WO2021251262A1 - Thermoplastic liquid crystal polymer molded body - Google Patents

Thermoplastic liquid crystal polymer molded body Download PDF

Info

Publication number
WO2021251262A1
WO2021251262A1 PCT/JP2021/021176 JP2021021176W WO2021251262A1 WO 2021251262 A1 WO2021251262 A1 WO 2021251262A1 JP 2021021176 W JP2021021176 W JP 2021021176W WO 2021251262 A1 WO2021251262 A1 WO 2021251262A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polymer
thermoplastic liquid
adhesive
plasma
Prior art date
Application number
PCT/JP2021/021176
Other languages
French (fr)
Japanese (ja)
Inventor
崇裕 中島
慎二 平松
健 ▲高▼橋
昂大 平
稔 小野寺
稔 岡本
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2021251262A1 publication Critical patent/WO2021251262A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a thermoplastic liquid crystal polymer molded product having excellent adhesiveness.
  • Thermoplastic liquid crystal polymer molded products have excellent dielectric properties (low dielectric constant and low dielectric loss tangent) due to the properties of thermoplastic liquid crystal polymers, and are therefore attracting attention in applications where dielectric properties are important. ..
  • thermoplastic liquid crystal polymer film having excellent dielectric properties has been attracting attention instead of the conventional polyimide (PI) and polyethylene terephthalate film.
  • PI polyimide
  • polyethylene terephthalate film the thermoplastic liquid crystal polymer film has a problem of low adhesiveness in the first place.
  • Patent Document 1 Japanese Patent Laid-Open No. 1-216824
  • Patent Document 2 Japanese Patent Laid-Open No. 1-236246
  • a surface modification method a surface treatment method for irradiating ultraviolet rays having a wavelength of 184.9 nm is disclosed.
  • Patent Documents 1 and 2 when the surface of a liquid crystal polyester molded body is irradiated with ultraviolet rays having a wavelength of 184.9 nm, hydroxyl groups and oxygen-containing groups are generated to activate the surface of the molded body.
  • Patent Document 3 Japanese Patent No. 4892274.
  • the sum of the peak intensities is 21% or more, and the ratio of peak intensities [-CO-bond] / [-COO-bond] is 1.5 or less.
  • the body is disclosed.
  • a step of irradiating at least the adhered portion of the liquid crystal polymer molded product with plasma under the conditions of an output of 0.6 W / cm 2 or less and a pressure of 0.1 Torr or more in an acid gas atmosphere to perform surface treatment A method for producing a liquid crystal polymer molded product containing the above is described.
  • the ratio of functional groups on the surface of the molded product is adjusted according to such plasma treatment conditions to improve the adhesive strength of the liquid crystal polymer molded product to the epoxy resin.
  • Patent Documents 1 to 3 the surface of the thermoplastic liquid crystal polymer molded body is chemically modified.
  • the adhesiveness immediately after the treatment is imparted, the thermal motion and the surface are provided. Since the functional groups are deactivated due to contamination, there is a problem that the adhesiveness cannot be ensured after long-term storage in an unbonded state.
  • the surface treatment methods described in Patent Documents 1 to 3 since the hydrophilic functional group is applied to the surface, the adhesiveness is poor with the adhered material having a low interaction in the chemical structure of the surface. There was a problem.
  • an object of the present invention is to provide a thermoplastic liquid crystal polymer molded product that can maintain adhesiveness even after long-term storage.
  • the ratio of elastic modulus Er (I) of the inner layer in the range (Er (S) / Er (I)) is 0 or more (preferably 0.5 or more, more preferably 0.9 or more, still more preferably 1.0. Above, more preferably 1.1 or more) 1.50 or less (preferably 1.45 or less, more preferably 1.40 or less), a thermoplastic liquid crystal polymer molded body.
  • thermoplastic liquid crystal polymer molded body means a molded body containing at least a thermoplastic liquid crystal polymer.
  • a molded body before being bonded to the material to be adhered A non-bonded body
  • a molded body (bonded body or laminated body) after being bonded to the material to be bonded are also included.
  • thermoplastic liquid crystal polymer molded product of the present invention by controlling the elastic modulus of the inner layer and the elastic modulus of the surface layer so as to have a specific relationship, a long period of time (for example, about 1 to 6 months, preferably about 1 to 6 months) is preferable. Adhesion can be maintained even after storage (about 3 to 6 months). Therefore, the thermoplastic liquid crystal polymer molded body of the present invention is extremely useful as an insulator material for, for example, an electronic circuit board when a metal layer or a circuit is formed.
  • thermoplastic liquid crystal polymer molded product of the present invention is composed of a thermoplastic liquid crystal polymer.
  • This thermoplastic liquid crystal polymer is composed of a liquid crystal polymer that can be melt-molded (or a polymer that can form an optically anisotropic molten phase), and if it is a liquid crystal polymer that can be melt-molded, its chemical composition is particularly high. Examples thereof include, but are not limited to, a thermoplastic liquid crystal polyester, or a thermoplastic liquid crystal polyester amide having an amide bond introduced therein.
  • thermoplastic liquid crystal polymer may be a polymer in which an imide bond, a carbonate bond, an isocyanate-derived bond such as a carbodiimide bond or an isocyanurate bond is further introduced into an aromatic polyester or an aromatic polyester amide.
  • thermoplastic liquid crystal polymer used in the present invention include known thermoplastic liquid crystal polyesters and thermoplastic liquid crystal polyester amides derived from the compounds classified into the compounds (1) to (4) and their derivatives exemplified below. Can be mentioned. However, it goes without saying that there is an appropriate range in the combination of various raw material compounds in order to form a polymer capable of forming an optically anisotropic molten phase.
  • Aromatic or aliphatic diols (see Table 1 for typical examples)
  • Aromatic diamine, aromatic hydroxyamine or aromatic aminocarboxylic acid (see Table 4 for typical examples).
  • thermoplastic liquid crystal polymers obtained from these raw material compounds include copolymers having repeating units shown in Tables 5 and 6.
  • a polymer containing p-hydroxybenzoic acid and / or 6-hydroxy-2-naphthoic acid as at least a repeating unit is preferable, and (i) p-hydroxybenzoic acid and 6-hydroxy- A copolymer containing a repeating unit with 2-naphthoic acid, or at least one aromatic hydroxycarboxylic acid selected from the group consisting of (ii) p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, and at least one.
  • a copolymer containing a repeating unit of an aromatic diol and / or an aromatic hydroxyamine of at least one aromatic dicarboxylic acid is preferred.
  • the molar ratio of each repeating unit of at least one selected aromatic dicarboxylic acid (E) in the thermoplastic liquid crystal polymer is the aromatic hydroxycarboxylic acid (C): the aromatic diol (D): the aromatic dicarboxylic acid.
  • the molar ratio of the repeating unit derived from 6-hydroxy-2-naphthoic acid in the aromatic hydroxycarboxylic acid (C) may be, for example, 85 mol% or more, preferably 90 mol% or more. It may be preferably 95 mol% or more.
  • the molar ratio of the repeating unit derived from 2,6-naphthalenedicarboxylic acid in the aromatic dicarboxylic acid (E) may be, for example, 85 mol% or more, preferably 90 mol% or more, and more preferably 95 mol%. It may be% or more.
  • optically anisotropic molten phase referred to in the present invention can be formed can be determined, for example, by placing the sample on a hot stage, heating the sample in a nitrogen atmosphere, and observing the transmitted light of the sample.
  • the thermoplastic liquid crystal polymer preferably has a melting point (hereinafter referred to as Tm 0 ) having a melting point in the range of, for example, 200 to 360 ° C., preferably in the range of 240 to 350 ° C., and more preferably Tm 0.
  • the temperature is 260 to 330 ° C.
  • the melting point of the thermoplastic liquid crystal polymer can be obtained by observing the thermal behavior of the thermoplastic liquid crystal polymer sample using a differential scanning calorimeter. That is, the thermoplastic liquid crystal polymer sample was heated from room temperature (for example, 25 ° C.) at a rate of 10 ° C./min to completely melt it, and then the melt was rapidly cooled to 50 ° C. at a rate of 10 ° C./min. The position of the endothermic peak that appears after the temperature is raised again at a rate of 10 ° C./min may be recorded as the melting point of the thermoplastic liquid crystal polymer sample.
  • the thermoplastic liquid crystal polymer may have a melt viscosity of 30 to 120 Pa ⁇ s at a shear rate of 1000 / s at (Tm 0 + 20) ° C., preferably a melt viscosity. It may have 50 to 100 Pa ⁇ s.
  • the elastic moduli Er (S) and Er (I) measured by the nanoindentation method can be calculated from the stiffness S and the contact projection area Ac by using the following formula (1).
  • Er (S) / Er (I) When the value of Er (S) / Er (I) is larger than 1.50, the elastic modulus of the surface layer becomes too high as compared with the inner layer of the adhesive region of the thermoplastic liquid crystal polymer molded product, and the adhesion during thermocompression bonding is performed. Insufficient power.
  • Er (S) / Er (I) is preferably 1.45 or less, more preferably 1.40 or less.
  • the elastic modulus of the surface layer of the adhesive region of the thermoplastic liquid crystal polymer molded product is low, the molecular orientation of the surface of the molded product is disturbed and the dielectric loss tends to be high. Therefore, for example, Er (S) / Er (I). Is preferably 0.5 or more, more preferably 0.9 or more, further preferably 1.0 or more, and even more preferably 1.1 or more.
  • Er (S) is not particularly limited as long as Er (S) / Er (I) is 0 to 1.50, but is preferably 3.0 GPa or more, more preferably 4.0 GPa or more. It is more preferably 5.0 GPa or more. Further, it is preferably 8.0 GPa or less, more preferably 7.0 GPa or less, further preferably 6.6 GPa or less, and even more preferably 6.0 GPa or less.
  • Er (I) is not particularly limited as long as Er (S) / Er (I) is 0 to 1.50, but is preferably 2.0 GPa or more, more preferably 3.0 GPa or more. It is more preferably 4.0 GPa or more. Further, it is preferably 7.0 GPa or less, more preferably 6.0 GPa or less, and further preferably 4.3 GPa or less.
  • the thermoplastic liquid crystal polymer molded product of the present invention may be formed of at least a thermoplastic liquid crystal polymer, may be formed of the thermoplastic liquid crystal polymer alone, or may be composed of the thermoplastic liquid crystal polymer and other substances. May be.
  • the thermoplastic liquid crystal polymer molded product of the present invention may further include a conductive portion.
  • the conductive portion may be made of metal, for example, the thermoplastic liquid crystal polymer molded article of the present invention may have a metal portion on its surface (the surface of the bonded region and / or the surface of the non-bonded region). good.
  • the non-adhesive region means a region where Er (S) / Er (I) is not in a specific range.
  • thermoplastic liquid crystal polymer film is a metal-clad laminate (single-sided metal-clad laminate or double-sided metal) on which a metal foil is laminated. It may be a stretched laminated board).
  • thermoplastic liquid crystal polymer molded body of the present invention may be a laminated body in which a thermoplastic liquid crystal polymer film layer and a metal layer are laminated via an adhesive layer (for example, an adhesive), or a thermoplastic liquid crystal. It may be a laminate in which a polymer film layer and a metal layer are directly laminated.
  • the metal can be appropriately determined according to the purpose, but copper, nickel, cobalt, aluminum, gold, tin, chromium and the like are preferably used.
  • the thickness of the metal layer may be 0.01 to 200 ⁇ m, preferably 0.1 to 100 ⁇ m, more preferably 1 to 80 ⁇ m, and particularly preferably 2 to 50 ⁇ m.
  • the thickness of the metal foil may be 1 to 80 ⁇ m, preferably 2 to 50 ⁇ m.
  • the surface roughness (Rz) of the metal foil on the side in contact with the thermoplastic liquid crystal polymer molded product may be, for example, 2.0 ⁇ m or less, preferably 1.5 ⁇ m or less.
  • the lower limit of the surface roughness (Rz) may be, for example, 0.8 ⁇ m.
  • the surface roughness (Rz) indicates the maximum height roughness measured with reference to JIS B 0601-2001.
  • thermoplastic liquid crystal polymer molded body of the present invention when the thermoplastic liquid crystal polymer molded body of the present invention is in the form of a film, the thermoplastic liquid crystal polymer itself has excellent dielectric properties and low moisture absorption, and has improved adhesiveness to adhesives and other materials.
  • a circuit board material for example, an insulator of an electronic circuit board, a reinforcing plate of a flexible circuit board, a cover film of a circuit surface, etc.
  • a laminate for example, a metal-clad laminate
  • the adhesiveness between the thermoplastic liquid crystal polymer film and the metal layer or the circuit is improved. Therefore, it is highly reliable and preferable.
  • thermoplastic liquid crystal polymer molded body to be plasma-treated is not particularly limited, and for example, at least a part of the surface of the thermoplastic liquid crystal polymer molded body is physically polished, corona discharge treated, ultraviolet irradiation treated, and uneven roughened.
  • Thermoplastic liquid crystal polymer molding that has undergone shaping treatment such as laminating with the metal foil that has been heat-pressed and then peeling off, copper foil replica treatment that removes the copper foil by etching after laminating the copper foil, and surface treatment with a corrosive solution.
  • the body may be subjected to plasma treatment, or the thermoplastic liquid crystal polymer molded body which has not been surface-treated may be subjected to plasma treatment.
  • the gas type in the plasma treatment shall be at least one selected from the group consisting of N 2 , Ar, H 2 O, and CF 4 from the viewpoint of adjusting the ratio between the elastic modulus of the surface layer and the elastic modulus of the inner layer.
  • N 2 , Ar, and H 2 O have strong etching properties due to the ion bombard effect in the reaction during plasma treatment, and CF 4 can be etched by generating highly reactive F radicals.
  • the elastic modulus of the surface layer can be lowered by making the surface finely roughened, and it is possible to adjust the relationship between the surface layer and the inner layer to a specific elastic modulus. ..
  • O 2 is used as the gas type
  • the gas type used in the plasma treatment is more preferably N 2 in that it has high roughness to the surface of the thermoplastic liquid crystal polymer molded product.
  • gas species other than the above gas species may be mixed and used as long as the effects of the present invention are not impaired.
  • Vacuum plasma treatment is preferable from the viewpoint of adjusting the ratio between the elastic modulus of the surface layer of the surface of the thermoplastic liquid crystal polymer molded body and the elastic modulus of the inner layer. As the degree of vacuum increases, the plasma generation efficiency improves, the plasma reacts with the gas, and the effect of the gas plasma etching the polymer surface increases.
  • the pressure in the device to be treated shall be 0.1 to 50 Pa from the viewpoint that the density of generated electrons and ions is within a range sufficient for surface modification of the thermoplastic liquid crystal polymer molded body. It is preferable, more preferably 0.3 to 30 Pa, still more preferably 0.5 to 15 Pa.
  • the output in the plasma treatment is preferably 3.5 W / cm 2 or more, more preferably 5.0 W, from the viewpoint of adjusting the ratio of the elastic modulus of the surface layer of the surface of the thermoplastic liquid crystal polymer molded product to the elastic modulus of the inner layer. It is / cm 2 or more, more preferably 6.0 W / cm 2 or more.
  • the upper limit of the output in the plasma processing is not particularly limited, and it is preferable to perform a stronger processing. For example, from the viewpoint of suppressing excessive damage to the surface of the thermoplastic liquid crystal polymer molded product , it may be 30 W / cm 2 or less, preferably 25 W / cm 2 or less, and more preferably 20 W / cm 2 or less.
  • the plasma treatment time may be 180 seconds or less, preferably 60 seconds or less, and more preferably 5 seconds or less.
  • the lower limit of the plasma treatment time is not particularly limited, but may be 0.1 seconds or longer, preferably 0.5 seconds or longer, for example, from the viewpoint of sufficiently modifying the surface of the thermoplastic liquid crystal polymer molded product. , More preferably 1.0 second or longer.
  • the plasma treatment time refers to the time for irradiating the same portion of the thermoplastic liquid crystal polymer molded product with plasma.
  • the frequency of discharging between the discharge electrodes in the plasma treatment is not particularly limited, but may be, for example, in the range of 40 kHz to 2.45 GHz, which is preferable. It may be 40 kHz to 915 MHz, more preferably 110 kHz to 13.56 MHz.
  • Plasma processing includes (i) capacitively coupled plasma (CCP method) and (ii) inductively coupled plasma (ICP method) in which an inductively coupled plasma is applied by changing the magnetic flux using a coil.
  • CCP capacitively coupled plasma
  • ICP method inductively coupled plasma
  • CCP is a generally used plasma generation method, in which a substrate to be treated is placed between a pair of electrodes, and the substrate to be treated can be treated with plasma.
  • ICP since ICP generates plasma by the fluctuating magnetic field of the induction coil, the potential difference between the electrode and the plasma does not increase, and the plasma processing is highly controllable.
  • high frequency power supplies are generally used, and many of them have high processing capacity.
  • CCP capacitively coupled plasma
  • ICP inductively coupled plasma
  • ECP electron cycloton resonance plasma
  • HWP helicon excited plasma
  • SWP microwave excited surface wave plasma
  • CCP capacitively coupled plasma
  • the plasma processing may be a discharge method in which a voltage having a continuous waveform (AC waveform) is applied, or a discharge method in which a voltage having a pulsed waveform is applied. From the viewpoint of stabilizing the discharge, a discharge method in which a voltage having a pulsed waveform is applied is preferable. In this case, it is possible to uniformly obtain the surface modification effect even in the treatment in a short time.
  • AC waveform continuous waveform
  • a discharge method in which a voltage having a pulsed waveform is applied is preferable. In this case, it is possible to uniformly obtain the surface modification effect even in the treatment in a short time.
  • thermoplastic liquid crystal polymer molded product of the present invention surface treatment may be continuously performed or may be performed in a batch manner. In order to shorten the plasma processing time, it is preferable to perform the plasma processing continuously from the viewpoint of productivity.
  • the adhesive may be a polar adhesive such as an epoxy adhesive or an acrylic adhesive, or may be a non-polar adhesive containing a non-polar skeleton in part.
  • polar adhesive examples include a urea resin adhesive, a melamine resin adhesive, a phenol resin adhesive, a vinyl acetate resin adhesive, an isocyanate adhesive, an epoxy adhesive, and an unsaturated polyester adhesive.
  • cyanoacrylate-based adhesives examples include cyanoacrylate-based adhesives, polyurethane-based adhesives, and acrylic resin-based adhesives.
  • non-polar adhesive examples include known adhesives (for example, urea resin adhesive, melamine resin adhesive, phenol resin adhesive, vinyl acetate resin adhesive, isocyanate adhesive, epoxy adhesive). , An unsaturated polyester-based adhesive, a cyanoacrylate-based adhesive, a polyurethane-based adhesive, an acrylic resin-based adhesive, etc.) and an adhesive composition in which a polymer having a non-polar skeleton as a main chain is mixed, and the above. Examples thereof include an adhesive composition in which a non-polar skeleton is introduced into the chemical structure of the main component polymer of the adhesive.
  • Preferred low-dielectric adhesives include, for example, an adhesive composition containing an olefin skeleton (for example, an adhesive composition containing at least a crystalline acid-modified polyolefin and an epoxy resin, and a modified polyamide adhesive composition containing an olefin skeleton. , An adhesive composition using an aromatic olefin oligomer type modifier and an epoxy resin, etc.), an adhesive composition containing a polyphenylene ether skeleton, and the like.
  • an adhesive composition containing an olefin skeleton for example, an adhesive composition containing at least a crystalline acid-modified polyolefin and an epoxy resin, and a modified polyamide adhesive composition containing an olefin skeleton.
  • An adhesive composition using an aromatic olefin oligomer type modifier and an epoxy resin, etc. an adhesive composition containing a polyphenylene ether skeleton, and the like.
  • an adhesive composition containing at least a crystalline acid-modified polyolefin and an epoxy resin contains 5% by mass or more of the crystalline acid-modified polyolefin of the adhesive. Is more preferable.
  • the adhesive may be an adhesive sheet, or may be a thermoplastic liquid crystal polymer molded product coated with an adhesive composition and dried.
  • the thickness of the adhesive layer may be 1 to 50 ⁇ m, preferably 5 to 40 ⁇ m, and more preferably 10 to 30 ⁇ m.
  • each thermoplastic liquid crystal polymer film is surface-treated so that the elastic modulus has a specific relationship between the above-mentioned inner layer and the surface layer. It is preferable that the surfaces are faced to each other and thermocompression bonded.
  • the adhesive strength between the thermoplastic liquid crystal polymer surface and the material to be adhered in the adhesive region of the thermoplastic liquid crystal polymer molded body may be 0.6 N / mm or more, preferably 0.7 N / mm or more, and more preferably 0. It may be 8.8 N / mm or more.
  • the adhesive strength is evaluated by the adhesive strength measured by the method described in Examples described later.
  • thermoplastic liquid crystal polymer molded product of the present invention can maintain the adhesive strength even after being stored for a long period of time.
  • the subsequent adhesive strength / adhesive strength immediately after the treatment may be 70% or more, preferably 80% or more, and more preferably 90% or more.
  • thermoplastic liquid crystal polymer film immediately after the treatment or the laminate of the single-sided metal-clad laminate (adhesive material) and the adhered material produced in Examples and Comparative Examples was used as an evaluation sample.
  • the treated adhesive material was held in a constant temperature chamber for 6 months under the conditions of temperature: 25 ° C. and humidity: 40%, and then laminated with the material to be adhered.
  • a laminate was prepared and used as an evaluation sample.
  • a 1.0 cm wide peeling test piece was prepared from the laminated body of the evaluation sample, and the adhesive material side was fixed to a flat plate with double-sided adhesive tape, and 50 mm / min by the 90 ° method according to JIS C 6471: 1995.
  • the strength (N / mm) at the interface between the adhesive material and the plasma-treated thermoplastic liquid crystal polymer film surface of the adhesive material was measured at the speed of.
  • thermoplastic liquid crystal polymer having a melting point of 280 ° C.
  • An inflation film was formed under the condition of a draw ratio of 2.09 times to obtain a thermoplastic liquid crystal polymer film having an average film thickness of 50 ⁇ m.
  • Aluminum foil is laminated on one side of the obtained film, suspended in a hot air oven, heat-treated at 310 ° C. for 10 minutes, cooled, and then the aluminum foil is dissolved and removed with an aqueous solution of ferric chloride to make it thermoplastic.
  • a liquid crystal polymer film was obtained.
  • Examples 1 to 3 In a plasma continuous device in which the film unwinding and winding of the long thermoplastic liquid crystal polymer film obtained in Reference Example 1 is installed inside a vacuum chamber, between parallel plate electrodes (electrode area 5 cm ⁇ 60 cm, head-film). It was set so as to pass through (interval distance 20 mm). After evacuated to 2Pa by a vacuum pump to a vacuum chamber, N 2 gas was introduced at a gas flow rate shown in Table 7 was adjusted to a pressure shown in Table 7. Subsequently, plasma was generated at the electrodes at a power output of 2 kW and a frequency of 110 kHz.
  • Example 4 Long thermoplastic liquid crystal polymer film and long copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., "CF-H9A-DS-HD2", thickness 12 ⁇ m, surface roughness Rz 1.2 ⁇ m] obtained in Reference Example 1 ), And these were continuously introduced between the heating rolls and pressure-bonded at 270 ° C. and 3 MPa to laminate them to prepare a single-sided metal-clad laminate.
  • This single-sided metal-clad laminate is passed between parallel plate electrodes (electrode area 5 cm x 60 cm, head-film distance 20 mm) in a plasma continuous device in which film unwinding and winding are installed inside a vacuum chamber. I set it.
  • N 2 gas was introduced at a gas flow rate shown in Table 7 was adjusted to a pressure shown in Table 7.
  • plasma was generated at the electrodes at a power output of 2 kW and a frequency of 110 kHz.
  • the transport speed was set so that the treatment time was as shown in Table 7, and plasma treatment was continuously performed on the surface of the single-sided metal-clad laminate on the thermoplastic liquid crystal polymer film side.
  • the output per unit area (W / cm 2 ) shown in Table 7 was calculated from the area of the electrodes and the output of the power supply.
  • the adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength immediately after the treatment.
  • the plasma-treated single-sided metal-clad laminate was stored in a constant temperature chamber for 6 months (temperature 25 ° C., humidity 40%), then cut out into two pieces, and plasma-treated in the two cut-out pieces of the single-sided metal-clad laminate. After laminating the surfaces of the thermoplastic liquid crystal polymer film side as the adherend surface, they were pressed at 300 ° C. and 4 MPa for 10 minutes, and two single-sided metal-clad laminates were laminated on each other's film surface side. A combined laminate was produced. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength after storage for 6 months.
  • Example 5 Long thermoplastic liquid crystal polymer film obtained in Reference Example 1, long copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., "CF-H9A-DS-HD2", thickness 12 ⁇ m, surface roughness Rz 1.2 ⁇ m ), And a long PCM foil (manufactured by JX Metal Co., Ltd., "PCM”, thickness 18 ⁇ m, surface roughness Rz 4.5 ⁇ m, peelable copper foil) becomes a copper foil / thermoplastic liquid crystal polymer film / PCM foil. After laminating them by continuously pressure-bonding them between heating rolls at 270 ° C.
  • Example 4 After superimposing the roughened surface treated with plasma and the plasma-treated surface of the single-sided metal-clad laminate prepared in Example 4, the two sheets were pressed at 300 ° C. and 4 MPa for 10 minutes.
  • a laminate was prepared by laminating single-sided metal-clad laminates on the film surface side of each other. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength immediately after the treatment. Further, these single-sided metal-clad laminates were stored in a constant temperature chamber for 6 months (temperature 25 ° C., humidity 40%), and then the plasma-treated roughened surface and the single-sided metal-clad laminate produced in Example 4 were prepared.
  • Example 6 Long thermoplastic liquid crystal polymer film obtained in Reference Example 1, long copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., "CF-H9A-DS-HD2", thickness 12 ⁇ m, surface roughness Rz 1.2 ⁇ m ), And a long polyimide protective sheet are stacked so as to form a copper foil / thermoplastic liquid crystal polymer film / copper foil / polyimide protective sheet, and these are continuously introduced between the heating rolls at 300 ° C. and 3 MPa.
  • a double-sided metal-clad laminate was prepared by crimping and laminating, and laminating a protective sheet on one side.
  • Er (S) and Er (I) were measured by SPM on the replica surface of the plasma-treated thermoplastic liquid crystal polymer film of the single-sided metal-clad laminate as the adhesive material. The results are shown in Table 7. Then, after superimposing the plasma-treated replica surface and the plasma-treated surface of the single-sided metal-clad laminate prepared in Example 4, press for 10 minutes at 300 ° C. and 4 MPa, and press the two single-sided surfaces. A laminate was prepared by laminating metal-clad laminates on the film surface side of each other. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength immediately after the treatment.
  • the plasma-treated replica surface and the single-sided metal-clad laminate produced in Example 4 were used. After superimposing the plasma-treated surface, pressing was performed at 300 ° C. and 4 MPa for 10 minutes to prepare a laminated body in which two single-sided metal-clad laminates were laminated on each other's film surface side. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength after storage for 6 months.
  • Example 7 As the conditions for plasma treatment, a plasma-treated single-sided metal-clad laminate was produced as an adhesive material in the same manner as in Example 4 except that the gas flow rate and pressure were changed as shown in Table 7. Er (S) and Er (I) were calculated by SPM for the surface of the plasma-treated single-sided metal-clad laminate on the thermoplastic liquid crystal polymer film side. The results are shown in Table 7. After that, the single-sided metal-clad laminate not subjected to plasma treatment of Example 4 was prepared as a material to be adhered, and the plasma-treated surface of the single-sided metal-clad laminate and the thermoplasticity of the single-sided metal-clad laminate not subjected to plasma treatment.
  • thermoplastic liquid crystal polymer films As a condition of plasma treatment, a laminate of thermoplastic liquid crystal polymer films was prepared in the same manner as in Example 1 except that N 2 gas was introduced without exhausting with a vacuum pump and the pressure was increased, and the adhesive strength was increased. Was measured.
  • thermoplastic liquid crystal polymer films As the conditions for plasma treatment, a laminate of thermoplastic liquid crystal polymer films was prepared in the same manner as in Example 1 except that the gas type and pressure were changed as shown in Table 7, and the adhesive strength was measured.
  • thermoplastic liquid crystal polymer film are laminated and pressed at 300 ° C. and 4 MPa for 10 minutes to prepare a laminate in which the film surface of the single-sided metal-clad laminate and the thermoplastic liquid crystal polymer film are laminated. did.
  • the adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength immediately after the treatment.
  • the single-sided metal-clad laminate on which the roughened surface of the PCM foil was transferred and the thermoplastic liquid crystal polymer film obtained in Reference Example 1 without surface treatment were stored in a constant temperature chamber for 6 months (temperature 25 ° C.).
  • the roughened surface of the single-sided metal-clad laminate and the thermoplastic liquid crystal polymer film are laminated, and then pressed at 300 ° C. and 4 MPa for 10 minutes to obtain the single-sided metal-clad laminate.
  • a laminate was prepared by superimposing a film surface and a thermoplastic liquid crystal polymer film. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength after storage for 6 months.
  • thermoplastic liquid crystal polymer film which has not been surface-treated in a constant temperature chamber for 6 months (temperature 25 ° C., humidity 40%)
  • two films are cut out, and both film pieces are overlapped with each other. , 300 ° C., 4 MPa for 10 minutes to prepare a laminate of thermoplastic liquid crystal polymer films.
  • the adhesive strength of this laminate was measured and used as the adhesive strength after storage for 6 months.
  • the ratio (Er (S) / Er (I)) of the elastic modulus Er (S) of the surface layer to the elastic modulus Er (I) of the inner layer is in the range of 0 to 1.50. It can be seen that in Examples 1 to 7 using the plastic liquid crystal polymer molded product, the adhesive strength is high even after storage for 6 months, and high adhesiveness can be maintained even after long-term storage.
  • thermoplastic liquid crystal polymer molded body in which the ratio (Er (S) / Er (I)) of the elastic modulus Er (S) of the surface layer to the elastic modulus Er (I) of the inner layer is out of the range of 0 to 1.50.
  • the ratio (Er (S) / Er (I)) of the elastic modulus Er (S) of the surface layer to the elastic modulus Er (I) of the inner layer is out of the range of 0 to 1.50.
  • the thermoplastic liquid crystal polymer molded body has a structure in which the elastic modulus of the inner layer and the elastic modulus of the surface layer have a specific relationship, the adhesiveness can be maintained even if it is stored for a long period of time. Therefore, it can be used for various purposes according to its shape, especially as a multilayer circuit board, an insulator of an electronic circuit board, a reinforcing plate of a flexible circuit board, a cover film on a circuit surface, a multilayer circuit using an adhesive, and the like. It is useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a thermoplastic liquid crystal polymer molded body that maintains adhesiveness even after long-term storage. The thermoplastic liquid crystal polymer molded body has an adhesive area in at least a portion thereof, and a ratio (Er(S)/Er(I)) of the modulus Er(S) of the surface layer to an indentation depth of 20 nm and the modulus Er(I) of an internal layer to an indentation depth of 200 nm, as measured by nano-indentation in the adhesive area, is 0 to 1.50, inclusive.

