, the terminal will switch from communicating with the first base station to communicating with the second base station. Instead of sending an acquisition request to the satellite to obtain the operation information of the satellite to obtain the operation information and access the satellite. In this way, the situation of unnecessary satellite access when the terminal has a second base station available for handover is reduced.
  • the satellite receives the operation information acquisition request sent to the satellite when the terminal is turned on, and sends the operation information associated with the acquisition request to the terminal. After receiving the acquisition request sent by the base station, the satellite sends operation information associated with the handover request to the terminal. In this way, the terminal can select a satellite cell of a satellite to camp on according to the operation information.
  • the satellite receives the operation information acquisition request sent to the satellite when the terminal needs to perform cell handover, and sends the operation information associated with the acquisition request to the terminal. In this way, the terminal can select a satellite cell of a satellite for handover based on the operation information.
  • the satellite sends operation information associated with the handover request to the terminal in response to receiving the handover request sent by the base station. For example, if the load number of the base station connection exceeds the number threshold, in order to reduce the load of the base station, the base station sends a handover request to the satellite requesting the satellite to allow the terminal to establish a wireless communication connection with the satellite. After receiving the handover request sent by the base station, the satellite sends operation information associated with the handover request to the terminal. In this way, the terminal can use the operating information to establish wireless communication with the satellite, alleviating the pressure that the number of base station connection loads exceeds the number threshold.
  • the handover request sent by the base station to the satellite carries identification information of the terminal.
  • the satellite In response to receiving the handover request sent by the base station, the satellite sends the operation information associated with the handover request to the terminal indicated by the identification information.
  • the identification information is used to uniquely identify the terminal.
  • the identification information of the terminal may be a subscriber identity module (SIM) number of a subscriber identity module (SIM, Subscriber Identity Module) included in the terminal.
  • a method for accessing a satellite is provided in this embodiment, wherein the method further includes:
  • Step 81 In response to the terminal in the idle state receiving the operating information of the satellite, determine the cell selection or cell reselection parameters of the terminal according to the relationship between the parameters indicated by the mobile information of the terminal and the parameters indicated by the operating information of the satellite.
  • the parameter indicated by the movement information of the terminal is the movement direction of the terminal measured by the terminal.
  • the parameter indicated by the satellite's operating information is the direction of the satellite's movement.
  • the reference direction of the terminal movement in the idle state is the A direction.
  • the offset of the satellite movement direction measured by the satellite relative to the A direction is 30°
  • the terminal movement direction measured by the terminal is relative to the A direction.
  • the offset is 120°
  • the relative offset relative to the direction of satellite motion The relative offset relative to the direction of satellite motion.
  • the relative offset can be determined as a parameter of the cell selection or cell reselection of the terminal.
  • the terminal in the idle state determines to access the satellite according to the parameters of the cell selection or cell reselection.
  • the parameter indicated by the movement information of the terminal is the movement speed of the terminal measured by the terminal.
  • the parameter indicated by the operation information of the satellite is the moving speed of the satellite.
  • the reference speed of the movement of the terminal in the idle state is the rotation speed of the earth.
  • the difference between the speed of the satellite movement measured by the satellite and the reference speed is 300, and the speed of the terminal movement measured by the terminal is relative to the reference speed.
  • the difference is 400
  • the relative moving speed can be determined as a parameter for cell selection or cell reselection of the terminal.
  • the terminal in the idle state determines to access the satellite according to the parameters of the cell selection or cell reselection.
  • this embodiment provides a method for accessing a satellite, where the method further includes:
  • Step 91 In response to the terminal in the connected state receiving the operation information of the satellite, the mobile measurement parameter is determined according to the relationship between the parameter indicated by the mobile information of the terminal and the parameter indicated by the operation information of the satellite, and the mobile information of the terminal is measured when the terminal is moving. .
  • the parameter indicated by the movement information of the terminal is the movement direction of the terminal measured by the terminal.
  • the parameter indicated by the operation information of the satellite is the direction of movement of the satellite.
  • the reference direction of the terminal movement in the connected state is the A direction.
  • the offset of the satellite movement direction measured by the satellite relative to the A direction is 30°
  • the terminal movement direction measured by the terminal is relative to the A direction.
  • the offset is 120°
  • the relative offset is determined as the movement information when the terminal moves.
  • the parameter indicated by the movement information of the terminal is the movement speed of the terminal measured by the terminal.
  • the parameter indicated by the operation information of the satellite is the moving speed of the satellite.
  • the reference speed of the terminal movement in the connected state is the rotation speed of the earth.
  • the difference between the speed of the satellite movement measured by the satellite and the reference speed is 300, and the speed of the terminal movement measured by the terminal is relative to the reference speed.
  • the relative movement speed is determined as the movement information when the terminal moves.
  • this embodiment provides a method for accessing a satellite, wherein the method further includes:
  • Step 101 In response to receiving the measurement configuration parameter information of the terminal in the idle state, determine the cell selection or cell reselection parameters of the terminal in the idle state according to the measurement configuration parameter information;
  • the cell reselection parameters of the terminal in the connected state are determined according to the measurement configuration parameter information.
  • the measurement configuration parameter information received by the terminal in the idle state is the movement direction of the satellite.
  • the reference direction of the terminal movement in the idle state is the A direction.
  • the offset of the satellite movement direction measured by the satellite relative to the A direction is 30°
  • the terminal movement direction measured by the terminal is relative to the A direction.
  • the offset is 120°
  • the relative offset can be determined as a parameter of the cell selection or cell reselection of the terminal.
  • the terminal in the idle state determines to access the satellite according to the parameters of the cell selection or cell reselection.
  • the measurement configuration parameter information received by the terminal in the idle state is the moving speed of the satellite.
  • the reference speed of the movement of the terminal in the idle state is the rotation speed of the earth.
  • the difference between the speed of the satellite movement measured by the satellite and the reference speed is 300, and the speed of the terminal movement measured by the terminal is relative to the reference speed.
  • the difference is 400
  • the relative moving speed can be determined as a parameter for cell selection or cell reselection of the terminal.
  • the terminal in the idle state determines to access the satellite according to the parameters of the cell selection or cell reselection.
  • the measurement configuration parameter information received by the terminal in the connected state is the movement direction of the satellite.
  • the reference direction of the terminal movement in the connected state is the A direction.
  • the offset of the satellite movement direction measured by the satellite relative to the A direction is 30°
  • the terminal movement direction measured by the terminal is relative to the A direction.
  • the offset is 120°
  • the relative offset can be determined as a parameter for the cell reselection of the terminal.
  • the terminal in the connected state determines to access the satellite according to the parameters of the cell reselection.
  • the measurement configuration parameter information received by the terminal in the connected state is the moving speed of the satellite.
  • the reference speed of the terminal movement in the connected state is the rotation speed of the earth.
  • the difference between the speed of the satellite movement measured by the satellite and the reference speed is 300, and the speed of the terminal movement measured by the terminal is relative to the reference speed.
  • the difference is 400
  • the relative moving speed can be determined as a parameter for the cell reselection of the terminal.
  • the terminal in the connected state determines to access the satellite according to the parameters of the cell reselection.
  • this embodiment provides a method for accessing a satellite, wherein, in step 71, receiving satellite operation information sent by the satellite includes:
  • Step 111 Receive satellite operating information sent by the satellite using unicast signaling or broadcast signaling.
  • the unicast signaling and/or broadcast signaling is radio resource control RRC signaling.
  • the existing radio resource control (RRC) signaling can be used to carry operation information, the multiplexing of the radio resource control (RRC) signaling is realized, and the compatibility of the signaling is improved.
  • this embodiment provides a satellite, where the satellite includes a sending module 121, where:
  • the sending module 121 is configured to send operation information of the satellite to the terminal; wherein the operation information is used for the terminal to access the satellite; the operation information includes measurement configuration parameter information.
  • the satellite further includes a first receiving module 122, wherein:
  • the first receiving module 122 is further configured to: receive operation information sent by the base station; wherein the operation information is determined by the satellite control center and sent to the base station;
  • the sending module 121 is further configured to send satellite operating information to the terminal by using unicast signaling or broadcast signaling.
  • a terminal is provided in this embodiment, where the terminal to which it belongs includes a second receiving module 131 and an access module 132, where:
  • the second receiving module 131 is configured to receive satellite operating information sent by the satellite; wherein the operating information is used for the terminal to access the satellite; the operating information includes measurement configuration parameter information;
  • the access module 132 is configured to access the satellite according to the operation information.
  • the terminal further includes a determining module 133, wherein:
  • the determining module 133 is configured to determine the cell selection or cell reselection parameters of the terminal according to the relationship between the parameters indicated by the mobile information of the terminal and the parameters indicated by the operation information in response to receiving the operation information of the terminal in the idle state .
