WO2021253337A1 - 凸轮轴相位器 - Google Patents

凸轮轴相位器 Download PDF

Info

Publication number
WO2021253337A1
WO2021253337A1 PCT/CN2020/096859 CN2020096859W WO2021253337A1 WO 2021253337 A1 WO2021253337 A1 WO 2021253337A1 CN 2020096859 W CN2020096859 W CN 2020096859W WO 2021253337 A1 WO2021253337 A1 WO 2021253337A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
chamber
passage
idle
Prior art date
Application number
PCT/CN2020/096859
Other languages
English (en)
French (fr)
Inventor
夏运聪
王朋
Original Assignee
舍弗勒技术股份两合公司
夏运聪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 夏运聪 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2020/096859 priority Critical patent/WO2021253337A1/zh
Publication of WO2021253337A1 publication Critical patent/WO2021253337A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear

Definitions

  • the invention relates to the field of internal combustion engines, and more specifically to a camshaft phaser.
  • the engine valve timing system is a system used to control the valve opening and closing time of the engine of an automobile.
  • the engine valve timing system optimizes the working performance of the engine by controlling the opening and closing of the valve.
  • the camshaft phaser is one of the important components of the engine valve timing system.
  • the camshaft phaser includes a rotor and a stator. By controlling the rotation of the rotor relative to the stator, the phase of the camshaft can be changed in the advance or lag direction of the rotation.
  • the return spring can also be used to balance the rotation speed of the rotor in the advancing direction or in the lagging direction. This is because due to the effect of inertia, the rotation speed of the rotor relative to the stator in the lagging direction is usually greater than the rotation speed in the advancing direction.
  • the return spring can reduce the rotation speed of the rotor relative to the stator in the lagging direction, and increase the rotor relative to the stator.
  • the rotation speed in the advance direction makes the rotation speed in the two directions tend to be equal.
  • both the camshaft phaser of the exhaust camshaft and the camshaft phaser of the intake camshaft need to be provided with a return spring.
  • the setting of the return spring usually requires multiple auxiliary components such as pins and covers. These components not only increase the cost of the system, but also increase the size of the camshaft phaser in the axial direction.
  • the purpose of the present invention is to overcome or at least alleviate the above-mentioned shortcomings of the prior art, and to provide a camshaft phaser with a simple structure and capable of increasing the rotational speed of the rotor relative to the stator so that the rotational speed difference of the rotor in the two directions of rotation is small. And a camshaft assembly including the camshaft phaser.
  • a camshaft phaser having an axial direction, a radial direction and a circumferential direction, and including a rotor and a stator.
  • the stator rotates, the rotor includes a rotor main body and a plurality of rotor blades extending radially outward from the rotor main body, and the stator includes a stator main body and a plurality of stator stops extending radially inward from the stator main body.
  • the plurality of rotor blades and the plurality of stator stops are alternately arranged in the circumferential direction, so that a plurality of groups of cavities distributed in the circumferential direction are formed, and a group of cavities are formed between adjacent stator stops ,
  • Each group of chambers includes a first chamber and a second chamber separated by the rotor blade, wherein,
  • the rotor body is formed with a second chamber oil passage corresponding to each of the second chambers,
  • At least one of the first chambers is an idle chamber, and the rotor body is formed with a first chamber oil passage corresponding to the first chamber other than the idle chamber,
  • the idle chamber can be communicated with the outside through a channel, so that air can enter or be discharged from the idle chamber when the rotor rotates relative to the stator.
  • the channel is provided in the stator body and the opening on the stator body is circumferentially close to the stator stopper adjacent to the idle cavity.
  • the passage passes through the stator body in a radial direction.
  • the passage is partially provided at the stator stop adjacent to the idle cavity.
  • the camshaft phaser further includes two sealing covers, and the two sealing covers are arranged on both sides of the rotor in the axial direction and fixed to the stator to close the shaft in the axial direction.
  • the channel is provided in at least one of the two sealing covers, and the opening of the channel on the sealing cover is circumferentially close to the stator stop adjacent to the idle cavity.
  • the contact area between the stator block adjacent to the idle cavity and the rotor is larger than the contact area between the stator block adjacent to the non-idle cavity and the rotor, and / or
  • the contact area between the rotor blade adjacent to the idle cavity and the stator is larger than the contact area between the rotor blade adjacent to the non-idle cavity and the stator.