Description

熱可塑性液晶ポリマー成形体Thermoplastic liquid crystal polymer molded product 関連出願Related application
 本願は2020年6月9日出願の特願2020-100180の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2020-100180 filed on June 9, 2020, and the whole thereof is cited as a part of this application by reference.
 本発明は、接着性に優れる熱可塑性液晶ポリマー成形体に関する。 The present invention relates to a thermoplastic liquid crystal polymer molded product having excellent adhesiveness.
 熱可塑性液晶ポリマー成形体は、熱可塑性液晶ポリマーの性質に由来して、優れた誘電特性(低誘電率および低誘電正接)を有しているため、誘電特性を重視する用途において注目されている。 Thermoplastic liquid crystal polymer molded products have excellent dielectric properties (low dielectric constant and low dielectric loss tangent) due to the properties of thermoplastic liquid crystal polymers, and are therefore attracting attention in applications where dielectric properties are important. ..
 例えば、近年、プリント配線板における伝送信号の高速化に伴い、信号の高周波化が進んでいる。これに伴い、プリント配線板に用いられる基材には、高周波領域での優れた誘電特性が要求されている。このような要求に対して、プリント配線板に用いられる基材フィルムとして、従来のポリイミド(PI)、ポリエチレンテレフタレートフィルムに代えて、優れた誘電特性を有する熱可塑性液晶ポリマーフィルムが注目されている。しかしながら、熱可塑性液晶ポリマーフィルムは、そもそも接着性が低いという課題を有している。 For example, in recent years, with the increase in speed of transmission signals in printed wiring boards, the frequency of signals has been increasing. Along with this, the base material used for the printed wiring board is required to have excellent dielectric properties in the high frequency region. In response to such demands, as a base film used for a printed wiring board, a thermoplastic liquid crystal polymer film having excellent dielectric properties has been attracting attention instead of the conventional polyimide (PI) and polyethylene terephthalate film. However, the thermoplastic liquid crystal polymer film has a problem of low adhesiveness in the first place.
 例えば、特許文献1(特開平1-216824号公報)および特許文献2(特開平1-236246号公報)には、液晶ポリマー成形体に、塗装、印刷、接着、蒸着、メッキ等を行うための表面改質方法として、波長184.9nmの紫外線を照射する表面処理方法が開示されている。特許文献1および2では、波長184.9nmの紫外線を液晶ポリエステル成形体表面に照射することによって、水酸基や酸素含有基が生成して成形体表面を活性化している。 For example, in Patent Document 1 (Japanese Patent Laid-Open No. 1-216824) and Patent Document 2 (Japanese Patent Laid-Open No. 1-236246), a liquid crystal polymer molded body is used for coating, printing, adhering, vapor deposition, plating and the like. As a surface modification method, a surface treatment method for irradiating ultraviolet rays having a wavelength of 184.9 nm is disclosed. In Patent Documents 1 and 2, when the surface of a liquid crystal polyester molded body is irradiated with ultraviolet rays having a wavelength of 184.9 nm, hydroxyl groups and oxygen-containing groups are generated to activate the surface of the molded body.
 また、特許文献3(特許第4892274号公報)には、液晶ポリマー成形体の被接着部位の表面部のX線光電子分光分析結果において、C(Is)ピーク強度に占める[-C-O-結合]と[-COO-結合]とのピーク強度の和が21%以上で、かつピーク強度の比[-C-O-結合]/[-COO-結合]が1.5以下である液晶ポリマー成形体が開示されている。また、その製造方法として、酸性気体雰囲気中、出力:0.6W/cm以下で且つ圧力:0.1Torr以上の条件で液晶ポリマー成形体の少なくとも被接着部位にプラズマ照射して表面処理する工程を含む液晶ポリマー成形体の製造方法が記載されている。この文献では、このようなプラズマ処理の条件により、成形体表面の官能基の比率を調整し、液晶ポリマー成形体のエポキシ系樹脂への接着強度を向上させている。 Further, in Patent Document 3 (Japanese Patent No. 4892274), in the X-ray photoelectron spectroscopy analysis result of the surface portion of the adhered portion of the liquid crystal polymer molded body, it occupies the C (Is) peak intensity [-CO-bond]. ] And [-COO-bond], the sum of the peak intensities is 21% or more, and the ratio of peak intensities [-CO-bond] / [-COO-bond] is 1.5 or less. The body is disclosed. Further, as a manufacturing method thereof, a step of irradiating at least the adhered portion of the liquid crystal polymer molded product with plasma under the conditions of an output of 0.6 W / cm 2 or less and a pressure of 0.1 Torr or more in an acid gas atmosphere to perform surface treatment. A method for producing a liquid crystal polymer molded product containing the above is described. In this document, the ratio of functional groups on the surface of the molded product is adjusted according to such plasma treatment conditions to improve the adhesive strength of the liquid crystal polymer molded product to the epoxy resin.
特開平1-216824号公報Japanese Unexamined Patent Publication No. 1-216824 特開平1-236246号公報Japanese Unexamined Patent Publication No. 1-236246 特許第4892274号公報Japanese Patent No. 4892274
 しかしながら、特許文献1~3では、熱可塑性液晶ポリマー成形体の表面を化学的に改質しており、このような表面処理方法では、処理直後の接着性は付与されるものの、熱運動、表面汚染による官能基の失活が発生するため、未接着の状態で長期間保管した後の接着性を確保できないという課題があった。また、特許文献1~3に記載の表面処理方法では、表面に付与されるのは親水性官能基であるため、表面の化学構造において相互作用の低い被接着材料とは接着性が悪い等の問題があった。 However, in Patent Documents 1 to 3, the surface of the thermoplastic liquid crystal polymer molded body is chemically modified. In such a surface treatment method, although the adhesiveness immediately after the treatment is imparted, the thermal motion and the surface are provided. Since the functional groups are deactivated due to contamination, there is a problem that the adhesiveness cannot be ensured after long-term storage in an unbonded state. Further, in the surface treatment methods described in Patent Documents 1 to 3, since the hydrophilic functional group is applied to the surface, the adhesiveness is poor with the adhered material having a low interaction in the chemical structure of the surface. There was a problem.
 したがって、本発明の目的は、長期間保管しても接着性を維持できる熱可塑性液晶ポリマー成形体を提供することである。 Therefore, an object of the present invention is to provide a thermoplastic liquid crystal polymer molded product that can maintain adhesiveness even after long-term storage.
 本発明の発明者らは、上記目的を達成するため鋭意検討した結果、長期間保管した時に影響されやすい表面の化学構造ではなく、熱可塑性液晶ポリマー成形体の表面の物理的物性に着目した。そして、プラズマ処理の条件によって熱可塑性液晶ポリマー成形体表面を物理的に緻密に改質することが可能であることを見出した。さらに、表面の物理的物性を詳細に分析することが可能なナノインデンテーション法によって、熱可塑性液晶ポリマー成形体の表面の詳細分析を重ねた結果、表層および内部層における弾性率の比が特定の関係を満足する熱可塑性液晶ポリマー成形体において、長期間保管しても接着性を維持できることを見出した。 As a result of diligent studies to achieve the above object, the inventors of the present invention focused on the physical properties of the surface of the thermoplastic liquid crystal polymer molded body, not the chemical structure of the surface which is easily affected by long-term storage. Then, they have found that the surface of the thermoplastic liquid crystal polymer molded product can be physically and precisely modified depending on the conditions of plasma treatment. Furthermore, as a result of repeated detailed analysis of the surface of the thermoplastic liquid crystal polymer molded product by the nanoindentation method that can analyze the physical properties of the surface in detail, the ratio of elastic modulus in the surface layer and the inner layer is specified. It has been found that in a thermoplastic liquid crystal polymer molded product satisfying the relationship, the adhesiveness can be maintained even after long-term storage.
 すなわち本発明は、以下の好適な形態を提供するものである。
[1]少なくとも一部に接着領域を有し、当該接着領域においてナノインデンテーション法によって測定された、押し込み深さが20nmの範囲における表層の弾性率Er(S)と、押し込み深さが200nmの範囲における内部層の弾性率Er(I)の比(Er(S)/Er(I))が、0以上(好ましくは0.5以上、より好ましくは0.9以上、さらに好ましくは1.0以上、さらにより好ましくは1.1以上)1.50以下(好ましくは1.45以下、より好ましくは1.40以下)である、熱可塑性液晶ポリマー成形体。
[2]表層の弾性率Er(S)が6.6GPa以下(好ましくは6.0GPa以下)である、[1]に記載の熱可塑性液晶ポリマー成形体。
[3]形状がフィルム状である、[1]または[2]に記載の熱可塑性液晶ポリマー成形体。
[4][1]~[3]のいずれかに記載の熱可塑性液晶ポリマー成形体において、金属部分を備える、熱可塑性液晶ポリマー成形体。
[5][1]~[4]のいずれかに記載の熱可塑性液晶ポリマー成形体において、回路を備える、熱可塑性液晶ポリマー成形体。
That is, the present invention provides the following suitable forms.
[1] The elastic modulus Er (S) of the surface layer in the range of the indentation depth of 20 nm and the indentation depth of 200 nm, which have an adhesive region at least partially and are measured by the nanoindentation method in the adhesive region. The ratio of elastic modulus Er (I) of the inner layer in the range (Er (S) / Er (I)) is 0 or more (preferably 0.5 or more, more preferably 0.9 or more, still more preferably 1.0. Above, more preferably 1.1 or more) 1.50 or less (preferably 1.45 or less, more preferably 1.40 or less), a thermoplastic liquid crystal polymer molded body.
[2] The thermoplastic liquid crystal polymer molded product according to [1], wherein the elastic modulus Er (S) of the surface layer is 6.6 GPa or less (preferably 6.0 GPa or less).
[3] The thermoplastic liquid crystal polymer molded product according to [1] or [2], which has a film-like shape.
[4] The thermoplastic liquid crystal polymer molded product according to any one of [1] to [3], comprising a metal portion.
[5] The thermoplastic liquid crystal polymer molded product according to any one of [1] to [4], comprising a circuit.
 本明細書において、熱可塑性液晶ポリマー成形体とは、少なくとも熱可塑性液晶ポリマーを含む成形体という意味であり、例えば、熱可塑性液晶ポリマー成形体には、被接着材料と接着する前の成形体(非接合体)も、被接着材料と接着した後の成形体(接合体または積層体)も含まれる。 In the present specification, the thermoplastic liquid crystal polymer molded body means a molded body containing at least a thermoplastic liquid crystal polymer. For example, in the thermoplastic liquid crystal polymer molded body, a molded body before being bonded to the material to be adhered ( A non-bonded body) and a molded body (bonded body or laminated body) after being bonded to the material to be bonded are also included.
 なお、請求の範囲および/または明細書に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。 It should be noted that any combination of the claims and / or at least two components disclosed in the specification is included in the present invention. In particular, any combination of two or more of the claims described in the claims is included in the invention.
 本発明の熱可塑性液晶ポリマー成形体によれば、内部層の弾性率と表層の弾性率とが特定の関係を有するように制御することにより、長期間(例えば、1~6ヶ月程度、好ましくは3~6ヶ月程度)保管しても接着性を維持できる。そのため、本発明の熱可塑性液晶ポリマー成形体は、金属層や回路を形成した場合、例えば電子回路基板の絶縁体材料として極めて有用である。 According to the thermoplastic liquid crystal polymer molded product of the present invention, by controlling the elastic modulus of the inner layer and the elastic modulus of the surface layer so as to have a specific relationship, a long period of time (for example, about 1 to 6 months, preferably about 1 to 6 months) is preferable. Adhesion can be maintained even after storage (about 3 to 6 months). Therefore, the thermoplastic liquid crystal polymer molded body of the present invention is extremely useful as an insulator material for, for example, an electronic circuit board when a metal layer or a circuit is formed.
[熱可塑性液晶ポリマー]
 本発明の熱可塑性液晶ポリマー成形体は、熱可塑性液晶ポリマーで構成される。この熱可塑性液晶ポリマーは、溶融成形できる液晶性ポリマー(または光学的に異方性の溶融相を形成し得るポリマー)で構成され、溶融成形できる液晶性ポリマーであればその化学的構成については特に限定されるものではないが、例えば、熱可塑性液晶ポリエステル、またはこれにアミド結合が導入された熱可塑性液晶ポリエステルアミドなどを挙げることができる。
[Thermoplastic liquid crystal polymer]
The thermoplastic liquid crystal polymer molded product of the present invention is composed of a thermoplastic liquid crystal polymer. This thermoplastic liquid crystal polymer is composed of a liquid crystal polymer that can be melt-molded (or a polymer that can form an optically anisotropic molten phase), and if it is a liquid crystal polymer that can be melt-molded, its chemical composition is particularly high. Examples thereof include, but are not limited to, a thermoplastic liquid crystal polyester, or a thermoplastic liquid crystal polyester amide having an amide bond introduced therein.
 また、熱可塑性液晶ポリマーは、芳香族ポリエステルまたは芳香族ポリエステルアミドに、更にイミド結合、カーボネート結合、カルボジイミド結合やイソシアヌレート結合などのイソシアネート由来の結合等が導入されたポリマーであってもよい。 Further, the thermoplastic liquid crystal polymer may be a polymer in which an imide bond, a carbonate bond, an isocyanate-derived bond such as a carbodiimide bond or an isocyanurate bond is further introduced into an aromatic polyester or an aromatic polyester amide.
 本発明に用いられる熱可塑性液晶ポリマーの具体例としては、以下に例示する(1)から(4)に分類される化合物およびその誘導体から導かれる公知の熱可塑性液晶ポリエステルおよび熱可塑性液晶ポリエステルアミドを挙げることができる。ただし、光学的に異方性の溶融相を形成し得るポリマーを形成するためには、種々の原料化合物の組み合わせには適当な範囲があることは言うまでもない。 Specific examples of the thermoplastic liquid crystal polymer used in the present invention include known thermoplastic liquid crystal polyesters and thermoplastic liquid crystal polyester amides derived from the compounds classified into the compounds (1) to (4) and their derivatives exemplified below. Can be mentioned. However, it goes without saying that there is an appropriate range in the combination of various raw material compounds in order to form a polymer capable of forming an optically anisotropic molten phase.
 (1)芳香族または脂肪族ジオール(代表例は表1参照) (1) Aromatic or aliphatic diols (see Table 1 for typical examples)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (2)芳香族または脂肪族ジカルボン酸(代表例は表2参照) (2) Aromatic or aliphatic dicarboxylic acids (see Table 2 for typical examples)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (3)芳香族ヒドロキシカルボン酸(代表例は表3参照) (3) Aromatic hydroxycarboxylic acid (see Table 3 for typical examples)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (4)芳香族ジアミン、芳香族ヒドロキシアミンまたは芳香族アミノカルボン酸(代表例は表4参照) (4) Aromatic diamine, aromatic hydroxyamine or aromatic aminocarboxylic acid (see Table 4 for typical examples).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 これらの原料化合物から得られる熱可塑性液晶ポリマーの代表例として表5および6に示す繰り返し単位を有する共重合体を挙げることができる。 Typical examples of thermoplastic liquid crystal polymers obtained from these raw material compounds include copolymers having repeating units shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 これらの共重合体のうち、p-ヒドロキシ安息香酸および/または6-ヒドロキシ-2-ナフトエ酸を少なくとも繰り返し単位として含む重合体が好ましく、特に、(i)p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸との繰り返し単位を含む共重合体、または(ii)p-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸と、少なくとも一種の芳香族ジオールおよび/または芳香族ヒドロキシアミンと、少なくとも一種の芳香族ジカルボン酸との繰り返し単位を含む共重合体が好ましい。 Among these copolymers, a polymer containing p-hydroxybenzoic acid and / or 6-hydroxy-2-naphthoic acid as at least a repeating unit is preferable, and (i) p-hydroxybenzoic acid and 6-hydroxy- A copolymer containing a repeating unit with 2-naphthoic acid, or at least one aromatic hydroxycarboxylic acid selected from the group consisting of (ii) p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, and at least one. A copolymer containing a repeating unit of an aromatic diol and / or an aromatic hydroxyamine of at least one aromatic dicarboxylic acid is preferred.
 例えば、(i)の共重合体では、熱可塑性液晶ポリマーが、少なくともp-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸との繰り返し単位を含む場合、繰り返し単位(A)のp-ヒドロキシ安息香酸と、繰り返し単位(B)の6-ヒドロキシ-2-ナフトエ酸とのモル比(A)/(B)は、熱可塑性液晶ポリマー中、(A)/(B)=10/90~90/10程度であることが望ましく、より好ましくは、(A)/(B)=15/85~85/15程度であってもよく、さらに好ましくは、(A)/(B)=20/80~80/20程度であってもよい。 For example, in the copolymer of (i), if the thermoplastic liquid crystal polymer contains at least a repeating unit of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, the p-hydroxybenzoic acid of the repeating unit (A). The molar ratio (A) / (B) of the acid to the 6-hydroxy-2-naphthoic acid of the repeating unit (B) is (A) / (B) = 10/90 to 90 / in the thermoplastic liquid crystal polymer. It is preferably about 10, more preferably (A) / (B) = about 15/85 to 85/15, and even more preferably (A) / (B) = 20/80 to. It may be about 80/20.
 また、(ii)の共重合体の場合、p-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸(C)と、4,4’-ジヒドロキシビフェニル、ヒドロキノン、フェニルヒドロキノン、および4,4’-ジヒドロキシジフェニルエーテルからなる群から選ばれる少なくとも一種の芳香族ジオール(D)と、テレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸からなる群から選ばれる少なくとも一種の芳香族ジカルボン酸(E)の、熱可塑性液晶ポリマーにおける各繰り返し単位のモル比は、前記芳香族ヒドロキシカルボン酸(C):前記芳香族ジオール(D):前記芳香族ジカルボン酸(E)=(30~80):(35~10):(35~10)程度であってもよく、より好ましくは、(C):(D):(E)=(35~75):(32.5~12.5):(32.5~12.5)程度であってもよく、さらに好ましくは、(C):(D):(E)=(40~70):(30~15):(30~15)程度であってもよい。 Further, in the case of the copolymer of (ii), at least one aromatic hydroxycarboxylic acid (C) selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and 4,4'-. From the group consisting of at least one aromatic diol (D) selected from the group consisting of dihydroxybiphenyl, hydroquinone, phenylhydroquinone, and 4,4'-dihydroxydiphenyl ether, and the group consisting of terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid. The molar ratio of each repeating unit of at least one selected aromatic dicarboxylic acid (E) in the thermoplastic liquid crystal polymer is the aromatic hydroxycarboxylic acid (C): the aromatic diol (D): the aromatic dicarboxylic acid. (E) = (30 to 80): (35 to 10): may be about (35 to 10), and more preferably (C) :( D) :( E) = (35 to 75) :. (32.5 to 12.5): It may be about (32.5 to 12.5), and more preferably (C) :( D) :( E) = (40 to 70) :( 30). ~ 15): It may be about (30 ~ 15).
 また、芳香族ヒドロキシカルボン酸(C)のうち6-ヒドロキシ-2-ナフトエ酸に由来する繰り返し単位のモル比率は、例えば、85モル%以上であってもよく、好ましくは90モル%以上、より好ましくは95モル%以上であってもよい。芳香族ジカルボン酸(E)のうち2,6-ナフタレンジカルボン酸に由来する繰り返し単位のモル比率は、例えば、85モル%以上であってもよく、好ましくは90モル%以上、より好ましくは95モル%以上であってもよい。 Further, the molar ratio of the repeating unit derived from 6-hydroxy-2-naphthoic acid in the aromatic hydroxycarboxylic acid (C) may be, for example, 85 mol% or more, preferably 90 mol% or more. It may be preferably 95 mol% or more. The molar ratio of the repeating unit derived from 2,6-naphthalenedicarboxylic acid in the aromatic dicarboxylic acid (E) may be, for example, 85 mol% or more, preferably 90 mol% or more, and more preferably 95 mol%. It may be% or more.