  • the terminal further includes a determining module 133, wherein:
  • the determining module 133 is configured to: in response to the terminal in the connected state receiving the operating information, determine the mobile measurement parameter according to the relationship between the parameter indicated by the terminal's mobile information and the parameter indicated by the operating information, and measure the movement of the terminal when it moves. information.
  • the terminal further includes a determining module 133, wherein:
  • the determining module 133 is configured to: in response to the terminal in the idle state receiving the measurement configuration parameter information, determine the cell selection or cell reselection parameters of the terminal in the idle state according to the measurement configuration parameter information;
  • the cell reselection parameters of the terminal in the connected state are determined according to the measurement configuration parameter information.
  • the second receiving module 131 is further configured to:
  • the embodiment of the present disclosure provides a communication device, and the communication device includes:
  • a memory for storing processor executable instructions
  • the processor is configured to implement the method applied to any embodiment of the present disclosure when it is used to run executable instructions.
  • the processor may include various types of storage media.
  • the storage media is a non-transitory computer storage medium that can continue to memorize and store information thereon after the communication device is powered off.
  • the processor may be connected to the memory through a bus or the like, and is used to read an executable program stored on the memory.
  • An embodiment of the present disclosure further provides a computer storage medium, wherein the computer storage medium stores a computer executable program, and the executable program is executed by a processor to implement the method of any embodiment of the present disclosure. .
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network side device.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute any of the aforementioned methods applied to the base station, for example, the method shown in FIGS. 2-6.

Abstract

本公开实施例提供了一种接入卫星的方法,其中,应用于卫星中,方法包括:向终端发送卫星的运行信息;其中,运行信息用于供终端接入卫星;运行信息包括测量配置参数信息。

Description

卫星接入的方法、卫星、终端、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种无线通信的方法、卫星、终端、通信设备及存储介质。
背景技术
相关技术中,由于通信卫星发送的数量还比较少,导致了卫星网络的信号覆盖不是连续的,而是随着通信卫星的移动而变化的。
发明内容
本公开实施例公开了一种接入卫星的方法,其中,应用于卫星中,所述方法包括:
向终端发送所述卫星的运行信息;
其中,所述运行信息用于供所述终端接入所述卫星;所述运行信息包括测量配置参数信息。
根据本公开实施例的第二方面,提供一种接入卫星的方法,其中,应用于终端中,所述方法包括:
接收卫星发送的所述卫星的运行信息;其中,所述运行信息用于供所述终端接入所述卫星;所述运行信息包括测量配置参数信息;
根据所述运行信息接入所述卫星。
根据本公开实施例的第三方面,提供一种卫星,其中,所述卫星包括发送模块,其中,
所述发送模块,被配置为向终端发送所述卫星的运行信息;其中,所述运行信息用于供所述终端接入所述卫星;所述运行信息包括测量配置参 数信息。
根据本公开实施例的第四方面,提供一种终端,其中,所属终端包括第二接收模块和接入模块,其中,
所述第二接收模块,被配置为接收卫星发送的所述卫星的运行信息;其中,所述运行信息用于供所述终端接入所述卫星;所述运行信息包括测量配置参数信息;
所述接入模块,被配置为根据所述运行信息接入所述卫星。
根据本公开实施例的第五方面,提供一种通信设备,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的方法。
根据本公开实施例的第六方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
本公开实施例中,向终端发送所述卫星的运行信息;其中,所述运行信息用于供所述终端接入所述卫星;所述运行信息包括测量配置参数信息。如此,在所述终端需要接入所述卫星时,所述终端就可以基于卫星的运行信息进行与接入所述卫星相关的参数的测量,终端会综合卫星的所述运行信息测量该相关参数,相较于在不考虑卫星的运动情况下进行该相关参数的测量,本方案测量到的该相关参数会更加准确,使得终端可以可靠地接入所述卫星进行无线通信。
附图说明
图1是一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的无线通信系统的结构示意图。
图3是根据一示例性实施例示出的无线通信系统的结构示意图。
图4是根据一示例性实施例示出的一种接入卫星的方法的流程图。
图5是根据一示例性实施例示出的一种接入卫星的方法的流程图。
图6是根据一示例性实施例示出的一种接入卫星的方法的流程图。
图7是根据一示例性实施例示出的一种接入卫星的方法的流程图。
图8是根据一示例性实施例示出的一种接入卫星的方法的流程图。
图9是根据一示例性实施例示出的一种接入卫星的方法的流程图。
图10是根据一示例性实施例示出的一种接入卫星的方法的流程图。
图11是根据一示例性实施例示出的一种接入卫星的方法的示意图。
图12是根据一示例性实施例示出的一种接入卫星的装置的示意图。
图13是根据一示例性实施例示出的一种接入卫星的装置的示意图。
图14是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来 描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系 统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备 130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了方便对本公开任一实施例的理解,首先,对无线通信网络进行说明。
卫星通信可以是地面上的无线电通信站之间利用通信卫星作为中继站转发无线电波进行的通信。通信卫星的通信功能包括以下至少之一:接收信号、改变信号的频率、放大信号、转发信号和定位。
在一个实施例中,请参见图2,无线通信网络可以是融合移动通信网络和卫星通信网络的网络。其中,移动通信网络包括基站21,卫星通信网络包括通信卫星22和该通信卫星的信关站23。