  • the channel directly communicates with the air;
  • the passage is selectively communicated with air and the second chamber oil passage through a multi-way valve.
  • the passage can be connected to The oil passage of the second chamber is conducted.
  • a camshaft assembly which includes a camshaft and a camshaft phaser according to the present invention, and the rotor of the camshaft phaser is connected to the camshaft in a relatively non-rotatable manner.
  • the direction from the first chamber of each group of chambers to the second chamber of the group of chambers in the circumferential direction is the same as the rotation direction of the camshaft.
  • the camshaft is an intake camshaft of a motor vehicle.
  • the camshaft phaser according to the present invention has a simple structure. Even when the return spring is not provided, the difference in the rotational speed of the rotor relative to the stator in the two rotation directions of the advance direction and the retard direction can be made small and It can also increase the speed of the rotor relative to the stator in the advancing or lagging direction. Therefore, the camshaft assembly including the camshaft phaser also has the same effect.
  • Fig. 1 is a schematic cross-sectional view of a camshaft phaser passing through a second chamber oil passage according to an embodiment of the present invention.
  • Fig. 2 is a schematic cross-sectional view of the camshaft phaser passing through the first chamber oil passage of the camshaft phaser according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a solenoid valve connection of a camshaft phaser according to an embodiment of the present invention.
  • stator 20 stator; 21 stator block; 22 stator body; 30 solenoid valve;
  • camshaft phaser The specific structure of the camshaft phaser according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • the camshaft phaser includes a rotor 10 and a stator 20.
  • the rotor 10 is disposed on the radially inner side of the stator 20 and can rotate relative to the stator 20.
  • the stator 20 includes a cylindrical stator main body 22 and a plurality of (four in the figure) stator stoppers 21 extending from the stator main body 22 toward the radially inner side.
  • the rotor 10 includes a cylindrical rotor main body 12 and a plurality of (four in the figure) rotor blades 11 extending from the rotor main body 12 toward the radially outer side.
  • the plurality of stator stops 21 and the plurality of rotor blades 11 are alternately arranged in the circumferential direction, so that each rotor blade 11 is located between two adjacent stator stops 21.
  • the space between two adjacent stator stops 21 is divided into two independent chambers by the rotor blade 11 located between the two stator stops 21.
  • a sealing assembly abutting against the stator main body 22 is provided at the top of the rotor blade 11 to isolate the two chambers from each other.
  • a total of four groups of chambers distributed along the circumferential direction are formed in the camshaft phaser shown in FIGS. 1 and 2, and each group of chambers includes a first chamber and a second chamber.
  • All the second chambers B1, B2, B3, B4 communicate with the oil supply device through the second chamber oil passage TB formed in the rotor main body 12.
  • Part of the first chambers (three first chambers in this embodiment, namely the first chambers A1, A2, and A3) communicate with the oil supply device through the first chamber oil passage TA formed in the rotor body 12 , And at least one first chamber (the first chamber A4 in this embodiment) is not connected to the first chamber oil passage TA.
  • the first chamber A4 is called the idle chamber.
  • the first chamber oil passage TA and the second chamber oil passage TB are independent of each other.
  • the stator 20 is provided with a passage TT, and the passage TT communicates with the first chamber A4 as an idle chamber and the oil pan, so that during the rotation of the rotor 10 relative to the stator 20, the air pressure in the idle first chamber A4 can be
  • the air pressure in the oil pan is balanced, that is, gas can enter or be discharged from the first chamber A4, and the rotation of the rotor 10 will not be restricted by the pressure in the first chamber A4.
  • the passage TT is formed in the stator main body 22 and is circumferentially close to the stator stop 21 adjacent to the idle cavity, so that the opening of the passage TT formed in the stator main body 22 and communicated with the idle cavity is the same in the circumferential direction.
  • the angle of the central angle between the circumferential side surfaces of the stator stops 21 adjacent to the cavity is not greater than 5°, for example.
  • a part of the passage TT is located in the stator stop 21 and a part is located in the stator main body 22, and the opening of the passage TT that communicates with the idle cavity is provided in the stator stop 21. In this way, the passage TT is blocked by the rotor blade 11 only when the rotor blade 11 rotates to or almost contacts the stator stop 21.