 また、芳香族ジオール(D)は、ヒドロキノン、4,4’-ジヒドロキシビフェニル、フェニルヒドロキノン、および4,4’-ジヒドロキシジフェニルエーテルからなる群から選ばれる互いに異なる二種の芳香族ジオールに由来する繰り返し単位(D1)と(D2)であってもよく、その場合、二種の芳香族ジオールのモル比は、(D1)/(D2)=23/77~77/23であってもよく、より好ましくは25/75~75/25、さらに好ましくは30/70~70/30であってもよい。 The aromatic diol (D) is a repeating unit derived from two different aromatic diols selected from the group consisting of hydroquinone, 4,4'-dihydroxybiphenyl, phenylhydroquinone, and 4,4'-dihydroxydiphenyl ether. It may be (D1) and (D2), and in that case, the molar ratio of the two aromatic diols may be (D1) / (D2) = 23/77 to 77/23, which is more preferable. May be 25/75 to 75/25, more preferably 30/70 to 70/30.
 また、芳香族ジオール(D)に由来する繰り返し単位と芳香族ジカルボン酸(E)に由来する繰り返し単位とのモル比は、(D)/(E)=95/100~100/95であることが好ましい。この範囲をはずれると、重合度が上がらず機械強度が低下する傾向がある。 The molar ratio of the repeating unit derived from the aromatic diol (D) to the repeating unit derived from the aromatic dicarboxylic acid (E) is (D) / (E) = 95/100 to 100/95. Is preferable. If it deviates from this range, the degree of polymerization does not increase and the mechanical strength tends to decrease.
 なお、本発明にいう光学的異方性の溶融相を形成し得るとは、例えば試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより認定できる。 It should be noted that the fact that the optically anisotropic molten phase referred to in the present invention can be formed can be determined, for example, by placing the sample on a hot stage, heating the sample in a nitrogen atmosphere, and observing the transmitted light of the sample.
 熱可塑性液晶ポリマーとして好ましいものは、融点(以下、Tmと称す)が、例えば、200~360℃の範囲のものであり、好ましくは240~350℃の範囲のもの、さらに好ましくはTmが260~330℃のものである。なお、熱可塑性液晶ポリマーの融点は、示差走査熱量計を用いて、熱可塑性液晶ポリマーサンプルの熱挙動を観察して得ることができる。すなわち、熱可塑性液晶ポリマーサンプルを室温(例えば、25℃)から10℃/minの速度で昇温して完全に溶融させた後、溶融物を10℃/minの速度で50℃まで急冷し、再び10℃/minの速度で昇温した後に現れる吸熱ピークの位置を、熱可塑性液晶ポリマーサンプルの融点として記録すればよい。 The thermoplastic liquid crystal polymer preferably has a melting point (hereinafter referred to as Tm 0 ) having a melting point in the range of, for example, 200 to 360 ° C., preferably in the range of 240 to 350 ° C., and more preferably Tm 0. The temperature is 260 to 330 ° C. The melting point of the thermoplastic liquid crystal polymer can be obtained by observing the thermal behavior of the thermoplastic liquid crystal polymer sample using a differential scanning calorimeter. That is, the thermoplastic liquid crystal polymer sample was heated from room temperature (for example, 25 ° C.) at a rate of 10 ° C./min to completely melt it, and then the melt was rapidly cooled to 50 ° C. at a rate of 10 ° C./min. The position of the endothermic peak that appears after the temperature is raised again at a rate of 10 ° C./min may be recorded as the melting point of the thermoplastic liquid crystal polymer sample.
 また、熱可塑性液晶ポリマーは、溶融成形性の観点から、例えば、(Tm+20)℃におけるせん断速度1000/sでの溶融粘度30~120Pa・sを有していてもよく、好ましくは溶融粘度50~100Pa・sを有していてもよい。 Further, from the viewpoint of melt moldability, the thermoplastic liquid crystal polymer may have a melt viscosity of 30 to 120 Pa · s at a shear rate of 1000 / s at (Tm 0 + 20) ° C., preferably a melt viscosity. It may have 50 to 100 Pa · s.
 前記熱可塑性液晶ポリマーには、本発明の効果を損なわない範囲内で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、フッ素樹脂等の熱可塑性ポリマー、各種添加剤を添加してもよい。また、必要に応じて充填剤を添加してもよい。 The thermoplastic liquid crystal polymer includes thermoplastic polymers such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyetheretherketone, and fluororesin, as long as the effects of the present invention are not impaired. , Various additives may be added. Further, a filler may be added as needed.
[熱可塑性液晶ポリマー成形体]
 本発明の熱可塑性液晶ポリマー成形体は、少なくとも一部に接着領域を有し、当該接着領域においてナノインデンテーション法によって測定された、押し込み深さが20nmの範囲における表層の弾性率Er(S)と、押し込み深さが200nmの範囲における内部層の弾性率Er(I)の比(Er(S)/Er(I))が、0以上1.50以下の範囲である。
[Thermoplastic liquid crystal polymer molded product]
The thermoplastic liquid crystal polymer molded product of the present invention has an adhesive region at least in a part thereof, and the elastic modulus Er (S) of the surface layer in the range of the indentation depth of 20 nm measured by the nanoindentation method in the adhesive region. The ratio (Er (S) / Er (I)) of the elastic modulus Er (I) of the inner layer in the range of the indentation depth of 200 nm is in the range of 0 or more and 1.50 or less.
 押し込み深さが20nmの範囲における表層の弾性率Er(S)とは、熱可塑性液晶ポリマー成形体の表面をナノインデンテーションで測定した際、後述の実施例に記載の測定条件において、針先端を成形体最表層から20nmの深さまで差し込んだ際に算出される弾性率であり、極表層の状態を反映したものと定義する。一方、押し込み深さが200nmの範囲における内部層の弾性率Er(I)とは、針先端を成形体最表層から200nmの深さまで差し込んだ際に算出される弾性率であり、Er(S)と比べて比較的内部の状態を反映したものと定義する。ここで、最表層とは、針先端と成形体との接触点の周辺表面を意味する。 The elastic modulus Er (S) of the surface layer in the range of the indentation depth of 20 nm means that when the surface of the thermoplastic liquid crystal polymer molded product is measured by nanoindentation, the needle tip is set under the measurement conditions described in Examples described later. It is an elastic modulus calculated when the molded product is inserted from the outermost layer to a depth of 20 nm, and is defined as reflecting the state of the polar surface layer. On the other hand, the elastic modulus Er (I) of the inner layer in the range of the indentation depth of 200 nm is the elastic modulus calculated when the needle tip is inserted from the outermost layer of the molded body to a depth of 200 nm, and is Er (S). It is defined as reflecting the relatively internal state compared to. Here, the outermost layer means the peripheral surface of the contact point between the needle tip and the molded body.
 ナノインデンテーション法によって測定される、弾性率Er(S)およびEr(I)については、スティフネスSと接触投影面積Acから下記式(1)を用いて、算出できる。 The elastic moduli Er (S) and Er (I) measured by the nanoindentation method can be calculated from the stiffness S and the contact projection area Ac by using the following formula (1).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 スティフネスSは、荷重-変位曲線における除荷曲線の傾きから算出される。なお、前記除荷曲線の傾きは、高変位時における除荷曲線の傾き、つまり、プローブを圧入後、除荷の開始直後における除荷曲線の傾きを指す。接触投影面積Acは、接触深さ(所定の圧入深さと最大荷重における除荷曲線の勾配から求められる接触点の周辺表面での表面変位の差)とプローブの幾何学的形状固有の定数および補正項から所定の式により求められる。 Stiffness S is calculated from the slope of the unloading curve in the load-displacement curve. The slope of the unloading curve refers to the slope of the unloading curve at the time of high displacement, that is, the slope of the unloading curve immediately after the probe is press-fitted and the start of unloading. The contact projected area Ac is a constant and correction specific to the geometry of the probe and the contact depth (difference between the predetermined press-fit depth and the surface displacement on the peripheral surface of the contact point obtained from the gradient of the unloading curve at the maximum load). It is obtained from the above term by a predetermined formula.
 一般に、熱可塑性液晶ポリマー成形体は、高度に分子配向したスキン層が極表層に存在しているため、接着性に劣っていると理解される。本発明の熱可塑性液晶ポリマー成形体は、Er(S)/Er(I)が特定の範囲にあることによって、熱圧着時に極表層が被着体表面の凹凸に侵入しやすくなり、アンカー効果が向上するためか、化学構造に関わらず、物理的に接着性を向上させることができるとともに、長期間保管した場合でも接着性を維持できるのではないかと考えられる。Er(S)/Er(I)の値が1.50より大きい場合は、熱可塑性液晶ポリマー成形体の接着領域の内部層に比べて、表層の弾性率が高くなりすぎ、熱圧着時の接着力が不十分となる。Er(S)/Er(I)は1.45以下が好ましく、1.40以下がより好ましい。一方、熱可塑性液晶ポリマー成形体の接着領域の表層の弾性率が低い場合、成形体表面の分子配向が乱れ、誘電損失が高くなる傾向にあるため、例えば、Er(S)/Er(I)は0.5以上が好ましく、0.9以上がより好ましく、1.0以上がさらに好ましく、1.1以上がさらにより好ましい。 Generally, it is understood that the thermoplastic liquid crystal polymer molded product is inferior in adhesiveness because a highly molecularly oriented skin layer is present on the polar surface layer. In the thermoplastic liquid crystal polymer molded body of the present invention, since Er (S) / Er (I) is in a specific range, the polar surface layer easily penetrates into the unevenness of the adherend surface during thermocompression bonding, and the anchor effect is obtained. Perhaps because of the improvement, it is possible to physically improve the adhesiveness regardless of the chemical structure, and it is thought that the adhesiveness can be maintained even when stored for a long period of time. When the value of Er (S) / Er (I) is larger than 1.50, the elastic modulus of the surface layer becomes too high as compared with the inner layer of the adhesive region of the thermoplastic liquid crystal polymer molded product, and the adhesion during thermocompression bonding is performed. Insufficient power. Er (S) / Er (I) is preferably 1.45 or less, more preferably 1.40 or less. On the other hand, when the elastic modulus of the surface layer of the adhesive region of the thermoplastic liquid crystal polymer molded product is low, the molecular orientation of the surface of the molded product is disturbed and the dielectric loss tends to be high. Therefore, for example, Er (S) / Er (I). Is preferably 0.5 or more, more preferably 0.9 or more, further preferably 1.0 or more, and even more preferably 1.1 or more.
 Er(S)は、Er(S)/Er(I)が0~1.50となる限り特に制限されないが、3.0GPa以上であることが好ましく、4.0GPa以上であることがより好ましく、5.0GPa以上であることがさらに好ましい。また、8.0GPa以下であることが好ましく、7.0GPa以下であることがより好ましく、6.6GPa以下であることがさらに好ましく、6.0GPa以下であることがさらにより好ましい。 Er (S) is not particularly limited as long as Er (S) / Er (I) is 0 to 1.50, but is preferably 3.0 GPa or more, more preferably 4.0 GPa or more. It is more preferably 5.0 GPa or more. Further, it is preferably 8.0 GPa or less, more preferably 7.0 GPa or less, further preferably 6.6 GPa or less, and even more preferably 6.0 GPa or less.
 Er(I)は、Er(S)/Er(I)が0~1.50となる限り特に制限されないが、2.0GPa以上であることが好ましく、3.0GPa以上であることがより好ましく、4.0GPa以上であることがさらに好ましい。また、7.0GPa以下であることが好ましく、6.0GPa以下であることがより好ましく、4.3GPa以下であることがさらに好ましい。 Er (I) is not particularly limited as long as Er (S) / Er (I) is 0 to 1.50, but is preferably 2.0 GPa or more, more preferably 3.0 GPa or more. It is more preferably 4.0 GPa or more. Further, it is preferably 7.0 GPa or less, more preferably 6.0 GPa or less, and further preferably 4.3 GPa or less.
 本発明の熱可塑性液晶ポリマー成形体は、熱可塑性液晶ポリマーで少なくとも構成されていればよく、熱可塑性液晶ポリマー単独で形成されていてもよいし、熱可塑性液晶ポリマーと他の物質とで構成されていてもよい。
 例えば、本発明の熱可塑性液晶ポリマー成形体は、さらに導電部を備えてもよい。導電部は金属で構成されていてもよく、例えば、本発明の熱可塑性液晶ポリマー成形体は、その表面(接着領域の表面および/または非接着領域の表面)上に金属部分を備えていてもよい。ここで、非接着領域とは、Er(S)/Er(I)が特定の範囲にない領域を意味する。具体的には、本発明に係るフィルム状の熱可塑性液晶ポリマー成形体(以下、熱可塑性液晶ポリマーフィルムと称す)は、金属箔が積層された金属張積層板(片面金属張積層板または両面金属張積層板)であってもよい。また、本発明の熱可塑性液晶ポリマー成形体は、熱可塑性液晶ポリマーフィルム層と金属層とが接着層(例えば、接着剤)を介して積層された積層体であってもよいし、熱可塑性液晶ポリマーフィルム層と金属層とが直接積層された積層体であってもよい。
The thermoplastic liquid crystal polymer molded product of the present invention may be formed of at least a thermoplastic liquid crystal polymer, may be formed of the thermoplastic liquid crystal polymer alone, or may be composed of the thermoplastic liquid crystal polymer and other substances. May be.
For example, the thermoplastic liquid crystal polymer molded product of the present invention may further include a conductive portion. The conductive portion may be made of metal, for example, the thermoplastic liquid crystal polymer molded article of the present invention may have a metal portion on its surface (the surface of the bonded region and / or the surface of the non-bonded region). good. Here, the non-adhesive region means a region where Er (S) / Er (I) is not in a specific range. Specifically, the film-shaped thermoplastic liquid crystal polymer molded body (hereinafter referred to as a thermoplastic liquid crystal polymer film) according to the present invention is a metal-clad laminate (single-sided metal-clad laminate or double-sided metal) on which a metal foil is laminated. It may be a stretched laminated board). Further, the thermoplastic liquid crystal polymer molded body of the present invention may be a laminated body in which a thermoplastic liquid crystal polymer film layer and a metal layer are laminated via an adhesive layer (for example, an adhesive), or a thermoplastic liquid crystal. It may be a laminate in which a polymer film layer and a metal layer are directly laminated.
 金属としては、目的に応じて適宜決定することができるが、銅、ニッケル、コバルト、アルミニウム、金、すず、クロム等が好ましく用いられる。金属層の厚さは0.01~200μm、好ましくは0.1~100μmであってもよく、より好ましくは1~80μm、特に好ましくは2~50μmであってもよい。 The metal can be appropriately determined according to the purpose, but copper, nickel, cobalt, aluminum, gold, tin, chromium and the like are preferably used. The thickness of the metal layer may be 0.01 to 200 μm, preferably 0.1 to 100 μm, more preferably 1 to 80 μm, and particularly preferably 2 to 50 μm.
 金属層として金属箔を直接積層する場合、金属箔の厚さは1~80μmであってもよく、好ましくは2~50μmであってもよい。また、熱可塑性液晶ポリマー成形体と接する側の金属箔の表面粗さ(Rz)は、例えば2.0μm以下、好ましくは1.5μm以下であってもよい。表面粗さ(Rz)の下限は、例えば0.8μmであってもよい。なお、表面粗さ(Rz)とは、JIS B 0601-2001を参考に測定される最大高さ粗さを示す。 When the metal foil is directly laminated as the metal layer, the thickness of the metal foil may be 1 to 80 μm, preferably 2 to 50 μm. Further, the surface roughness (Rz) of the metal foil on the side in contact with the thermoplastic liquid crystal polymer molded product may be, for example, 2.0 μm or less, preferably 1.5 μm or less. The lower limit of the surface roughness (Rz) may be, for example, 0.8 μm. The surface roughness (Rz) indicates the maximum height roughness measured with reference to JIS B 0601-2001.
 また、本発明の熱可塑性液晶ポリマー成形体は、その表面(接着領域の表面および/または非接着領域の表面)上に回路を備えていてもよい。 Further, the thermoplastic liquid crystal polymer molded product of the present invention may be provided with a circuit on the surface thereof (the surface of the adhesive region and / or the surface of the non-adhesive region).
 特に、本発明の熱可塑性液晶ポリマー成形体がフィルム状の場合、熱可塑性液晶ポリマー自体が誘電特性に優れ吸湿性が低く、また、接着剤や他の材料に対する接着性が向上していることから、回路基板材料(例えば、電子回路基板の絶縁体、フレキシブル回路基板の補強板、回路面のカバーフィルム等)として特に有用である。
 さらに、熱可塑性液晶ポリマーフィルムに、金属層を積層した積層体(例えば、金属張積層板)や回路を形成した回路基板は、熱可塑性液晶ポリマーフィルムと金属層または回路との接着性が向上されていることから信頼性が高く、好ましい。
In particular, when the thermoplastic liquid crystal polymer molded body of the present invention is in the form of a film, the thermoplastic liquid crystal polymer itself has excellent dielectric properties and low moisture absorption, and has improved adhesiveness to adhesives and other materials. , Especially useful as a circuit board material (for example, an insulator of an electronic circuit board, a reinforcing plate of a flexible circuit board, a cover film of a circuit surface, etc.).
Further, in a circuit board in which a laminate (for example, a metal-clad laminate) in which a metal layer is laminated on a thermoplastic liquid crystal polymer film or a circuit is formed, the adhesiveness between the thermoplastic liquid crystal polymer film and the metal layer or the circuit is improved. Therefore, it is highly reliable and preferable.
[熱可塑性液晶ポリマー成形体の製造方法]
 本発明の熱可塑性液晶ポリマー成形体の製造方法は、熱可塑性液晶ポリマー成形体の表面の少なくとも一部にプラズマ処理を行う表面処理工程を備えており、後述のプラズマ処理の条件を調整することにより、表層の弾性率Er(S)と内部層の弾性率Er(I)との比(Er(S)/Er(I))を調整することが可能である。熱可塑性液晶ポリマー成形体の表面の表層の弾性率と内部層の弾性率との比を調整するためには、特に、ガス種、圧力、出力等のプラズマ処理条件を設定することが好ましい。プラズマ処理の対象となる熱可塑性液晶ポリマー成形体は特に限定されないが、例えば、熱可塑性液晶ポリマー成形体の表面の少なくとも一部に物理的な研磨処理、コロナ放電処理、紫外線照射処理、凹凸粗化された金属箔と加熱加圧して積層した後剥離する賦形処理、銅箔を積層した後銅箔をエッチング除去する銅箔レプリカ処理、腐食性溶液による表面処理等を行った熱可塑性液晶ポリマー成形体に対してプラズマ処理を行ってもよいし、前記表面処理が行われていない熱可塑性液晶ポリマー成形体に対してプラズマ処理を行ってもよい。
[Manufacturing method of thermoplastic liquid crystal polymer molded product]
The method for producing a thermoplastic liquid crystal polymer molded product of the present invention includes a surface treatment step of subjecting at least a part of the surface of the thermoplastic liquid crystal polymer molded product to plasma treatment, and by adjusting the conditions of plasma treatment described later. It is possible to adjust the ratio (Er (S) / Er (I)) of the elastic modulus Er (S) of the surface layer to the elastic modulus Er (I) of the inner layer. In order to adjust the ratio of the elastic modulus of the surface layer of the surface of the thermoplastic liquid crystal polymer molded body to the elastic modulus of the inner layer, it is particularly preferable to set plasma treatment conditions such as gas type, pressure, and output. The thermoplastic liquid crystal polymer molded body to be plasma-treated is not particularly limited, and for example, at least a part of the surface of the thermoplastic liquid crystal polymer molded body is physically polished, corona discharge treated, ultraviolet irradiation treated, and uneven roughened. Thermoplastic liquid crystal polymer molding that has undergone shaping treatment such as laminating with the metal foil that has been heat-pressed and then peeling off, copper foil replica treatment that removes the copper foil by etching after laminating the copper foil, and surface treatment with a corrosive solution. The body may be subjected to plasma treatment, or the thermoplastic liquid crystal polymer molded body which has not been surface-treated may be subjected to plasma treatment.