在一个实施例中,基站21可以和信关站23建立无线通信连接。终端24可以和基站21建立无线通信连接。终端24可以和卫星22建立无线通信连接。这里,终端24可以为多模终端,多模终端为既支持与卫星22进行无线通信又支持与基站21进行通信的终端。
在一个实施例中,请参见图3,无线通信网络包括终端31、通信卫星32和信关站33。区域34为卫星上一个天线的信号覆盖的区域,区域35为通信卫星32的卫星小区。
在一个实施例中,卫星的运动方向向左,卫星小区的运动方向跟随卫星的运动方向向左。终端的移动方向与卫星的运动方向相反,终端的移动 方向向右。此时,如图3所示,在水平方向上,终端31与通信卫星32之间的相对距离会越来越近。
在一个实施例中,卫星的运动方向向右,卫星小区的运动方向跟随卫星的运动方向向右。终端的移动方向与卫星的运动方向相反,终端的移动方向向左。此时,在水平方向上,终端31与通信卫星32之间的相对距离会越来越远。
如图4所示,本实施例中提供一种接入卫星的方法,其中,应用于卫星中,该方法包括:
步骤41,向终端发送卫星的运行信息;
其中,运行信息用于供终端接入卫星;运行信息包括测量配置参数信息。
该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
在一个实施例中,该卫星可以具有基站的功能。这里,该卫星可以为终端接入网络的接口设备。这里,基站的功能可以为各种类型的基站的功能,例如,第三代移动通信(3G)网络的基站的功能、第四代移动通信(4G)网络的基站的功能、第五代移动通信(5G)网络的基站的功能或其它演进型基站的功能。在一个实施例中,该卫星为飞行的基站。这里,飞行的基站可以部署在地面基站密度较小、无线通信环境差的空域。
在一个实施例中,终端接入卫星可以是响应于终端开机接入该卫星;也可以是在空闲态下终端进行卫星小区选择或重选卫星后接入该卫星;还可以是在连接态下终端进行卫星小区重选后从另外的卫星切换后接入该卫星。
在一个实施例中,终端在接入卫星前,会对与该卫星相关联的参数进 行测量,只有与该卫星相关联的参数符合设置条件时,才会选择该卫星进行接入。这里,与卫星相关联的参数可以包括终端相对该卫星的运动速度,终端相对该卫星的偏移方向等。
在一个实施例中,该设置条件包括终端相对该卫星的运动速度小于速度阈值和/或终端相对卫星的运动方向之间的偏移量小于偏移量阈值。
在一个实施例中,测量配置参数信息包括以下至少之一的信息:
方向系数信息,包含卫星运动的方向相对参考方向的偏移量,用于供终端测量终端移动的方向相对卫星运动的方向的相对偏移量;
速度系数信息,包含卫星运动的速度相对参考速度的比值,用于供终端测量终端相对卫星的相对移动速度。
在一个实施例中,终端测量的与该卫星相关联的参数包括终端的移动方向相对卫星的运动方向的偏移量。在任意时刻,终端只能测量终端的移动方向相对某个固定参考方向的偏移量,由于卫星是时刻运动的,不能够测量终端的移动方向相对卫星运动方向的偏移量。这里,测量配置参数信息可包含卫星在任意时刻的运动方向相对该固定参考方向的偏移量。这样,终端在接收到该测量配置参数信息后,就可以根据测量到的终端的移动方向相对某个固定参考方向的偏移量和测量配置参数信息包含的卫星在任意时刻的运动方向相对该固定参考方向的偏移量,确定终端移动的方向相对卫星运动方向的偏移量。
在一个实施例中,测量配置参数信息包括:方向系数信息,包含卫星运动的方向相对参考方向的偏移量,用于供终端测量终端移动的方向相对卫星运动的方向的相对偏移量。这里,参考方向可以为终端移动的参考方向。
在一个实施例中,终端移动的参考方向为A方向,在a时刻,卫星测量到的卫星运动的方向相对A方向的偏移量为30°(这里,30°为360°的1/12,则对应的方向系数可以为1/12),终端测量到的终端移动的方向相对 A方向的偏移量为120°,则终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量为x1=120°-30°=90°,即90°为终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量。
在一个实施例中,终端移动的参考方向为A方向,在b时刻,卫星测量到的卫星运动的方向相对A方向的偏移量为-30°(这里,-30°为360°的1/12,则对应的方向系数可以为-1/12),终端测量到的终端移动的方向相对A方向的偏移量为120°,则终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量为x1=120°-(-30°)=150°,即150°为终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量。在一个实施例中,测量配置参数信息包括用于终端测量的参数信息和用于终端计算的参数信息。这里,方向系数信息可以是用于终端计算的参数信息。本实施例中,终端能够准确地获得终端移动的方向相对卫星运动的方向的偏移量,使得终端可以基于该偏移量可靠地接入该卫星。
在一个实施例中,与该卫星相关联的参数包括终端相对卫星的运动速度。在任意时刻,终端只能测量终端相对某个固定参考速度(如地球的自转速度)的相对速度,由于卫星是时刻运动的,不能够测量终端相对卫星的参考速度。这里,测量配置参数信息可包含卫星在任意时刻相对该该固定参考速度的相对速度。这样,终端在接收到该测量配置参数信息后,就可以根据测量到的终端相对某个固定参考方向的相对速度和测量配置参数信息包含的卫星任意时刻的相对该固定参考速度的相对速度,确定终端相对卫星的相对速度。
在一个实施例中,测量配置参数信息包括:速度系数信息,包含卫星运动的速度相对参考速度的比值,用于供终端测量终端相对卫星的相对移动速度。这里,参考速度为终端移动的参考速度。在一个实施例中,终端移动的参考速度为地球的自转速度,在a时刻,卫星测量到的卫星运动的速度相对参考速度的比值为3,若参考速度为100,则卫星运动的速度为300, 终端测量到的终端移动的速度相对参考速度的差值为400,则终端测量到的终端移动的速度相对卫星运动的速度的相对差值为y1=400-300=100,即100为终端测量到的终端相对卫星的相对移动速度。在一个实施例中,终端移动的参考速度为地球的自转速度,在b时刻,卫星测量到的卫星运动的速度相对参考速度的比值为-3,若参考速度为100,则卫星运动的速度实际为-300,终端测量到的终端移动的速度相对参考速度的差值为400,则终端测量到的终端移动的速度相对卫星运动的速度的相对差值为y2=400-(-300)=700,即700为终端测量到的终端相对卫星的相对移动速度。在一个实施例中,测量配置参数信息包括用于终端测量的参数信息和用于终端计算的参数信息。这里,速度系数信息可以是用于终端计算的参数信息。本实施例中,终端能够准确地获得终端相对卫星的相对移动速度,使得终端可以基于该相对移动速度可靠地接入该卫星。
在一个实施例中,运行信息,包括:卫星的运行信息和卫星形成的卫星小区的运行信息中的至少其中之一。
该卫星的运行信息为与卫星的本体的运动相关联的信息。例如,卫星的移动速度信息、移动方向信息和/或在任意时刻的移动位置等。
该卫星形成的卫星小区的运行信息可以是该卫星小区的移动速度信息、移动方向信息和/或在任意时刻的移动位置信息等。
在一个实施例中,卫星小区的移动速度信息可以是位于卫星小区中设置参考点的移动速度信息。卫星小区的移动方向信息可以是位于卫星小区中设置参考点的移动方向信息。卫星小区的移动位置信息可以是卫星小区中设置参考点的坐标信息。这里,参考点可以是卫星小区的中心点。这里,卫星的小区为卫星信号覆盖的区域。
在一个实施例中,卫星的小区还包括多个子小区,每个子小区对应卫星的一根天线。卫星上可以设置有多根天线。每根天线的信号覆盖范围对应一个子小区。
在一个实施例中,卫星的运行信息,包括以下至少之一的信息:
卫星的移动方向信息;
卫星的移动速度信息;
卫星的位置信息。
在一个实施例中,卫星的移动方向可以是卫星相对参考方向的移动方向。例如,这里的参考方向可以是地球自转的方向。在一个实施例中,卫星的运动轨迹是预先设置好的,卫星在任意时刻的移动方向是固定的。因此,卫星可以通过测量配置参数信息向终端发送卫星任意时刻或者时段的移动方向信息。
在一个实施例中,卫星的移动速度可以是卫星相对参考速度的移动速度。例如,卫星的移动速度可以是卫星相对地球自转速度的移动速度。
在一个实施例中,卫星的运动轨迹和运动周期是预先设置好的,卫星在任意时刻的移动速度是固定的。因此,卫星可以通过测量配置参数信息向终端发送卫星任意时刻或者时段的移动速度信息。
在一个实施例中,卫星的位置可以是卫星相对参考坐标系的位置。例如,这里的坐标位置为相对地面坐标系的位置。在一个实施例中,卫星的运动轨迹和运行周期是预先设置好的,卫星在任意时刻的位置是固定的。因此,卫星可以通过测量配置参数信息向终端发送卫星任意时刻或者时段的位置信息。
在一个实施例中,卫星小区的运行信息,包括以下至少之一的信息:
卫星小区的移动方向信息;
卫星小区的移动速度信息;
卫星小区的位置信息。
这里,每个卫星都对应一个卫星小区。卫星小区跟随卫星的移动而移动。
在一个实施例中,卫星小区的移动方向可以是卫星小区相对参考方向 的移动方向。例如,这里的参考方向可以是地球自转的方向。在一个实施例中,卫星小区的运动轨迹是预先设置好的,卫星小区在任意时刻的移动方向是固定的。因此,卫星小区可以通过测量配置参数信息向终端发送卫星小区任意时刻或者时段的移动方向信息。
在一个实施例中,卫星小区的移动速度可以是卫星小区相对参考速度的移动速度。例如,卫星小区的移动速度可以是卫星小区相对地球自转速度的移动速度。在一个实施例中,卫星小区的运动轨迹和运动周期是预先设置好的,卫星小区在任意时刻的移动速度是固定的。因此,卫星小区可以通过测量配置参数信息向终端发送卫星任意时刻或者时段的移动速度信息。
在一个实施例中,卫星小区的位置可以是卫星小区相对参考坐标系的位置。例如,这里的坐标位置为相对地面坐标系的位置。在一个实施例中,卫星小区的运动轨迹和运动周期是预先设置好的,卫星小区在任意时刻的位置是固定的。因此,卫星小区可以通过测量配置参数信息向终端发送卫星小区任意时刻或者时段的位置信息。