  • the passage TT shown in FIG. 2 is provided in a part of the stator main body 22 adjacent to the stator stop 21 adjacent to the idle first cavity A4, and the passage TT penetrates the stator main body 22 in the radial direction of the stator 20.
  • the direction of the passage TT may not be along the radial direction of the stator 20.
  • the passage TT may also be provided in a sealing cover (not shown) located on both sides of the rotor 10 in the axial direction.
  • Two sealing covers are located on both sides of the stator 20 in the axial direction and are fixed to the stator 20.
  • the first chamber and the second chamber are formed by the two sealing covers, the stator and the rotor.
  • the passage TT makes the first chamber A4 and the oil bottom The shells are connected.
  • the passage TT is close to the stator stop 21 adjacent to the idle cavity in the circumferential direction.
  • the opening of the passage TT formed in the sealing cover and communicated with the idle cavity is the same as the stator adjacent to the idle cavity in the circumferential direction.
  • the central angle of the interval between the circumferential side surfaces of the stopper 21 is not more than 5°.
  • the contact area between the stator stop 21 and the rotor 10 adjacent to the idle first chamber A4 is larger than the contact area of the other stator stops 21 with the rotor 10 to form a larger sealing area, which is consistent with the idle first chamber A4.
  • the contact area between the rotor blade 11 and the stator 20 adjacent to the cavity A4 is larger than the contact area between the other rotor blades 11 and the stator 20 to form a larger sealing area. It should be noted that when the rotor blade 11 and the stator main body 22 are sealed by a sealing assembly, the sealing area of the sealing assembly is increased.
  • the camshaft phaser also includes a solenoid valve 30.
  • the solenoid valve 30 includes a passage P and a passage T.
  • the passage P is connected to an oil pump for supplying oil
  • the passage T is connected to an oil pan for returning oil.
  • the solenoid valve 30 has three working positions a, b, and c.
  • the solenoid valve 30 When the solenoid valve 30 is in the working position a, the second chamber oil passage TB is connected to the passage P, and the first chamber oil passage TA is connected to the passage T.
  • the second chambers B1, B2, B3 and B4 are filled with oil (the oil is pumped from the oil pan into the chamber), and the first chambers A1, A2 and A3 return oil (the oil in the chamber flows back to the oil pan),
  • the rotor 10 rotates in a counterclockwise direction (also called the second rotation direction) relative to the stator 20, and the valve is opened late or opened early.
  • the solenoid valve 30 When the solenoid valve 30 is in the working position c, the second chamber oil passage TB is connected to the passage T, the first chamber oil passage TA is connected to the passage P, and the second chambers B1, B2, B3, and B4 return oil,
  • the first chambers A1, A2, and A3 are filled with oil
  • the rotor 10 rotates in a clockwise direction (also called the first rotation direction) relative to the stator 20, and the valve is opened early or delayed.
  • the present invention increases the oil filling speed of the first chamber, and thus the clockwise rotation speed of the rotor 10 relative to the stator 20 is increased.
  • the camshaft phaser according to the present invention is particularly suitable for mounting on the intake camshaft, and the rotor 10 of the camshaft phaser is compatible with The camshaft cannot be connected in a relatively rotating manner.
  • the direction from the first chamber (for example, A1) of each group of chambers to the second chamber (for example, B1) of the group of chambers in the circumferential direction is the same as the rotation direction of the camshaft.
  • the camshaft phaser according to the present invention can also be used to be installed on the exhaust camshaft.
  • a return spring usually needs to be installed on the exhaust camshaft.
  • due to the special structural design of the chamber and the chamber oil passage of the camshaft phaser according to the present invention can assist the return spring to balance the rotation speed of the camshaft in two directions, even if the return torque of the rotor is insufficient. It is still necessary to provide a return spring, and the performance requirements for the return spring are also low. In this case, for example, a lower cost spring member can be used for the return spring.
  • the camshaft phaser according to the present invention can reduce the difference between the clockwise and counterclockwise rotation of the rotor without using a return spring, and is especially suitable for mounting on an intake camshaft.
  • the camshaft phaser according to the present invention has a simple structure, low cost, and small axial size.
  • the passage TT of the idle chamber according to the present invention can also be connected to the second chamber oil passage TB through a four-position three-way valve, for example.
  • the oil can flow to the first chamber A4 as an idle chamber and be discharged from the passage TT, that is, the first chamber A4 and the passage TT are not necessarily in contact with each other Oily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