 プラズマ処理におけるガス種は、表層の弾性率と内部層の弾性率との比を調整する観点から、N、Ar、HO、およびCFからなる群から選択される少なくとも一種を用いることが好ましい。N、Ar、およびHOはプラズマ処理時の反応でイオンボンバード効果によるエッチング性が強く、CFは反応性の高いFラジカルを発生させてエッチングすることができる。これらのガス種を用いて熱可塑性液晶ポリマー成形体の表面にプラズマ処理する場合、電子やイオン、ラジカルが直接表面に衝突し、熱可塑性液晶ポリマー分子の有する結合を選択的に切断することができるためか、表面を緻密に粗化することができることにより表層の弾性率を低下させることができ、表層と内部層とで特定の弾性率の関係に調整することが可能となっていると考えられる。一方で、ガス種としてOを用いた場合、熱可塑性液晶ポリマー分子の有する結合に関わらず切断してしまうためか、表面を全体的にエッチングしてしまうことにより、表層と内部層とで特定の弾性率の関係に調整することが困難になると考えられる。プラズマ処理において用いられるガス種は、熱可塑性液晶ポリマー成形体の表面に対する粗化性が高い点で、Nがより好ましい。また、本発明の効果を損なわない範囲内で、上記のガス種以外のガス種(例えば、O等)を混合して使用してもよい。 The gas type in the plasma treatment shall be at least one selected from the group consisting of N 2 , Ar, H 2 O, and CF 4 from the viewpoint of adjusting the ratio between the elastic modulus of the surface layer and the elastic modulus of the inner layer. Is preferable. N 2 , Ar, and H 2 O have strong etching properties due to the ion bombard effect in the reaction during plasma treatment, and CF 4 can be etched by generating highly reactive F radicals. When the surface of a thermoplastic liquid crystal polymer molded body is subjected to plasma treatment using these gas species, electrons, ions, and radicals collide directly with the surface, and the bonds of the thermoplastic liquid crystal polymer molecule can be selectively cleaved. It is considered that the elastic modulus of the surface layer can be lowered by making the surface finely roughened, and it is possible to adjust the relationship between the surface layer and the inner layer to a specific elastic modulus. .. On the other hand, when O 2 is used as the gas type, it is specified in the surface layer and the inner layer by etching the entire surface, probably because it is cut regardless of the bond of the thermoplastic liquid crystal polymer molecule. It is considered that it becomes difficult to adjust to the relationship of elastic modulus of. The gas type used in the plasma treatment is more preferably N 2 in that it has high roughness to the surface of the thermoplastic liquid crystal polymer molded product. Further, gas species other than the above gas species (for example, O 2 and the like) may be mixed and used as long as the effects of the present invention are not impaired.
 プラズマ処理は、熱可塑性液晶ポリマー成形体の表面の表層の弾性率と内部層の弾性率との比を調整する観点から、真空プラズマ処理が好ましい。真空度が上がるとプラズマ発生効率がよくなり、そのプラズマとガスが反応し、ガスプラズマがポリマー表面をエッチングする効果が高くなる。真空プラズマ処理の場合、発生する電子とイオンの密度を、熱可塑性液晶ポリマー成形体の表面改質に十分な範囲とする観点から、処理を行う装置内の圧力が0.1~50Paであることが好ましく、より好ましくは0.3~30Pa、さらに好ましくは0.5~15Paであってもよい。 Vacuum plasma treatment is preferable from the viewpoint of adjusting the ratio between the elastic modulus of the surface layer of the surface of the thermoplastic liquid crystal polymer molded body and the elastic modulus of the inner layer. As the degree of vacuum increases, the plasma generation efficiency improves, the plasma reacts with the gas, and the effect of the gas plasma etching the polymer surface increases. In the case of vacuum plasma treatment, the pressure in the device to be treated shall be 0.1 to 50 Pa from the viewpoint that the density of generated electrons and ions is within a range sufficient for surface modification of the thermoplastic liquid crystal polymer molded body. It is preferable, more preferably 0.3 to 30 Pa, still more preferably 0.5 to 15 Pa.
 プラズマ処理における出力は、熱可塑性液晶ポリマー成形体の表面の表層の弾性率と内部層の弾性率との比を調整する観点から、好ましくは3.5W/cm以上、より好ましくは5.0W/cm以上、さらに好ましくは6.0W/cm以上である。プラズマ処理における出力を高くすることにより、電子やイオン、ラジカル等のガス種の活性種をより多く生成させ、それらの密度や温度を高めることができるためか、特定のガス種の効果を最大限発揮させることができる。プラズマ処理における出力の上限は、特に限定されず、より強力な処理を行うことが好ましい。例えば、熱可塑性液晶ポリマー成形体表面の過剰な損傷を抑制する観点から、30W/cm以下であってもよく、好ましくは25W/cm以下、より好ましくは20W/cm以下である。 The output in the plasma treatment is preferably 3.5 W / cm 2 or more, more preferably 5.0 W, from the viewpoint of adjusting the ratio of the elastic modulus of the surface layer of the surface of the thermoplastic liquid crystal polymer molded product to the elastic modulus of the inner layer. It is / cm 2 or more, more preferably 6.0 W / cm 2 or more. By increasing the output in plasma treatment, more active species of gas species such as electrons, ions, and radicals can be generated, and their density and temperature can be increased, so the effect of a specific gas species is maximized. It can be demonstrated. The upper limit of the output in the plasma processing is not particularly limited, and it is preferable to perform a stronger processing. For example, from the viewpoint of suppressing excessive damage to the surface of the thermoplastic liquid crystal polymer molded product , it may be 30 W / cm 2 or less, preferably 25 W / cm 2 or less, and more preferably 20 W / cm 2 or less.
 プラズマ処理における出力を高くすることにより、熱可塑性液晶ポリマー成形体のプラズマ処理に要する時間を短くすることが可能である。具体的には、プラズマ処理の時間は、180秒以下であってもよく、好ましくは60秒以下、より好ましくは5秒以下であってもよい。プラズマ処理の時間の下限は、特に限定されないが、例えば、熱可塑性液晶ポリマー成形体の表面を十分に改質する観点から、0.1秒以上であってもよく、好ましくは0.5秒以上、より好ましくは1.0秒以上である。なお、プラズマ処理の時間とは、熱可塑性液晶ポリマー成形体の同一部分に対してプラズマ照射する時間をいう。 By increasing the output in the plasma treatment, it is possible to shorten the time required for the plasma treatment of the thermoplastic liquid crystal polymer molded product. Specifically, the plasma treatment time may be 180 seconds or less, preferably 60 seconds or less, and more preferably 5 seconds or less. The lower limit of the plasma treatment time is not particularly limited, but may be 0.1 seconds or longer, preferably 0.5 seconds or longer, for example, from the viewpoint of sufficiently modifying the surface of the thermoplastic liquid crystal polymer molded product. , More preferably 1.0 second or longer. The plasma treatment time refers to the time for irradiating the same portion of the thermoplastic liquid crystal polymer molded product with plasma.
 本発明の熱可塑液晶ポリマー成形体を製造する方法では、プラズマ処理において、放電電極間に放電する周波数は、特に限定されないが、例えば、40kHz~2.45GHzの範囲であってもよく、好ましくは40kHz~915MHz、より好ましくは110kHz~13.56MHzであってもよい。 In the method for producing a thermoplastic liquid crystal polymer molded article of the present invention, the frequency of discharging between the discharge electrodes in the plasma treatment is not particularly limited, but may be, for example, in the range of 40 kHz to 2.45 GHz, which is preferable. It may be 40 kHz to 915 MHz, more preferably 110 kHz to 13.56 MHz.
 プラズマ処理としては、交流電源で処理されるものとして、(i)容量結合プラズマ(CCP方式)と、コイルを使って磁束変化による誘導電界を与える、(ii)誘導結合プラズマ(ICP方式)がある。CCPは一般的に使用されているプラズマ発生方法で、一対の電極間に被処理基材が設置され、プラズマで被処理基材への処理が可能である。一方、ICPは、誘導コイルの変動磁場によってプラズマを発生させるため、電極とプラズマ間の電位差が大きくならず、プラズマ処理の制御性が高いという特徴がある。また、一般的に高周波数電源を用いており、処理能力が高いものが多い。
 また、近年では容量結合プラズマ(CCP)、誘導結合プラズマ(ICP)、電子サイクロトン共鳴プラズマ(ECP)、ヘリコン励起プラズマ(HWP)、マイクロ波励起表面波プラズマ(SWP)が開発されており、高周波電源に対応した処理方法が、より効果があると考えられる。しかし、本発明では表層と内部層とで特定の弾性率の関係に調整することができる範囲で処理方法、電源周波数を選択することができ、特に限定されない。
Plasma processing includes (i) capacitively coupled plasma (CCP method) and (ii) inductively coupled plasma (ICP method) in which an inductively coupled plasma is applied by changing the magnetic flux using a coil. .. CCP is a generally used plasma generation method, in which a substrate to be treated is placed between a pair of electrodes, and the substrate to be treated can be treated with plasma. On the other hand, since ICP generates plasma by the fluctuating magnetic field of the induction coil, the potential difference between the electrode and the plasma does not increase, and the plasma processing is highly controllable. In addition, high frequency power supplies are generally used, and many of them have high processing capacity.
In recent years, capacitively coupled plasma (CCP), inductively coupled plasma (ICP), electron cycloton resonance plasma (ECP), helicon excited plasma (HWP), and microwave excited surface wave plasma (SWP) have been developed, and high frequencies have been developed. It is considered that the processing method corresponding to the power supply is more effective. However, in the present invention, the processing method and the power supply frequency can be selected within the range in which the relationship between the surface layer and the inner layer can be adjusted to a specific elastic modulus, and the present invention is not particularly limited.
 なお、本発明の熱可塑液晶ポリマー成形体を製造する方法では、一般的なプラズマ処理方法である、(i)容量結合プラズマ(CCP)を用いることが好ましい。後述する実施例では、CCPを用いて、ガス種を導入した雰囲気中で、放電平行平板の一対の電極間に電力の供給を行ってプラズマ放電を発生させ、熱可塑性液晶ポリマー成形体の表面の少なくとも一部にプラズマ照射を行っている。 In the method for producing the thermoplastic liquid crystal polymer molded product of the present invention, it is preferable to use (i) capacitively coupled plasma (CCP), which is a general plasma treatment method. In the examples described later, in an atmosphere in which a gas species is introduced, electric power is supplied between a pair of electrodes of the discharge parallel plate to generate plasma discharge by using CCP, and the surface of the thermoplastic liquid crystal polymer molded body is surfaced. Plasma irradiation is performed on at least a part of the battery.
 プラズマ処理は、連続波形(交流波形)の電圧を加える放電方式であってもよく、パルス状の波形の電圧を加える放電方式であってもよい。放電を安定させる観点からは、パルス状の波形の電圧を加える放電方式が好ましい。この場合、短時間での処理でも均一に表面改質効果を得ることが可能である。 The plasma processing may be a discharge method in which a voltage having a continuous waveform (AC waveform) is applied, or a discharge method in which a voltage having a pulsed waveform is applied. From the viewpoint of stabilizing the discharge, a discharge method in which a voltage having a pulsed waveform is applied is preferable. In this case, it is possible to uniformly obtain the surface modification effect even in the treatment in a short time.
 プラズマ処理におけるその他の条件は、適宜調節すればよい。例えば、プラズマ処理装置の照射ヘッドと熱可塑性液晶ポリマー成形体表面との距離(例えば、ヘッド-フィルム間距離)は、3~50mmであってもよい。好ましくは4~30mm、より好ましくは5~25mmであってもよい。 Other conditions in plasma processing may be adjusted as appropriate. For example, the distance between the irradiation head of the plasma processing apparatus and the surface of the thermoplastic liquid crystal polymer molded product (for example, the distance between the head and the film) may be 3 to 50 mm. It may be preferably 4 to 30 mm, more preferably 5 to 25 mm.
 本発明の熱可塑液晶ポリマー成形体を製造する方法では、表面処理を連続的に行ってもよいし、バッチ式で行ってもよい。プラズマ処理の時間を短縮するため、生産性の観点からは連続的に行うのが好ましい。 In the method for producing a thermoplastic liquid crystal polymer molded product of the present invention, surface treatment may be continuously performed or may be performed in a batch manner. In order to shorten the plasma processing time, it is preferable to perform the plasma processing continuously from the viewpoint of productivity.
 特に、熱可塑性液晶ポリマー成形体が巻取可能である場合には、ロールtoロールにより連続的に処理してもよく、成形体の巻出しおよび巻取りが内部に設置されているプラズマ連続処理装置、または、成形体の巻出しおよび巻取りが外部に設置されているプラズマ連続処理装置を用いることが可能である。 In particular, when the thermoplastic liquid crystal polymer molded product can be wound up, it may be continuously processed by roll-to-roll, and the plasma continuous processing apparatus in which the unwinding and winding of the molded product is installed inside. Alternatively, it is possible to use a plasma continuous processing apparatus in which the unwinding and winding of the molded product is installed externally.
 巻取可能な熱可塑性液晶ポリマー成形体を、ロールtoロールによりプラズマ処理する場合には、生産性と処理時間の観点から、成形体の搬送速度は0.1~10m/min程度であってもよく、好ましくは0.2~8.0m/min程度、より好ましくは0.3~5.0m/minであってもよい。 When a roll-to-roll thermoplastic liquid crystal polymer molded product is plasma-treated by roll-to-roll, even if the transport speed of the molded product is about 0.1 to 10 m / min from the viewpoint of productivity and processing time. It may be preferably about 0.2 to 8.0 m / min, and more preferably 0.3 to 5.0 m / min.
 なお、本発明の熱可塑性液晶ポリマー成形体の形状は特に限定されず、例えば、熱可塑性液晶ポリマーのキャスト成形により成形可能な形状であってもよいし、射出成形や押出成形により成形可能な形状であってもよい。熱可塑性液晶ポリマー成形体は、フィルム状、シート状、繊維状、布帛状などの形状であることが好ましく、フィルム状であることがより好ましい。 The shape of the thermoplastic liquid crystal polymer molded product of the present invention is not particularly limited, and may be, for example, a shape that can be molded by cast molding of the thermoplastic liquid crystal polymer, or a shape that can be molded by injection molding or extrusion molding. May be. The thermoplastic liquid crystal polymer molded product is preferably in the form of a film, a sheet, a fiber, a cloth, or the like, and more preferably a film.
 熱可塑性液晶ポリマーフィルムは、上記の熱可塑性液晶ポリマーを押出成形して得られてもよい。このとき、任意の押出成形法を使用できるが、周知のTダイ製膜延伸法、ラミネート体延伸法、インフレーション法等が工業的に有利である。例えば、熱可塑性液晶ポリマーフィルムの厚さは、10~500μmであってもよく、好ましくは20~200μm、より好ましくは25~125μmであってもよい。特に、熱可塑性液晶ポリマーフィルムが電子回路基板材料として用いられる場合、厚さは20~150μmの範囲が好ましく、20~100μmの範囲がより好ましい。 The thermoplastic liquid crystal polymer film may be obtained by extrusion molding the above-mentioned thermoplastic liquid crystal polymer. At this time, any extrusion molding method can be used, but the well-known T-die film forming stretching method, laminated body stretching method, inflation method and the like are industrially advantageous. For example, the thickness of the thermoplastic liquid crystal polymer film may be 10 to 500 μm, preferably 20 to 200 μm, and more preferably 25 to 125 μm. In particular, when the thermoplastic liquid crystal polymer film is used as an electronic circuit substrate material, the thickness is preferably in the range of 20 to 150 μm, more preferably in the range of 20 to 100 μm.
[被接着材料]
 本発明の熱可塑性液晶ポリマー成形体は、被接着材料との接着性が高く、長期間保管しても接着性を維持することができる。被接着材料としては、熱可塑性液晶ポリマー成形体の接着領域に直接接着することができる限り特に限定されず、目的に応じて適宜選択することができる。例えば、被接着材料としては、接着剤(好ましくは接着剤シート)、および熱可塑性液晶ポリマー被着体(好ましくは熱可塑性液晶ポリマーフィルム)などを挙げることができる。なお、被接着材料(例えば、熱可塑性液晶ポリマー被着体)に対しても、必要に応じて、上述の内部層と表層とで弾性率が特定の関係を有するように処理が行われていてもよい。
[Adhesive material]
The thermoplastic liquid crystal polymer molded product of the present invention has high adhesiveness to the material to be adhered, and can maintain the adhesiveness even after long-term storage. The material to be adhered is not particularly limited as long as it can be directly adhered to the adhesive region of the thermoplastic liquid crystal polymer molded product, and can be appropriately selected depending on the intended purpose. For example, examples of the material to be adhered include an adhesive (preferably an adhesive sheet), a thermoplastic liquid crystal polymer adherend (preferably a thermoplastic liquid crystal polymer film), and the like. The material to be adhered (for example, a thermoplastic liquid crystal polymer adherend) is also treated, if necessary, so that the elastic modulus has a specific relationship between the above-mentioned inner layer and the surface layer. May be good.
 接着剤としては、エポキシ系接着剤やアクリル系接着剤などの極性接着剤であってもよく、一部に非極性骨格を含有する非極性接着剤であってもよい。 The adhesive may be a polar adhesive such as an epoxy adhesive or an acrylic adhesive, or may be a non-polar adhesive containing a non-polar skeleton in part.
 極性接着剤としては、例えば、ユリア樹脂系接着剤、メラミン樹脂系接着剤、フェノール樹脂系接着剤、酢酸ビニル樹脂系接着剤、イソシアネート系接着剤、エポキシ系接着剤、不飽和ポリエステル系接着剤、シアノアクリレート系接着剤、ポリウレタン系接着剤、アクリル樹脂系接着剤などが挙げられる。 Examples of the polar adhesive include a urea resin adhesive, a melamine resin adhesive, a phenol resin adhesive, a vinyl acetate resin adhesive, an isocyanate adhesive, an epoxy adhesive, and an unsaturated polyester adhesive. Examples thereof include cyanoacrylate-based adhesives, polyurethane-based adhesives, and acrylic resin-based adhesives.
 非極性接着剤としては、例えば、周知の接着剤(例えば、ユリア樹脂系接着剤、メラミン樹脂系接着剤、フェノール樹脂系接着剤、酢酸ビニル樹脂系接着剤、イソシアネート系接着剤、エポキシ系接着剤、不飽和ポリエステル系接着剤、シアノアクリレート系接着剤、ポリウレタン系接着剤、アクリル樹脂系接着剤など)に対して、非極性骨格を主鎖とするポリマーが混合された接着剤組成物、および上記接着剤の主成分ポリマーの化学構造中に非極性骨格が導入された接着剤組成物などが挙げられる。 Examples of the non-polar adhesive include known adhesives (for example, urea resin adhesive, melamine resin adhesive, phenol resin adhesive, vinyl acetate resin adhesive, isocyanate adhesive, epoxy adhesive). , An unsaturated polyester-based adhesive, a cyanoacrylate-based adhesive, a polyurethane-based adhesive, an acrylic resin-based adhesive, etc.) and an adhesive composition in which a polymer having a non-polar skeleton as a main chain is mixed, and the above. Examples thereof include an adhesive composition in which a non-polar skeleton is introduced into the chemical structure of the main component polymer of the adhesive.
 熱可塑性液晶ポリマーフィルムを電子回路基板材料として用いる場合には、接着剤の誘電特性は、周波数10GHzにおける比誘電率(ε)が3.3以下であることが好ましく、誘電正接(tanδ)が0.05以下であることが好ましい。特に、基板全体で低誘電特性が要求される場合、低誘電特性を有する接着剤(低誘電接着剤)であることが好ましい。低誘電特性を有する接着剤は、例えば、周波数10GHzにおける比誘電率(ε)が3.3以下であることが好ましく、誘電正接(tanδ)が0.04以下であることが好ましく、0.03以下であることがより好ましい。 When a thermoplastic liquid crystal polymer film is used as an electronic circuit substrate material, the dielectric property of the adhesive is preferably that the relative permittivity (ε) at a frequency of 10 GHz is 3.3 or less, and the dielectric loss tangent (tan δ) is 0. It is preferably 0.05 or less. In particular, when low dielectric properties are required for the entire substrate, an adhesive having low dielectric properties (low dielectric adhesive) is preferable. For an adhesive having a low dielectric property, for example, the relative permittivity (ε) at a frequency of 10 GHz is preferably 3.3 or less, and the dielectric loss tangent (tan δ) is preferably 0.04 or less, 0.03. The following is more preferable.
 好ましい低誘電接着剤としては、例えば、オレフィン骨格を含有した接着剤組成物(例えば、結晶性酸変性ポリオレフィンおよびエポキシ樹脂を少なくとも含有する接着剤組成物、オレフィン骨格を含有した変性ポリアミド接着剤組成物、芳香族オレフィンオリゴマー型改質剤とエポキシ樹脂を用いた接着剤組成物など)、ポリフェニレンエーテル骨格を含有した接着剤組成物などが挙げられる。 Preferred low-dielectric adhesives include, for example, an adhesive composition containing an olefin skeleton (for example, an adhesive composition containing at least a crystalline acid-modified polyolefin and an epoxy resin, and a modified polyamide adhesive composition containing an olefin skeleton. , An adhesive composition using an aromatic olefin oligomer type modifier and an epoxy resin, etc.), an adhesive composition containing a polyphenylene ether skeleton, and the like.