在一个实施例中,运行信息携带有卫星的身份标识(ID,Identity document)。这里,卫星的身份标识用于唯一标识一颗卫星。卫星的身份标识(ID)可以关联卫星的其它信息。例如,卫星的身份标识为“A”,则可以将“A”与该卫星的运行轨迹信息、卫星的移动速度信、卫星的移动方向信息、卫星的位置信息和信号覆盖范围信息进行关联,建立对应的映射关系。在一个实施例中,在终端接收到运行信息后,如表一所示,该映射关系可以以列表形式存储在终端中。卫星标识为“A”的卫星,移动速度为S1,移动方向为K1,卫星的位置为C1;卫星标识为“B”的卫星,移动速度为S2,移动方向为K2,卫星位置为C2。
表一
卫星标识 卫星的移动速度信息 卫星的移动方向信息 卫星的位置信息
A S1 K1 C1
B S2 K2 C2
在一个实施例中,卫星响应于终端与卫星建立无线资源控制(RRC,Radio Resource Control)连接,向终端发送供终端接入卫星的该卫星的运行信息。这样,当终端在下一次需要再次接入该卫星时,就可以利用该运行信息确定是否接入该卫星。例如,在A时刻,终端与卫星1建立了无线资源控制(RRC,Radio Resource Control)连接,卫星1会向终端发送供终端接入卫星1的卫星1的运行信息。在B时刻,处于空闲态的终端需要再次接入卫星,此时,终端和卫星1反向而行,终端的移动速度大小为a,运行信息指示的卫星1的移动速度大小为b,终端相对卫星1的速度大小为x=a+b,当x小于接入卫星1的接入阈值X时,终端就可以选择该卫星1进行接入,与卫星1建立连接。
在一个实施例中,卫星存储有多个卫星的运行信息。存储有多个卫星的运行信息的卫星可以同时将多个卫星的运行信息发送给终端供终端选择其中的一个卫星进行接入。
在一个实施例中,终端在接收到每个卫星发送的供终端接入卫星的该卫星的运行信息后,都会保存该运行信息。例如,终端依次接收到卫星1、卫星2和卫星3发送的运行信息,则终端会依次接收卫星1、卫星2和卫星3发送的运行信息。在一个实施例中,该运行信息携带有对应卫星的标识信息,终端可以是根据该标识信息存储对应卫星的运行信息。
在一个实施例中,卫星的运行轨迹发生了更新,卫星的运行信息会同步更新。卫星响应于终端与卫星建立无线资源控制(RRC)连接,会向终端发送供终端接入卫星的卫星的更新后的运行信息。终端在接收到更新后的运行信息后,会利用更新后的运行信息对存储在终端的该卫星的运行信 息进行同步更新。在一个实施例中,卫星控制中心可以对卫星的运行轨迹进行更新。例如,在A时间段,卫星在A轨道上运行。在B时间段,根据卫星控制中心的调度策略,会控制卫星在B轨道上运行。此时,卫星控制中心对卫星的运行轨迹进行了更新,卫星的运行信息也会同步更新。
在一个实施例中,在终端与卫星建立无线资源控制(RRC)连接时,终端会向卫星发送针对卫星的运行信息的获取请求,卫星在接收到该获取请求后,会向终端发送与该获取请求相关联的供终端接入卫星的卫星的运行信息。这里,终端会周期性地向卫星发送获取请求直至接收到卫星反馈的与获取请求相关联的供终端接入卫星的卫星的运行信息。这样,减少到因为与卫星的无线通信环境不好导致的卫星接收不到该获取请求的情况,提升了获取请求传输的可靠性。
在一个实施例中,卫星响应于接收到终端在接收到用户的触发指令后向卫星发送的针对运行信息的获取请求,向终端发送与获取请求相关联的运行信息。例如,终端工作在偏远的山区环境,基站密度小,信号覆盖差,导致信号环境不是很好,用户使用终端经常出现连网异常的情况。此时,用户可以触发终端向卫星发送针对运行信息的获取请求。卫星在接收到获取请求后会向终端发送与获取请求相关联的运行信息。这样,终端就可以利用该运行信息接入该卫星。由于卫星的通信信号受山区环境的影响较小,终端通过卫星进行无线通信可以提升用户的通信体验。
在一个实施例中,卫星响应于终端检测到的基站发送的无线通信信号强度小于第一信号阈值后向卫星发送的针对运行信息的获取请求,向终端发送与获取请求相关联的运行信息。例如,终端工作在偏远的山区环境,基站密度小,信号覆盖差,导致信号环境不是很好。当终端检测到的无线通信信号的强度小于第一信号阈值,会触发终端向卫星发送的针对运行信息的获取请求。卫星在接收到获取请求后会向终端发送与获取请求相关联的运行信息。这样,终端就可以利用该运行信息接入该卫星。这样,终端 就可以利用该运行信息与卫星建立无线通信连接。由于卫星的通信信号受山区环境的影响较小,终端通过卫星进行无线通信可以提升用户的通信体验。
在一个实施例中,第一信号阈值小于第二信号阈值,第二信号阈值为针对因终端与第一基站进行通信时信号强度变弱情况而设置的从与第一基站通信切换至与第二基站通信的信号阈值。这样,由于第一信号阈值小于第二信号阈值,会先满足从第一基站切换至第二基站的切换条件。当有可供连接的第二基站存在时,终端会从与第一基站通信切换至与第二基站通信。而不是向卫星发送获取卫星的运行信息的获取请求以获取运行信息并接入卫星。如此,减少了终端有第二基站可供切换时,进行不必要的接入卫星的情况。
在一个实施例中,卫星接收到终端开机向卫星发送的针对运行信息的获取请求,向终端发送与获取请求相关联的运行信息。卫星在接收到基站发送的获取请求后,向终端发送与切换请求相关联的运行信息。这样,终端就可以根据该运行信息选择一个卫星的卫星小区进行驻留。
在一个实施例中,卫星接收到终端需要进行小区切换向卫星发送的针对运行信息的获取请求,向终端发送与获取请求相关联的运行信息。这样,终端就可以根据该运行信息选择一个卫星的卫星小区进行切换。
在一个实施例中,卫星响应于接收到基站发送的切换请求,向终端发送与切换请求相关联的运行信息。例如,基站连接的负载数量超过数量阈值,为了减轻基站的负荷,基站向卫星发送请求卫星允许终端与卫星建立无线通信连接的切换请求。卫星在接收到基站发送的切换请求后,向终端发送与切换请求相关联的运行信息。这样,终端就可以利用该运行信息与卫星建立无线通信,缓解基站连接负载的数量超过数量阈值的压力。在一个实施例中,基站向卫星发送的切换请求携带有终端的标识信息。卫星响应于接收到基站发送的切换请求,会向该标识信息指示的终端发送与切换 请求相关联的运行信息。该标识信息用于唯一标识该终端。这里,终端的标识信息可以是终端所包含的用户识别模块(SIM,Subscriber Identity Module)的用户识别模块(SIM)号。
在一个实施例中,卫星会向卫星信号覆盖范围内的所有终端发送供终端接入卫星的卫星的运行信息。
本公开实施例中,在终端需要接入卫星时,终端就可以基于卫星的运行信息进行与接入卫星相关的参数的测量,终端会综合卫星的运行信息测量该相关参数,相较于在不考虑卫星的运动情况下进行该相关参数的测量,本方案测量到的该相关参数会更加准确,使得终端可以可靠地接入卫星进行无线通信。
如图5所示,本实施例中提供一种接入卫星的方法,其中,该方法,还包括:
步骤51,接收基站发送的运行信息;其中,运行信息是由卫星控制中心确定并发送给基站的;
或者,
接收卫星控制中心发送的运行信息;其中,运行信息是由基站确定并发送给卫星控制中心的。
在一个实施例中,基站可以与卫星建立通信连接。卫星控制中心可以确定卫星的运行轨迹和运动周期。这里,运行信息可以包括卫星运行的速度信息、方向信息、位置信息和/或运动周期信息。基站响应于接收到卫星控制中心发送的运行信息,向卫星发送该运行信息。在一个实施例中,卫星可以向基站发送针对该运行信息的获取请求,基站响应与接收到该获取请求,向卫星发送运行信息。
在一个实施例中,卫星控制中心可以与卫星建立通信连接。基站可以确定卫星的运行轨迹和运动周期。这里,运行信息可以包括卫星运行的速度信息、方向信息、位置信息和/或运动周期信息。卫星控制中心响应于接 收到基站发送的运行信息,向卫星发送该运行信息。在一个实施例中,卫星可以向卫星控制中心发送针对该运行信息的获取请求,卫星控制中心响应与接收到该获取请求,向卫星发送运行信息。
如图6所示,本实施例中提供一种接入卫星的方法,其中,步骤41中,向终端发送卫星的运行信息,包括:
步骤61,利用单播信令或者广播信令向终端发送卫星的运行信息。
在一个实施例中,单播信令和/或广播信令为无线资源控制RRC信令。
这样,可以利用已有的无线资源控制(RRC)信令携带运行信息,实现了无线资源控制(RRC)信令的复用,提升了信令的兼容性。
如图7所示,本实施例中提供一种接入卫星的方法,其中,应用于终端中,该方法包括:
步骤71,接收卫星发送的卫星的运行信息;其中,运行信息供终端接入卫星;运行信息包括测量配置参数信息;
步骤72,根据运行信息接入卫星。
该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
在一个实施例中,该卫星可以具有基站的功能。这里,该卫星可以为终端接入网络的接口设备。这里,基站的功能可以为各种类型的基站的功能,例如,第三代移动通信(3G)网络的基站的功能、第四代移动通信(4G)网络的基站的功能、第五代移动通信(5G)网络的基站的功能或其它演进型基站的功能。在一个实施例中,该卫星为飞行的基站。这里,飞行的基站可以部署在地面基站密度较小、无线通信环境差的空域。
在一个实施例中,终端接入卫星可以是响应于终端开机接入该卫星; 也可以是在空闲态下终端进行卫星小区选择或重选卫星后接入该卫星;还可以是在连接态下终端进行卫星小区重选后从另外的卫星切换后接入该卫星。
在一个实施例中,终端在接入卫星前,会对与该卫星相关联的参数进行测量,只有与该卫星相关联的参数符合设置条件时,才会选择该卫星进行接入。这里,与卫星相关联的参数可以包括终端相对该卫星的运动速度,终端相对该卫星的偏移方向等。
在一个实施例中,该设置条件包括终端相对该卫星的运动速度小于速度阈值和/或终端相对卫星的运动方向偏移量小于偏移量阈值。
在一个实施例中,测量配置参数信息包括以下至少之一的信息:
方向系数信息,包含卫星运动的方向相对参考方向的偏移量,用于供终端测量终端移动的方向相对卫星运动的方向的相对偏移量;
速度系数信息,包含卫星运动的速度相对参考速度的比值,用于供终端测量终端相对卫星的相对移动速度。
在一个实施例中,终端测量的与该卫星相关联的参数包括终端的移动方向相对卫星的运动方向的偏移量。在任意时刻,终端只能测量终端的移动方向相对某个固定参考方向的偏移量,由于卫星是时刻运动的,不能够测量终端的移动方向相对卫星运动方向的偏移量。这里,测量配置参数信息可包含卫星在任意时刻的运动方向相对该固定参考方向的偏移量。这样,终端在接收到该测量配置参数信息后,就可以根据测量到的终端的移动方向相对某个固定参考方向的偏移量和测量配置参数信息包含的卫星在任意时刻的运动方向相对该固定参考方向的偏移量,确定终端移动的方向相对卫星运动方向的偏移量。
在一个实施例中,测量配置参数信息包括:方向系数信息,包含卫星运动的方向相对参考方向的偏移量,用于供终端测量终端移动的方向相对卫星运动的方向的相对偏移量。这里,参考方向可以为终端移动的参考方 向。在一个实施例中,终端移动的参考方向为A方向,在a时刻,卫星测量到的卫星运动的方向相对A方向的偏移量为30°(这里,30°为360°的1/12,则对应的方向系数可以为1/12),终端测量到的终端移动的方向相对A方向的偏移量为120°,则终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量为x1=120°-30°=90°,即90°为终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量。在一个实施例中,终端移动的参考方向为A方向,在b时刻,卫星测量到的卫星运动的方向相对A方向的偏移量为-30°(这里,-30°为360°的1/12,则对应的方向系数可以为-1/12),终端测量到的终端移动的方向相对A方向的偏移量为120°,则终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量为x1=120°-(-30°)=150°,即150°为终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量。在一个实施例中,测量配置参数信息包括用于终端测量的参数信息和用于终端计算的参数信息。这里,方向系数信息可以是用于终端计算的参数信息。本实施例中,终端能够准确地获得终端移动的方向相对卫星运动的方向的偏移量,使得终端可以基于该偏移量可靠地接入该卫星。
在一个实施例中,与该卫星相关联的参数包括终端相对卫星的运动速度。在任意时刻,终端只能测量终端相对某个固定参考速度(如地球的自转速度)的相对速度,由于卫星是时刻运动的,不能够测量终端相对卫星的参考速度。这里,测量配置参数信息可包含卫星在任意时刻相对该该固定参考速度的相对速度。这样,终端在接收到该测量配置参数信息后,就可以根据测量到的终端相对某个固定参考方向的相对速度和测量配置参数信息包含的卫星任意时刻的相对该固定参考速度的相对速度,确定终端相对卫星的相对速度。
在一个实施例中,测量配置参数信息包括:速度系数信息,包含卫星运动的速度相对参考速度的比值,用于供终端测量终端相对卫星的相对移动速度。这里,参考速度为终端移动的参考速度。在一个实施例中,终端 移动的参考速度为地球的自转速度,在a时刻,卫星测量到的卫星运动的速度相对参考速度的比值为3,若参考速度为100,则卫星运动的速度为300,终端测量到的终端移动的速度相对参考速度的差值为400,则终端测量到的终端移动的速度相对卫星运动的速度的相对差值为y1=400-300=100,即100为终端测量到的终端相对卫星的相对移动速度。在一个实施例中,终端移动的参考速度为地球的自转速度,在b时刻,卫星测量到的卫星运动的速度相对参考速度的比值为-3,若参考速度为100,则卫星运动的速度实际为为-300,终端测量到的终端移动的速度相对参考速度的差值为400,则终端测量到的终端移动的速度相对卫星运动的速度的相对差值为y2=400-(-300)=700,即700为终端测量到的终端相对卫星的相对移动速度。在一个实施例中,测量配置参数信息包括用于终端测量的参数信息和用于终端计算的参数信息。这里,速度系数信息可以是用于终端计算的参数信息。本实施例中,终端能够准确地获得终端相对卫星的相对移动速度,使得终端可以基于该相对移动速度可靠地接入该卫星。
在一个实施例中,运行信息,包括:卫星的运行信息和卫星形成的卫星小区的运行信息中的至少其中之一。
该卫星的运行信息为与卫星的本体的运动相关联的信息。例如,卫星的移动速度信息、移动方向信息和/或在任意时刻的移动位置等。
该卫星形成的卫星小区的运行信息可以是该卫星小区的移动速度信息、移动方向信息和/或在任意时刻的移动位置信息等。在一个实施例中,卫星小区的移动速度信息可以是位于卫星小区中设置参考点的移动速度信息。卫星小区的移动方向信息可以是位于卫星小区中设置参考点的移动方向信息。卫星小区的移动位置信息可以是卫星小区中设置参考点的坐标信息。这里,参考点可以是卫星小区的中心点。这里,卫星的小区为卫星信号覆盖的区域。在一个实施例中,卫星的小区还包括多个子小区,每个子小区对应卫星的一根天线。卫星上可以设置有多根天线。每根天线的信号 覆盖的范围对应一个子小区。
在一个实施例中,卫星的运行信息,包括以下至少之一的信息:
卫星的移动方向信息;
卫星的移动速度信息;
卫星的位置信息。
在一个实施例中,卫星的移动方向可以是卫星相对参考方向的移动方向。例如,这里的参考方向可以是地球自转的方向。在一个实施例中,卫星的运动轨迹是预先设置好的,卫星在任意时刻的移动方向是固定的。因此,卫星可以通过测量配置参数信息向终端发送卫星任意时刻或者时段的移动方向信息。
在一个实施例中,卫星的移动速度可以是卫星相对参考速度的移动速度。例如,卫星的移动速度可以是卫星相对地球自转速度的移动速度。在一个实施例中,卫星的运动轨迹和运动周期是预先设置好的,卫星在任意时刻的移动速度是固定的。因此,卫星可以通过测量配置参数信息向终端发送卫星任意时刻或者时段的移动速度信息。
在一个实施例中,卫星的位置可以是卫星相对参考坐标系的位置。例如,这里的坐标位置为相对地面坐标系的位置。在一个实施例中,卫星的运动轨迹和运动周期是预先设置好的,卫星在任意时刻的位置是固定的。因此,卫星可以通过测量配置参数信息向终端发送卫星任意时刻或者时段的位置信息。
在一个实施例中,卫星小区的运行信息,包括以下至少之一的信息:
卫星小区的移动方向信息;
卫星小区的移动速度信息;
卫星小区的位置信息。
这里,每个卫星都对应一个卫星小区。卫星小区跟随卫星的移动而移动。
在一个实施例中,卫星小区的移动方向可以是卫星小区相对参考方向的移动方向。例如,这里的参考方向可以是地球自转的方向。在一个实施例中,卫星小区的运动轨迹是预先设置好的,卫星小区在任意时刻的移动方向是固定的。因此,卫星小区可以通过测量配置参数信息向终端发送卫星小区任意时刻或者时段的移动方向信息。
在一个实施例中,卫星小区的移动速度可以是卫星小区相对参考速度的移动速度。例如,卫星小区的移动速度可以是卫星小区相对地球自转速度的移动速度。在一个实施例中,卫星小区的运动轨迹和运动周期是预先设置好的,卫星小区在任意时刻的移动速度是固定的。因此,卫星小区可以通过测量配置参数信息向终端发送卫星任意时刻或者时段的移动速度信息。
在一个实施例中,卫星小区的位置可以是卫星小区相对参考坐标系的位置。例如,这里的坐标位置为相对地面坐标系的位置。在一个实施例中,卫星小区的运动轨迹和运动周期是预先设置好的,卫星小区在任意时刻的位置是固定的。因此,卫星小区可以通过测量配置参数信息向终端发送卫星小区任意时刻或者时段的位置信息。
在一个实施例中,运行信息携带有卫星的身份标识(ID,Identity document)。这里,卫星的身份标识用于唯一标识一颗卫星。卫星的身份标识(ID)可以关联卫星的其它信息。例如,卫星的身份标识为“A”,则可以将“A”与该卫星的运行轨迹信息、卫星的移动速度信、卫星的移动方向信息、卫星的位置信息和信号覆盖范围信息进行关联,建立对应的映射关系。在一个实施例中,在终端接收到运行信息后,如表一所示,该映射关系可以以列表形式存储在终端中。卫星标识为“A”的卫星,移动速度为S1,移动方向为K1,卫星的位置为C1;卫星标识为“B”的卫星,移动速度为S2,移动方向为K2,卫星位置为C2。
表一
Figure PCTCN2020097164-appb-000001
在一个实施例中,卫星响应于终端与卫星建立无线资源控制(RRC,Radio Resource Control)连接,向终端发送供终端接入卫星的该卫星的运行信息。这样,当终端在下一次需要再次接入该卫星时,就可以利用该运行信息确定是否接入该卫星。例如,在A时刻,终端与卫星1建立了无线资源控制(RRC,Radio Resource Control)连接,卫星1会向终端发送供终端接入卫星1的卫星1的运行信息。在B时刻,处于空闲态的终端需要再次接入卫星,此时,终端和卫星1反向而行,终端的移动速度大小为a,运行信息指示的卫星1的移动速度大小为b,终端相对卫星1的速度大小为x=a+b,当x小于接入卫星1的接入阈值X时,终端就可以选择该卫星1进行接入,与卫星1建立连接。
在一个实施例中,卫星存储有多个卫星的运行信息。终端接收卫星发送的多个卫星的运行信息,终端选择其中的一个卫星进行接入。
在一个实施例中,终端在接收到每个卫星发送的供终端接入卫星的该卫星的运行信息后,都会保存该运行信息。例如,终端依次接收到卫星1、卫星2和卫星3发送的运行信息,则终端会依次接收卫星1、卫星2和卫星3发送的运行信息。在一个实施例中,该运行信息携带有对应卫星的标识信息,终端可以是根据该标识信息存储对应卫星的运行信息。
在一个实施例中,卫星的运行轨迹发生了更新,卫星的运行信息会同步更新。卫星响应于终端与卫星建立无线资源控制(RRC)连接,会向终端发送供终端接入卫星的卫星的更新后的运行信息。终端在接收到更新后的运行信息后,会利用更新后的运行信息对存储在终端的该卫星的运行信 息进行同步更新。在一个实施例中,卫星控制中心可以对卫星的运行轨迹进行更新。例如,在A时间段,卫星在A轨道上运行。在B时间段,根据卫星控制中心的调度策略,会控制卫星在B轨道上运行。此时,卫星控制中心对卫星的运行轨迹进行了更新,卫星的运行信息也会同步更新。
在一个实施例中,在终端与卫星建立无线资源控制(RRC)连接时,终端会向卫星发送针对卫星的运行信息的获取请求,卫星在接收到该获取请求后,会向终端发送与该获取请求相关联的供终端接入卫星的卫星的运行信息。这里,终端会周期性地向卫星发送获取请求直至接收到卫星反馈的与获取请求相关联的供终端接入卫星的卫星的运行信息。这样,减少到因为与卫星的无线通信环境不好导致的卫星接收不到该获取请求的情况,提升了获取请求传输的可靠性。
在一个实施例中,卫星响应于接收到终端在接收到用户的触发指令后向卫星发送的针对运行信息的获取请求,向终端发送与获取请求相关联的运行信息。例如,终端工作在偏远的山区环境,基站密度小,信号覆盖差,导致信号环境不是很好,用户使用终端经常出现连网异常的情况。此时,用户可以触发终端向卫星发送针对运行信息的获取请求。卫星在接收到获取请求后会向终端发送与获取请求相关联的运行信息。这样,终端就可以利用该运行信息接入该卫星。由于卫星的通信信号受山区环境的影响较小,终端通过卫星进行无线通信可以提升用户的通信体验。
在一个实施例中,卫星响应于终端检测到的基站发送的无线通信信号强度小于第一信号阈值后向卫星发送的针对运行信息的获取请求,向终端发送与获取请求相关联的运行信息。例如,终端工作在偏远的山区环境,基站密度小,信号覆盖差,导致信号环境不是很好。当终端检测到的无线通信信号的强度小于第一信号阈值,会触发终端向卫星发送的针对运行信息的获取请求。卫星在接收到获取请求后会向终端发送与获取请求相关联的运行信息。这样,终端就可以利用该运行信息接入该卫星。这样,终端 就可以利用该运行信息与卫星建立无线通信连接。由于卫星的通信信号受山区环境的影响较小,终端通过卫星进行无线通信可以提升用户的通信体验。
在一个实施例中,第一信号阈值小于第二信号阈值,第二信号阈值为针对因终端与第一基站进行通信时信号强度变弱情况而设置的从与第一基站通信切换至与第二基站通信的信号阈值。这样,由于第一信号阈值小于第二信号阈值,会先满足从第一基站切换至第二基站的切换条件。当有可供连接的第二基站存在时,终端会从与第一基站通信切换至与第二基站通信。而不是向卫星发送获取卫星的运行信息的获取请求以获取运行信息并接入卫星。如此,减少了终端有第二基站可供切换时,进行不必要的接入卫星的情况。
在一个实施例中,卫星接收到终端开机时向卫星发送的针对运行信息的获取请求,向终端发送与获取请求相关联的运行信息。卫星在接收到基站发送的获取请求后,向终端发送与切换请求相关联的运行信息。这样,终端就可以根据该运行信息选择一个卫星的卫星小区进行驻留。
在一个实施例中,卫星接收到终端需要进行小区切换时向卫星发送的针对运行信息的获取请求,向终端发送与获取请求相关联的运行信息。这样,终端就可以根据该运行信息选择一个卫星的卫星小区进行切换。
在一个实施例中,卫星响应于接收到基站发送的切换请求,向终端发送与切换请求相关联的运行信息。例如,基站连接的负载数量超过数量阈值,为了减轻基站的负荷,基站向卫星发送请求卫星允许终端与卫星建立无线通信连接的切换请求。卫星在接收到基站发送的切换请求后,向终端发送与切换请求相关联的运行信息。这样,终端就可以利用该运行信息与卫星建立无线通信,缓解基站连接负载的数量超过数量阈值的压力。在一个实施例中,基站向卫星发送的切换请求携带有终端的标识信息。卫星响应于接收到基站发送的切换请求,会向该标识信息指示的终端发送与切换 请求相关联的运行信息。该标识信息用于唯一标识该终端。这里,终端的标识信息可以是终端所包含的用户识别模块(SIM,Subscriber Identity Module)的用户识别模块(SIM)号。
如图8所示,本实施例中提供一种接入卫星的方法,其中,该方法,还包括:
步骤81、响应于处于空闲态的终端接收到卫星的运行信息,根据终端的移动信息指示的参数和卫星的运行信息指示的参数之间的关系,确定终端的小区选择或者小区重选的参数。
在一个实施例中,终端的移动信息指示的参数为终端测量的终端的移动方向。卫星的运行信息指示的参数为卫星的运动方向。例如,处于空闲态的终端移动的参考方向为A方向,在a时刻,卫星测量到的卫星运动的方向相对A方向的偏移量为30°,终端测量到的终端移动的方向相对A方向的偏移量为120°,则终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量为x1=120°-30°=90°,即90°为终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量。则可以将该相对偏移量确定为终端的小区选择或者小区重选的参数。处于空闲态的终端根据该小区选择或者小区重选的参数确定接入卫星。
在一个实施例中,终端的移动信息指示的参数为终端测量的终端的移动速度。卫星的运行信息指示的参数为卫星的移动速度。例如,处于空闲态的终端移动的参考速度为地球的自转速度,在a时刻,卫星测量到的卫星运动的速度相对参考速度的差值为300,终端测量到的终端移动的速度相对参考速度的差值为400,则终端测量到的终端移动的速度相对卫星运动的速度的相对差值为y1=400-300=100,即100为终端测量到的终端相对卫星的相对移动速度。则可以将该相对移动速度确定为终端的小区选择或者小区重选的参数。处于空闲态的终端根据该小区选择或者小区重选的参数确定接入卫星。
如图9所示,本实施例中提供一种接入卫星的方法,其中,该方法,还包括:
步骤91,响应于处于连接态的终端接收到卫星的运行信息,根据终端的移动信息指示的参数和卫星的运行信息指示的参数之间的关系确定的移动测量参数,测量终端移动时的移动信息。
在一个实施例中,终端的移动信息指示的参数为终端测量的终端的移动方向。卫星的运行信息指示的参数为卫星的运动方向。例如,处于连接态的终端移动的参考方向为A方向,在a时刻,卫星测量到的卫星运动的方向相对A方向的偏移量为30°,终端测量到的终端移动的方向相对A方向的偏移量为120°,则终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量为x1=120°-30°=90°,即90°为终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量。将该相对偏移量确定为终端移动时的移动信息。
在一个实施例中,终端的移动信息指示的参数为终端测量的终端的移动速度。卫星的运行信息指示的参数为卫星的移动速度。例如,处于连接态的终端移动的参考速度为地球的自转速度,在a时刻,卫星测量到的卫星运动的速度相对参考速度的差值为300,终端测量到的终端移动的速度相对参考速度的差值为400,则终端测量到的终端移动的速度相对卫星运动的速度的相对差值为y1=400-300=100,即100为终端测量到的终端相对卫星的相对移动速度。将该相对移动速度确定为终端移动时的移动信息。
如图10所示,本实施例中提供一种接入卫星的方法,其中,该方法,还包括:
步骤101,响应于处于空闲态的终端接收到测量配置参数信息,根据测量配置参数信息确定处于空闲态的终端的小区选择或者小区重选的参数;
或者,
响应于处于连接态的终端接收到测量配置参数信息,根据测量配置参 数信息确定处于连接态的终端的小区重选的参数。
在一个实施例中,处于空闲态的终端接收到的测量配置参数信息为卫星的运动方向。例如,处于空闲态的终端移动的参考方向为A方向,在a时刻,卫星测量到的卫星运动的方向相对A方向的偏移量为30°,终端测量到的终端移动的方向相对A方向的偏移量为120°,则终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量为x1=120°-30°=90°,即90°为终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量。则可以将该相对偏移量确定为终端的小区选择或者小区重选的参数。处于空闲态的终端根据该小区选择或者小区重选的参数确定接入卫星。
在一个实施例中,处于空闲态的终端接收到的测量配置参数信息为卫星的移动速度。例如,处于空闲态的终端移动的参考速度为地球的自转速度,在a时刻,卫星测量到的卫星运动的速度相对参考速度的差值为300,终端测量到的终端移动的速度相对参考速度的差值为400,则终端测量到的终端移动的速度相对卫星运动的速度的相对差值为y1=400-300=100,即100为终端测量到的终端相对卫星的相对移动速度。则可以将该相对移动速度确定为终端的小区选择或者小区重选的参数。处于空闲态的终端根据该小区选择或者小区重选的参数确定接入卫星。
在一个实施例中,处于连接态的终端接收到的测量配置参数信息为卫星的运动方向。例如,处于连接态的终端移动的参考方向为A方向,在a时刻,卫星测量到的卫星运动的方向相对A方向的偏移量为30°,终端测量到的终端移动的方向相对A方向的偏移量为120°,则终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量为x1=120°-30°=90°,即90°为终端测量到的终端移动的方向相对卫星运动的方向的相对偏移量。则可以将该相对偏移量确定为终端的小区重选的参数。处于连接态的终端根据该小区重选的参数确定接入卫星。
在一个实施例中,处于连接态的终端接收到的测量配置参数信息为卫 星的移动速度。例如,处于连接态的终端移动的参考速度为地球的自转速度,在a时刻,卫星测量到的卫星运动的速度相对参考速度的差值为300,终端测量到的终端移动的速度相对参考速度的差值为400,则终端测量到的终端移动的速度相对卫星运动的速度的相对差值为y1=400-300=100,即100为终端测量到的终端相对卫星的相对移动速度。则可以将该相对移动速度确定为终端的小区重选的参数。处于连接态的终端根据该小区重选的参数确定接入卫星。
如图11所示,本实施例中提供一种接入卫星的方法,其中,步骤71中,接收卫星发送的卫星的运行信息,包括:
步骤111,接收卫星利用单播信令或者广播信令发送的卫星的运行信息。
在一个实施例中,单播信令和/或广播信令为无线资源控制RRC信令。
这样,可以利用已有的无线资源控制(RRC)信令携带运行信息,实现了无线资源控制(RRC)信令的复用,提升了信令的兼容性。
如图12所示,本实施例中提供一种卫星,其中,卫星包括发送模块121,其中,
发送模块121,被配置为向终端发送卫星的运行信息;其中,运行信息用于供终端接入卫星;运行信息包括测量配置参数信息。
在一个实施例中,卫星还包括第一接收模块122,其中,
第一接收模块122,还被配置为:接收基站发送的运行信息;其中,运行信息是由卫星控制中心确定并发送给基站的;
或者,
接收卫星控制中心发送的运行信息;其中,运行信息是由基站确定并发送给卫星控制中心的。
在一个实施例中,发送模块121,还被配置为利用单播信令或者广播信 令向终端发送卫星的运行信息。
如图13所示,本实施例中提供一种终端,其中,所属终端包括第二接收模块131和接入模块132,其中,
第二接收模块131,被配置为接收卫星发送的卫星的运行信息;其中,运行信息用于供终端接入卫星;运行信息包括测量配置参数信息;
接入模块132,被配置为根据运行信息接入卫星。
在一个实施例中,终端还包括确定模块133,其中,
确定模块133,被配置为:响应于处于空闲态的终端接收到运行信息,根据终端的移动信息指示的参数和运行信息指示的参数之间的关系,确定终端的小区选择或者小区重选的参数。
在一个实施例中,终端还包括确定模块133,其中,
确定模块133,被配置为:响应于处于连接态的终端接收到运行信息,根据终端的移动信息指示的参数和运行信息指示的参数之间的关系确定的移动测量参数,测量终端移动时的移动信息。
在一个实施例中,终端还包括确定模块133,其中,
确定模块133,被配置为:响应于处于空闲态的终端接收到测量配置参数信息,根据测量配置参数信息确定处于空闲态的终端的小区选择或者小区重选的参数;
或者,
响应于处于连接态的终端接收到测量配置参数信息,根据测量配置参数信息确定处于连接态的终端的小区重选的参数。
在一个实施例中,第二接收模块131,还被配置为:
接收卫星利用单播信令或者广播信令发送的卫星的运行信息。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现应用于本公开任意实施例的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序。
本公开实施例还提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的方法。。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
如图14所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图14,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法,例如,如图2-6所示方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适 应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (28)

  1. 一种接入卫星的方法,其中,应用于卫星中,所述方法包括:
    向终端发送所述卫星的运行信息;
    其中,所述运行信息用于供所述终端接入所述卫星;所述运行信息包括测量配置参数信息。
  2. 根据权利要求1所述的方法,其中,所述测量配置参数信息包括以下至少之一的信息:
    方向系数信息,包含所述卫星运动的方向相对参考方向的偏移量,用于供所述终端测量所述终端移动的方向相对所述卫星运动的方向的相对偏移量;
    速度系数信息,包含所述卫星运动的速度相对参考速度的比值,用于供所述终端测量所述终端相对所述卫星的相对移动速度。
  3. 根据权利要求2所述的方法,其中,所述参考方向为所述终端移动的参考方向和/或所述参考速度为所述终端移动的参考速度。
  4. 根据权利要求1所述的方法,其中,所述运行信息,包括:
    所述卫星的运行信息和所述卫星形成的卫星小区的运行信息中的至少其中之一。
  5. 根据权利要求4所述的方法,其中,所述卫星的运行信息,包括以下至少之一的信息:
    卫星的移动方向信息;
    卫星的移动速度信息;
    卫星的位置信息。
  6. 根据权利要求4所述的方法,其中,所述卫星小区的运行信息,包括以下至少之一的信息:
    卫星小区的移动方向信息;
    卫星小区的移动速度信息;
    卫星小区的位置信息。
  7. 根据权利要求1所述的方法,其中,所述方法,还包括:
    接收基站发送的所述运行信息;其中,所述运行信息是由卫星控制中心确定并发送给所述基站的;
    或者,
    接收卫星控制中心发送的所述运行信息;其中,所述运行信息是由基站确定并发送给所述卫星控制中心的。
  8. 根据权利要求1所述的方法,其中,所述向终端发送所述卫星的运行信息,包括:
    利用单播信令或者广播信令向所述终端发送所述卫星的所述运行信息。
  9. 一种接入卫星的方法,其中,应用于终端中,所述方法包括:
    接收卫星发送的所述卫星的运行信息;其中,所述运行信息用于供所述终端接入所述卫星;所述运行信息包括测量配置参数信息;
    根据所述运行信息接入所述卫星。
  10. 根据权利要求9所述的方法,其中,所述测量配置参数信息包括以下至少之一的信息:
    方向系数信息,包含所述卫星运动的方向相对参考方向的偏移量,用于供所述终端测量所述终端移动的方向相对所述卫星运动的方向的相对偏移量;
    速度系数信息,包含所述卫星运动的速度相对参考速度的比值,用于供所述终端测量所述终端相对所述卫星的相对移动速度。
  11. 根据权利要求10所述的方法,其中,所述参考方向为所述终端移动的参考方向和/或所述参考速度为所述终端移动的参考速度。
  12. 根据权利要求9所述的方法,其中,所述运行信息,包括:
    所述卫星的运行信息和所述卫星形成的卫星小区的运行信息中的至少其中之一。
  13. 根据权利要求12所述的方法,其中,所述卫星的运行信息包括以下至少之一的信息:
    卫星的移动方向信息;
    卫星的移动速度信息;
    卫星的位置信息。
  14. 根据权利要求12所述的方法,其中,所述卫星小区的运行信息,包括以下至少之一的信息:
    卫星小区的移动方向信息;
    卫星小区的移动速度信息;
    卫星小区的位置信息。
  15. 根据权利要求13所述的方法,其中,所述方法,还包括:
    响应于处于空闲态的所述终端接收到所述卫星的运行信息,根据所述终端的移动信息指示的参数和所述卫星的运行信息指示的参数之间的关系,确定所述终端的小区选择或者小区重选的参数。
  16. 根据权利要求13所述的方法,其中,所述方法,还包括:
    响应于处于连接态的所述终端接收到所述卫星的运行信息,根据所述终端的移动信息指示的参数和所述卫星的运行信息指示的参数之间的关系确定的移动测量参数,测量所述终端移动时的移动信息。
  17. 根据权利要求9所述的方法,其中,所述方法,还包括:
    响应于处于空闲态的所述终端接收到所述测量配置参数信息,根据所述测量配置参数信息确定所述处于空闲态的终端的小区选择或者小区重选的参数;
    或者,
    响应于处于连接态的所述终端接收到所述测量配置参数信息,根据所 述测量配置参数信息确定所述处于连接态的终端的小区重选的参数。
  18. 根据权利要求9所述的方法,其中,所述接收卫星发送的所述卫星的的运行信息,包括:
    接收所述卫星利用单播信令或者广播信令发送的所述卫星的所述运行信息。
  19. 一种卫星,其中,所述卫星包括发送模块,其中,
    所述发送模块,被配置为向终端发送所述卫星的运行信息;其中,所述运行信息用于供所述终端接入所述卫星;所述运行信息包括测量配置参数信息。
  20. 根据权利要求19所述的卫星,其中,所述卫星还包括第一接收模块,其中,
    所述第一接收模块,还被配置为:接收基站发送的所述运行信息;其中,所述运行信息是由卫星控制中心确定并发送给所述基站的;
    或者,
    接收卫星控制中心发送的所述运行信息;其中,所述运行信息是由基站确定并发送给所述卫星控制中心的。
  21. 根据权利要求19所述的卫星,其中,所述发送模块,还被配置为利用单播信令或者广播信令向所述终端发送所述卫星的所述运行信息。
  22. 一种终端,其中,所属终端包括第二接收模块和接入模块,其中,
    所述第二接收模块,被配置为接收卫星发送的所述卫星的运行信息;其中,所述运行信息用于供所述终端接入所述卫星;所述运行信息包括测量配置参数信息;
    所述接入模块,被配置为根据所述运行信息接入所述卫星。
  23. 根据权利要求22所述的终端,其中,所述终端还包括确定模块,其中,
    所述确定模块,被配置为:响应于处于空闲态的所述终端接收到所述 运行信息,根据所述终端的移动信息指示的参数和所述运行信息指示的参数之间的关系,确定所述终端的小区选择或者小区重选的参数。
  24. 根据权利要求22所述的终端,其中,所述终端还包括确定模块,其中,
    所述确定模块,被配置为:响应于处于连接态的所述终端接收到所述运行信息,根据所述终端的移动信息指示的参数和所述运行信息指示的参数之间的关系确定的移动测量参数,测量所述终端移动时的移动信息。
  25. 根据权利要求22所述的终端,其中,所述终端还包括确定模块,其中,
    所述确定模块,被配置为:响应于处于空闲态的所述终端接收到所述测量配置参数信息,根据所述测量配置参数信息确定所述处于空闲态的终端的小区选择或者小区重选的参数;
    或者,
    响应于处于连接态的所述终端接收到所述测量配置参数信息,根据所述测量配置参数信息确定所述处于连接态的终端的小区重选的参数。
  26. 根据权利要求22所述的终端,其中,所述第二接收模块,还被配置为:
    接收所述卫星利用单播信令或者广播信令发送的所述卫星的所述运行信息。
  27. 一种用户设备,其中,所述用户设备,包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为:用于运行所述可执行指令时,实现权利要求1至8或者9至18任一项所述的方法。
  28. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现权利要求1至8或者9 至18任一项所述的方法。
PCT/CN2020/097164 2020-06-19 2020-06-19 卫星接入的方法、卫星、终端、通信设备及存储介质 WO2021253421A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/002,402 US20230239039A1 (en) 2020-06-19 2020-06-19 Method for accessing satellite, and communication device
PCT/CN2020/097164 WO2021253421A1 (zh) 2020-06-19 2020-06-19 卫星接入的方法、卫星、终端、通信设备及存储介质
CN202080001272.7A CN114080858A (zh) 2020-06-19 2020-06-19 卫星接入的方法、卫星、终端、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097164 WO2021253421A1 (zh) 2020-06-19 2020-06-19 卫星接入的方法、卫星、终端、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021253421A1 true WO2021253421A1 (zh) 2021-12-23

Family

ID=79268999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097164 WO2021253421A1 (zh) 2020-06-19 2020-06-19 卫星接入的方法、卫星、终端、通信设备及存储介质

Country Status (3)

Country Link
US (1) US20230239039A1 (zh)
CN (1) CN114080858A (zh)
WO (1) WO2021253421A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116155369A (zh) * 2023-04-20 2023-05-23 成都爱瑞无线科技有限公司 卫星通信方法、卫星设备、终端及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379435A (zh) * 2012-04-28 2013-10-30 电信科学技术研究院 一种基于卫星移动通信系统的广播信息传输方法和设备
CN108696945A (zh) * 2018-05-11 2018-10-23 西安空间无线电技术研究所 一种面向低轨卫星通信系统的随机接入方法
WO2019242537A1 (zh) * 2018-06-19 2019-12-26 索尼公司 电子设备、用户设备、无线通信方法和存储介质
CN110972257A (zh) * 2018-09-29 2020-04-07 华为技术有限公司 通信方法、相关设备及计算机存储介质
CN111225450A (zh) * 2018-11-26 2020-06-02 华为技术有限公司 适用于卫星通信的随机接入方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379435A (zh) * 2012-04-28 2013-10-30 电信科学技术研究院 一种基于卫星移动通信系统的广播信息传输方法和设备
CN108696945A (zh) * 2018-05-11 2018-10-23 西安空间无线电技术研究所 一种面向低轨卫星通信系统的随机接入方法
WO2019242537A1 (zh) * 2018-06-19 2019-12-26 索尼公司 电子设备、用户设备、无线通信方法和存储介质
CN110972257A (zh) * 2018-09-29 2020-04-07 华为技术有限公司 通信方法、相关设备及计算机存储介质
CN111225450A (zh) * 2018-11-26 2020-06-02 华为技术有限公司 适用于卫星通信的随机接入方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116155369A (zh) * 2023-04-20 2023-05-23 成都爱瑞无线科技有限公司 卫星通信方法、卫星设备、终端及存储介质
CN116155369B (zh) * 2023-04-20 2023-08-29 成都爱瑞无线科技有限公司 卫星通信方法、卫星设备、终端及存储介质

Also Published As

Publication number Publication date
US20230239039A1 (en) 2023-07-27
CN114080858A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
US20220015058A1 (en) Method and device for positioning configuration and reporting
US11032745B2 (en) Handover for mobile edge computing applications in mobile networks
US8830930B2 (en) Device in wireless network, device resource management apparatus, gateway and network server, and control method of the network server
EP4210357A1 (en) Communication method, terminal, communication node, communication device, and storage medium
JP6019233B2 (ja) 端末アクセス方法、システム及び端末
US20140308962A1 (en) System and Method for Wireless Network Access MAP and Applications
CN114342456B (zh) 测量的方法、基站、多模终端、通信设备及存储介质
US20060211418A1 (en) Method for carrying out a handover
US20230113851A1 (en) Method and apparatus for processing information
WO2021253421A1 (zh) 卫星接入的方法、卫星、终端、通信设备及存储介质
WO2019015453A1 (zh) 通信路由的建立方法、装置、计算机存储介质和系统
WO2021227049A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
CN112514419B (zh) 终端获取测量信息的方法、装置、通信设备及存储介质
CN114651479B (zh) 接入小区的方法、装置、通信设备及存储介质
US20230199704A1 (en) Method and device for controlling positioning according to movement of terminal in wireless communication system
WO2021248500A1 (zh) 无线通信的方法、终端、基站、通信设备及存储介质
KR101737571B1 (ko) 이기종 네트워크 기반 데이터 동시 전송 서비스 시스템 및 그 방법
US20230413218A1 (en) Method and apparatus for requesting prs configuration, and communication device and storage medium
WO2023155052A1 (zh) 感知业务处理方法及装置、通信设备及存储介质
WO2022126347A1 (zh) 通信方法、装置及系统
WO2024016933A1 (zh) 一种小区搜索方法以及通信装置
CN113055820B (zh) 数据存储方法、装置、系统和存储介质
US20230422083A1 (en) Method for initiating service, communication device, and storage medium
KR20220061847A (ko) 통신 시스템에서 이동체 기지국의 고도 정보 활용 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941003

Country of ref document: EP

Kind code of ref document: A1