一种凸轮轴相位器,相邻的定子挡块(21)之间形成一组腔室,每组腔室均包括由转子叶片(11)分隔的第一腔室(A1、A2、A3、A4)和第二腔室(B1、B2、B3、B4),转子主体(12)形成有与各第二腔室(B1、B2、B3、B4)对应的第二腔室油道(TB),至少一个第一腔室(A4)为闲置腔室,转子主体(12)形成有与除闲置腔室(A4)以外的第一腔室(A1、A2、A3)对应的第一腔室油道(TA),闲置腔室能够通过通道(TT)与外界连通,使得在转子(10)相对于定子(20)转动的过程中,空气能够进入闲置腔室(A4)或从闲置腔室(A4)排出。该凸轮相位器即使不设回位弹簧时,也能使转子在提前和滞后两个转动方向上的转速差较小。

Description

凸轮轴相位器 技术领域
本发明涉及内燃机领域,更具体地涉及凸轮轴相位器。
背景技术
发动机气门正时系统是用于控制汽车的发动机的气门开闭时间的系统,发动机气门正时系统通过控制气门的开闭来优化发动机的工作性能。凸轮轴相位器是发动机气门正时系统的重要部件之一。凸轮轴相位器包括转子和定子,通过控制转子相对于定子的转动可以使凸轮轴往转动的提前方向或滞后方向发生相位改变。
回位弹簧常被应用于凸轮轴相位器以至少起到下述作用:
(i)根据凸轮轴相位器初始相位的不同设计,某些设置于排气凸轮轴的凸轮轴相位器需要回位弹簧来帮助转子回到初始相位。
(ii)回位弹簧还可以用于平衡转子往提前方向或往滞后方向的转动速度。这是因为由于惯性作用,通常转子相对于定子往滞后方向的转动速度会大于往提前方向的转动速度,回位弹簧能够减小转子相对于定子往滞后方向的转动速度、增加转子相对于定子往提前方向的转动速度,使得这两个方向的转动速度趋于相等。出于平衡转子在两个方向的转动速度的考虑,排气凸轮轴的凸轮轴相位器和进气凸轮轴的凸轮轴相位器都需要设置回位弹簧。
然而,回位弹簧的设置通常需要例如销和盖体等多个辅助零部件,这些零部件不仅增加了系统成本,而且增加了凸轮轴相位器在轴向上的尺寸。
因此,如何用更低的成本和/或更紧凑的结构来构造凸轮轴相位器,以使得凸轮轴相位器在即使不设置回位弹簧时也能具有回位弹簧的至少一部分作用是本领域亟待解决的问题。
发明内容
本发明的目的在于克服或至少减轻上述现有技术存在的不足,提供一种结构简单且能提高转子相对于定子的转速、使得转子在两个转动方向上的转速差较小的凸轮轴相位器和包括该凸轮轴相位器的凸轮轴组件。
根据本发明的第一方面,提供一种凸轮轴相位器,其具有轴向、径向和周向并且包括转子和定子,所述转子设置于所述定子的径向内侧并且能够相对于所述定子转动,所述转子包括转子主体和从所述转子主体朝向径向外侧伸出的多个转子叶片,所述定子包括定子主体和从所述定子主体朝向径向内侧伸出的多个定子挡块,所述多个转子叶片和所述多个定子挡块在周向上交替布置,使得形成沿周向分布的多组腔室,在相邻的所述定子挡块之间形成一组腔室,每组腔室均包括由所述转子叶片分隔的第一腔室和第二腔室,其中,
所述转子主体形成有与各所述第二腔室对应的第二腔室油道,
至少一个所述第一腔室为闲置腔室,所述转子主体形成有与除所述闲置腔室以外的所述第一腔室对应的第一腔室油道,
所述闲置腔室能够通过通道与外界连通,使得在所述转子相对于所述定子转动的过程中,空气能够进入所述闲置腔室或从所述闲置腔室排出。
在至少一个实施方式中,所述通道设置于所述定子主体且在所述定子主体上的开口在周向上靠近与该闲置腔室相邻的所述定子挡块。
在至少一个实施方式中,所述通道沿径向贯穿所述定子主体。
在至少一个实施方式中,所述通道部分地设置于与该闲置腔室相邻的所述定子挡块。
在至少一个实施方式中,所述凸轮轴相位器还包括两个密封盖,两个所述密封盖设置于所述转子的轴向两侧且固定于所述定子,以在轴向上封闭所 述腔室,所述通道设置于两个所述密封盖中的至少一个,且所述通道在所述密封盖上的开口在周向上靠近与该闲置腔室相邻的所述定子挡块。
在至少一个实施方式中,与所述闲置腔室相邻的所述定子挡块与所述转子的接触面积大于与非闲置腔室相邻的所述定子挡块与所述转子的接触面积,和/或
与所述闲置腔室相邻的所述转子叶片与所述定子的接触面积大于与非闲置腔室相邻的所述转子叶片与所述定子的接触面积。
在至少一个实施方式中,所述通道直接与空气导通;或
所述通道通过多通阀选择性地与空气和所述第二腔室油道导通,当油液通过所述第二腔室油道流出所述第二腔室时,所述通道能够与所述第二腔室油道导通。
根据本发明的第二方面,提供一种凸轮轴组件,其包括凸轮轴和根据本发明的凸轮轴相位器,所述凸轮轴相位器的所述转子与所述凸轮轴不能相对转动地连接。
在至少一个实施方式中,从所述每组腔室的所述第一腔室沿着周向指向该组腔室的所述第二腔室的方向与所述凸轮轴的转动方向相同。
在至少一个实施方式中,所述凸轮轴是机动车辆的进气凸轮轴。
通过采用上述技术方案,根据本发明的凸轮轴相位器结构简单,在即使不设置回位弹簧时,也能使转子相对于定子在提前方向和滞后方向两个转动方向上的转速差较小并且还能使转子相对于定子在提前方向或滞后方向上的转速提高。由此,包括该凸轮轴相位器的凸轮轴组件也具有相同的效果。
附图说明
图1是根据本发明的一个实施方式的凸轮轴相位器的经过第二腔室油道的剖视结构示意图。
图2是根据本发明的一个实施方式的凸轮轴相位器的经过第一腔室油道的剖视结构示意图。
图3是根据本发明的一个实施方式的凸轮轴相位器的电磁阀连接示意图。
附图标记说明
10转子;11转子叶片;12转子主体;
20定子;21定子挡块;22定子主体;30电磁阀;
A1、A2、A3、A4第一腔室;
B1、B2、B3、B4第二腔室;
TA第一腔室油道;TB第二腔室油道;TT通道;
a、b、c工作位置。
具体实施方式
下面参照附图描述本发明的示例性实施方式。应当理解,这些具体的说明仅用于示教本领域技术人员如何实施本发明,而不用于穷举本发明的所有可行的方式,也不用于限制本发明的范围。
参照图1至图3介绍根据本发明的一个实施方式的凸轮轴相位器的具体结构。
如图1和图2所示,根据本发明的凸轮轴相位器包括转子10和定子20,转子10设置于定子20的径向内侧并且能够相对于定子20转动。
定子20包括圆筒状的定子主体22以及从定子主体22朝向径向内侧伸出的多个(图中为四个)定子挡块21。转子10包括圆筒状的转子主体12以及从转子主体12朝向径向外侧伸出的多个(图中为四个)转子叶片11。多个定子挡块21与多个转子叶片11在周向上交替地布置,使得每个转子叶片11均位于 相邻的两个定子挡块21之间。
相邻的两个定子挡块21之间的空间被位于这两个定子挡块21之间的转子叶片11分隔成两个彼此独立的腔室。在转子叶片11的顶端设置有与定子主体22抵接的密封组件,以用于使这两个腔室彼此隔离。这样,在图1和图2所示的凸轮轴相位器中共形成了沿着周向分布的四组腔室,各组腔室均包括一个第一腔室和一个第二腔室。
所有第二腔室B1、B2、B3、B4通过形成于转子主体12内的第二腔室油道TB与供油装置连通。
部分第一腔室(在本实施方式中为三个第一腔室,即第一腔室A1、A2和A3)通过形成于转子主体12内的第一腔室油道TA与供油装置连通,且至少有一个第一腔室(本实施方式中为第一腔室A4)不与第一腔室油道TA连通,为描述方便,也将该不与第一腔室油道TA连通的第一腔室A4称为闲置腔室。
第一腔室油道TA与第二腔室油道TB彼此独立。
定子20设有通道TT,通道TT连通作为闲置腔室的第一腔室A4和油底壳,使得在转子10相对于定子20的转动过程中,闲置的第一腔室A4内的气压能与油底壳内的气压平衡,即气体能进入第一腔室A4或从第一腔室A4中被排出,转子10的转动不至于因第一腔室A4内的压力而受限。
优选地,通道TT形成于定子主体22且在周向上靠近与闲置腔室相邻的定子挡块21,使得通道TT的形成于定子主体22且与闲置腔室连通的开口在周向上同与闲置腔室相邻的定子挡块21的周向侧面之间间隔的圆心角的角度例如不大于5°。或者通道TT一部分位于定子挡块21一部分位于定子主体22,并且通道TT的与闲置腔室连通的开口设置于定子挡块21。这样,只在转子叶片11转动到接触或几乎接触定子挡块21时,通道TT才会被转子叶片11堵住。
图2所示的通道TT设置于定子主体22的与闲置的第一腔室A4相邻的定子挡块21旁边的部分,且通道TT沿定子20的径向贯穿定子主体22。
应当理解,当通道TT部分地设置于定子挡块21时,通道TT的走向可以不是沿定子20的径向。
此外,在其它可能的实施方式中,通道TT也可以设置于位于转子10的轴向两侧的密封盖(图未示)。两个密封盖位于定子20的轴向两侧且固定于定子20,通过两个密封盖、定子和转子包围形成第一腔室和第二腔室,通道TT使得第一腔室A4与油底壳相通。优选地,通道TT在周向上靠近与闲置腔室相邻的定子挡块21,例如,通道TT的形成于密封盖且与闲置腔室连通的开口在周向上同与闲置腔室相邻的定子挡块21的周向侧面之间间隔的圆心角不大于5°。
由于闲置的第一腔室A4内的气压小于第二腔室内的油压,位于第二腔室内的油液容易向闲置的第一腔室A4渗漏,尤其是如图2所示的与闲置的第一腔室A4相邻的第二腔室B4和第二腔室B3内的油液容易向闲置的第一腔室A4渗漏。因此优选地,与闲置的第一腔室A4相邻的定子挡块21与转子10的接触面积大于其它定子挡块21与转子10的接触面积以形成更大的密封区域,与闲置的第一腔室A4相邻的转子叶片11与定子20的接触面积大于其它转子叶片11与定子20的接触面积以形成更大的密封区域。需要说明的是,当转子叶片11与定子主体22之间通过密封组件实现密封的情况下,则增大该密封组件的密封面积。
接下来结合图3介绍闲置的第一腔室A4的工作方式。
凸轮轴相位器还包括电磁阀30,电磁阀30包括通道P和通道T,通道P连接机油泵用于供油,通道T连通油底壳用于回油。
电磁阀30具有三个工作位置a、b、c,当电磁阀30处于工作位置a时,第 二腔室油道TB与通道P导通、第一腔室油道TA与通道T导通,第二腔室B1、B2、B3和B4充油(机油从油底壳内被泵入腔室内)、第一腔室A1、A2和A3回油(腔室内的油流回油底壳),转子10相对于定子20沿逆时针方向(也称第二转动方向)转动,气门被延迟打开或提前打开。
当电磁阀30处于工作位置b时,通道P与第一腔室油道TA和第二腔室油道TB均导通,转子10相对于定子20的位置保持不变。
当电磁阀30处于工作位置c时,第二腔室油道TB与通道T导通、第一腔室油道TA与通道P导通,第二腔室B1、B2、B3和B4回油、第一腔室A1、A2和A3充油,转子10相对于定子20沿顺时针方向(也称第一转动方向)转动,气门被提前打开或延迟打开。
由于转子10的顺时针转动是受第一腔室内的油压推动的,而第一腔室A4作为闲置腔室不需要充油,相比于所有的第一腔室都需要充油的情况,本发明使得第一腔室的充油速度得到提高,进而转子10的相对于定子20的顺时针转动速度得到提高。
应当理解,相比于所有的第一腔室都需要充油的情况,第一腔室A4不充油会使得转子10在顺时针转动时受到的推力下降,但是在油压足够的情况下,转子10仍然能得到有效的顺时针方向的驱动。通常进气凸轮轴的转动需要的驱动力小、排气凸轮轴需要的驱动力大,因此根据本发明的凸轮轴相位器尤其适用于安装到进气凸轮轴,凸轮轴相位器的转子10与凸轮轴不能相对转动地连接。从每组腔室的第一腔室(例如A1)沿着周向指向该组腔室的第二腔室(例如B1)的方向与凸轮轴的转动方向相同。
当然,根据本发明的凸轮轴相位器也可以用于安装到排气凸轮轴,此时排气凸轮轴上通常还需要安装回位弹簧。此时由于根据本发明的凸轮轴相位器的腔室和腔室油道的特殊结构设计能够辅助回位弹簧平衡凸轮轴在两个 方向的转动速度,此时即使因为转子的回位力矩不够而仍需要设置回位弹簧、对回位弹簧的性能要求也较低,这种情况下,回位弹簧例如可以使用成本较低的弹簧件。
下面简单说明本发明的上述实施方式的部分有益效果。
(i)根据本发明的凸轮轴相位器可以不使用回位弹簧而减小转子的顺时针和逆时针转动的转速差,尤其适用于安装到进气凸轮轴。
(ii)根据本发明的凸轮轴相位器结构简单、成本低、轴向尺寸小。
应当理解,上述实施方式仅是示例性的,不用于限制本发明。本领域技术人员可以在本发明的教导下对上述实施方式做出各种变型和改变,而不脱离本发明的范围。例如,
(i)当需要进一步提升转子在第一方向上的转动速度时,可以将更多个第一腔室设置成闲置腔室。当然此时要考虑剩余的提供油压的第一腔室内的油压是否能提供足够驱动转子沿第一方向转动的力。
(ii)根据本发明的闲置腔室的通道TT也可以例如通过四位三通阀与第二腔室油道TB相连。这种情况下,第二腔室在回油时,油液可以流至作为闲置腔室的第一腔室A4并从通道TT排出,即第一腔室A4和通道TT并不一定是不接触油液的。

Claims (7)

  1. 一种凸轮轴相位器,其具有轴向、径向和周向并且包括转子(10)和定子(20),所述转子(10)设置于所述定子(20)的径向内侧并且能够相对于所述定子(20)转动,所述转子(10)包括转子主体(12)和从所述转子主体(12)朝向径向外侧伸出的多个转子叶片(11),所述定子(20)包括定子主体(22)和从所述定子主体(22)朝向径向内侧伸出的多个定子挡块(21),所述多个转子叶片(11)和所述多个定子挡块(21)在周向上交替布置,使得形成沿周向分布的多组腔室,在相邻的所述定子挡块(21)之间形成一组腔室,每组腔室均包括由所述转子叶片(11)分隔的第一腔室(A1、A2、A3、A4)和第二腔室(B1、B2、B3、B4),其中,
    所述转子主体(12)形成有与各所述第二腔室(B1、B2、B3、B4)对应的第二腔室油道(TB),
    至少一个所述第一腔室(A4)为闲置腔室,所述转子主体(12)形成有与除所述闲置腔室以外的所述第一腔室(A1、A2、A3)对应的第一腔室油道(TA),
    所述闲置腔室能够通过通道(TT)与外界连通,使得在所述转子(10)相对于所述定子(20)转动的过程中,空气能够进入所述闲置腔室或从所述闲置腔室排出。
  2. 根据权利要求1所述的凸轮轴相位器,其特征在于,所述通道(TT)设置于所述定子主体(22)且在所述定子主体(22)上的开口在周向上靠近与该闲置腔室相邻的所述定子挡块(21)。
  3. 根据权利要求2所述的凸轮轴相位器,其特征在于,所述通道(TT)沿径向贯穿所述定子主体(22)。
  4. 根据权利要求1所述的凸轮轴相位器,其特征在于,所述通道(TT)部分地设置于与该闲置腔室相邻的所述定子挡块(21)。
  5. 根据权利要求1所述的凸轮轴相位器,其特征在于,所述凸轮轴相位器还包括两个密封盖,两个所述密封盖设置于所述转子(10)的轴向两侧且固定于所述定子(20),以在轴向上封闭所述腔室,所述通道(TT)设置于两个所述密封盖中的至少一个,且所述通道(TT)在所述密封盖上的开口在周向上靠近与该闲置腔室相邻的所述定子挡块(21)。
  6. 根据权利要求1至5中任一项所述的凸轮轴相位器,其特征在于,与所述闲置腔室相邻的所述定子挡块(21)与所述转子(10)的接触面积大于与非闲置腔室相邻的所述定子挡块(21)与所述转子(10)的接触面积,和/或
    与所述闲置腔室相邻的所述转子叶片(11)与所述定子(20)的接触面积大于与非闲置腔室相邻的所述转子叶片(11)与所述定子(20)的接触面积。
  7. 根据权利要求1至5中任一项所述的凸轮轴相位器,其特征在于,所述通道(TT)直接与空气导通;或
    所述通道(TT)通过多通阀选择性地与空气和所述第二腔室油道(TB)导通,当油液通过所述第二腔室油道(TB)流出所述第二腔室(B1、B2、B3、B4)时,所述通道(TT)能够与所述第二腔室油道(TB)导通。
PCT/CN2020/096859 2020-06-18 2020-06-18 凸轮轴相位器 WO2021253337A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096859 WO2021253337A1 (zh) 2020-06-18 2020-06-18 凸轮轴相位器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096859 WO2021253337A1 (zh) 2020-06-18 2020-06-18 凸轮轴相位器

Publications (1)

Publication Number Publication Date
WO2021253337A1 true WO2021253337A1 (zh) 2021-12-23

Family

ID=79269089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096859 WO2021253337A1 (zh) 2020-06-18 2020-06-18 凸轮轴相位器

Country Status (1)

Country Link
WO (1) WO2021253337A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247584A (zh) * 2022-01-28 2022-10-28 广州汽车集团股份有限公司 相位器、相位器控制系统、发动机及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044157A (zh) * 1989-01-13 1990-07-25 让·弗莱德里克·迈尔希瓦 交替力矩传递用偶合器
JPH10331614A (ja) * 1997-05-30 1998-12-15 Aisin Seiki Co Ltd 弁開閉時期制御装置
EP1128026A2 (en) * 1999-12-28 2001-08-29 Borg Warner Inc. Multi-position variable cam timing system having a vane-mounted locking piston device
US20090178635A1 (en) * 2008-01-10 2009-07-16 Denso Corporation Valve timing adjuster
CN106150587A (zh) * 2016-08-29 2016-11-23 台州德尔福汽车部件有限公司 一种中置式可变气门正时装置及发动机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044157A (zh) * 1989-01-13 1990-07-25 让·弗莱德里克·迈尔希瓦 交替力矩传递用偶合器
JPH10331614A (ja) * 1997-05-30 1998-12-15 Aisin Seiki Co Ltd 弁開閉時期制御装置
EP1128026A2 (en) * 1999-12-28 2001-08-29 Borg Warner Inc. Multi-position variable cam timing system having a vane-mounted locking piston device
US20090178635A1 (en) * 2008-01-10 2009-07-16 Denso Corporation Valve timing adjuster
CN106150587A (zh) * 2016-08-29 2016-11-23 台州德尔福汽车部件有限公司 一种中置式可变气门正时装置及发动机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247584A (zh) * 2022-01-28 2022-10-28 广州汽车集团股份有限公司 相位器、相位器控制系统、发动机及车辆
CN115247584B (zh) * 2022-01-28 2023-08-15 广州汽车集团股份有限公司 相位器、相位器控制系统、发动机及车辆

Similar Documents

Publication Publication Date Title
US6058897A (en) Valve timing device
US6053139A (en) Valve timing control device
US8371257B2 (en) Engine with dual cam phaser for concentric camshaft
US20140116365A1 (en) Camshaft adjuster
US9366160B2 (en) Centering slot for internal combustion engine
JPH0192504A (ja) 弁開閉時期制御装置
JP2007127046A (ja) 内燃機関のバルブタイミング制御装置
JP6390499B2 (ja) バルブタイミング調整装置
WO2021253337A1 (zh) 凸轮轴相位器
JP2001271616A (ja) 可変動弁機構の制御装置
JP2007023953A (ja) バルブタイミング調整装置
US7421991B2 (en) Brake-actuated vane-type camshaft phaser
WO2008042622A1 (en) Variable event duration reduction (vedr) cam phaser
JPH11182216A (ja) 内燃機関のバルブタイミング制御装置
CN108798818A (zh) 一种配气机构及发动机系统
CN109209547B (zh) 单向离合器型可变气门正时设备及其发动机系统
JP2005036760A (ja) エンジンの可変動弁装置
JP2001289013A (ja) 可変バルブタイミング装置
JP2012122455A (ja) バルブタイミング調整装置
JPH10339114A (ja) 弁開閉時期制御装置
JP5783309B2 (ja) カムシャフトの支持構造
JPH1089021A (ja) 内燃機関のバルブタイミング可変装置
JP2008057433A (ja) 弁開閉時期制御装置
JP2000073799A (ja) 内燃機関の制御装置
JPH11159308A (ja) 弁開閉時期制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941083

Country of ref document: EP

Kind code of ref document: A1