 例えば、結晶性酸変性ポリオレフィンおよびエポキシ樹脂を少なくとも含有する接着剤組成物としては、国際公開第2016/031342号に記載された接着剤などが挙げられ、オレフィン骨格を含有した変性ポリアミド接着剤組成物としては、特開2007-284515号公報に記載された接着剤などが挙げられ、芳香族オレフィンオリゴマー型改質剤とエポキシ樹脂を用いた接着剤組成物としては、特開2007-63306号公報に記載された接着剤などが挙げられ、ポリフェニレンエーテル骨格を含有した接着剤組成物としては、国際公開第2014/046014号に記載された接着層などが挙げられる。これらの接着剤の中でも、例えば、誘電特性の観点から、結晶性酸変性ポリオレフィンおよびエポキシ樹脂を少なくとも含有する接着剤組成物は、当該接着剤の前記結晶性酸変性ポリオレフィンを5質量%以上含有することがより好ましい。 For example, examples of the adhesive composition containing at least a crystalline acid-modified polyolefin and an epoxy resin include the adhesive described in International Publication No. 2016/031342, and the modified polyamide adhesive composition containing an olefin skeleton. Examples thereof include the adhesive described in JP-A-2007-284515, and examples of the adhesive composition using an aromatic olefin oligomer type modifier and an epoxy resin are described in JP-A-2007-63306. Examples thereof include the described adhesives, and examples of the adhesive composition containing a polyphenylene ether skeleton include the adhesive layer described in International Publication No. 2014/046014. Among these adhesives, for example, from the viewpoint of dielectric properties, an adhesive composition containing at least a crystalline acid-modified polyolefin and an epoxy resin contains 5% by mass or more of the crystalline acid-modified polyolefin of the adhesive. Is more preferable.
 接着剤は、接着剤シートであってもよく、熱可塑性液晶ポリマー成形体に接着剤組成物を塗布して乾燥したものであってもよい。接着層の厚さは1~50μmであってもよく、好ましくは5~40μm、より好ましくは10~30μmであってもよい。 The adhesive may be an adhesive sheet, or may be a thermoplastic liquid crystal polymer molded product coated with an adhesive composition and dried. The thickness of the adhesive layer may be 1 to 50 μm, preferably 5 to 40 μm, and more preferably 10 to 30 μm.
 熱可塑性液晶ポリマー被着体としては、上述の熱可塑性液晶ポリマーで少なくとも構成されていればよく、熱可塑性液晶ポリマー成形体と同じ成分であってもよく、異なる成分であってもよい。 The thermoplastic liquid crystal polymer adherend may be at least composed of the above-mentioned thermoplastic liquid crystal polymer, and may have the same component as the thermoplastic liquid crystal polymer molded product, or may have a different component.
 また、熱可塑性液晶ポリマー被着体は、上述の内部層と表層とで弾性率が特定の関係を有するように表面処理されていても、されていなくてもよいが、接着性向上の観点から、熱可塑性液晶ポリマー被着体における熱可塑性液晶ポリマー成形体との被接着領域の少なくとも一部において上述の内部層と表層とで弾性率が特定の関係を有するように表面処理が行われることが好ましい。その場合、熱可塑性液晶ポリマー被着体では、熱可塑性液晶ポリマー成形体と同様に、例えば、ナノインデンテーション法によって測定される表層の弾性率Er(S)と内部層の弾性率Er(I)の比(Er(S)/Er(I))が、0から1.50の範囲であってもよい。 Further, the thermoplastic liquid crystal polymer adherend may or may not be surface-treated so that the elastic modulus has a specific relationship between the inner layer and the surface layer described above, but from the viewpoint of improving the adhesiveness. In at least a part of the area to be adhered to the thermoplastic liquid crystal polymer molded body in the thermoplastic liquid crystal polymer adherend, surface treatment may be performed so that the elastic modulus has a specific relationship between the above-mentioned inner layer and the surface layer. preferable. In that case, in the thermoplastic liquid crystal polymer adherend, the elastic modulus Er (S) of the surface layer and the elastic modulus Er (I) of the inner layer measured by, for example, the nanoindentation method are similarly similar to the thermoplastic liquid crystal polymer molded body. The ratio of (Er (S) / Er (I)) may be in the range of 0 to 1.50.
 同じ成分または異なる成分の熱可塑性液晶ポリマーフィルムを接着させる場合には、それぞれの熱可塑性液晶ポリマーフィルムに、上述の内部層と表層とで弾性率が特定の関係を有するように表面処理を行った表面同士を向かい合わせて熱圧着させることが好ましい。 When the thermoplastic liquid crystal polymer films of the same component or different components are adhered, each thermoplastic liquid crystal polymer film is surface-treated so that the elastic modulus has a specific relationship between the above-mentioned inner layer and the surface layer. It is preferable that the surfaces are faced to each other and thermocompression bonded.
 熱可塑性液晶ポリマー成形体の接着領域における熱可塑性液晶ポリマー面と被接着材料との接着強度は、0.6N/mm以上であってもよく、好ましくは0.7N/mm以上、より好ましくは0.8N/mm以上であってもよい。なお、接着強度は後述の実施例に記載した方法により測定される接着強度で評価される。 The adhesive strength between the thermoplastic liquid crystal polymer surface and the material to be adhered in the adhesive region of the thermoplastic liquid crystal polymer molded body may be 0.6 N / mm or more, preferably 0.7 N / mm or more, and more preferably 0. It may be 8.8 N / mm or more. The adhesive strength is evaluated by the adhesive strength measured by the method described in Examples described later.
 また、本発明の熱可塑性液晶ポリマー成形体は、長期間保管した後でも接着強度を維持することができる。例えば、熱可塑性液晶ポリマー成形体に対して上述の表面処理を行った直後における接着強度(処理直後の接着強度)と6ヶ月保管した後における接着強度(保管後の接着強度)との比(保管後の接着強度/処理直後の接着強度)は、70%以上であってもよく、好ましくは80%以上、より好ましくは90%以上であってもよい。 Further, the thermoplastic liquid crystal polymer molded product of the present invention can maintain the adhesive strength even after being stored for a long period of time. For example, the ratio (storage) of the adhesive strength immediately after the above-mentioned surface treatment to the thermoplastic liquid crystal polymer molded body (adhesive strength immediately after the treatment) and the adhesive strength after storage for 6 months (adhesive strength after storage). The subsequent adhesive strength / adhesive strength immediately after the treatment) may be 70% or more, preferably 80% or more, and more preferably 90% or more.
 以下に本発明を実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
 なお、以下の実施例および比較例において採用された、表面処理された熱可塑性液晶ポリマーフィルムの各評価方法を以下に示す。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
Each evaluation method of the surface-treated thermoplastic liquid crystal polymer film adopted in the following Examples and Comparative Examples is shown below.
(1)SPMによるナノインデンテーション測定
<サンプルの調整>
 実施例および比較例で作製した、処理直後の熱可塑性液晶ポリマーフィルムまたは片面金属張積層板(接着材料)を5mm×5mmのサイズに裁断し、両面テープを介して、プラズマ処理されたフィルム面を測定面として測定台座にセットした。下記装置、測定条件において、針先端をフィルム最表層から20nmの深さまで差し込んだ際に算出される弾性率をEr(S)、針先端をフィルム最表層から200nmの深さまで差し込んだ際に算出される弾性率をEr(I)とした。押し込み深さにおける荷重-変位曲線から、下記装置に付属された解析ソフトにより、弾性率を求めた。また、測定場所の場所ムラを排除するために、任意の10点をサンプリングしてその平均値を分析結果として採用した。
<SPM測定条件>
測定装置:多機能型SPM装置(株式会社日立ハイテク製)
解析ソフト:装置付属の解析ソフト
測定温度:23℃
測定相対湿度:40%
ナノインデンテーション装置:トライボスコープ(ハイジトロン社製)
測定針形状:ダイアモンド圧子(Berkovich型)
測定針先端径:150nm
設定荷重:
Er(S):10μNで3秒押し込み、3秒引き抜き(押し込み深さ約20nm)
Er(I):300μNで3秒押し込み、3秒引き抜き(押し込み深さ約200nm)
(1) Nanoindentation measurement by SPM <Sample preparation>
The thermoplastic liquid crystal polymer film or single-sided metal-clad laminate (adhesive material) produced in Examples and Comparative Examples immediately after treatment was cut into a size of 5 mm × 5 mm, and the plasma-treated film surface was cut through a double-sided tape. It was set on a measuring pedestal as a measuring surface. Under the following equipment and measurement conditions, the elastic modulus calculated when the needle tip is inserted to a depth of 20 nm from the outermost layer of the film is calculated as Er (S), and when the needle tip is inserted to a depth of 200 nm from the outermost layer of the film. The elastic modulus was Er (I). From the load-displacement curve at the indentation depth, the elastic modulus was obtained by the analysis software attached to the following device. Further, in order to eliminate location unevenness at the measurement location, any 10 points were sampled and the average value was adopted as the analysis result.
<SPM measurement conditions>
Measuring device: Multi-functional SPM device (manufactured by Hitachi High-Tech Co., Ltd.)
Analysis software: Analysis software attached to the device Measurement temperature: 23 ° C
Measured relative humidity: 40%
Nano indentation device: Triboscope (manufactured by Heiditron)
Measuring needle shape: Diamond indenter (Berkovich type)
Measuring needle tip diameter: 150 nm
Set load:
Er (S): Push in at 10 μN for 3 seconds and pull out for 3 seconds (push depth of about 20 nm)
Er (I): Push in at 300 μN for 3 seconds and pull out for 3 seconds (push depth of about 200 nm)
(2)接着強度
 実施例および比較例で作製した、処理直後の熱可塑性液晶ポリマーフィルムまたは片面金属張積層板(接着材料)と被接着材料との積層体を評価用サンプルとした。また、長期保管後の接着性の評価としては、処理した後の接着材料を、温度:25℃、湿度:40%の条件下で6ヶ月間恒温チャンバーにおいて保持した後に、被接着材料と積層した積層体を作製し、評価用サンプルとした。
 評価用サンプルの積層体から1.0cm幅の剥離試験片を作製し、その接着材料側を両面接着テープで平板に固定し、JIS C 6471:1995に準じて、90°法により、50mm/minの速度で被接着材料と、接着材料のプラズマ処理された熱可塑性液晶ポリマーフィルム面との界面で剥離したときの強度(N/mm)を測定した。
(2) Adhesive strength The thermoplastic liquid crystal polymer film immediately after the treatment or the laminate of the single-sided metal-clad laminate (adhesive material) and the adhered material produced in Examples and Comparative Examples was used as an evaluation sample. As an evaluation of the adhesiveness after long-term storage, the treated adhesive material was held in a constant temperature chamber for 6 months under the conditions of temperature: 25 ° C. and humidity: 40%, and then laminated with the material to be adhered. A laminate was prepared and used as an evaluation sample.
A 1.0 cm wide peeling test piece was prepared from the laminated body of the evaluation sample, and the adhesive material side was fixed to a flat plate with double-sided adhesive tape, and 50 mm / min by the 90 ° method according to JIS C 6471: 1995. The strength (N / mm) at the interface between the adhesive material and the plasma-treated thermoplastic liquid crystal polymer film surface of the adhesive material was measured at the speed of.
[参考例1]
 p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸との共重合体で、融点が280℃である熱可塑性液晶ポリマーを吐出量20kg/時で溶融押出し、横延伸倍率4.77倍、縦延伸倍率2.09倍の条件でインフレーション製膜して、平均膜厚が50μmの熱可塑性液晶ポリマーフィルムを得た。得られたフィルムの片面にアルミ箔を積層し、熱風オーブン中に吊り下げて、310℃で10分間熱処理し、冷却後、アルミ箔を塩化第二鉄の水溶液で溶解除去することで、熱可塑性液晶ポリマーフィルムを得た。
[Reference Example 1]
A copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, which is a thermoplastic liquid crystal polymer having a melting point of 280 ° C., is melt-extruded at a discharge rate of 20 kg / hour, and has a transverse stretch ratio of 4.77 times and a longitudinal relationship. An inflation film was formed under the condition of a draw ratio of 2.09 times to obtain a thermoplastic liquid crystal polymer film having an average film thickness of 50 μm. Aluminum foil is laminated on one side of the obtained film, suspended in a hot air oven, heat-treated at 310 ° C. for 10 minutes, cooled, and then the aluminum foil is dissolved and removed with an aqueous solution of ferric chloride to make it thermoplastic. A liquid crystal polymer film was obtained.
[実施例1~3]
 参考例1で得られた長尺な熱可塑性液晶ポリマーフィルムをフィルム巻出しおよび巻取りが真空チャンバー内部に設置されているプラズマ連続装置において、平行平板電極間(電極面積5cm×60cm、ヘッド-フィルム間距離20mm)を通すようにセットした。真空チャンバー内を真空ポンプにより2Paまで排気した後、表7に示すガス流量でNガスを導入し、表7に示す圧力に調整した。続いて、電源の出力:2kW、周波数:110kHzで電極にプラズマを発生させた。処理時間が表7に示す通りになるように搬送速度を設定し、連続的に熱可塑性液晶ポリマーフィルムの一方の表面にプラズマ処理を行った。表7に示す単位面積当たりの出力(W/cm)は電極の面積と電源の出力より算出した。
 プラズマ処理した熱可塑性液晶ポリマーフィルムの表面について、SPMによりEr(S)とEr(I)を測定した。結果を表7に示す。
 その後、プラズマ処理を行った熱可塑性液晶ポリマーフィルムを2枚切り出し、両方のフィルム片のプラズマ処理を行った表面をそれぞれ被着面として重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、熱可塑性液晶ポリマーフィルム同士の積層体を作製した。この積層体の接着強度を測定し、処理直後の接着強度とした。
 また、プラズマ処理した熱可塑性液晶ポリマーフィルムを恒温チャンバーにおいて6ヵ月間保管(温度25℃、湿度40%)した後、フィルムを2枚切り出し、両方のフィルム片のプラズマ処理を行った表面をそれぞれ被着面として重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、熱可塑性液晶ポリマーフィルム同士の積層体を作製した。この積層体の接着強度を測定し、6ヶ月保管後の接着強度とした。
[Examples 1 to 3]
In a plasma continuous device in which the film unwinding and winding of the long thermoplastic liquid crystal polymer film obtained in Reference Example 1 is installed inside a vacuum chamber, between parallel plate electrodes (electrode area 5 cm × 60 cm, head-film). It was set so as to pass through (interval distance 20 mm). After evacuated to 2Pa by a vacuum pump to a vacuum chamber, N 2 gas was introduced at a gas flow rate shown in Table 7 was adjusted to a pressure shown in Table 7. Subsequently, plasma was generated at the electrodes at a power output of 2 kW and a frequency of 110 kHz. The transport speed was set so that the treatment time was as shown in Table 7, and plasma treatment was continuously performed on one surface of the thermoplastic liquid crystal polymer film. The output per unit area (W / cm 2 ) shown in Table 7 was calculated from the area of the electrodes and the output of the power supply.
Er (S) and Er (I) were measured by SPM on the surface of the plasma-treated thermoplastic liquid crystal polymer film. The results are shown in Table 7.
After that, two plasma-treated thermoplastic liquid crystal polymer films were cut out, and the plasma-treated surfaces of both film pieces were overlapped with each other as an adherend surface, and then pressed at 300 ° C. and 4 MPa for 10 minutes. Then, a laminate of thermoplastic liquid crystal polymer films was prepared. The adhesive strength of this laminated body was measured and used as the adhesive strength immediately after the treatment.
After storing the plasma-treated thermoplastic liquid crystal polymer film in a constant temperature chamber for 6 months (temperature 25 ° C., humidity 40%), two films were cut out and the surfaces of both film pieces subjected to plasma treatment were covered. After being laminated as a landing surface, they were pressed at 300 ° C. and 4 MPa for 10 minutes to prepare a laminate of thermoplastic liquid crystal polymer films. The adhesive strength of this laminate was measured and used as the adhesive strength after storage for 6 months.
[実施例4]
 参考例1で得られた長尺な熱可塑性液晶ポリマーフィルムと長尺な銅箔(福田金属箔粉工業株式会社製、「CF-H9A-DS-HD2」、厚み12μm、表面粗さRz1.2μm)とを重ね、これらを加熱ロール間で連続的に導入し、270℃、3MPaで圧着して積層し、片面金属張積層板を作製した。
 この片面金属張積層板を、フィルム巻出しおよび巻取りが真空チャンバー内部に設置されているプラズマ連続装置において、平行平板電極間(電極面積5cm×60cm、ヘッド-フィルム間距離20mm)を通すようにセットした。真空チャンバー内を真空ポンプにより2Paまで排気した後、表7に示すガス流量でNガスを導入し、表7に示す圧力に調整した。続いて、電源の出力:2kW、周波数:110kHzで電極にプラズマを発生させた。処理時間が表7に示す通りになるように搬送速度を設定し、連続的に片面金属張積層板の熱可塑性液晶ポリマーフィルム側の表面にプラズマ処理を行った。表7に示す単位面積当たりの出力(W/cm)は電極の面積と電源の出力より算出した。
 プラズマ処理した片面金属張積層板の熱可塑性液晶ポリマーフィルム側の表面について、SPMによりEr(S)とEr(I)を測定した。結果を表7に示す。
 その後、プラズマ処理を行った片面金属張積層板を2枚切り出し、片面金属張積層板の2枚の切り出し片において、プラズマ処理を行った熱可塑性液晶ポリマーフィルム側の表面をそれぞれ被着面として重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、2枚の片面金属張積層板を互いのフィルム面側で重ね合わせた積層体を作製した。この積層体の熱可塑性液晶ポリマーフィルム面間の界面部分での接着強度を測定し、処理直後の接着強度とした。
 また、プラズマ処理した片面金属張積層板を恒温チャンバーにおいて6ヵ月間保管(温度25℃、湿度40%)した後、2枚切り出し、片面金属張積層板の2枚の切り出し片において、プラズマ処理を行った熱可塑性液晶ポリマーフィルム側の表面をそれぞれ被着面として重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、2枚の片面金属張積層板を互いのフィルム面側で重ね合わせた積層体を作製した。この積層体の熱可塑性液晶ポリマーフィルム面間の界面部分での接着強度を測定し、6ヶ月保管後の接着強度とした。
[Example 4]
Long thermoplastic liquid crystal polymer film and long copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., "CF-H9A-DS-HD2", thickness 12 μm, surface roughness Rz 1.2 μm] obtained in Reference Example 1 ), And these were continuously introduced between the heating rolls and pressure-bonded at 270 ° C. and 3 MPa to laminate them to prepare a single-sided metal-clad laminate.
This single-sided metal-clad laminate is passed between parallel plate electrodes (electrode area 5 cm x 60 cm, head-film distance 20 mm) in a plasma continuous device in which film unwinding and winding are installed inside a vacuum chamber. I set it. After evacuated to 2Pa by a vacuum pump to a vacuum chamber, N 2 gas was introduced at a gas flow rate shown in Table 7 was adjusted to a pressure shown in Table 7. Subsequently, plasma was generated at the electrodes at a power output of 2 kW and a frequency of 110 kHz. The transport speed was set so that the treatment time was as shown in Table 7, and plasma treatment was continuously performed on the surface of the single-sided metal-clad laminate on the thermoplastic liquid crystal polymer film side. The output per unit area (W / cm 2 ) shown in Table 7 was calculated from the area of the electrodes and the output of the power supply.
Er (S) and Er (I) were measured by SPM on the surface of the plasma-treated single-sided metal-clad laminate on the thermoplastic liquid crystal polymer film side. The results are shown in Table 7.
After that, two plasma-treated single-sided metal-clad laminates were cut out, and in the two cut-out pieces of the single-sided metal-clad laminate, the surfaces on the side of the plasma-treated thermoplastic liquid crystal polymer film were laminated as adherent surfaces. After combining them, they were pressed at 300 ° C. and 4 MPa for 10 minutes to prepare a laminate in which two single-sided metal-clad laminates were laminated on each other's film surface side. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength immediately after the treatment.
In addition, the plasma-treated single-sided metal-clad laminate was stored in a constant temperature chamber for 6 months (temperature 25 ° C., humidity 40%), then cut out into two pieces, and plasma-treated in the two cut-out pieces of the single-sided metal-clad laminate. After laminating the surfaces of the thermoplastic liquid crystal polymer film side as the adherend surface, they were pressed at 300 ° C. and 4 MPa for 10 minutes, and two single-sided metal-clad laminates were laminated on each other's film surface side. A combined laminate was produced. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength after storage for 6 months.
[実施例5]
 参考例1で得られた長尺な熱可塑性液晶ポリマーフィルム、長尺な銅箔(福田金属箔粉工業株式会社製、「CF-H9A-DS-HD2」、厚み12μm、表面粗さRz1.2μm)、および長尺なPCM箔(JX金属株式会社製、「PCM」、厚み18μm、表面粗さRz4.5μm、剥離可能な銅箔)を、銅箔/熱可塑性液晶ポリマーフィルム/PCM箔になるように重ね、これらを加熱ロール間で270℃、3MPaで連続的に圧着して積層した後、PCM箔だけを剥離し、PCM箔の粗化面が転写された熱可塑性液晶ポリマーフィルム面を有する片面金属張積層板を得た。
 この粗化面が転写された熱可塑性液晶ポリマーフィルムの表面に実施例4と同様の条件でプラズマ処理を行って片面金属張積層板を接着材料として得た。接着材料としての片面金属張積層板の、PCM箔の粗化面が転写され、プラズマ処理した熱可塑性液晶ポリマーフィルム側の表面について、SPMによりEr(S)とEr(I)を測定した。結果を表7に示す。
 その後、このプラズマ処理された粗化面と、実施例4で作製した片面金属張積層板のプラズマ処理面とを重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、2枚の片面金属張積層板を互いのフィルム面側で重ね合わせた積層体を作製した。この積層体の熱可塑性液晶ポリマーフィルム面間の界面部分での接着強度を測定し、処理直後の接着強度とした。
 また、これらの片面金属張積層板を恒温チャンバーにおいて6ヵ月間保管(温度25℃、湿度40%)した後、このプラズマ処理された粗化面と、実施例4で作製した片面金属張積層板のプラズマ処理面とを重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、2枚の片面金属張積層板を互いのフィルム面側で重ね合わせた積層体を作製した。この積層体の熱可塑性液晶ポリマーフィルム面間の界面部分での接着強度を測定し、6ヶ月保管後の接着強度とした。
[Example 5]
Long thermoplastic liquid crystal polymer film obtained in Reference Example 1, long copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., "CF-H9A-DS-HD2", thickness 12 μm, surface roughness Rz 1.2 μm ), And a long PCM foil (manufactured by JX Metal Co., Ltd., "PCM", thickness 18 μm, surface roughness Rz 4.5 μm, peelable copper foil) becomes a copper foil / thermoplastic liquid crystal polymer film / PCM foil. After laminating them by continuously pressure-bonding them between heating rolls at 270 ° C. and 3 MPa, only the PCM foil is peeled off, and the roughened surface of the PCM foil is transferred to the thermoplastic liquid crystal polymer film surface. A single-sided metal-clad laminate was obtained.
The surface of the thermoplastic liquid crystal polymer film to which this roughened surface was transferred was subjected to plasma treatment under the same conditions as in Example 4 to obtain a single-sided metal-clad laminate as an adhesive material. Er (S) and Er (I) were measured by SPM on the surface of the single-sided metal-clad laminate as an adhesive material on the side of the thermoplastic liquid crystal polymer film to which the roughened surface of the PCM foil was transferred and plasma-treated. The results are shown in Table 7.
Then, after superimposing the roughened surface treated with plasma and the plasma-treated surface of the single-sided metal-clad laminate prepared in Example 4, the two sheets were pressed at 300 ° C. and 4 MPa for 10 minutes. A laminate was prepared by laminating single-sided metal-clad laminates on the film surface side of each other. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength immediately after the treatment.
Further, these single-sided metal-clad laminates were stored in a constant temperature chamber for 6 months (temperature 25 ° C., humidity 40%), and then the plasma-treated roughened surface and the single-sided metal-clad laminate produced in Example 4 were prepared. After superimposing the plasma-treated surface of the above, pressing was performed at 300 ° C. and 4 MPa for 10 minutes to prepare a laminate in which two single-sided metal-clad laminates were laminated on each other's film surface side. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength after storage for 6 months.
[実施例6]
 参考例1で得られた長尺な熱可塑性液晶ポリマーフィルム、長尺な銅箔(福田金属箔粉工業株式会社製、「CF-H9A-DS-HD2」、厚み12μm、表面粗さRz1.2μm)、および長尺なポリイミド製保護シートを銅箔/熱可塑性液晶ポリマーフィルム/銅箔/ポリイミド製保護シートとなるように重ね、これらを加熱ロール間で連続的に導入し、300℃、3MPaで圧着して積層し、一方の面に保護シートを貼り合わせた両面金属張積層板を作製した。その後、シャワー式のエッチング装置を用いて、この両面金属張積層板を搬送しながら、40℃に加熱した35%塩化鉄水溶液(サンハヤト株式会社製)により、両面金属張積層板の一方の面(非保護面)の銅箔をエッチングした。そして、室温で乾燥させた後、保護シートを剥離し、熱可塑性液晶ポリマーフィルムのレプリカ面(粗化面)を有する片面金属張積層板を作製した。
 このレプリカ面に実施例4と同様の条件でプラズマ処理を行って片面金属張積層板を接着材料として得た。接着材料としての片面金属張積層板の、プラズマ処理した熱可塑性液晶ポリマーフィルムのレプリカ面について、SPMによりEr(S)とEr(I)を測定した。結果を表7に示す。
 その後、このプラズマ処理されたレプリカ面と、実施例4で作製した片面金属張積層板のプラズマ処理面とを重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、2枚の片面金属張積層板を互いのフィルム面側で重ね合わせた積層体を作製した。この積層体の熱可塑性液晶ポリマーフィルム面間の界面部分での接着強度を測定し、処理直後の接着強度とした。
 また、これらの片面金属張積層板を恒温チャンバーにおいて6ヵ月間保管(温度25℃、湿度40%)した後、このプラズマ処理されたレプリカ面と、実施例4で作製した片面金属張積層板のプラズマ処理面とを重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、2枚の片面金属張積層板を互いのフィルム面側で重ね合わせた積層体を作製した。この積層体の熱可塑性液晶ポリマーフィルム面間の界面部分での接着強度を測定し、6ヶ月保管後の接着強度とした。
[Example 6]
Long thermoplastic liquid crystal polymer film obtained in Reference Example 1, long copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., "CF-H9A-DS-HD2", thickness 12 μm, surface roughness Rz 1.2 μm ), And a long polyimide protective sheet are stacked so as to form a copper foil / thermoplastic liquid crystal polymer film / copper foil / polyimide protective sheet, and these are continuously introduced between the heating rolls at 300 ° C. and 3 MPa. A double-sided metal-clad laminate was prepared by crimping and laminating, and laminating a protective sheet on one side. Then, while transporting this double-sided metal-clad laminate using a shower-type etching device, one surface of the double-sided metal-clad laminate (manufactured by Sanhayato Co., Ltd.) was heated to 40 ° C. The copper foil on the non-protective surface) was etched. Then, after drying at room temperature, the protective sheet was peeled off to prepare a single-sided metal-clad laminate having a replica surface (roughened surface) of the thermoplastic liquid crystal polymer film.
The replica surface was subjected to plasma treatment under the same conditions as in Example 4 to obtain a single-sided metal-clad laminate as an adhesive material. Er (S) and Er (I) were measured by SPM on the replica surface of the plasma-treated thermoplastic liquid crystal polymer film of the single-sided metal-clad laminate as the adhesive material. The results are shown in Table 7.
Then, after superimposing the plasma-treated replica surface and the plasma-treated surface of the single-sided metal-clad laminate prepared in Example 4, press for 10 minutes at 300 ° C. and 4 MPa, and press the two single-sided surfaces. A laminate was prepared by laminating metal-clad laminates on the film surface side of each other. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength immediately after the treatment.
Further, after storing these single-sided metal-clad laminates in a constant temperature chamber for 6 months (temperature 25 ° C., humidity 40%), the plasma-treated replica surface and the single-sided metal-clad laminate produced in Example 4 were used. After superimposing the plasma-treated surface, pressing was performed at 300 ° C. and 4 MPa for 10 minutes to prepare a laminated body in which two single-sided metal-clad laminates were laminated on each other's film surface side. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength after storage for 6 months.
[実施例7]
 プラズマ処理の条件として、ガス流量、圧力を表7の通りに変更する以外は実施例4と同様に、プラズマ処理した片面金属張積層板を接着材料として作製した。プラズマ処理した片面金属張積層板の熱可塑性液晶ポリマーフィルム側の表面について、SPMによりEr(S)とEr(I)を算出した。結果を表7に示す。
 その後、実施例4のプラズマ処理を行っていない片面金属張積層板を被接着材料として用意し、片面金属張積層板のプラズマ処理面と、プラズマ処理を行っていない片面金属張積層板の熱可塑性液晶ポリマーフィルム側の表面とを重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、2枚の片面金属張積層板を互いのフィルム面側で重ね合わせた積層体を作製した。この積層体の熱可塑性液晶ポリマーフィルム面間の界面部分での接着強度を測定し、処理直後の接着強度とした。
 また、プラズマ処理した片面金属張積層板を恒温チャンバーにおいて6ヵ月間保管(温度25℃、湿度40%)した後、1枚切り出し、片面金属張積層板のプラズマ処理面と、プラズマ処理を行っていない片面金属張積層板の熱可塑性液晶ポリマーフィルム側の表面とを重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、2枚の片面金属張積層板を互いのフィルム面側で重ね合わせた積層体を作製した。この積層体の熱可塑性液晶ポリマーフィルム面間の界面部分での接着強度を測定し、6ヶ月保管後の接着強度とした。
[Example 7]
As the conditions for plasma treatment, a plasma-treated single-sided metal-clad laminate was produced as an adhesive material in the same manner as in Example 4 except that the gas flow rate and pressure were changed as shown in Table 7. Er (S) and Er (I) were calculated by SPM for the surface of the plasma-treated single-sided metal-clad laminate on the thermoplastic liquid crystal polymer film side. The results are shown in Table 7.
After that, the single-sided metal-clad laminate not subjected to plasma treatment of Example 4 was prepared as a material to be adhered, and the plasma-treated surface of the single-sided metal-clad laminate and the thermoplasticity of the single-sided metal-clad laminate not subjected to plasma treatment. After superimposing the surface on the liquid crystal polymer film side, pressing was performed at 300 ° C. and 4 MPa for 10 minutes to prepare a laminate in which two single-sided metal-clad laminates were laminated on each other's film surface side. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength immediately after the treatment.
Further, after the plasma-treated single-sided metal-clad laminate is stored in a constant temperature chamber for 6 months (temperature 25 ° C., humidity 40%), one piece is cut out and plasma-treated with the plasma-treated surface of the single-sided metal-clad laminate. After overlapping the surface of the non-single-sided metal-clad laminate on the thermoplastic liquid crystal polymer film side, press for 10 minutes at 300 ° C. and 4 MPa, and press the two single-sided metal-clad laminates on each other's film surface side. A laminated body was produced by superimposing them. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength after storage for 6 months.
[比較例1]
 プラズマ処理の条件として、真空ポンプで排気することなく、Nガスを導入し、大気圧で行う以外は実施例1と同様にして、熱可塑性液晶ポリマーフィルム同士の積層体を作製し、接着強度を測定した。
[Comparative Example 1]
As a condition of plasma treatment, a laminate of thermoplastic liquid crystal polymer films was prepared in the same manner as in Example 1 except that N 2 gas was introduced without exhausting with a vacuum pump and the pressure was increased, and the adhesive strength was increased. Was measured.
[比較例2]
 プラズマ処理の条件として、ガス種、圧力を表7の通りに変更する以外は実施例1と同様にして、熱可塑性液晶ポリマーフィルム同士の積層体を作製し、接着強度を測定した。
[Comparative Example 2]
As the conditions for plasma treatment, a laminate of thermoplastic liquid crystal polymer films was prepared in the same manner as in Example 1 except that the gas type and pressure were changed as shown in Table 7, and the adhesive strength was measured.
[比較例3]
 参考例1で得られた長尺な熱可塑性液晶ポリマーフィルム、長尺な銅箔(福田金属箔粉工業株式会社製、「CF-H9A-DS-HD2」、厚み12μm、表面粗さRz1.2μm)、および長尺なPCM箔(JX金属株式会社製、「PCM」、厚み18μm、表面粗さRz4.5μm、剥離可能な銅箔)を、銅箔/熱可塑性液晶ポリマーフィルム/PCM箔になるように重ね、これらを加熱ロール間で270℃、3MPaで連続的に圧着して積層した後、PCM箔だけを剥離し、PCM箔の粗化面が転写された熱可塑性液晶ポリマーフィルム面を有する片面金属張積層板を得た。
 片面金属張積層板の、PCM箔の粗化面が転写された熱可塑性液晶ポリマーフィルム側の表面について、SPMによりEr(S)とEr(I)を測定した。結果を表7に示す。
 その後、PCM箔の粗化面が転写された上記片面金属張積層板と参考例1で得られた表面処理を行っていない熱可塑性液晶ポリマーフィルムを準備し、片面金属張積層板の粗化面と、熱可塑性液晶ポリマーフィルムとを重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、片面金属張積層板のフィルム面と熱可塑性液晶ポリマーフィルムとを重ね合わせた積層体を作製した。この積層体の熱可塑性液晶ポリマーフィルム面間の界面部分での接着強度を測定し、処理直後の接着強度とした。
 また、PCM箔の粗化面が転写された上記片面金属張積層板と、参考例1で得られた表面処理を行っていない熱可塑性液晶ポリマーフィルムを恒温チャンバーにおいて6ヵ月間保管(温度25℃、湿度40%)した後、片面金属張積層板の粗化面と、熱可塑性液晶ポリマーフィルムとを重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、片面金属張積層板のフィルム面と熱可塑性液晶ポリマーフィルムとを重ね合わせた積層体を作製した。この積層体の熱可塑性液晶ポリマーフィルム面間の界面部分での接着強度を測定し、6ヶ月保管後の接着強度とした。
[Comparative Example 3]
Long thermoplastic liquid crystal polymer film obtained in Reference Example 1, long copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., "CF-H9A-DS-HD2", thickness 12 μm, surface roughness Rz 1.2 μm ), And a long PCM foil (manufactured by JX Metal Co., Ltd., "PCM", thickness 18 μm, surface roughness Rz 4.5 μm, peelable copper foil) becomes a copper foil / thermoplastic liquid crystal polymer film / PCM foil. After laminating them by continuously pressure-bonding them between heating rolls at 270 ° C. and 3 MPa, only the PCM foil is peeled off, and the roughened surface of the PCM foil is transferred to the thermoplastic liquid crystal polymer film surface. A single-sided metal-clad laminate was obtained.
Er (S) and Er (I) were measured by SPM on the surface of the single-sided metal-clad laminate on the thermoplastic liquid crystal polymer film side to which the roughened surface of the PCM foil was transferred. The results are shown in Table 7.
After that, the above-mentioned single-sided metal-clad laminate to which the roughened surface of the PCM foil was transferred and the thermoplastic liquid crystal polymer film obtained in Reference Example 1 without surface treatment were prepared, and the roughened surface of the single-sided metal-clad laminate was prepared. And a thermoplastic liquid crystal polymer film are laminated and pressed at 300 ° C. and 4 MPa for 10 minutes to prepare a laminate in which the film surface of the single-sided metal-clad laminate and the thermoplastic liquid crystal polymer film are laminated. did. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength immediately after the treatment.
Further, the single-sided metal-clad laminate on which the roughened surface of the PCM foil was transferred and the thermoplastic liquid crystal polymer film obtained in Reference Example 1 without surface treatment were stored in a constant temperature chamber for 6 months (temperature 25 ° C.). , Humidity 40%), the roughened surface of the single-sided metal-clad laminate and the thermoplastic liquid crystal polymer film are laminated, and then pressed at 300 ° C. and 4 MPa for 10 minutes to obtain the single-sided metal-clad laminate. A laminate was prepared by superimposing a film surface and a thermoplastic liquid crystal polymer film. The adhesive strength at the interface between the thermoplastic liquid crystal polymer film surfaces of this laminate was measured and used as the adhesive strength after storage for 6 months.
[比較例4]
 参考例1で得られた表面処理を行っていない熱可塑性液晶ポリマーフィルムの表面について、SPMによりEr(S)とEr(I)を測定した。結果を表7に示す。
 その後、表面処理を行っていない上記熱可塑性液晶ポリマーフィルムを2枚切り出し、両方のフィルム片を重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、熱可塑性液晶ポリマーフィルム同士の積層体を作製した。この積層体の接着強度を測定し、処理直後の接着強度とした。
 また、表面処理を行っていない上記熱可塑性液晶ポリマーフィルムを恒温チャンバーにおいて6ヵ月間保管(温度25℃、湿度40%)した後、フィルムを2枚切り出し、両方のフィルム片を重ね合わせた上で、300℃、4MPaの条件で10分間プレスし、熱可塑性液晶ポリマーフィルム同士の積層体を作製した。この積層体の接着強度を測定し、6ヶ月保管後の接着強度とした。
[Comparative Example 4]
Er (S) and Er (I) were measured by SPM on the surface of the thermoplastic liquid crystal polymer film obtained in Reference Example 1 which had not been surface-treated. The results are shown in Table 7.
After that, two sheets of the above-mentioned thermoplastic liquid crystal polymer film which had not been surface-treated were cut out, both film pieces were overlapped, and then pressed at 300 ° C. and 4 MPa for 10 minutes to laminate the thermoplastic liquid crystal polymer films together. The body was made. The adhesive strength of this laminated body was measured and used as the adhesive strength immediately after the treatment.
Further, after storing the above-mentioned thermoplastic liquid crystal polymer film which has not been surface-treated in a constant temperature chamber for 6 months (temperature 25 ° C., humidity 40%), two films are cut out, and both film pieces are overlapped with each other. , 300 ° C., 4 MPa for 10 minutes to prepare a laminate of thermoplastic liquid crystal polymer films. The adhesive strength of this laminate was measured and used as the adhesive strength after storage for 6 months.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表7に示すように、表層の弾性率Er(S)と内部層の弾性率Er(I)の比(Er(S)/Er(I))が、0から1.50の範囲である熱可塑性液晶ポリマー成形体を用いた実施例1~7では、6ヶ月保管後であっても接着強度が高く、長期保管しても高い接着性を維持できることが分かる。 As shown in Table 7, the ratio (Er (S) / Er (I)) of the elastic modulus Er (S) of the surface layer to the elastic modulus Er (I) of the inner layer is in the range of 0 to 1.50. It can be seen that in Examples 1 to 7 using the plastic liquid crystal polymer molded product, the adhesive strength is high even after storage for 6 months, and high adhesiveness can be maintained even after long-term storage.
 一方、表層の弾性率Er(S)と内部層の弾性率Er(I)の比(Er(S)/Er(I))が0から1.50の範囲を外れる熱可塑性液晶ポリマー成形体を用いた比較例1~4では、接着強度が低く、6ヶ月保管後の接着強度が低下し、長期保管すると接着性が維持できないことが分かった。 On the other hand, a thermoplastic liquid crystal polymer molded body in which the ratio (Er (S) / Er (I)) of the elastic modulus Er (S) of the surface layer to the elastic modulus Er (I) of the inner layer is out of the range of 0 to 1.50. In Comparative Examples 1 to 4 used, it was found that the adhesive strength was low, the adhesive strength after 6 months of storage decreased, and the adhesive strength could not be maintained after long-term storage.
 本発明によれば、内部層の弾性率と表層の弾性率とが特定の関係を有する構造が形成された熱可塑性液晶ポリマー成形体であれば、長期間保管しても接着性を維持できる。そのため、その形状に合わせて各種用途に使用することができ、多層回路基板、電子回路基板の絶縁体、フレキシブル回路基板の補強板、回路面のカバーフィルム、接着剤を使用した多層回路などとして特に有用である。 According to the present invention, if the thermoplastic liquid crystal polymer molded body has a structure in which the elastic modulus of the inner layer and the elastic modulus of the surface layer have a specific relationship, the adhesiveness can be maintained even if it is stored for a long period of time. Therefore, it can be used for various purposes according to its shape, especially as a multilayer circuit board, an insulator of an electronic circuit board, a reinforcing plate of a flexible circuit board, a cover film on a circuit surface, a multilayer circuit using an adhesive, and the like. It is useful.
 以上のとおり、本発明の好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。
 したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
As described above, a preferred embodiment of the present invention has been described, but those skilled in the art will easily assume various changes and modifications within a trivial range by looking at the present specification.
Therefore, such changes and amendments are construed as being within the scope of the invention as defined by the claims.

Claims (5)

  1.  少なくとも一部に接着領域を有し、当該接着領域においてナノインデンテーション法によって測定された、押し込み深さが20nmの範囲における表層の弾性率Er(S)と、押し込み深さが200nmの範囲における内部層の弾性率Er(I)の比(Er(S)/Er(I))が、0以上1.50以下である、熱可塑性液晶ポリマー成形体。 The elastic modulus Er (S) of the surface layer in the range of the indentation depth of 20 nm and the inside in the indentation depth of 200 nm, which have an adhesive region at least in a part and are measured by the nanoindentation method in the adhesive region. A thermoplastic liquid crystal polymer molded body having a layer elastic modulus Er (I) ratio (Er (S) / Er (I)) of 0 or more and 1.50 or less.
  2.  表層の弾性率Er(S)が6.6GPa以下である、請求項1に記載の熱可塑性液晶ポリマー成形体。 The thermoplastic liquid crystal polymer molded product according to claim 1, wherein the elastic modulus Er (S) of the surface layer is 6.6 GPa or less.
  3.  形状がフィルム状である、請求項1または2に記載の熱可塑性液晶ポリマー成形体。 The thermoplastic liquid crystal polymer molded product according to claim 1 or 2, which has a film-like shape.
  4.  請求項1~3のいずれか一項に記載の熱可塑性液晶ポリマー成形体において、金属部分を備える、熱可塑性液晶ポリマー成形体。 The thermoplastic liquid crystal polymer molded body according to any one of claims 1 to 3, further comprising a metal portion.
  5.  請求項1~4のいずれか一項に記載の熱可塑性液晶ポリマー成形体において、回路を備える、熱可塑性液晶ポリマー成形体。 The thermoplastic liquid crystal polymer molded body according to any one of claims 1 to 4, further comprising a circuit.
PCT/JP2021/021176 2020-06-09 2021-06-03 Thermoplastic liquid crystal polymer molded body WO2021251262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-100180 2020-06-09
JP2020100180 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021251262A1 true WO2021251262A1 (en) 2021-12-16

Family

ID=78846187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021176 WO2021251262A1 (en) 2020-06-09 2021-06-03 Thermoplastic liquid crystal polymer molded body

Country Status (2)

Country Link
TW (1) TW202208152A (en)
WO (1) WO2021251262A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113964A1 (en) * 2020-11-24 2022-06-02 富士フイルム株式会社 Film and laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529240A (en) * 2002-06-06 2005-09-29 エフシーアイ Process for metallized support media made from plastic materials
JP2005297405A (en) * 2004-04-13 2005-10-27 Sumitomo Metal Mining Co Ltd Forming method of metal coated liquid crystal polymer film
WO2012117850A1 (en) * 2011-03-01 2012-09-07 Jx日鉱日石金属株式会社 Liquid crystal polymer film based copper-clad laminate, and method for producing same
JP2016154235A (en) * 2016-02-24 2016-08-25 株式会社クラレ Adhesive thermoplastic liquid crystal polymer film, multilayer circuit board, and manufacturing method of the same
WO2019230672A1 (en) * 2018-06-01 2019-12-05 株式会社クラレ Thermoplastic liquid crystal polymer molding and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529240A (en) * 2002-06-06 2005-09-29 エフシーアイ Process for metallized support media made from plastic materials
JP2005297405A (en) * 2004-04-13 2005-10-27 Sumitomo Metal Mining Co Ltd Forming method of metal coated liquid crystal polymer film
WO2012117850A1 (en) * 2011-03-01 2012-09-07 Jx日鉱日石金属株式会社 Liquid crystal polymer film based copper-clad laminate, and method for producing same
JP2016154235A (en) * 2016-02-24 2016-08-25 株式会社クラレ Adhesive thermoplastic liquid crystal polymer film, multilayer circuit board, and manufacturing method of the same
WO2019230672A1 (en) * 2018-06-01 2019-12-05 株式会社クラレ Thermoplastic liquid crystal polymer molding and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113964A1 (en) * 2020-11-24 2022-06-02 富士フイルム株式会社 Film and laminate

Also Published As

Publication number Publication date
TW202208152A (en) 2022-03-01

Similar Documents

Publication Publication Date Title
JP7382926B2 (en) Thermoplastic liquid crystal polymer molded body and its manufacturing method
JP6792668B2 (en) Manufacturing method of thermoplastic liquid crystal polymer film, circuit board and its manufacturing method
JP4892274B2 (en) Highly adhesive liquid crystal polymer molded body and method for producing the same
CN110290921B (en) Metal-clad laminate, circuit board, and multilayer circuit board
JP7234921B2 (en) HOT PRESS LAMINATED AND METHOD FOR MANUFACTURING HOT PRESS LAMINATED
JP7151709B2 (en) Method for manufacturing laminate, method for manufacturing laminate and flexible printed circuit board
JP5183981B2 (en) Surface modification method and surface coating method for articles made of liquid crystal polymer material
JP5154055B2 (en) Electronic circuit board manufacturing method
WO2021251262A1 (en) Thermoplastic liquid crystal polymer molded body
WO2021251265A1 (en) Thermoplastic liquid crystal polymer molded body
WO2021039769A1 (en) Thermoplastic liquid crystal polymer molded body and method for producing same
JP4827446B2 (en) Electronic circuit board and manufacturing method thereof
JP3878741B2 (en) Method for producing polymer film
WO2021251261A1 (en) Thermoplastic liquid crystal polymer molded article
WO2021251263A1 (en) Thermoplastic liquid crystal polymer molded article
WO2021251264A1 (en) Thermoplastic liquid crystal polymer molded article
JP7424601B2 (en) Laminate, resin film, and method for manufacturing the laminate
JP7298786B2 (en) Laminate for printed wiring board and joined body for multilayer printed wiring board
Nishino et al. Direct adhesion between Cu foil and polytetrafluoroethylene without increasing surface roughness for high-frequency printed wiring boards
KR20230125199A (en) Thermoplastic liquid crystal polymer film molded body having a colored layer and manufacturing method thereof
CN114007832A (en) Method for manufacturing metal-clad laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21820946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21820946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP