WO2021039769A1 - Thermoplastic liquid crystal polymer molded body and method for producing same - Google Patents
Thermoplastic liquid crystal polymer molded body and method for producing same Download PDFInfo
- Publication number
- WO2021039769A1 WO2021039769A1 PCT/JP2020/031984 JP2020031984W WO2021039769A1 WO 2021039769 A1 WO2021039769 A1 WO 2021039769A1 JP 2020031984 W JP2020031984 W JP 2020031984W WO 2021039769 A1 WO2021039769 A1 WO 2021039769A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- crystal polymer
- thermoplastic liquid
- polymer molded
- molded product
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/12—Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
Definitions
- the present invention relates to a method for producing a thermoplastic polymer (hereinafter referred to as a thermoplastic liquid crystal polymer) molded product capable of forming an optically anisotropic molten phase having excellent adhesiveness.
- a thermoplastic polymer hereinafter referred to as a thermoplastic liquid crystal polymer
- Thermoplastic liquid crystal polymer molded products have low dielectric properties (low dielectric constant and low dielectric loss tangent) due to the properties of thermoplastic liquid crystal polymers, and are therefore attracting attention in applications where dielectric properties are important.
- thermoplastic liquid crystal polymer film having a low dielectric property is attracting attention instead of the conventional polyimide (PI) and polyethylene terephthalate film.
- PI polyimide
- polyethylene terephthalate film the thermoplastic liquid crystal polymer has a problem that the adhesiveness is low in the first place.
- Patent Document 1 Japanese Patent Laid-Open No. 1-216824
- Patent Document 2 Japanese Patent Laid-Open No. 1-236246
- a surface modification method a surface treatment method for irradiating ultraviolet rays having a wavelength of 184.9 nm is disclosed.
- Patent Document 3 Patent No. 4892274.
- the [-CO-bond] occupies the C (Is) peak intensity.
- [-COO-bond] the sum of the peak intensities is 21% or more, and the ratio of peak intensities [-CO-bond] / [-COO-bond] is 1.5 or less.
- the body is disclosed.
- a step of irradiating at least the adhered portion of the liquid crystal polymer molded product with plasma under the conditions of an output of 0.6 W / cm 2 or less and a pressure of 0.1 Torr or more in an acidic gas atmosphere to perform surface treatment A method for producing a liquid crystal polymer molded product containing the above is described. In this document, the adhesive strength of the liquid crystal polymer molded product to the epoxy resin is improved.
- Patent Documents 1 and 2 the durability of the adhesiveness to the liquid crystal polymer molded product has not been evaluated.
- Patent Document 3 if the sum of the peak intensities of [-CO-bond] and [-COO-bond] in the C (Is) peak intensity is 21% or more, the liquid crystal polymer molded product is covered. Cleavage of the liquid crystal polymer molecules progresses moderately on the surface of the bonding site, the reactivity of the surface is increased, and as a result, the initial adhesion can be mainly improved, and the ratio of peak strength: [-C-. It is stated that if the O-bond] / [-COO-bond] is 1.5 or less, the adhesiveness can be maintained for a long period of time and the long-term reliability of the product can be enhanced.
- Patent Document 3 evaluates the adhesive strength after holding under high temperature and high humidity conditions, but the holding rate is not sufficient, and there is room for further improvement in long-term reliability.
- an object of the present invention is to modify the surface of the adhered portion of the thermoplastic liquid crystal polymer molded product to have high adhesiveness and to maintain high adhesiveness even under high temperature and high humidity conditions. It is to provide a method for producing a thermoplastic liquid crystal polymer molded article which is possible.
- thermoplastic liquid crystal polymer molded product As a result of diligent studies to achieve the above object, the inventors of the present invention have applied a direct treatment method to at least a part of the surface of the thermoplastic liquid crystal polymer molded product, and the output is 2.5 W / cm 2 or more.
- the thermoplastic liquid crystal polymer molded product obtained by the manufacturing method including the degassing step (step 2) of drying under heating in the range of 80 to 300 ° C. can improve the adhesiveness and is high temperature and high humidity. We have found that high adhesiveness can be maintained even under conditions, and have completed the present invention.
- At least a portion of the surface of the thermoplastic liquid crystal polymer moldings, processing method is a direct method, output 2.5 W / cm 2 or more (preferably 2.8W / cm 2 or more, more preferably 3.0 W / cm 2 Above, more preferably 3.2 W / cm 2 or more), a treatment time of less than 5 seconds (preferably 4 seconds or less, more preferably 3 seconds or less), a surface treatment step of performing plasma treatment, and a thermoplastic liquid crystal polymer molded product.
- thermoplastic liquid crystal polymer molded product according to the method 1 or 2, wherein the thermoplastic liquid crystal polymer molded product is a film.
- the gas species in the plasma treatment contains at least a nitrogen-containing gas and / or an oxygen-containing gas species (preferably N 2 as a nitrogen-containing gas).
- a method for producing a thermoplastic liquid crystal polymer molded product (including at least one optionally selected from O 2 and H 2 O as an oxygen-containing gas).
- the surface treatment step is roll-to-roll treatment.
- the ratio of the peak area of ⁇ C O> to [COO bond] ⁇ COO>
- thermoplastic liquid crystal polymer molded product A method for producing a thermoplastic liquid crystal polymer molded product.
- the water content of the thermoplastic liquid crystal polymer molded product after the degassing step is 380 ppm or less (preferably 300 ppm or less, more preferably 200 ppm or less).
- a method for producing a thermoplastic liquid crystal polymer molded product A thermoplastic liquid crystal polymer molded body in which an object to be adhered is adhered to an adhered portion, wherein the water content of the thermoplastic liquid crystal polymer molded body is 380 ppm or less (preferably 300 ppm or less, more preferably 200 ppm or less), and the subject to be adhered.
- the thermoplastic liquid crystal polymer molded product means a molded product containing at least a thermoplastic liquid crystal polymer.
- the thermoplastic liquid crystal polymer molded product is an untreated molded product that has not been subjected to plasma treatment.
- the molded product (non-bonded or first thermoplastic liquid crystal polymer molded product) before being bonded to the object to be bonded is also the molded product (joined product or second thermoplastic liquid crystal polymer molded product) after being bonded to the bonded object. ) Is also included.
- the ratio of the peak area of [COO bond] is calculated.
- the ratio of the peak area of [CO bond] to the total peak area of each peak of C (1s) is defined as ⁇ CO> and the peak area of each peak of C (1s).
- thermoplastic liquid crystal polymer molded product According to the method for producing a thermoplastic liquid crystal polymer molded product according to the present invention, the surface of the adhered portion can be modified to a specific chemical bond state, and water existing inside or on the surface of the thermoplastic liquid crystal polymer molded product can be removed. Therefore, it is possible to produce a thermoplastic liquid crystal polymer molded product having not only high adhesiveness but also excellent adhesive strength maintenance under high temperature and high humidity conditions and high long-term reliability. Therefore, the thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention is extremely useful as an insulator material for an electronic circuit substrate having excellent durability, for example, when a metal layer or a circuit is formed.
- the production method of the present invention is extremely useful industrially as it can produce a thermoplastic liquid crystal polymer molded product in which the surface of the adhered portion is modified so that high adhesiveness can be maintained even under high temperature and high humidity conditions.
- thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention is composed of a thermoplastic liquid crystal polymer.
- This thermoplastic liquid crystal polymer is composed of a liquid crystal polymer that can be melt-molded (or a polymer that can form an optically anisotropic molten phase), and if it is a liquid crystal polymer that can be melt-molded, the chemical composition thereof is particularly high.
- a thermoplastic liquid crystal polyester or a thermoplastic liquid crystal polyester amide having an amide bond introduced therein can be mentioned.
- thermoplastic liquid crystal polymer may be a polymer in which an imide bond, a carbonate bond, an isocyanate-derived bond such as a carbodiimide bond or an isocyanurate bond is further introduced into an aromatic polyester or an aromatic polyester amide.
- thermoplastic liquid crystal polymer used in the present invention include known thermoplastic liquid crystal polyesters and thermoplastic liquid crystal polyesteramides derived from the compounds classified into (1) to (4) and derivatives thereof exemplified below. Can be mentioned. However, it goes without saying that the combination of various raw material compounds has an appropriate range in order to form a polymer capable of forming an optically anisotropic molten phase.
- Aromatic or aliphatic diols (see Table 1 for typical examples)
- Aromatic diamine, aromatic hydroxyamine or aromatic aminocarboxylic acid (see Table 4 for typical examples)
- thermoplastic liquid crystal polymers obtained from these raw material compounds include copolymers having structural units shown in Tables 5 and 6.
- a copolymer containing p-hydroxybenzoic acid and / or 6-hydroxy-2-naphthoic acid as at least a repeating unit is preferable, and (i) p-hydroxybenzoic acid and 6-hydroxy-are particularly preferable.
- Copolymers containing repeating units of aromatic diols and at least one aromatic dicarboxylic acid are preferred.
- the repeating unit (A) of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid contains at least a repeating unit of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid
- At least one aromatic hydroxycarboxylic acid (C) selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and 4,4'-dihydroxy.
- the molar ratio of the repeating unit derived from 6-hydroshiki-2-naphthoic acid in the aromatic hydroxycarboxylic acid (C) may be, for example, 85 mol% or more, preferably 90 mol% or more. It may be preferably 95 mol% or more.
- the molar ratio of the repeating unit derived from 2,6-naphthalenedicarboxylic acid in the aromatic dicarboxylic acid (E) may be, for example, 85 mol% or more, preferably 90 mol% or more, and more preferably 95 mol%. It may be% or more.
- the possibility of forming the optically anisotropic molten phase referred to in the present invention can be determined by, for example, placing the sample on a hot stage, heating the sample in a nitrogen atmosphere, and observing the transmitted light of the sample.
- a preferred thermoplastic liquid crystal polymer has a melting point (hereinafter referred to as Tm 0 ) having, for example, a melting point in the range of 200 to 360 ° C., preferably in the range of 240 to 350 ° C., and more preferably Tm 0.
- the temperature is 260 to 330 ° C.
- the melting point of the thermoplastic liquid crystal polymer can be obtained by observing the thermal behavior of the thermoplastic liquid crystal polymer sample using a differential scanning calorimeter. That is, the thermoplastic liquid crystal polymer sample was heated from room temperature (for example, 25 ° C.) at a rate of 10 ° C./min to completely melt it, and then the melt was cooled to 50 ° C. at a rate of 10 ° C./min and again. The position of the heat absorption peak that appears after the temperature is raised at a rate of 10 ° C./min may be recorded as the melting point of the thermoplastic liquid crystal polymer sample.
- the thermoplastic liquid crystal polymer may have a melt viscosity of 30 to 120 Pa ⁇ s at a shear rate of 1000 / s at (Tm 0 + 20) ° C., preferably a melt viscosity of 50. It may have ⁇ 100 Pa ⁇ s.
- thermoplastic liquid crystal polymer includes thermoplastic polymers such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyetheretherketone, and fluororesin, as long as the effects of the present invention are not impaired. , Various additives may be added. In addition, a filler may be added if necessary.
- thermoplastic liquid crystal polymer molded product (first manufacturing step)
- the treatment method is a direct method on at least a part of the surface of the thermoplastic liquid crystal polymer molded product, the output is 2.5 W / cm 2 or more, and the processing time is A surface treatment step (step 1) of performing plasma treatment in less than 5 seconds, and (a) drying the thermoplastic liquid crystal polymer molded product under vacuum for 30 minutes or more at a vacuum degree of 1500 Pa or less, and / or (b) 80.
- the degassing step (step 2) of drying under heating in the range of about 300 ° C. is included.
- plasma treatment includes a direct method in which a substrate to be treated is placed in a discharge space to perform plasma treatment directly, and a direct method in which a substrate to be treated is placed outside the discharge space and generated in the discharge space. There is a remote method in which the active species is sprayed onto the substrate to be treated for treatment.
- the direct method is used because it is advantageous for performing plasma treatment with a high output on the thermoplastic liquid crystal polymer molded product.
- plasma treatment generates plasma discharge by supplying power between a pair of electrodes of a discharge parallel plate in an atmosphere in which a gas species is introduced in a vacuum or atmospheric pressure, and this is a thermoplastic liquid crystal polymer. This is carried out by irradiating at least a part of the surface of the molded body with plasma.
- the surface of the thermoplastic liquid crystal polymer molded product to be plasma-treated in the present invention means the vicinity of the outermost surface (range of about 10 to 100 nm in the depth direction from the outermost surface).
- the output in the plasma treatment is as high as 2.5 W / cm 2 or more and the treatment time is as short as less than 5 seconds, the surface of the thermoplastic liquid crystal polymer molded product can be surface-modified to a specific chemical bond state. It is possible, and the reactivity of the plasma-treated surface, that is, the adhesiveness can be improved.
- [CO bond] and [COO bond] derived from C-) are considered to be the main chemical bonds, and refer to carbonyl groups for ketones and aldehydes that are not derived from ester bonds or amide bonds.
- Output in the plasma treatment is at 2.5 W / cm 2 or more, preferably 2.8W / cm 2 or more, more preferably 3.0 W / cm 2 or more, more preferably a at 3.2 W / cm 2 or more You may.
- the upper limit of the output in the plasma treatment is not particularly limited, but may be 8.0 W / cm 2 or less, preferably 7.5 W, for example, from the viewpoint of suppressing excessive damage to the surface of the thermoplastic liquid crystal polymer molded product. It may be / cm 2 or less, more preferably 7.0 W / cm 2 or less.
- the processing time of the plasma treatment is less than 5 seconds, but may be preferably 4 seconds or less, more preferably 3 seconds or less.
- the lower limit of the processing time of the plasma treatment is not particularly limited, but may be 0.1 seconds or more, preferably 0.3 seconds, for example, from the viewpoint of sufficiently modifying the surface of the thermoplastic liquid crystal polymer molded product. As mentioned above, it may be more preferably 0.5 seconds or more.
- the processing time of the plasma treatment refers to the time for irradiating the same portion of the thermoplastic liquid crystal polymer molded product with plasma.
- the plasma treatment may be performed on at least a part of the thermoplastic liquid crystal polymer molded product. Since the plasma treatment performed in the present invention has a long-lasting effect, the plasma treatment may be performed in consideration of the possibility of becoming a bonded portion in the future. For example, examples of the portion to be adhered in the future include a laminated portion of a cover film, a glass / epoxy material, etc., a laminated portion of a metal layer, a circuit forming portion, and the like.
- the cumulative processing power obtained by multiplying the output of plasma processing by the processing time may be 1.2 W ⁇ s / cm 2 or more.
- the upper limit of the output in the plasma treatment is not particularly limited, but may be 30 W ⁇ s / cm 2 or less, preferably 25 W ⁇ s, for example, from the viewpoint of suppressing excessive damage to the surface of the thermoplastic liquid crystal polymer molded product. It may be / cm 2 or less, more preferably 20 W ⁇ s / cm 2 or less.
- the frequency of discharging between the discharge electrodes is not particularly limited, but may be, for example, in the range of 1 kHz to 2.45 GHz, preferably 10 kHz to 100 MHz, and more preferably 30 kHz to 13. It may be 56 MHz.
- the processing mode in the plasma processing may be the direct plasma mode (DP) or the reactive ion etching (RIE).
- DP the base material to be treated is installed on the ground side between the pair of electrodes, and there is an advantage that radicals can act evenly on the entire base material to be treated.
- RIE reactive ion etching
- the base material to be treated is installed on the RF power source side between the pair of electrodes, and the ions collide with the base material to be treated while being accelerated.
- the plasma processing may be a discharge method in which a voltage having a continuous waveform (AC waveform) is applied, or a discharge method in which a voltage having a pulsed waveform is applied. From the viewpoint of stabilizing the discharge, a discharge method in which a voltage having a pulsed waveform is applied is preferable. In this case, it is possible to uniformly obtain the surface modification effect even in the treatment in a short time as described above.
- AC waveform a discharge method in which a voltage having a continuous waveform
- a discharge method in which a voltage having a pulsed waveform is applied is preferable. In this case, it is possible to uniformly obtain the surface modification effect even in the treatment in a short time as described above.
- the plasma treatment may be a vacuum plasma treatment or an atmospheric pressure plasma treatment.
- the pressure in the device to be treated is 0.1 to 20 Pa from the viewpoint that the density of generated electrons and ions is within a range sufficient for surface modification of the thermoplastic liquid crystal polymer molded product. It may be preferably 0.3 to 15 Pa, and more preferably 0.5 to 13 Pa.
- the gas type used in the plasma treatment of the present invention is not particularly limited as long as the adhered portion of the thermoplastic liquid crystal polymer molded body has high adhesiveness, but the gas type includes, for example, nitrogen-containing gas, oxygen-containing gas, and Ar. noble gas such as, like H 2, CF 4. These gas types may be used alone or in combination of two or more.
- gas types for example, a plurality of nitrogen-containing gases may be combined; a plurality of oxygen-containing gases may be combined; a single or a plurality of nitrogen-containing gases and a single or a plurality of oxygen-containing gases may be combined. May be combined; oxygen-containing gas (eg O 2 ) and CF 4 may be combined.
- the gas species may contain at least a nitrogen-containing gas and / or an oxygen-containing gas species, and in particular, the gas species may contain at least a nitrogen-containing gas.
- the nitrogen-containing gas include N 2 , NH 3, NO 2, and the like. Of these, N 2 is preferably used. These may be used alone or in combination of two or more.
- the surface of the adhered portion of the thermoplastic liquid crystal polymer molded product after the plasma treatment is ⁇ C-, even when stored at room temperature for a long period of time (for example, 2 months) without being adhered after the treatment.
- the gas type preferably contains N 2 as a nitrogen-containing gas and optionally contains oxygen-containing gas as another gas type. Is preferable.
- oxygen-containing gas examples include O 2 , CO, CO 2 , H 2 O and the like. These may be used alone or in combination of two or more. Of these, O 2 and / or H 2 O are preferably used, and it is particularly preferable to use both O 2 and H 2 O.
- the gas is a nitrogen-containing gas as long as the nitrogen atom is contained.
- the volume ratio of the nitrogen-containing gas to the oxygen-containing gas may be 30/70 to 100/0, preferably 40/60 to 95/5, more preferably. May be 50/50 to 90/10.
- the distance between the irradiation head of the plasma processing apparatus and the surface of the thermoplastic liquid crystal polymer molded product may be 3 to 10 mm. It may be preferably 4 to 9 mm, more preferably 5 to 8 mm.
- the surface treatment step may be performed continuously or in a batch manner.
- the processing time of the plasma treatment is short, it is preferable to perform the plasma treatment continuously from the viewpoint of productivity.
- thermoplastic liquid crystal polymer molded product when it has a film shape, it may be continuously plasma-treated by roll-to-roll processing, and a plasma continuous processing apparatus in which unwinding and winding of the film are installed inside. Alternatively, it is possible to use a plasma continuous processing apparatus in which the film unwinding and winding are installed externally.
- thermoplastic liquid crystal polymer film When a film-shaped thermoplastic liquid crystal polymer molded product (hereinafter referred to as a thermoplastic liquid crystal polymer film) is plasma-treated by roll-to-roll treatment, the film winding speed is 1 from the viewpoint of productivity and processing time. It may be about 10 m / min, preferably about 2 to 8 m / min, and more preferably about 3 to 5 m / min.
- the thermoplastic liquid crystal polymer molded product may be formed of at least the thermoplastic liquid crystal polymer, may be formed of the thermoplastic liquid crystal polymer alone, or may be formed of the thermoplastic liquid crystal polymer and other substances. It may be composed of.
- the shape of the thermoplastic liquid crystal polymer molded product is not particularly limited, and may be, for example, a shape that can be molded by cast molding of the thermoplastic liquid crystal polymer, or a shape that can be molded by injection molding or extrusion molding. ..
- the thermoplastic liquid crystal polymer molded product may have a film-like shape, a sheet-like shape, a fibrous shape, a cloth-like shape, or the like, and is more preferably a film.
- the thermoplastic liquid crystal polymer film may be an extrusion-molded film obtained by extrusion-molding the above-mentioned thermoplastic liquid crystal polymer.
- any extrusion molding method can be used, but the well-known T-die film forming stretching method, laminated body stretching method, inflation method and the like are industrially advantageous.
- the thickness of the thermoplastic liquid crystal polymer film may be 10 to 500 ⁇ m, preferably 20 to 200 ⁇ m, and more preferably 25 to 125 ⁇ m.
- the thickness is preferably in the range of 20 to 150 ⁇ m, more preferably in the range of 20 to 50 ⁇ m.
- the first method for producing a thermoplastic liquid crystal polymer molded product of the present invention is (a) drying under vacuum for 30 minutes or more at a vacuum degree of 1500 Pa or less, and / or (b) heating in the range of 80 to 300 ° C.
- the degassing step (step 2) of drying underneath is included.
- the present invention by performing the surface treatment step and the degassing step in combination, not only the surface can be activated, but also the moisture existing inside or on the surface of the thermoplastic liquid crystal polymer molded product can be removed. As a result, it was found that high adhesiveness can be maintained to a higher degree even under the obtained high temperature and high humidity conditions.
- degassing may be performed under the condition that either (a) the degassing step under vacuum or (b) the degassing step under heating is satisfied, but the above (a) and (b). ) May be degassed under the condition that both are satisfied.
- degassing under the condition that both (a) and (b) are satisfied is the degassing step performed under the condition that both (a) and (b) are satisfied at the same time (that is, under vacuum heating).
- the first thermoplastic liquid crystal polymer molded product may be degassed alone, or may be performed in a state of being overlapped with an adhesion target described later. In that case, the overlapped heat may be obtained.
- Degassing may be performed while the thermoplastic liquid crystal polymer molded product and the object to be bonded are pressurized, but from the viewpoint of improving the degassing and drying property, under no pressure (under pressure release) where no pressure is substantially applied. Degassing may be performed.
- the degassing step may be performed in a low pressure or pressure release state (for example, under a pressure of about 0 to 0.7 MPa, preferably under a pressure of about 0 to 0.5 MPa).
- Drying under vacuum may be performed at a vacuum degree of 1500 Pa or less, preferably 1300 Pa or less, and more preferably 1100 Pa or less.
- drying under vacuum may be performed at room temperature (for example, in the range of 10 to 50 ° C., preferably 15 to 45 ° C.), but it is performed under heating from the viewpoint of improving degassing efficiency. May be good.
- the heating temperature may be, for example, 50 to 300 ° C. (for example, 50 to 250 ° C.), preferably 80 to 250 ° C., and more preferably about 80 to 200 ° C.
- Drying under heating may be carried out in the range of 80 to 300 ° C., preferably in the range of 80 to 250 ° C., and more preferably in the range of 80 to 200 ° C. Further, for drying under heating, a predetermined temperature range may be set with respect to the melting point Tm of the thermoplastic liquid crystal polymer molded product. In that case, for example, heating may be performed in the range of (Tm-235) ° C. to (Tm-10) ° C. (for example, the range of (Tm-200) ° C. to (Tm-50) ° C.), preferably.
- thermoplastic liquid crystal polymer molded product is 10 ° C./min from room temperature to 400 ° C. by sampling a predetermined size from the thermoplastic liquid crystal polymer molded product using a differential scanning calorimeter and placing it in a sample container. The position of the endothermic peak that appears when the temperature is raised at the rate of.
- thermoplastic liquid crystal polymer molded body By heating in a specific temperature range as described above, while suppressing sudden generation of water from the thermoplastic liquid crystal polymer molded body, in the thermoplastic liquid crystal polymer molded body (for example, in the case of a film, the inside of the film). It is possible to degas-dry the water on the surface of the film as water vapor, or to increase the kinetic energy of the air existing on the surface to degas-dry the surface of the thermoplastic liquid crystal polymer molded product.
- drying under heating When drying under heating is performed alone, it may be performed under a condition that does not include a vacuum degree of 1500 Pa or less. For example, it may be performed under atmospheric pressure (or normal pressure) in which the pressure is not adjusted. If necessary, heating may be performed under conditions reduced from atmospheric pressure (for example, more than 1500 Pa and less than 100,000 Pa, preferably about 3000 to 50,000 Pa).
- each degassing step (under vacuum, under heating, under vacuum heating) may be the same or different, and may be 30 minutes or more, 40 minutes or more, or 50 minutes or more, and 6 hours or less. It may be 4 hours or less, 3 hours or less, 2 hours or less, or 1.5 hours or less.
- the time required for the degassing step may be appropriately set in anticipation of the time when the moisture content of the thermoplastic liquid crystal polymer molded product falls within a predetermined range (for example, 380 ppm or less, 300 ppm or less, or 200 ppm or less). Good.
- the degassing step may be performed on the thermoplastic liquid crystal polymer molded product prior to the surface treatment step, or may be performed after the surface treatment step, but it is preferably performed after the surface treatment step.
- a carbonyl group having a higher polarity than the ester bond is introduced, and the surface becomes more hydrophilic, which may facilitate the inclusion of water.
- water can be efficiently removed from the hydrophilic surface containing more water.
- the first thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention has at least a part to be adhered, and the C (1s) peak is found in the X-ray photoelectron spectroscopic analysis result of the surface of the adhered portion.
- the ratio of the peak area of [CO bond] to the area ⁇ CO> and the ratio of the peak area of [COO bond] to ⁇ COO> ⁇ CO> / ⁇ COO> is 1.5 or more.
- C (1s) in this X-ray photoelectron spectroscopy is a peak obtained by photoelectrons derived from carbon atoms present on the sample surface. This peak further includes various peaks that depend on the bonding state of the carbon atom, and the position of each peak on the spectrum is determined by the bonding state.
- the distribution function for determining the peak shape is a mixture of the Gaussian function and the Lorentz function, and the half width of each peak is as constant as possible.
- thermoplastic liquid crystal polymer molded product to the agent can be improved.
- thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention has a ratio of ⁇ CO> to ⁇ COO> on the surface of the adhered portion ⁇ CO> / ⁇ COO. > May be 1.5 or more, preferably 1.6 or more, and more preferably 1.7 or more.
- the upper limit of the ratio of the ratio of peak areas ⁇ CO> / ⁇ COO> is not particularly limited, but may be, for example, 3.0 or less.
- ⁇ CO> may be 12.0 to 30.0%, preferably 16.0 to 28.0%, still more preferably 18.0 to 26.0%, and even more preferably. It may be 19.0 to 25.0%.
- ⁇ COO> may be 8.0 to 15.0%, preferably 8.3 to 14.0%, still more preferably 8.5 to 13.0%, and even more preferably 9. It may be 0 to 12.0%.
- the sum of the above may be 25% or more, preferably 28% or more, and more preferably 30% or more.
- thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention the specific relationship regarding X-ray photoelectron spectroscopy may be satisfied by the portion subjected to the plasma treatment.
- thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention has enhanced adhesiveness on the surface of the bonded portion, it is possible not only to improve the adhesiveness via various adhesives but also to adhere. Adhesiveness can also be improved by thermal pressure bonding without using an agent.
- the water content is reduced.
- the water content may be, for example, 380 ppm or less, preferably 300 ppm or less, and more preferably 200 ppm or less.
- the water content is a value measured by the method described in Examples described later.
- the second method for producing a thermoplastic liquid crystal polymer molded body of the present invention includes a surface treatment step (step 1) of plasma-treating at least a part of the surface of the thermoplastic liquid crystal polymer molded body, and drying the thermoplastic liquid crystal polymer molded body.
- Degassing step (step 2) (first manufacturing step), and bonding step (step 3) (second manufacturing step) of adhering the object to be bonded to the bonded portion including at least a part of the plasma-treated portion. Step) may be provided at least.
- a bonding method can be selected according to the bonding target.
- the object to be bonded can be bonded to the thermoplastic liquid crystal polymer molded product by heat bonding or the like.
- thermal bonding a step of contacting an object to be bonded with a site to be bonded including at least a part of the plasma-treated site and heating both of them is performed.
- the heating means may be either a combustion method for burning a heat source or an electric method for electrically heating.
- the bonding target used in thermal bonding is not particularly limited as long as it can be directly bonded to the bonded portion of the thermoplastic liquid crystal polymer molded product, and can be appropriately selected depending on the purpose.
- the bonding target include an adhesive (preferably an adhesive sheet) and a thermoplastic liquid crystal polymer adherend (preferably a thermoplastic liquid crystal polymer film).
- the above-mentioned surface treatment step and / or degassing step may be performed on the object to be bonded (for example, a thermoplastic liquid crystal polymer adherend), if necessary.
- the surface treatment step is preferably performed on at least the bonded portion to be bonded.
- thermocompression bonding that applies heating and pressure is preferable.
- thermocompression bonding can be performed by a method such as a general heat press, a heating roll press, or a double belt press.
- thermocompression bonding an appropriate processing temperature and pressure can be set according to the bonding target.
- the treatment temperature may be 130 to 250 ° C, preferably 140 to 220 ° C.
- the pressure during thermocompression bonding may be, for example, 0.5 to 10 MPa, preferably 1 to 8 MPa.
- the time for thermocompression bonding may be, for example, about 10 to 90 minutes, preferably about 15 to 75 minutes, and more preferably about 20 to 60 minutes.
- the treatment temperature may be 180 to 350 ° C., preferably 200 to 330 ° C.
- the pressure at the time of thermocompression bonding may be, for example, 1 to 10 MPa, preferably 2 to 8 MPa.
- the time for thermocompression bonding may be, for example, about 15 to 90 minutes, preferably about 20 to 70 minutes, and more preferably about 20 to 60 minutes.
- a further adherend for example, a metal layer, another sheet or film, or a circuit board
- the thermoplasticity obtained in the first manufacturing step via the adhesive may be adhered to a liquid crystal polymer molded product (first thermoplastic liquid crystal polymer molded product). Further adhesion of the adherend may be carried out at the same time as the formation of the adhesive layer by superimposing the first thermoplastic liquid crystal polymer molded body via an adhesive. Alternatively, after forming an adhesive layer on the first thermoplastic liquid crystal polymer molded product, a further adherend may be adhered to the adhesive layer.
- the second thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention is a thermoplastic liquid crystal polymer molded product in which the above-mentioned bonding target is adhered to the adhered portion of the first thermoplastic liquid crystal polymer molded product. is there.
- the second thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention may have an adhesive laminated on the adhered portion, for example, as described above in the production method.
- the adhesive may be a polar adhesive such as an epoxy adhesive or an acrylic adhesive, or may be a non-polar adhesive partially containing a non-polar skeleton.
- polar adhesive examples include a urea resin adhesive, a melamine resin adhesive, a phenol resin adhesive, a vinyl acetate resin adhesive, an isocyanate adhesive, an epoxy adhesive, and an unsaturated polyester adhesive.
- cyanoacrylate-based adhesives examples include cyanoacrylate-based adhesives, polyurethane-based adhesives, and acrylic resin-based adhesives.
- non-polar adhesive examples include known adhesives (for example, urea resin adhesive, melamine resin adhesive, phenol resin adhesive, vinyl acetate resin adhesive, isocyanate adhesive, epoxy adhesive). , An unsaturated polyester adhesive, a cyanoacrylate adhesive, a polyurethane adhesive, an acrylic resin adhesive, etc.), and an adhesive composition in which a polymer having a non-polar skeleton as a main chain is mixed. , And an adhesive composition in which a non-polar skeleton is introduced into the chemical structure of the main component polymer of the adhesive.
- known adhesives for example, urea resin adhesive, melamine resin adhesive, phenol resin adhesive, vinyl acetate resin adhesive, isocyanate adhesive, epoxy adhesive.
- an adhesive composition in which a non-polar skeleton is introduced into the chemical structure of the main component polymer of the adhesive.
- the dielectric properties of the adhesive are that the relative permittivity ( ⁇ ) at a frequency of 10 GHz is 3.3 or less and the dielectric loss tangent (tan ⁇ ) is 0.05 or less. It may be.
- an adhesive having low dielectric properties (low dielectric adhesive) is preferable.
- An adhesive having a low dielectric property has, for example, a relative permittivity ( ⁇ ) of 3.3 or less at a frequency of 10 GHz and a dielectric loss tangent (tan ⁇ ) of 0.04 or less (preferably 0.03 or less). Good.
- Preferred low-dielectric adhesives include, for example, an adhesive composition containing an olefin skeleton (for example, an adhesive composition containing at least a crystalline acid-modified polyolefin and an epoxy resin, and a modified polyamide adhesive composition containing an olefin skeleton. , An adhesive composition using an aromatic olefin oligomer type modifier and an epoxy resin, etc.), an adhesive composition containing a polyphenylene ether skeleton, and the like.
- an adhesive composition containing an olefin skeleton for example, an adhesive composition containing at least a crystalline acid-modified polyolefin and an epoxy resin, and a modified polyamide adhesive composition containing an olefin skeleton.
- An adhesive composition using an aromatic olefin oligomer type modifier and an epoxy resin, etc. an adhesive composition containing a polyphenylene ether skeleton, and the like.
- examples of the adhesive composition containing at least a crystalline acid-modified polyolefin and an epoxy resin include the adhesive described in WO2016 / 031342, and examples of the modified polyamide adhesive composition containing an olefin skeleton include.
- examples thereof include the adhesive described in Japanese Patent Application Laid-Open No. 2007-284515, and examples of the adhesive composition using the aromatic olefin oligomer type modifier and the epoxy resin include the adhesive described in Japanese Patent Application Laid-Open No. 2007-63306.
- examples of the adhesive composition include an agent and the like, and examples of the adhesive composition containing a polyphenylene ether skeleton include the adhesive layer described in WO2014 / 046014.
- an adhesive composition containing at least a crystalline acid-modified polyolefin and an epoxy resin contains 5% by mass or more of the crystalline acid-modified polyolefin of the adhesive. Is more preferable.
- the adhesive layer laminated on the first thermoplastic liquid crystal polymer molded body may be an adhesive sheet, or the first thermoplastic liquid crystal polymer molded body (preferably the thermoplastic liquid crystal).
- a polymer film) may be coated with an adhesive composition and dried.
- the thickness of the adhesive layer may be 1 to 50 ⁇ m, preferably 5 to 40 ⁇ m, and more preferably 10 to 30 ⁇ m.
- the adhesion target may be a thermoplastic liquid crystal polymer adherend.
- the thermoplastic liquid crystal polymer film may be laminated on the adhered portion, and the thermoplastic liquid crystal polymer molding obtained by the production method of the present invention.
- the body may be a laminate in which thermoplastic liquid crystal polymer films are directly laminated.
- the thickness of the thermoplastic liquid crystal polymer film may be 10 to 500 ⁇ m, preferably 20 to 200 ⁇ m, and more preferably 25 to 150 ⁇ m.
- thermoplastic liquid crystal polymer adherend to be adhered may be composed of at least the above-mentioned thermoplastic liquid crystal polymer, and may have the same components as the thermoplastic liquid crystal polymer molded body subjected to the surface treatment step and the degassing step. It may be a different component.
- thermoplastic liquid crystal polymer adherend may or may not be subjected to a surface treatment step and / or a degassing step, but has improved adhesiveness (particularly, adhesion under high temperature and high humidity conditions).
- the above-mentioned plasma treatment is performed on at least a part of the adhered portion of the thermoplastic liquid crystal polymer adherend to the thermoplastic liquid crystal polymer molded body, and / or the thermoplastic liquid crystal polymer adherend is It is preferable that the degassing step is performed.
- thermoplastic liquid crystal polymer adherend for example, ⁇ CO> / ⁇ COO> in the X-ray photoelectron spectroscopy analysis result is 1.5 or more, as in the case of the first thermoplastic liquid crystal polymer molded body.
- thermocompression bonding when thermoplastic liquid crystal polymer films having the same or different components are thermocompression bonded, it is preferable to thermocompression-bond the plasma-treated surfaces of the thermoplastic liquid crystal polymer films to each other. ..
- the adhesive strength between the thermoplastic liquid crystal polymer molded product and the object to be bonded may be 0.70 N / mm or more, preferably 0.75 N / mm or more, more preferably 0.80 N / mm or more, and even more preferably. It may be 1.00 N / mm or more.
- the upper limit is not particularly limited, but may be 3.0 N / mm or less.
- the adhesive strength satisfying the above range may be the adhesive strength between the thermoplastic liquid crystal polymer film and the adhesive, and preferably the adhesive strength between the thermoplastic liquid crystal polymer film and the low dielectric adhesive.
- the adhesiveness is lower than that of the conventional epoxy-based adhesive, but it will be shown in Examples described later. As can be seen, the adhesiveness to the thermoplastic liquid crystal polymer film obtained by the production method of the present invention is good.
- thermoplastic liquid crystal polymer molded product obtained by the manufacturing method of the present invention in which the objects to be bonded are laminated can maintain high adhesiveness even under high temperature and high humidity conditions.
- the adhesiveness is evaluated by the adhesive strength measured by the method described in Examples described later.
- the product Under normal conditions in which the product is actually used, it is preferable that the product has a long life. Therefore, if the adhesive strength is sufficiently maintained under high temperature and high humidity conditions, it can be judged that the product life under normal conditions is long and the long-term reliability of the thermoplastic liquid crystal polymer molded product is high. Further, such a thermoplastic liquid crystal polymer molded product can maintain the adhesive strength without changing the adhesive interface even when placed in a high temperature and high humidity environment, and under high temperature and high humidity conditions. It can be judged that the durability is high. For example, the ratio of the adhesive strength when stored for 24 hours under the conditions of 23 ° C. and 50% RH to the adhesive strength when stored for 24 hours under the conditions of 121 ° C.
- RH is 60% or more ( For example, it may be 70% or more), preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, still more preferably 98% or more.
- the upper limit is not particularly limited, but may be 150% or less.
- the thermoplastic liquid crystal polymer itself has excellent dielectric properties and low moisture absorption, and has improved adhesiveness to adhesives and other materials.
- a circuit board material for example, an insulator of an electronic circuit board, a reinforcing plate of a flexible circuit board, a cover film of a circuit surface, etc.
- a circuit board in which a laminate or a circuit in which a metal layer is laminated on a thermoplastic liquid crystal polymer film which is the first thermoplastic liquid crystal polymer molded body is formed has adhesiveness between the thermoplastic liquid crystal polymer film and the metal layer or the circuit. It is highly reliable and preferable because it is improved.
- the method for producing a thermoplastic liquid crystal polymer molded product further includes, in addition to the first manufacturing step or the second manufacturing step, a step of forming a conductive portion (for example, a metal portion or a circuit). You may.
- the conductive portion forming step may be performed on the untreated thermoplastic liquid crystal polymer molded product prior to the first manufacturing step, and / or may be performed in advance on the bonding target.
- the conductive portion can be formed on the thermoplastic liquid crystal polymer molded product by thermal adhesion, sputtering, vapor deposition, electroless plating, or the like.
- thermoplastic liquid crystal polymer molded body an adherend, a first thermoplastic liquid crystal polymer molded body, and / or a second thermoplastic liquid crystal polymer molded body
- the metal portion may be formed by thermally adhering the metal.
- the thermal bonding it is preferable to bond the metal foil by thermocompression bonding in which heating and pressure are applied.
- the treatment temperature may be 180 to 350 ° C., preferably 200 to 330 ° C.
- the pressure at the time of thermocompression bonding may be, for example, 1 to 10 MPa, preferably 2 to 8 MPa.
- the time for thermocompression bonding may be, for example, about 10 to 90 minutes, preferably about 15 to 75 minutes, and more preferably about 20 to 60 minutes.
- the electroless plating method a step of adhering the two by precipitating metal from a solution containing metal ions is performed on the adhered portion including at least a part of the plasma-treated portion.
- the electroless plating method is a method known in the field of manufacturing plated products on non-conductive materials (plastics, ceramics, etc.), and examples of the metal include copper, nickel, cobalt, gold, tin, and chromium.
- the metal layer laminated by the above method may be etched to form a circuit as a conductive portion, or the circuit may be formed by directly adhering the circuit to the bonded portion.
- the circuit surface may be protected by a cover film after the circuit is formed on the thermoplastic liquid crystal polymer film, or a glass / epoxy material or another circuit board may be laminated.
- thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention may further include a conductive portion.
- the thermoplastic liquid crystal polymer molded product (first thermoplastic liquid crystal polymer molded body or second thermoplastic liquid crystal polymer molded product) according to the present invention has its surface (untreated surface that has not been plasma-treated, and untreated surface).
- a metal portion preferably a metal layer, more preferably a metal foil
- the thermoplastic liquid crystal polymer molded product according to the present invention is adhered on the adhered portion.
- a metal portion may be provided on the above-mentioned bonding target.
- the film-shaped thermoplastic liquid crystal polymer molded product according to the present invention may have a metal foil laminated on the adhered portion, and the thermoplastic liquid crystal polymer molding obtained by the production method of the present invention.
- the body may be a laminate in which a thermoplastic liquid crystal polymer film and a metal layer are directly laminated.
- the film-shaped thermoplastic liquid crystal polymer molded product according to the present invention may be a laminated body in which a metal layer is laminated on the above-mentioned adhesive object adhered on the adhered portion.
- the metal can be appropriately determined according to the purpose, but copper, nickel, cobalt, aluminum, gold, tin, chromium and the like are preferably used.
- the thickness of the metal layer may be 0.01 to 200 ⁇ m, preferably 0.1 to 100 ⁇ m, more preferably 1 to 80 ⁇ m, and particularly preferably 2 to 50 ⁇ m.
- the thickness of the metal foil may be 1 to 80 ⁇ m, preferably 2 to 50 ⁇ m.
- the surface roughness Rz of the metal foil on the side in contact with the first thermoplastic liquid crystal polymer molded product may be, for example, 2.0 ⁇ m or less, preferably 1.5 ⁇ m or less.
- the lower limit of the surface roughness Rz may be, for example, 0.8 ⁇ m.
- the surface roughness Rz indicates a ten-point average roughness measured with reference to JIS B 0601-1994.
- thermoplastic liquid crystal polymer molded product (first thermoplastic liquid crystal polymer molded product or second thermoplastic liquid crystal polymer molded product) according to the present invention has a surface (untreated surface that has not been plasma-treated). , And / or a plasma-treated surface), and the circuit may be provided on the above-mentioned bonding object that is bonded on the bonded portion.
- thermoplastic liquid crystal polymer film produced in Examples and Comparative Examples The surface of the adhered portion of the thermoplastic liquid crystal polymer film produced in Examples and Comparative Examples was measured under the following measurement conditions using a scanning X-ray photoelectron spectroscopic analyzer (“PHI Quantera SXM” manufactured by ULVAC-PHI, Inc.).
- PHI Quantera SXM scanning X-ray photoelectron spectroscopic analyzer
- the ratios ⁇ CO> / ⁇ COO> and ⁇ C O> / ⁇ COO> were calculated.
- X-ray source monochromatic AlK ⁇ (1486.6 eV)
- X-ray beam diameter 100 ⁇ m ⁇ (25 W, 15 kV)
- thermoplastic liquid crystal polymer film and the adhesion target produced in Examples and Comparative Examples was used as an evaluation sample. After storing the evaluation sample for 24 hours under the conditions described below, a 1.0 cm wide peeling test piece was prepared from each laminate, and the film layer was fixed to a flat plate with double-sided adhesive tape according to JIS C 6471. The strength at the interface between the object to be bonded and the thermoplastic liquid crystal polymer film was measured at a speed of 50 mm / min by the 90 ° method. The adhesive strength after storage for 24 hours under the conditions of 23 ° C. and 50% RH, and the adhesive strength after storage for 24 hours under the conditions of 121 ° C. and 100% RH were measured, respectively.
- the adhesive strength was measured after storage for 24 hours under the conditions of 23 ° C. and 50% RH under the conditions of 121 ° C. and 100% RH.
- the ratio of the adhesive strength was calculated by measuring the adhesive strength after storage for 24 hours.
- Example 1 A thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., "Vecstar", thickness 50 ⁇ m) is placed between parallel plate electrodes (electrode area) in a plasma continuous processing device in which unwinding and winding of the film are installed inside a vacuum chamber. It was set so as to pass through (5 cm ⁇ 60 cm, head-film distance 5 mm) (direct method). After exhausting the inside of the vacuum chamber with a vacuum pump, N 2 was introduced to adjust the degree of vacuum inside the vacuum chamber to 3 Pa.
- Vecstar thickness 50 ⁇ m
- the processing mode is set to the direct plasma mode (DP), the discharge frequency is 150 kHz, the power is 1 kW, and plasma is generated between the electrodes by a discharge method in which a continuous waveform voltage is applied (output 3.3 W / cm 2 ) to speed the film.
- the surface of the thermoplastic liquid crystal polymer film was continuously plasma-treated by winding at 3 m / min (treatment time: 1.0 second).
- thermoplastic liquid crystal polymer film subjected to the plasma treatment was degassed and dried at 200 ° C. for 60 minutes using a hot air oven to bring the moisture content to 100 ppm, and then the thermoplastic liquid crystal polymer film was coated with a low dielectric adhesive sheet.
- a low dielectric adhesive sheet (Made by Nikkan Kogyo Co., Ltd., "NIKAFLEX SAFY", thickness 25 ⁇ m, relative permittivity 3.0, dielectric loss tangent 0.005), and then heat-pressed at 160 ° C and 4 MPa for 40 minutes to make it thermoplastic.
- a laminate of a liquid crystal polymer film and an adhesive was prepared. The adhesive strength of this laminated body is shown in Table 7.
- Example 2 Laminated in the same manner as in Example 1 except that the adhesive sheet was changed to a low-dielectric adhesive sheet (manufactured by Toagosei Co., Ltd., "AF711", thickness 25 ⁇ m, relative permittivity 2.4, dielectric loss tangent 0.003). The body was made. The adhesive strength of this laminated body is shown in Table 7.
- Comparative Example 2 Laminated in the same manner as in Comparative Example 1 except that the adhesive sheet was changed to a low dielectric adhesive sheet (manufactured by Toagosei Co., Ltd., "AF711", thickness 25 ⁇ m, relative permittivity 2.4, dielectric loss tangent 0.003). The body was made. The adhesive strength of this laminated body is shown in Table 7.
- thermoplastic liquid crystal polymer film manufactured by Kuraray Co., Ltd., "Vecstar", thickness 50 ⁇ m
- a plasma continuous processing device in which unwinding and winding of the film are installed inside a vacuum chamber. It was set so as to pass through (5 cm ⁇ 60 cm, head-film distance 5 mm) (direct method). After exhausting the inside of the vacuum chamber with a vacuum pump, N 2 was introduced to adjust the degree of vacuum inside the vacuum chamber to 3 Pa.
- the processing mode is set to the direct plasma mode (DP), the discharge frequency is 150 kHz, the power is 1 kW, and plasma is generated between the electrodes by a discharge method in which a continuous waveform voltage is applied (output 3.3 W / cm 2 ) to speed the film.
- the surface of the thermoplastic liquid crystal polymer film was continuously plasma-treated by winding at 3 m / min (treatment time: 1.0 second).
- a low-dielectric adhesive sheet manufactured by Nikkan Kogyo Co., Ltd., "NIKAFLEX SAFY", thickness 25 ⁇ m, relative permittivity 3.0, dielectric loss tangent 0.005 was laminated on the thermoplastic liquid crystal polymer film after the plasma treatment. Above, heat pressing was performed at 160 ° C. and 4 MPa for 40 minutes to prepare a laminate of a thermoplastic liquid crystal polymer film and an adhesive.
- the adhesive strength of this laminated body is shown in Table 7.
- Reference example 2 Laminated in the same manner as in Reference Example 1 except that the adhesive sheet was changed to a low-dielectric adhesive sheet (manufactured by Toagosei Co., Ltd., "AF711", thickness 25 ⁇ m, relative permittivity 2.4, dielectric loss tangent 0.003). The body was made. The adhesive strength of this laminated body is shown in Table 7.
- Examples 1 and 2 since the specific surface treatment step and degassing step were performed, the surface of the bonded portion can be modified to a specific chemical bond state, and the water content of the thermoplastic liquid crystal polymer film can be reduced. It has a high adhesive strength after being stored for 24 hours under normal conditions. When compared with Comparative Examples 1 and 2 using the same low-dielectric adhesive sheet, Examples 1 and 2 had an adhesive strength of 2 after storage under normal conditions for 24 hours with respect to each of Comparative Examples 1 and 2. It was more than double.
- the ratio of the adhesive strength after storage for 24 hours under normal conditions to the adhesive strength after storage for 24 hours under high temperature and high humidity conditions is extremely high, which is 100% or more. high.
- Examples 1 and 2 have a high temperature and high temperature because the ratio is high even though the surface of the adhered portion has the same chemical bond state. It is excellent in maintaining adhesive strength under wet conditions and can improve long-term reliability.
- thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention is excellent in maintaining the long-term adhesive strength of the thermoplastic liquid crystal polymer under high temperature and high humidity conditions, and has high long-term reliability. Therefore, it can be used for various purposes according to its shape, especially as a multilayer circuit board, an insulator of an electronic circuit board, a reinforcing plate of a flexible circuit board, a cover film on a circuit surface, a multilayer circuit using an adhesive, and the like. It is useful.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
The present invention provides a method for producing a thermoplastic liquid crystal polymer molded body, said method being capable of modifying the surface of a portion to be bonded to have high adhesiveness and being also capable of modifying the surface to maintain the high adhesiveness even under high temperature high humidity conditions. This method for producing a thermoplastic liquid crystal polymer molded body comprises: a surface treatment step wherein at least a part of the surface of a thermoplastic liquid crystal polymer molded body is subjected to direct plasma processing at an output of 2.5 W/cm2 or more for a processing time of less than 5 seconds; and a deaeration step wherein (a) the thermoplastic liquid crystal polymer molded body is dried under vacuum at a vacuum degree of 1,500 Pa or less for 30 minutes or more, and/or (b) the thermoplastic liquid crystal polymer molded body is dried by heating within the range of from 80°C to 300°C.
Description
本願は2019年8月29日出願の特願2019-156906の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
This application claims the priority of Japanese Patent Application No. 2019-156906 filed on August 29, 2019, and is cited as a part of this application by reference in its entirety.
本発明は、接着性に優れる、光学的異方性の溶融相を形成し得る熱可塑性ポリマー(以下、熱可塑性液晶ポリマーと称する)成形体の製造方法に関する。
The present invention relates to a method for producing a thermoplastic polymer (hereinafter referred to as a thermoplastic liquid crystal polymer) molded product capable of forming an optically anisotropic molten phase having excellent adhesiveness.
熱可塑性液晶ポリマー成形体は、熱可塑性液晶ポリマーの性質に由来して、低誘電特性(低誘電率および低誘電正接)を有しているため、誘電特性を重視する用途において注目されている。
Thermoplastic liquid crystal polymer molded products have low dielectric properties (low dielectric constant and low dielectric loss tangent) due to the properties of thermoplastic liquid crystal polymers, and are therefore attracting attention in applications where dielectric properties are important.
例えば、近年、プリント配線板における伝送信号の高速化に伴い、信号の高周波化が進んでいる。これに伴い、プリント配線板に用いられる基材には、高周波領域での優れた誘電特性(低誘電率、低誘電正接)が要求されている。このような要求に対して、プリント配線板に用いられる基材フィルムとして、従来のポリイミド(PI)、ポリエチレンテレフタレートフィルムに代えて、低誘電特性を有する熱可塑性液晶ポリマーフィルムが注目されている。しかしながら、熱可塑性液晶ポリマーは、そもそも接着性が低いという課題を有している。
For example, in recent years, with the increase in speed of transmission signals on printed wiring boards, the frequency of signals has been increasing. Along with this, the base material used for the printed wiring board is required to have excellent dielectric properties (low dielectric constant, low dielectric loss tangent) in the high frequency region. In response to such demands, as a base film used for a printed wiring board, a thermoplastic liquid crystal polymer film having a low dielectric property is attracting attention instead of the conventional polyimide (PI) and polyethylene terephthalate film. However, the thermoplastic liquid crystal polymer has a problem that the adhesiveness is low in the first place.
例えば、特許文献1(特開平1-216824号公報)および特許文献2(特開平1-236246号公報)には、液晶ポリマー成形物に、塗装、印刷、接着、蒸着、メッキ等を行うための表面改質方法として、波長184.9nmの紫外線を照射する表面処理方法が開示されている。
For example, in Patent Document 1 (Japanese Patent Laid-Open No. 1-216824) and Patent Document 2 (Japanese Patent Laid-Open No. 1-236246), a liquid crystal polymer molded product is used for coating, printing, adhering, vapor deposition, plating, etc. As a surface modification method, a surface treatment method for irradiating ultraviolet rays having a wavelength of 184.9 nm is disclosed.
また、特許文献3(特許第4892274号公報)には、液晶ポリマー成形体の被接着部位の表面部のX線光電子分光分析結果において、C(Is)ピーク強度に占める[-C-O-結合]と[-COO-結合]とのピーク強度の和が21%以上で、かつピーク強度の比[-C-O-結合]/[-COO-結合]が1.5以下である液晶ポリマー成形体が開示されている。また、その製造方法として、酸性気体雰囲気中、出力:0.6W/cm2以下で且つ圧力:0.1Torr以上の条件で液晶ポリマー成形体の少なくとも被接着部位にプラズマ照射して表面処理する工程を含む液晶ポリマー成形体の製造方法が記載されている。この文献では、液晶ポリマー成形体のエポキシ系樹脂への接着強度を向上させている。
Further, in Patent Document 3 (Patent No. 4892274), in the X-ray photoelectron spectroscopic analysis result of the surface portion of the adhered portion of the liquid crystal polymer molded body, the [-CO-bond] occupies the C (Is) peak intensity. ] And [-COO-bond], the sum of the peak intensities is 21% or more, and the ratio of peak intensities [-CO-bond] / [-COO-bond] is 1.5 or less. The body is disclosed. Further, as a manufacturing method thereof, a step of irradiating at least the adhered portion of the liquid crystal polymer molded product with plasma under the conditions of an output of 0.6 W / cm 2 or less and a pressure of 0.1 Torr or more in an acidic gas atmosphere to perform surface treatment. A method for producing a liquid crystal polymer molded product containing the above is described. In this document, the adhesive strength of the liquid crystal polymer molded product to the epoxy resin is improved.
しかしながら、特許文献1および2では、液晶ポリマー成形体に対する接着性について、その耐久性に関する評価は行われていない。
However, in Patent Documents 1 and 2, the durability of the adhesiveness to the liquid crystal polymer molded product has not been evaluated.
また、特許文献3では、C(Is)ピーク強度に占める[-C-O-結合]と[-COO-結合]とのピーク強度の和が21%以上であれば、液晶ポリマー成形体の被接着部位の表面において液晶ポリマー分子の切断が適度に進行し、当該表面の反応性が上がり、結果として主に初期の接着性を向上させることができ、また、ピーク強度の比:[-C-O-結合]/[-COO-結合]が1.5以下であれば、長期にわたって接着性を維持することができ、製品の長期信頼性を高められると記載されている。
Further, in Patent Document 3, if the sum of the peak intensities of [-CO-bond] and [-COO-bond] in the C (Is) peak intensity is 21% or more, the liquid crystal polymer molded product is covered. Cleavage of the liquid crystal polymer molecules progresses moderately on the surface of the bonding site, the reactivity of the surface is increased, and as a result, the initial adhesion can be mainly improved, and the ratio of peak strength: [-C-. It is stated that if the O-bond] / [-COO-bond] is 1.5 or less, the adhesiveness can be maintained for a long period of time and the long-term reliability of the product can be enhanced.
しかしながら、特許文献3では、高温高湿条件下での保持後の接着強度を評価しているが、その保持率は十分ではなく、長期信頼性についてさらなる改良の余地が存在する。
However, Patent Document 3 evaluates the adhesive strength after holding under high temperature and high humidity conditions, but the holding rate is not sufficient, and there is room for further improvement in long-term reliability.
したがって、本発明の目的は、熱可塑性液晶ポリマー成形体の被接着部位の表面を、高接着性に改質するとともに、高温高湿条件下においても高い接着性を維持できるよう改質することが可能である熱可塑性液晶ポリマー成形体の製造方法を提供することである。
Therefore, an object of the present invention is to modify the surface of the adhered portion of the thermoplastic liquid crystal polymer molded product to have high adhesiveness and to maintain high adhesiveness even under high temperature and high humidity conditions. It is to provide a method for producing a thermoplastic liquid crystal polymer molded article which is possible.
本発明の発明者らは、上記目的を達成するために鋭意検討した結果、熱可塑性液晶ポリマー成形体の表面の少なくとも一部に、処理方式がダイレクト方式であり、出力2.5W/cm2以上、処理時間5秒未満で、プラズマ処理を行う表面処理工程(工程1)、ならびに熱可塑性液晶ポリマー成形体を(a)真空度1500Pa以下で30分以上、真空下で乾燥する、および/または(b)80~300℃の範囲で、加熱下で乾燥する脱気工程(工程2)を含む製造方法で得られる熱可塑性液晶ポリマー成形体が、接着性を向上させることができるとともに、高温高湿条件下においても高い接着性を維持できることを見出し、本発明の完成に至った。
As a result of diligent studies to achieve the above object, the inventors of the present invention have applied a direct treatment method to at least a part of the surface of the thermoplastic liquid crystal polymer molded product, and the output is 2.5 W / cm 2 or more. A surface treatment step (step 1) of performing plasma treatment with a treatment time of less than 5 seconds, and (a) drying the thermoplastic liquid crystal polymer molded article at a vacuum degree of 1500 Pa or less for 30 minutes or more under vacuum, and / or ( b) The thermoplastic liquid crystal polymer molded product obtained by the manufacturing method including the degassing step (step 2) of drying under heating in the range of 80 to 300 ° C. can improve the adhesiveness and is high temperature and high humidity. We have found that high adhesiveness can be maintained even under conditions, and have completed the present invention.
すなわち、本発明は、以下の態様で構成されうる。
〔態様1〕
熱可塑性液晶ポリマー成形体の表面の少なくとも一部に、処理方式がダイレクト方式であり、出力2.5W/cm2以上(好ましくは2.8W/cm2以上、より好ましくは3.0W/cm2以上、さらに好ましくは3.2W/cm2以上)、処理時間5秒未満(好ましくは4秒以下、より好ましくは3秒以下)で、プラズマ処理を行う表面処理工程、ならびに
熱可塑性液晶ポリマー成形体を(a)真空度1500Pa以下(好ましくは1300Pa以下、より好ましくは1100Pa以下)で30分以上(好ましくは40分以上、より好ましくは50分以上)、真空下で乾燥する、および/または(b)80~300℃の範囲(好ましくは80~250℃の範囲、より好ましくは80~200℃の範囲)で、加熱下で乾燥する脱気工程を含む、
熱可塑性液晶ポリマー成形体の製造方法。
〔態様2〕
態様1に記載の製造方法であって、表面処理工程後に脱気工程を行う、熱可塑性液晶ポリマー成形体の製造方法。
〔態様3〕
態様1または2に記載の製造方法であって、熱可塑性液晶ポリマー成形体がフィルムである、熱可塑性液晶ポリマー成形体の製造方法。
〔態様4〕
態様1~3のいずれか一態様に記載の製造方法であって、プラズマ処理におけるガス種が、窒素含有ガスおよび/または酸素含有ガス種を少なくとも含む(好ましくは、窒素含有ガスとしてN2を含むとともに、任意で酸素含有ガスとしてO2およびH2Oから選択される少なくとも一種を含む)、熱可塑性液晶ポリマー成形体の製造方法。
〔態様5〕
態様1~4のいずれか一態様に記載の製造方法であって、前記表面処理工程がロールtoロール処理である、熱可塑性液晶ポリマー成形体の製造方法。
〔態様6〕
態様1~5のいずれか一態様に記載の製造方法であって、さらに、前記プラズマ処理された部位の少なくとも一部を含む被接着部位に、接着対象を接着する接着工程を少なくとも備えている、熱可塑性液晶ポリマー成形体の製造方法。
〔態様7〕
態様1~6のいずれか一態様に記載の製造方法であって、表面処理工程後の熱可塑性液晶ポリマー成形体が、
表面のX線光電子分光分析結果において、C(1s)ピーク面積に対する[C-O結合]のピーク面積の割合<C-O>と[COO結合]のピーク面積の割合<COO>との比<C-O>/<COO>が1.5以上(好ましくは1.6以上、より好ましくは1.7以上)で、かつC(1s)ピーク面積に対する[C=O結合]のピーク面積の割合<C=O>と[COO結合]のピーク面積の割合<COO>との比<C=O>/<COO>が0.10以上(好ましくは0.12以上、より好ましくは0.25以上、さらに好ましくは0.40以上)である処理面を有する、
熱可塑性液晶ポリマー成形体の製造方法。
〔態様8〕
態様1~7のいずれか一態様に記載の製造方法であって、脱気工程後の熱可塑性液晶ポリマー成形体の水分率が380ppm以下(好ましくは300ppm以下、より好ましくは200ppm以下)である、熱可塑性液晶ポリマー成形体の製造方法。
〔態様9〕
被接着部位に接着対象が接着されている熱可塑性液晶ポリマー成形体であって、熱可塑性液晶ポリマー成形体の水分率が380ppm以下(好ましくは300ppm以下、より好ましくは200ppm以下)であり、前記被接着部位の表面のX線光電子分光分析結果において、C(1s)ピーク面積に対する[C-O結合]のピーク面積の割合<C-O>と[COO結合]のピーク面積の割合<COO>との比<C-O>/<COO>が1.5以上(好ましくは1.6以上、より好ましくは1.7以上)で、かつC(1s)ピーク面積に対する[C=O結合]のピーク面積の割合<C=O>と[COO結合]のピーク面積の割合<COO>との比<C=O>/<COO>が0.10以上(好ましくは0.12以上、より好ましくは0.25以上、さらに好ましくは0.40以上)である、熱可塑性液晶ポリマー成形体。 That is, the present invention can be configured in the following aspects.
[Aspect 1]
At least a portion of the surface of the thermoplastic liquid crystal polymer moldings, processing method is a direct method, output 2.5 W / cm 2 or more (preferably 2.8W / cm 2 or more, more preferably 3.0 W / cm 2 Above, more preferably 3.2 W / cm 2 or more), a treatment time of less than 5 seconds (preferably 4 seconds or less, more preferably 3 seconds or less), a surface treatment step of performing plasma treatment, and a thermoplastic liquid crystal polymer molded product. (A) Drying under vacuum at a degree of vacuum of 1500 Pa or less (preferably 1300 Pa or less, more preferably 1100 Pa or less) for 30 minutes or more (preferably 40 minutes or more, more preferably 50 minutes or more), and / or (b). ) Including a degassing step of drying under heating in the range of 80 to 300 ° C. (preferably in the range of 80 to 250 ° C., more preferably in the range of 80 to 200 ° C.).
A method for producing a thermoplastic liquid crystal polymer molded product.
[Aspect 2]
The method for producing a thermoplastic liquid crystal polymer molded product according to the first aspect, wherein the degassing step is performed after the surface treatment step.
[Aspect 3]
The method for producing a thermoplastic liquid crystal polymer molded product according to the method 1 or 2, wherein the thermoplastic liquid crystal polymer molded product is a film.
[Aspect 4]
The production method according to any one of aspects 1 to 3, wherein the gas species in the plasma treatment contains at least a nitrogen-containing gas and / or an oxygen-containing gas species (preferably N 2 as a nitrogen-containing gas). A method for producing a thermoplastic liquid crystal polymer molded product (including at least one optionally selected from O 2 and H 2 O as an oxygen-containing gas).
[Aspect 5]
A method for producing a thermoplastic liquid crystal polymer molded product according to any one of aspects 1 to 4, wherein the surface treatment step is roll-to-roll treatment.
[Aspect 6]
The manufacturing method according to any one of aspects 1 to 5, further comprising at least an adhesion step of adhering an object to be adhered to an adhered portion including at least a part of the plasma-treated portion. A method for producing a thermoplastic liquid crystal polymer molded product.
[Aspect 7]
The production method according to any one of aspects 1 to 6, wherein the thermoplastic liquid crystal polymer molded product after the surface treatment step is formed.
In the X-ray photoelectron spectroscopic analysis result of the surface, the ratio of the peak area of [CO bond] to the C (1s) peak area <CO> and the ratio of the peak area of [COO bond] <COO>< The ratio of the peak area of [C = O bond] to the C (1s) peak area when CO> / <COO> is 1.5 or more (preferably 1.6 or more, more preferably 1.7 or more). The ratio of the peak area of <C = O> to [COO bond] <COO> The ratio <C = O> / <COO> is 0.10 or more (preferably 0.12 or more, more preferably 0.25 or more). , More preferably 0.40 or more).
A method for producing a thermoplastic liquid crystal polymer molded product.
[Aspect 8]
The production method according to any one of aspects 1 to 7, wherein the water content of the thermoplastic liquid crystal polymer molded product after the degassing step is 380 ppm or less (preferably 300 ppm or less, more preferably 200 ppm or less). A method for producing a thermoplastic liquid crystal polymer molded product.
[Aspect 9]
A thermoplastic liquid crystal polymer molded body in which an object to be adhered is adhered to an adhered portion, wherein the water content of the thermoplastic liquid crystal polymer molded body is 380 ppm or less (preferably 300 ppm or less, more preferably 200 ppm or less), and the subject to be adhered. In the X-ray photoelectron spectroscopic analysis result of the surface of the bonding site, the ratio of the peak area of [CO bond] to the C (1s) peak area <CO> and the ratio of the peak area of [COO bond] <COO> Ratio <CO> / <COO> is 1.5 or more (preferably 1.6 or more, more preferably 1.7 or more), and the peak of [C = O bond] with respect to the C (1s) peak area. The ratio of the area ratio <C = O> to the peak area ratio <COO> of [COO bond] <C = O> / <COO> is 0.10 or more (preferably 0.12 or more, more preferably 0). A thermoplastic liquid crystal polymer molded body of .25 or more, more preferably 0.40 or more).
〔態様1〕
熱可塑性液晶ポリマー成形体の表面の少なくとも一部に、処理方式がダイレクト方式であり、出力2.5W/cm2以上(好ましくは2.8W/cm2以上、より好ましくは3.0W/cm2以上、さらに好ましくは3.2W/cm2以上)、処理時間5秒未満(好ましくは4秒以下、より好ましくは3秒以下)で、プラズマ処理を行う表面処理工程、ならびに
熱可塑性液晶ポリマー成形体を(a)真空度1500Pa以下(好ましくは1300Pa以下、より好ましくは1100Pa以下)で30分以上(好ましくは40分以上、より好ましくは50分以上)、真空下で乾燥する、および/または(b)80~300℃の範囲(好ましくは80~250℃の範囲、より好ましくは80~200℃の範囲)で、加熱下で乾燥する脱気工程を含む、
熱可塑性液晶ポリマー成形体の製造方法。
〔態様2〕
態様1に記載の製造方法であって、表面処理工程後に脱気工程を行う、熱可塑性液晶ポリマー成形体の製造方法。
〔態様3〕
態様1または2に記載の製造方法であって、熱可塑性液晶ポリマー成形体がフィルムである、熱可塑性液晶ポリマー成形体の製造方法。
〔態様4〕
態様1~3のいずれか一態様に記載の製造方法であって、プラズマ処理におけるガス種が、窒素含有ガスおよび/または酸素含有ガス種を少なくとも含む(好ましくは、窒素含有ガスとしてN2を含むとともに、任意で酸素含有ガスとしてO2およびH2Oから選択される少なくとも一種を含む)、熱可塑性液晶ポリマー成形体の製造方法。
〔態様5〕
態様1~4のいずれか一態様に記載の製造方法であって、前記表面処理工程がロールtoロール処理である、熱可塑性液晶ポリマー成形体の製造方法。
〔態様6〕
態様1~5のいずれか一態様に記載の製造方法であって、さらに、前記プラズマ処理された部位の少なくとも一部を含む被接着部位に、接着対象を接着する接着工程を少なくとも備えている、熱可塑性液晶ポリマー成形体の製造方法。
〔態様7〕
態様1~6のいずれか一態様に記載の製造方法であって、表面処理工程後の熱可塑性液晶ポリマー成形体が、
表面のX線光電子分光分析結果において、C(1s)ピーク面積に対する[C-O結合]のピーク面積の割合<C-O>と[COO結合]のピーク面積の割合<COO>との比<C-O>/<COO>が1.5以上(好ましくは1.6以上、より好ましくは1.7以上)で、かつC(1s)ピーク面積に対する[C=O結合]のピーク面積の割合<C=O>と[COO結合]のピーク面積の割合<COO>との比<C=O>/<COO>が0.10以上(好ましくは0.12以上、より好ましくは0.25以上、さらに好ましくは0.40以上)である処理面を有する、
熱可塑性液晶ポリマー成形体の製造方法。
〔態様8〕
態様1~7のいずれか一態様に記載の製造方法であって、脱気工程後の熱可塑性液晶ポリマー成形体の水分率が380ppm以下(好ましくは300ppm以下、より好ましくは200ppm以下)である、熱可塑性液晶ポリマー成形体の製造方法。
〔態様9〕
被接着部位に接着対象が接着されている熱可塑性液晶ポリマー成形体であって、熱可塑性液晶ポリマー成形体の水分率が380ppm以下(好ましくは300ppm以下、より好ましくは200ppm以下)であり、前記被接着部位の表面のX線光電子分光分析結果において、C(1s)ピーク面積に対する[C-O結合]のピーク面積の割合<C-O>と[COO結合]のピーク面積の割合<COO>との比<C-O>/<COO>が1.5以上(好ましくは1.6以上、より好ましくは1.7以上)で、かつC(1s)ピーク面積に対する[C=O結合]のピーク面積の割合<C=O>と[COO結合]のピーク面積の割合<COO>との比<C=O>/<COO>が0.10以上(好ましくは0.12以上、より好ましくは0.25以上、さらに好ましくは0.40以上)である、熱可塑性液晶ポリマー成形体。 That is, the present invention can be configured in the following aspects.
[Aspect 1]
At least a portion of the surface of the thermoplastic liquid crystal polymer moldings, processing method is a direct method, output 2.5 W / cm 2 or more (preferably 2.8W / cm 2 or more, more preferably 3.0 W / cm 2 Above, more preferably 3.2 W / cm 2 or more), a treatment time of less than 5 seconds (preferably 4 seconds or less, more preferably 3 seconds or less), a surface treatment step of performing plasma treatment, and a thermoplastic liquid crystal polymer molded product. (A) Drying under vacuum at a degree of vacuum of 1500 Pa or less (preferably 1300 Pa or less, more preferably 1100 Pa or less) for 30 minutes or more (preferably 40 minutes or more, more preferably 50 minutes or more), and / or (b). ) Including a degassing step of drying under heating in the range of 80 to 300 ° C. (preferably in the range of 80 to 250 ° C., more preferably in the range of 80 to 200 ° C.).
A method for producing a thermoplastic liquid crystal polymer molded product.
[Aspect 2]
The method for producing a thermoplastic liquid crystal polymer molded product according to the first aspect, wherein the degassing step is performed after the surface treatment step.
[Aspect 3]
The method for producing a thermoplastic liquid crystal polymer molded product according to the method 1 or 2, wherein the thermoplastic liquid crystal polymer molded product is a film.
[Aspect 4]
The production method according to any one of aspects 1 to 3, wherein the gas species in the plasma treatment contains at least a nitrogen-containing gas and / or an oxygen-containing gas species (preferably N 2 as a nitrogen-containing gas). A method for producing a thermoplastic liquid crystal polymer molded product (including at least one optionally selected from O 2 and H 2 O as an oxygen-containing gas).
[Aspect 5]
A method for producing a thermoplastic liquid crystal polymer molded product according to any one of aspects 1 to 4, wherein the surface treatment step is roll-to-roll treatment.
[Aspect 6]
The manufacturing method according to any one of aspects 1 to 5, further comprising at least an adhesion step of adhering an object to be adhered to an adhered portion including at least a part of the plasma-treated portion. A method for producing a thermoplastic liquid crystal polymer molded product.
[Aspect 7]
The production method according to any one of aspects 1 to 6, wherein the thermoplastic liquid crystal polymer molded product after the surface treatment step is formed.
In the X-ray photoelectron spectroscopic analysis result of the surface, the ratio of the peak area of [CO bond] to the C (1s) peak area <CO> and the ratio of the peak area of [COO bond] <COO>< The ratio of the peak area of [C = O bond] to the C (1s) peak area when CO> / <COO> is 1.5 or more (preferably 1.6 or more, more preferably 1.7 or more). The ratio of the peak area of <C = O> to [COO bond] <COO> The ratio <C = O> / <COO> is 0.10 or more (preferably 0.12 or more, more preferably 0.25 or more). , More preferably 0.40 or more).
A method for producing a thermoplastic liquid crystal polymer molded product.
[Aspect 8]
The production method according to any one of aspects 1 to 7, wherein the water content of the thermoplastic liquid crystal polymer molded product after the degassing step is 380 ppm or less (preferably 300 ppm or less, more preferably 200 ppm or less). A method for producing a thermoplastic liquid crystal polymer molded product.
[Aspect 9]
A thermoplastic liquid crystal polymer molded body in which an object to be adhered is adhered to an adhered portion, wherein the water content of the thermoplastic liquid crystal polymer molded body is 380 ppm or less (preferably 300 ppm or less, more preferably 200 ppm or less), and the subject to be adhered. In the X-ray photoelectron spectroscopic analysis result of the surface of the bonding site, the ratio of the peak area of [CO bond] to the C (1s) peak area <CO> and the ratio of the peak area of [COO bond] <COO> Ratio <CO> / <COO> is 1.5 or more (preferably 1.6 or more, more preferably 1.7 or more), and the peak of [C = O bond] with respect to the C (1s) peak area. The ratio of the area ratio <C = O> to the peak area ratio <COO> of [COO bond] <C = O> / <COO> is 0.10 or more (preferably 0.12 or more, more preferably 0). A thermoplastic liquid crystal polymer molded body of .25 or more, more preferably 0.40 or more).
本明細書において、熱可塑性液晶ポリマー成形体とは、少なくとも熱可塑性液晶ポリマーを含む成形体という意味であり、例えば、熱可塑性液晶ポリマー成形体には、プラズマ処理を行っていない未処理の成形体も、接着対象と接着する前の成形体(非接合体または第一の熱可塑性液晶ポリマー成形体)も、接着対象と接着した後の成形体(接合体または第二の熱可塑性液晶ポリマー成形体)も含まれる。
In the present specification, the thermoplastic liquid crystal polymer molded product means a molded product containing at least a thermoplastic liquid crystal polymer. For example, the thermoplastic liquid crystal polymer molded product is an untreated molded product that has not been subjected to plasma treatment. In addition, the molded product (non-bonded or first thermoplastic liquid crystal polymer molded product) before being bonded to the object to be bonded is also the molded product (joined product or second thermoplastic liquid crystal polymer molded product) after being bonded to the bonded object. ) Is also included.
なお、本明細書において、ピーク面積の割合とは、各結合状態に応じて観察されるC(1s)の各ピークのピーク面積の合計に対する[C-O結合]、[C=O結合]および[COO結合]のピーク面積の割合を算出したものである。本明細書では、以下において、C(1s)の各ピークのピーク面積の合計に対する[C-O結合]のピーク面積の割合を<C-O>、C(1s)の各ピークのピーク面積の合計に対する[C=O結合]のピーク面積の割合を<C=O>、C(1s)の各ピークのピーク面積の合計に対する[COO結合]のピーク面積の割合を<COO>と表記する。
In the present specification, the ratio of the peak area is defined as [CO bond], [C = O bond], and [C = O bond] with respect to the total peak area of each peak of C (1s) observed according to each bond state. The ratio of the peak area of [COO bond] is calculated. In the present specification, the ratio of the peak area of [CO bond] to the total peak area of each peak of C (1s) is defined as <CO> and the peak area of each peak of C (1s). The ratio of the peak area of [C = O bond] to the total is expressed as <C = O>, and the ratio of the peak area of [COO bond] to the total peak area of each peak of C (1s) is expressed as <COO>.
なお、請求の範囲および/または明細書に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
It should be noted that any combination of claims and / or at least two components disclosed in the specification is included in the present invention. In particular, any combination of two or more of the claims described in the claims is included in the present invention.
本発明に係る熱可塑性液晶ポリマー成形体の製造方法によれば、被接着部位の表面を特定の化学結合状態に改質できるとともに、熱可塑性液晶ポリマー成形体の内部や表面に存在する水分を除去することができるため、接着性が高いだけでなく、高温高湿条件下において接着強度の維持性にも優れ、長期信頼性が高い熱可塑性液晶ポリマー成形体を製造できる。そのため、本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、金属層や回路を形成した場合、例えば耐久性に優れた電子回路基板の絶縁体材料として極めて有用である。
According to the method for producing a thermoplastic liquid crystal polymer molded product according to the present invention, the surface of the adhered portion can be modified to a specific chemical bond state, and water existing inside or on the surface of the thermoplastic liquid crystal polymer molded product can be removed. Therefore, it is possible to produce a thermoplastic liquid crystal polymer molded product having not only high adhesiveness but also excellent adhesive strength maintenance under high temperature and high humidity conditions and high long-term reliability. Therefore, the thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention is extremely useful as an insulator material for an electronic circuit substrate having excellent durability, for example, when a metal layer or a circuit is formed.
また、本発明の製造方法は、高温高湿条件下においても高い接着性を維持できるよう被接着部位の表面を改質した熱可塑性液晶ポリマー成形体を製造できるものとして産業上極めて有用である。
Further, the production method of the present invention is extremely useful industrially as it can produce a thermoplastic liquid crystal polymer molded product in which the surface of the adhered portion is modified so that high adhesiveness can be maintained even under high temperature and high humidity conditions.
[熱可塑性液晶ポリマー]
本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、熱可塑性液晶ポリマーで構成される。この熱可塑性液晶ポリマーは、溶融成形できる液晶性ポリマー(または光学的に異方性の溶融相を形成し得るポリマー)で構成され、溶融成形できる液晶性ポリマーであれば特にその化学的構成については特に限定されるものではないが、例えば、熱可塑性液晶ポリエステル、またはこれにアミド結合が導入された熱可塑性液晶ポリエステルアミドなどを挙げることができる。 [Thermoplastic liquid crystal polymer]
The thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention is composed of a thermoplastic liquid crystal polymer. This thermoplastic liquid crystal polymer is composed of a liquid crystal polymer that can be melt-molded (or a polymer that can form an optically anisotropic molten phase), and if it is a liquid crystal polymer that can be melt-molded, the chemical composition thereof is particularly high. Although not particularly limited, for example, a thermoplastic liquid crystal polyester or a thermoplastic liquid crystal polyester amide having an amide bond introduced therein can be mentioned.
本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、熱可塑性液晶ポリマーで構成される。この熱可塑性液晶ポリマーは、溶融成形できる液晶性ポリマー(または光学的に異方性の溶融相を形成し得るポリマー)で構成され、溶融成形できる液晶性ポリマーであれば特にその化学的構成については特に限定されるものではないが、例えば、熱可塑性液晶ポリエステル、またはこれにアミド結合が導入された熱可塑性液晶ポリエステルアミドなどを挙げることができる。 [Thermoplastic liquid crystal polymer]
The thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention is composed of a thermoplastic liquid crystal polymer. This thermoplastic liquid crystal polymer is composed of a liquid crystal polymer that can be melt-molded (or a polymer that can form an optically anisotropic molten phase), and if it is a liquid crystal polymer that can be melt-molded, the chemical composition thereof is particularly high. Although not particularly limited, for example, a thermoplastic liquid crystal polyester or a thermoplastic liquid crystal polyester amide having an amide bond introduced therein can be mentioned.
また、熱可塑性液晶ポリマーは、芳香族ポリエステルまたは芳香族ポリエステルアミドに、更にイミド結合、カーボネート結合、カルボジイミド結合やイソシアヌレート結合などのイソシアネート由来の結合等が導入されたポリマーであってもよい。
Further, the thermoplastic liquid crystal polymer may be a polymer in which an imide bond, a carbonate bond, an isocyanate-derived bond such as a carbodiimide bond or an isocyanurate bond is further introduced into an aromatic polyester or an aromatic polyester amide.
本発明に用いられる熱可塑性液晶ポリマーの具体例としては、以下に例示する(1)から(4)に分類される化合物およびその誘導体から導かれる公知の熱可塑性液晶ポリエステルおよび熱可塑性液晶ポリエステルアミドを挙げることができる。ただし、光学的に異方性の溶融相を形成し得るポリマーを形成するためには、種々の原料化合物の組合せには適当な範囲があることは言うまでもない。
Specific examples of the thermoplastic liquid crystal polymer used in the present invention include known thermoplastic liquid crystal polyesters and thermoplastic liquid crystal polyesteramides derived from the compounds classified into (1) to (4) and derivatives thereof exemplified below. Can be mentioned. However, it goes without saying that the combination of various raw material compounds has an appropriate range in order to form a polymer capable of forming an optically anisotropic molten phase.
(2)芳香族または脂肪族ジカルボン酸(代表例は表2参照)
(2) Aromatic or aliphatic dicarboxylic acids (see Table 2 for typical examples)
(4)芳香族ジアミン、芳香族ヒドロキシアミンまたは芳香族アミノカルボン酸(代表例は表4参照)
(4) Aromatic diamine, aromatic hydroxyamine or aromatic aminocarboxylic acid (see Table 4 for typical examples)
これらの原料化合物から得られる熱可塑性液晶ポリマーの代表例として表5および6に示す構造単位を有する共重合体を挙げることができる。
Typical examples of thermoplastic liquid crystal polymers obtained from these raw material compounds include copolymers having structural units shown in Tables 5 and 6.
これらの共重合体のうち、p―ヒドロキシ安息香酸および/または6-ヒドロキシ-2-ナフトエ酸を少なくとも繰り返し単位として含む重合体が好ましく、特に、(i)p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸との繰り返し単位を含む重合体、または(ii)p-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸と、少なくとも一種の芳香族ジオールと、少なくとも一種の芳香族ジカルボン酸との繰り返し単位を含む共重合体が好ましい。
Among these copolymers, a copolymer containing p-hydroxybenzoic acid and / or 6-hydroxy-2-naphthoic acid as at least a repeating unit is preferable, and (i) p-hydroxybenzoic acid and 6-hydroxy-are particularly preferable. A copolymer containing a repeating unit with 2-naphthoic acid, or at least one aromatic hydroxycarboxylic acid selected from the group consisting of (ii) p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, and at least one. Copolymers containing repeating units of aromatic diols and at least one aromatic dicarboxylic acid are preferred.
例えば、(i)の重合体では、熱可塑性液晶ポリマーが、少なくともp-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸との繰り返し単位を含む場合、繰り返し単位(A)のp-ヒドロキシ安息香酸と、繰り返し単位(B)の6-ヒドロキシ-2-ナフトエ酸とのモル比(A)/(B)は、熱可塑性液晶ポリマー中、(A)/(B)=10/90~90/10程度であることが望ましく、より好ましくは、(A)/(B)=15/85~85/15程度であってもよく、さらに好ましくは、(A)/(B)=20/80~80/20程度であってもよい。
For example, in the polymer of (i), if the thermoplastic liquid crystal polymer contains at least a repeating unit of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, the repeating unit (A) of p-hydroxybenzoic acid And the molar ratio (A) / (B) of the repeating unit (B) to 6-hydroxy-2-naphthoic acid is (A) / (B) = 10/90 to 90/10 in the thermoplastic liquid crystal polymer. It is preferably about, more preferably (A) / (B) = about 15/85 to 85/15, and even more preferably (A) / (B) = 20/80 to 80. It may be about / 20.
また、(ii)の重合体の場合、p-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸(C)と、4,4’-ジヒドロキシビフェニル、ヒドロキノン、フェニルヒドロキノン、および4,4’-ジヒドロキシジフェニルエーテルからなる群から選ばれる少なくとも一種の芳香族ジオール(D)と、テレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸からなる群から選ばれる少なくとも一種の芳香族ジカルボン酸(E)の、熱可塑性液晶ポリマーにおける各繰り返し単位のモル比は、芳香族ヒドロキシカルボン酸(C):前記芳香族ジオール(D):前記芳香族ジカルボン酸(E)=(30~80):(35~10):(35~10)程度であってもよく、より好ましくは、(C):(D):(E)=(35~75):(32.5~12.5):(32.5~12.5)程度であってもよく、さらに好ましくは、(C):(D):(E)=(40~70):(30~15):(30~15)程度であってもよい。
Further, in the case of the polymer of (ii), at least one aromatic hydroxycarboxylic acid (C) selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and 4,4'-dihydroxy. Selected from the group consisting of at least one aromatic diol (D) selected from the group consisting of biphenyl, hydroquinone, phenylhydroquinone, and 4,4'-dihydroxydiphenyl ether, and the group consisting of terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid. The molar ratio of each repeating unit of at least one aromatic dicarboxylic acid (E) in the thermoplastic liquid crystal polymer is determined by the aromatic hydroxycarboxylic acid (C): the aromatic diol (D): the aromatic dicarboxylic acid (E). ) = (30 to 80) :( 35 to 10) :( 35 to 10), more preferably (C) :( D) :( E) = (35 to 75) :( 32) .5 to 12.5): may be about (32.5 to 12.5), more preferably (C) :( D) :( E) = (40 to 70) :( 30 to 15). ): It may be about (30 to 15).
また、芳香族ヒドロキシカルボン酸(C)のうち6-ヒドロシキ-2-ナフトエ酸に由来する繰り返し単位のモル比率は、例えば、85モル%以上であってもよく、好ましくは90モル%以上、より好ましくは95モル%以上であってもよい。芳香族ジカルボン酸(E)のうち2,6-ナフタレンジカルボン酸に由来する繰り返し単位のモル比率は、例えば、85モル%以上であってもよく、好ましくは90モル%以上、より好ましくは95モル%以上であってもよい。
The molar ratio of the repeating unit derived from 6-hydroshiki-2-naphthoic acid in the aromatic hydroxycarboxylic acid (C) may be, for example, 85 mol% or more, preferably 90 mol% or more. It may be preferably 95 mol% or more. The molar ratio of the repeating unit derived from 2,6-naphthalenedicarboxylic acid in the aromatic dicarboxylic acid (E) may be, for example, 85 mol% or more, preferably 90 mol% or more, and more preferably 95 mol%. It may be% or more.
また、芳香族ジオール(D)は、ヒドロキノン、4,4’-ジヒドロキシビフェニル、フェニルヒドロキノン、および4,4’-ジヒドロキシジフェニルエーテルからなる群から選ばれる互いに異なる二種の芳香族ジオールに由来する繰り返し単位(D1)と(D2)であってもよく、その場合、二種の芳香族ジオールのモル比は、(D1)/(D2)=23/77~77/23であってもよく、より好ましくは25/75~75/25、さらに好ましくは30/70~70/30であってもよい。
The aromatic diol (D) is a repeating unit derived from two different aromatic diols selected from the group consisting of hydroquinone, 4,4'-dihydroxybiphenyl, phenylhydroquinone, and 4,4'-dihydroxydiphenyl ether. It may be (D1) and (D2), in which case the molar ratio of the two aromatic diols may be (D1) / (D2) = 23/77 to 77/23, more preferably. May be 25/75 to 75/25, more preferably 30/70 to 70/30.
また、芳香族ジオールに由来する繰り返し構造単位と芳香族ジカルボン酸に由来する繰り返し構造単位とのモル比は、(D)/(E)=95/100~100/95であることが好ましい。この範囲をはずれると、重合度が上がらず機械強度が低下する傾向がある。
Further, the molar ratio of the repeating structural unit derived from the aromatic diol to the repeating structural unit derived from the aromatic dicarboxylic acid is preferably (D) / (E) = 95/100 to 100/95. If it is out of this range, the degree of polymerization does not increase and the mechanical strength tends to decrease.
なお、本発明にいう光学的異方性の溶融相を形成し得るとは、例えば試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより認定できる。
It should be noted that the possibility of forming the optically anisotropic molten phase referred to in the present invention can be determined by, for example, placing the sample on a hot stage, heating the sample in a nitrogen atmosphere, and observing the transmitted light of the sample.
熱可塑性液晶ポリマーとして好ましいものは、融点(以下、Tm0と称す)が、例えば、200~360℃の範囲のものであり、好ましくは240~350℃の範囲のもの、さらに好ましくはTm0が260~330℃のものである。なお、熱可塑性液晶ポリマーの融点は、示差走査熱量計を用いて、熱可塑性液晶ポリマーサンプルの熱挙動を観察して得ることができる。すなわち熱可塑性液晶ポリマーサンプルを室温(例えば、25℃)から10℃/minの速度で昇温して完全に溶融させた後、溶融物を10℃/minの速度で50℃まで冷却し、再び10℃/minの速度で昇温した後に現れる吸熱ピークの位置を、熱可塑性液晶ポリマーサンプルの融点として記録すればよい。
A preferred thermoplastic liquid crystal polymer has a melting point (hereinafter referred to as Tm 0 ) having, for example, a melting point in the range of 200 to 360 ° C., preferably in the range of 240 to 350 ° C., and more preferably Tm 0. The temperature is 260 to 330 ° C. The melting point of the thermoplastic liquid crystal polymer can be obtained by observing the thermal behavior of the thermoplastic liquid crystal polymer sample using a differential scanning calorimeter. That is, the thermoplastic liquid crystal polymer sample was heated from room temperature (for example, 25 ° C.) at a rate of 10 ° C./min to completely melt it, and then the melt was cooled to 50 ° C. at a rate of 10 ° C./min and again. The position of the heat absorption peak that appears after the temperature is raised at a rate of 10 ° C./min may be recorded as the melting point of the thermoplastic liquid crystal polymer sample.
また、熱可塑性液晶ポリマーは、溶融成形性の観点から、例えば、(Tm0+20)℃におけるせん断速度1000/sの溶融粘度30~120Pa・sを有していてもよく、好ましくは溶融粘度50~100Pa・sを有していてもよい。
Further, from the viewpoint of melt moldability, the thermoplastic liquid crystal polymer may have a melt viscosity of 30 to 120 Pa · s at a shear rate of 1000 / s at (Tm 0 + 20) ° C., preferably a melt viscosity of 50. It may have ~ 100 Pa · s.
前記熱可塑性液晶ポリマーには、本発明の効果を損なわない範囲内で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、フッ素樹脂等の熱可塑性ポリマー、各種添加剤を添加してもよい。また、必要に応じて充填剤を添加してもよい。
The thermoplastic liquid crystal polymer includes thermoplastic polymers such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyetheretherketone, and fluororesin, as long as the effects of the present invention are not impaired. , Various additives may be added. In addition, a filler may be added if necessary.
[熱可塑性液晶ポリマー成形体の製造方法(第一の製造工程)]
本発明の第一の熱可塑性液晶ポリマー成形体の製造方法は、熱可塑性液晶ポリマー成形体の表面の少なくとも一部に、処理方式がダイレクト方式であり、出力2.5W/cm2以上、処理時間5秒未満で、プラズマ処理を行う表面処理工程(工程1)、ならびに熱可塑性液晶ポリマー成形体を(a)真空度1500Pa以下で30分以上、真空下で乾燥する、および/または(b)80~300℃の範囲で、加熱下で乾燥する脱気工程(工程2)を含む。 [Manufacturing method of thermoplastic liquid crystal polymer molded product (first manufacturing step)]
In the first method for producing a thermoplastic liquid crystal polymer molded product of the present invention, the treatment method is a direct method on at least a part of the surface of the thermoplastic liquid crystal polymer molded product, the output is 2.5 W / cm 2 or more, and the processing time is A surface treatment step (step 1) of performing plasma treatment in less than 5 seconds, and (a) drying the thermoplastic liquid crystal polymer molded product under vacuum for 30 minutes or more at a vacuum degree of 1500 Pa or less, and / or (b) 80. The degassing step (step 2) of drying under heating in the range of about 300 ° C. is included.
本発明の第一の熱可塑性液晶ポリマー成形体の製造方法は、熱可塑性液晶ポリマー成形体の表面の少なくとも一部に、処理方式がダイレクト方式であり、出力2.5W/cm2以上、処理時間5秒未満で、プラズマ処理を行う表面処理工程(工程1)、ならびに熱可塑性液晶ポリマー成形体を(a)真空度1500Pa以下で30分以上、真空下で乾燥する、および/または(b)80~300℃の範囲で、加熱下で乾燥する脱気工程(工程2)を含む。 [Manufacturing method of thermoplastic liquid crystal polymer molded product (first manufacturing step)]
In the first method for producing a thermoplastic liquid crystal polymer molded product of the present invention, the treatment method is a direct method on at least a part of the surface of the thermoplastic liquid crystal polymer molded product, the output is 2.5 W / cm 2 or more, and the processing time is A surface treatment step (step 1) of performing plasma treatment in less than 5 seconds, and (a) drying the thermoplastic liquid crystal polymer molded product under vacuum for 30 minutes or more at a vacuum degree of 1500 Pa or less, and / or (b) 80. The degassing step (step 2) of drying under heating in the range of about 300 ° C. is included.
<表面処理工程(工程1)>
一般に、プラズマ処理には、その処理方式として、放電空間内に被処理基材を配置し直接プラズマ処理を行うダイレクト方式と、放電空間の外に被処理基材を配置し、放電空間で生成した活性種を被処理基材に吹き付けて処理を行うリモート方式とがある。本発明では、熱可塑性液晶ポリマー成形体に対して、高い出力によるプラズマ処理を行う上で有利であるため、ダイレクト方式が用いられる。 <Surface treatment process (process 1)>
In general, plasma treatment includes a direct method in which a substrate to be treated is placed in a discharge space to perform plasma treatment directly, and a direct method in which a substrate to be treated is placed outside the discharge space and generated in the discharge space. There is a remote method in which the active species is sprayed onto the substrate to be treated for treatment. In the present invention, the direct method is used because it is advantageous for performing plasma treatment with a high output on the thermoplastic liquid crystal polymer molded product.
一般に、プラズマ処理には、その処理方式として、放電空間内に被処理基材を配置し直接プラズマ処理を行うダイレクト方式と、放電空間の外に被処理基材を配置し、放電空間で生成した活性種を被処理基材に吹き付けて処理を行うリモート方式とがある。本発明では、熱可塑性液晶ポリマー成形体に対して、高い出力によるプラズマ処理を行う上で有利であるため、ダイレクト方式が用いられる。 <Surface treatment process (process 1)>
In general, plasma treatment includes a direct method in which a substrate to be treated is placed in a discharge space to perform plasma treatment directly, and a direct method in which a substrate to be treated is placed outside the discharge space and generated in the discharge space. There is a remote method in which the active species is sprayed onto the substrate to be treated for treatment. In the present invention, the direct method is used because it is advantageous for performing plasma treatment with a high output on the thermoplastic liquid crystal polymer molded product.
ダイレクト方式において、プラズマ処理は、真空または大気圧中にガス種を導入した雰囲気中で、放電平行平板の一対の電極間に電力の供給を行ってプラズマ放電を発生させ、これを熱可塑性液晶ポリマー成形体の表面の少なくとも一部にプラズマ照射することにより実施する。
In the direct method, plasma treatment generates plasma discharge by supplying power between a pair of electrodes of a discharge parallel plate in an atmosphere in which a gas species is introduced in a vacuum or atmospheric pressure, and this is a thermoplastic liquid crystal polymer. This is carried out by irradiating at least a part of the surface of the molded body with plasma.
なお、本発明でプラズマ処理を行うべき熱可塑性液晶ポリマー成形体の表面とは、最表面近傍(最表面から深さ方向に約10~100nmの範囲)を意味するものとする。
The surface of the thermoplastic liquid crystal polymer molded product to be plasma-treated in the present invention means the vicinity of the outermost surface (range of about 10 to 100 nm in the depth direction from the outermost surface).
本発明では、プラズマ処理における出力が2.5W/cm2以上と高く、処理時間が5秒未満と短いため、熱可塑性液晶ポリマー成形体の表面を特定の化学結合状態に表面改質することが可能であり、プラズマ処理を行った表面の反応性、即ち接着性を向上させることができる。
In the present invention, since the output in the plasma treatment is as high as 2.5 W / cm 2 or more and the treatment time is as short as less than 5 seconds, the surface of the thermoplastic liquid crystal polymer molded product can be surface-modified to a specific chemical bond state. It is possible, and the reactivity of the plasma-treated surface, that is, the adhesiveness can be improved.
具体的には、プラズマ処理前の未処理の熱可塑性液晶ポリマー成形体の被接着部位の表面は、ベンゼン環などに由来する[CH結合]以外は、エステル結合(-C(=O)O-C-)に由来する[C-O結合]および[COO結合]が主要な化学結合であると考えられ、カルボニル基(以下、エステル結合、アミド結合に由来しないケトンやアルデヒドについてのカルボニル基をいう)に由来する[C=O結合]はほとんどまたは全く存在していない。そのような未処理の熱可塑性液晶ポリマー成形体に対して、本発明のプラズマ処理を行うことによって、被接着部位の表面のC(1s)の各ピークのピーク面積の合計に対する[C-O結合]のピーク面積の割合<C-O>と[COO結合]のピーク面積の割合<COO>との比<C-O>/<COO>を高めつつ、C(1s)の各ピークのピーク面積の合計に対する[C=O結合]のピーク面積の割合<C=O>と[COO結合]のピーク面積の割合<COO>との比<C=O>/<COO>を高くすることができる。
Specifically, the surface of the adhered portion of the untreated thermoplastic liquid crystal polymer molded product before the plasma treatment is an ester bond (-C (= O) O-" except for the [CH bond] derived from the benzene ring or the like. [CO bond] and [COO bond] derived from C-) are considered to be the main chemical bonds, and refer to carbonyl groups for ketones and aldehydes that are not derived from ester bonds or amide bonds. ) Derived from [C = O bond] is almost or completely absent. By subjecting such an untreated thermoplastic liquid crystal polymer molded body to the plasma treatment of the present invention, the [CO bond] with respect to the total peak area of each peak of C (1s) on the surface of the adhered site. ] Peak area ratio <CO> and [COO bond] peak area ratio <COO> ratio <CO> / <COO> while increasing the peak area of each peak of C (1s) The ratio of the peak area of [C = O bond] to the total of <C = O> and the ratio of the peak area of [COO bond] to <COO> <C = O> / <COO> can be increased. ..
プラズマ処理における出力は、2.5W/cm2以上であるが、好ましくは2.8W/cm2以上、より好ましくは3.0W/cm2以上、さらに好ましくは3.2W/cm2以上であってもよい。プラズマ処理における出力の上限は、特に限定されないが、例えば、熱可塑性液晶ポリマー成形体表面の過剰な損傷を抑制する観点から、8.0W/cm2以下であってもよく、好ましくは7.5W/cm2以下、より好ましくは7.0W/cm2以下であってもよい。
Output in the plasma treatment is at 2.5 W / cm 2 or more, preferably 2.8W / cm 2 or more, more preferably 3.0 W / cm 2 or more, more preferably a at 3.2 W / cm 2 or more You may. The upper limit of the output in the plasma treatment is not particularly limited, but may be 8.0 W / cm 2 or less, preferably 7.5 W, for example, from the viewpoint of suppressing excessive damage to the surface of the thermoplastic liquid crystal polymer molded product. It may be / cm 2 or less, more preferably 7.0 W / cm 2 or less.
プラズマ処理における出力を高くすることにより、熱可塑性液晶ポリマー成形体のプラズマ処理に要する時間を短くすることが可能である。具体的には、プラズマ処理の処理時間は、5秒未満であるが、好ましくは4秒以下、より好ましくは3秒以下であってもよい。プラズマ処理の処理時間の下限は、特に限定されないが、例えば、熱可塑性液晶ポリマー成形体の表面を十分に改質する観点から、0.1秒以上であってもよく、好ましくは0.3秒以上、より好ましくは0.5秒以上であってもよい。なお、プラズマ処理の処理時間とは、熱可塑性液晶ポリマー成形体の同一部分に対してプラズマ照射する時間をいう。
By increasing the output in the plasma treatment, it is possible to shorten the time required for the plasma treatment of the thermoplastic liquid crystal polymer molded product. Specifically, the processing time of the plasma treatment is less than 5 seconds, but may be preferably 4 seconds or less, more preferably 3 seconds or less. The lower limit of the processing time of the plasma treatment is not particularly limited, but may be 0.1 seconds or more, preferably 0.3 seconds, for example, from the viewpoint of sufficiently modifying the surface of the thermoplastic liquid crystal polymer molded product. As mentioned above, it may be more preferably 0.5 seconds or more. The processing time of the plasma treatment refers to the time for irradiating the same portion of the thermoplastic liquid crystal polymer molded product with plasma.
また、本発明では、プラズマ処理は、熱可塑性液晶ポリマー成形体の少なくとも一部に対して行われていればよい。本発明で行われるプラズマ処理は効果の持続性が高いため、将来的に被接着部位となる可能性を考慮して、プラズマ処理を行ってもよい。例えば、将来的に被接着部位となる箇所としては、カバーフィルムやガラス/エポキシ材等の積層部位、金属層の積層部位、回路形成部位などが挙げられる。
Further, in the present invention, the plasma treatment may be performed on at least a part of the thermoplastic liquid crystal polymer molded product. Since the plasma treatment performed in the present invention has a long-lasting effect, the plasma treatment may be performed in consideration of the possibility of becoming a bonded portion in the future. For example, examples of the portion to be adhered in the future include a laminated portion of a cover film, a glass / epoxy material, etc., a laminated portion of a metal layer, a circuit forming portion, and the like.
本発明では、プラズマ処理の出力に処理時間を掛けた累積処理パワー(単位面積当たりの出力に処理時間をかけた数値)が1.2W・s/cm2以上であってもよい。好ましくは2.0W・s/cm2以上、より好ましくは2.5W・s/cm2以上であってもよい。プラズマ処理における出力の上限は、特に限定されないが、例えば、熱可塑性液晶ポリマー成形体表面の過剰な損傷を抑制する観点から、30W・s/cm2以下であってもよく、好ましくは25W・s/cm2以下、より好ましくは20W・s/cm2以下であってもよい。
In the present invention, the cumulative processing power obtained by multiplying the output of plasma processing by the processing time (the value obtained by multiplying the output per unit area by the processing time) may be 1.2 W · s / cm 2 or more. Preferably 2.0W · s / cm 2 or more, more preferably may be 2.5W · s / cm 2 or more. The upper limit of the output in the plasma treatment is not particularly limited, but may be 30 W · s / cm 2 or less, preferably 25 W · s, for example, from the viewpoint of suppressing excessive damage to the surface of the thermoplastic liquid crystal polymer molded product. It may be / cm 2 or less, more preferably 20 W · s / cm 2 or less.
本発明では、プラズマ処理において、放電電極間に放電する周波数は、特に限定されないが、例えば、1kHz~2.45GHzの範囲であってもよく、好ましくは10kHz~100MHz、より好ましくは30kHz~13.56MHzであってもよい。
In the present invention, in the plasma treatment, the frequency of discharging between the discharge electrodes is not particularly limited, but may be, for example, in the range of 1 kHz to 2.45 GHz, preferably 10 kHz to 100 MHz, and more preferably 30 kHz to 13. It may be 56 MHz.
プラズマ処理における処理モードは、ダイレクトプラズマモード(DP)で行われてもよく、リアクティブイオンエッチング(RIE)で行われてもよい。DPでは、一対の電極間のアース側に被処理基材が設置され、ラジカルが被処理基材全体へ満遍なく作用できるという利点がある。一方、RIEでは、一対の電極間のRF電源側に被処理基材を設置する方式であり、イオンが加速されつつ被処理基材に衝突する。本発明では、ラジカルを被処理基材全体へ満遍なく作用させ、均一に表面改質させる観点から、処理モードにDPを用いることが好ましい。
The processing mode in the plasma processing may be the direct plasma mode (DP) or the reactive ion etching (RIE). In DP, the base material to be treated is installed on the ground side between the pair of electrodes, and there is an advantage that radicals can act evenly on the entire base material to be treated. On the other hand, in RIE, the base material to be treated is installed on the RF power source side between the pair of electrodes, and the ions collide with the base material to be treated while being accelerated. In the present invention, it is preferable to use DP as the treatment mode from the viewpoint of causing radicals to act evenly on the entire substrate to be treated and uniformly surface-modifying the surface.
プラズマ処理は、連続波形(交流波形)の電圧を加える放電方式であってもよく、パルス状の波形の電圧を加える放電方式であってもよい。放電を安定させる観点から、パルス状の波形の電圧を加える放電方式が好ましい。この場合、上述のような短時間での処理でも均一に表面改質効果を得ることが可能である。
The plasma processing may be a discharge method in which a voltage having a continuous waveform (AC waveform) is applied, or a discharge method in which a voltage having a pulsed waveform is applied. From the viewpoint of stabilizing the discharge, a discharge method in which a voltage having a pulsed waveform is applied is preferable. In this case, it is possible to uniformly obtain the surface modification effect even in the treatment in a short time as described above.
プラズマ処理は、真空プラズマ処理を行ってもよく、大気圧プラズマ処理を行ってもよい。被接着部位の表面の<C-O>、<C=O>および<COO>を全体的に向上させる観点からは、真空プラズマ処理が好ましい。真空プラズマ処理の場合、発生する電子とイオンの密度を、熱可塑性液晶ポリマー成形体の表面改質に十分な範囲とする観点から、処理を行う装置内の圧力が0.1~20Paであってもよく、好ましくは0.3~15Pa、より好ましくは0.5~13Paであってもよい。
The plasma treatment may be a vacuum plasma treatment or an atmospheric pressure plasma treatment. Vacuum plasma treatment is preferable from the viewpoint of improving <CO>, <C = O> and <COO> on the surface of the adhered portion as a whole. In the case of vacuum plasma treatment, the pressure in the device to be treated is 0.1 to 20 Pa from the viewpoint that the density of generated electrons and ions is within a range sufficient for surface modification of the thermoplastic liquid crystal polymer molded product. It may be preferably 0.3 to 15 Pa, and more preferably 0.5 to 13 Pa.
本発明のプラズマ処理において用いられるガス種は、熱可塑性液晶ポリマー成形体の被接着部位を高接着性にできる限り特に制限されないが、ガス種としては、例えば、窒素含有ガス、酸素含有ガス、Arなどの希ガス、H2、CF4などが挙げられる。これらのガス種は単独でまたは二種以上組み合わせて使用してもよい。
ガス種を組み合わせる場合、例えば、複数の窒素含有ガス同士を組み合わせてもよく;複数の酸素含有ガス同士を組み合わせてもよく;単独または複数の窒素含有ガスと、単独または複数の酸素含有ガスとを組み合わせてもよく;酸素含有ガス(例えばO2)とCF4とを組み合わせてもよい。 The gas type used in the plasma treatment of the present invention is not particularly limited as long as the adhered portion of the thermoplastic liquid crystal polymer molded body has high adhesiveness, but the gas type includes, for example, nitrogen-containing gas, oxygen-containing gas, and Ar. noble gas such as, like H 2, CF 4. These gas types may be used alone or in combination of two or more.
When combining gas types, for example, a plurality of nitrogen-containing gases may be combined; a plurality of oxygen-containing gases may be combined; a single or a plurality of nitrogen-containing gases and a single or a plurality of oxygen-containing gases may be combined. May be combined; oxygen-containing gas (eg O 2 ) and CF 4 may be combined.
ガス種を組み合わせる場合、例えば、複数の窒素含有ガス同士を組み合わせてもよく;複数の酸素含有ガス同士を組み合わせてもよく;単独または複数の窒素含有ガスと、単独または複数の酸素含有ガスとを組み合わせてもよく;酸素含有ガス(例えばO2)とCF4とを組み合わせてもよい。 The gas type used in the plasma treatment of the present invention is not particularly limited as long as the adhered portion of the thermoplastic liquid crystal polymer molded body has high adhesiveness, but the gas type includes, for example, nitrogen-containing gas, oxygen-containing gas, and Ar. noble gas such as, like H 2, CF 4. These gas types may be used alone or in combination of two or more.
When combining gas types, for example, a plurality of nitrogen-containing gases may be combined; a plurality of oxygen-containing gases may be combined; a single or a plurality of nitrogen-containing gases and a single or a plurality of oxygen-containing gases may be combined. May be combined; oxygen-containing gas (eg O 2 ) and CF 4 may be combined.
好ましくは、本発明におけるプラズマ処理は、ガス種が窒素含有ガスおよび/または酸素含有ガス種を少なくとも含んでいてもよく、特に、ガス種が窒素含有ガスを少なくとも含んでいてもよい。窒素含有ガスとしては、例えば、N2、NH3、NO2などが挙げられる。これらのうち、N2が好ましく用いられる。これらは単独でまたは二種以上組み合わせて使用してもよい。
Preferably, in the plasma treatment in the present invention, the gas species may contain at least a nitrogen-containing gas and / or an oxygen-containing gas species, and in particular, the gas species may contain at least a nitrogen-containing gas. Examples of the nitrogen-containing gas include N 2 , NH 3, NO 2, and the like. Of these, N 2 is preferably used. These may be used alone or in combination of two or more.
ガス種として窒素含有ガスや酸素含有ガスを含むプラズマ処理では、処理後の時間経過において、最表面部位(最表面から深さ方向に5~10nmの範囲)における接着性に寄与する官能基の内方への反転や、二酸化炭素の脱離による影響を受けにくいためか、長期的な接着性をも向上させることができる。そのメカニズムについては定かではないが、原子レベルで考えた場合、本発明のように従来よりも出力を上げる一方で、処理時間を短くするプラズマ処理によって、最表面部位(5~10nm)よりも深い最表面近傍(10~100nm)でその効果を発現させることができるためか、最表面部位での官能基の変動を避ける一方で、最表面近傍には接着性に寄与する官能基が存在することにより接着性低下の影響を小さくできることが考えられる。
In plasma treatment containing nitrogen-containing gas or oxygen-containing gas as a gas type, among the functional groups that contribute to adhesion at the outermost surface portion (range of 5 to 10 nm in the depth direction from the outermost surface) with the lapse of time after the treatment. It is possible to improve long-term adhesiveness, probably because it is not easily affected by inversion and desorption of carbon dioxide. The mechanism is not clear, but when considered at the atomic level, it is deeper than the outermost surface (5 to 10 nm) due to plasma treatment that shortens the treatment time while increasing the output as in the present invention. Perhaps because the effect can be exhibited near the outermost surface (10 to 100 nm), while avoiding fluctuations in the functional groups at the outermost surface, there are functional groups that contribute to adhesiveness near the outermost surface. Therefore, it is considered that the influence of the decrease in adhesiveness can be reduced.
プラズマ処理後の熱可塑性液晶ポリマー成形体の被接着部位の表面は、処理後に接着させずに室温で長期(例えば、2か月であってもよい)保管した場合であっても、<C-O>、<C=O>および<COO>の特定の関係はほとんど変化することなく維持させることができる。そのためか、長期保管後に接着対象と接着させた場合であっても、接着後の初期接着性を高い状態で維持できる。
The surface of the adhered portion of the thermoplastic liquid crystal polymer molded product after the plasma treatment is <C-, even when stored at room temperature for a long period of time (for example, 2 months) without being adhered after the treatment. The specific relationships of O>, <C = O> and <COO> can be maintained with little change. For this reason, even when the product is adhered to the object to be adhered after long-term storage, the initial adhesiveness after the adhesion can be maintained in a high state.
また、熱可塑性液晶ポリマー成形体の表面改質を十分に行う観点から、好ましくは、ガス種は、窒素含有ガスとしてN2を含み、任意でその他のガス種として酸素含有ガスを含んでいることが好ましい。
Further, from the viewpoint of sufficiently modifying the surface of the thermoplastic liquid crystal polymer molded product, the gas type preferably contains N 2 as a nitrogen-containing gas and optionally contains oxygen-containing gas as another gas type. Is preferable.
酸素含有ガスとしては、例えば、O2、CO、CO2、H2Oなどが挙げられる。これらは単独でまたは二種以上組み合わせて使用してもよい。これらのうち、O2および/またはH2Oが好ましく用いられ、O2およびH2Oの双方を使用することが特に好ましい。なお、NO2のように窒素原子および酸素原子の双方が含まれる場合は、窒素原子が含まれる限り、窒素含有ガスとする。
Examples of the oxygen-containing gas include O 2 , CO, CO 2 , H 2 O and the like. These may be used alone or in combination of two or more. Of these, O 2 and / or H 2 O are preferably used, and it is particularly preferable to use both O 2 and H 2 O. When both a nitrogen atom and an oxygen atom are contained as in NO 2, the gas is a nitrogen-containing gas as long as the nitrogen atom is contained.
例えば、前記窒素含有ガスと酸素含有ガスとの体積比(窒素含有ガス/酸素含有ガス)は、30/70~100/0であってもよく、好ましくは40/60~95/5、より好ましくは50/50~90/10であってもよい。
For example, the volume ratio of the nitrogen-containing gas to the oxygen-containing gas (nitrogen-containing gas / oxygen-containing gas) may be 30/70 to 100/0, preferably 40/60 to 95/5, more preferably. May be 50/50 to 90/10.
プラズマ処理におけるその他の条件は、適宜調節すればよい。例えば、プラズマ処理装置の照射ヘッドと熱可塑性液晶ポリマー成形体表面との距離(例えば、ヘッド-フィルム間距離)は、3~10mmであってもよい。好ましくは4~9mm、より好ましくは5~8mmであってもよい。
Other conditions in plasma processing may be adjusted as appropriate. For example, the distance between the irradiation head of the plasma processing apparatus and the surface of the thermoplastic liquid crystal polymer molded product (for example, the distance between the head and the film) may be 3 to 10 mm. It may be preferably 4 to 9 mm, more preferably 5 to 8 mm.
本発明では、表面処理工程を、連続的に行ってもよいし、バッチ式で行ってもよい。本発明では、プラズマ処理の処理時間が短いため、生産性の観点から、プラズマ処理を連続的に行うのが好ましい。
In the present invention, the surface treatment step may be performed continuously or in a batch manner. In the present invention, since the processing time of the plasma treatment is short, it is preferable to perform the plasma treatment continuously from the viewpoint of productivity.
特に、熱可塑性液晶ポリマー成形体がフィルム形状である場合には、ロールtoロール処理により連続的にプラズマ処理してもよく、フィルムの巻出しおよび巻取りが内部に設置されているプラズマ連続処理装置、または、フィルムの巻出しおよび巻取りが外部に設置されているプラズマ連続処理装置を用いることが可能である。
In particular, when the thermoplastic liquid crystal polymer molded product has a film shape, it may be continuously plasma-treated by roll-to-roll processing, and a plasma continuous processing apparatus in which unwinding and winding of the film are installed inside. Alternatively, it is possible to use a plasma continuous processing apparatus in which the film unwinding and winding are installed externally.
フィルム形状の熱可塑性液晶ポリマー成形体(以下、熱可塑性液晶ポリマーフィルムと称す)を、ロールtoロール処理によりプラズマ処理する場合には、生産性と処理時間の観点から、フィルムの巻き取り速度は1~10m/min程度であってもよく、好ましくは2~8m/min程度、より好ましくは3~5m/minであってもよい。
When a film-shaped thermoplastic liquid crystal polymer molded product (hereinafter referred to as a thermoplastic liquid crystal polymer film) is plasma-treated by roll-to-roll treatment, the film winding speed is 1 from the viewpoint of productivity and processing time. It may be about 10 m / min, preferably about 2 to 8 m / min, and more preferably about 3 to 5 m / min.
なお、本発明において、熱可塑性液晶ポリマー成形体は、熱可塑性液晶ポリマーで少なくとも構成されていればよく、熱可塑性液晶ポリマー単独で形成されていてもよいし、熱可塑性液晶ポリマーと他の物質とで構成されていてもよい。熱可塑性液晶ポリマー成形体の形状は特に限定されず、例えば、熱可塑性液晶ポリマーのキャスト成形により成形可能な形状であってもよいし、射出成形や押出成形により成形可能な形状であってもよい。好ましくは、熱可塑性液晶ポリマー成形体は、フィルム状、シート状、繊維状、布帛状などの形状であってもよく、フィルムであることがより好ましい。
In the present invention, the thermoplastic liquid crystal polymer molded product may be formed of at least the thermoplastic liquid crystal polymer, may be formed of the thermoplastic liquid crystal polymer alone, or may be formed of the thermoplastic liquid crystal polymer and other substances. It may be composed of. The shape of the thermoplastic liquid crystal polymer molded product is not particularly limited, and may be, for example, a shape that can be molded by cast molding of the thermoplastic liquid crystal polymer, or a shape that can be molded by injection molding or extrusion molding. .. Preferably, the thermoplastic liquid crystal polymer molded product may have a film-like shape, a sheet-like shape, a fibrous shape, a cloth-like shape, or the like, and is more preferably a film.
熱可塑性液晶ポリマーフィルムは、上記の熱可塑性液晶ポリマーを押出成形した押出成形フィルムであってもよい。このとき、任意の押出成形法を使用できるが、周知のTダイ製膜延伸法、ラミネート体延伸法、インフレーション法等が工業的に有利である。例えば、熱可塑性液晶ポリマーフィルムの厚さは、10~500μmであってもよく、好ましくは20~200μm、より好ましくは25~125μmであってもよい。特に、熱可塑性液晶ポリマーフィルムが回路基板材料として用いられる場合、厚さは20~150μmの範囲が好ましく、20~50μmの範囲がより好ましい。
The thermoplastic liquid crystal polymer film may be an extrusion-molded film obtained by extrusion-molding the above-mentioned thermoplastic liquid crystal polymer. At this time, any extrusion molding method can be used, but the well-known T-die film forming stretching method, laminated body stretching method, inflation method and the like are industrially advantageous. For example, the thickness of the thermoplastic liquid crystal polymer film may be 10 to 500 μm, preferably 20 to 200 μm, and more preferably 25 to 125 μm. In particular, when a thermoplastic liquid crystal polymer film is used as a circuit board material, the thickness is preferably in the range of 20 to 150 μm, more preferably in the range of 20 to 50 μm.
<脱気工程(工程2)>
本発明の第一の熱可塑性液晶ポリマー成形体の製造方法は、(a)真空度1500Pa以下で30分以上、真空下で乾燥する、および/または(b)80~300℃の範囲で、加熱下で乾燥する脱気工程(工程2)を含む。
本発明では、表面処理工程と、脱気工程とを組み合わせて行うことで、表面を活性化できるだけでなく、熱可塑性液晶ポリマー成形体の内部や表面に存在する水分を除去することができ、その結果、得られた高温高湿条件下においても高い接着性をより高度に維持することができることを見出した。 <Degassing process (process 2)>
The first method for producing a thermoplastic liquid crystal polymer molded product of the present invention is (a) drying under vacuum for 30 minutes or more at a vacuum degree of 1500 Pa or less, and / or (b) heating in the range of 80 to 300 ° C. The degassing step (step 2) of drying underneath is included.
In the present invention, by performing the surface treatment step and the degassing step in combination, not only the surface can be activated, but also the moisture existing inside or on the surface of the thermoplastic liquid crystal polymer molded product can be removed. As a result, it was found that high adhesiveness can be maintained to a higher degree even under the obtained high temperature and high humidity conditions.
本発明の第一の熱可塑性液晶ポリマー成形体の製造方法は、(a)真空度1500Pa以下で30分以上、真空下で乾燥する、および/または(b)80~300℃の範囲で、加熱下で乾燥する脱気工程(工程2)を含む。
本発明では、表面処理工程と、脱気工程とを組み合わせて行うことで、表面を活性化できるだけでなく、熱可塑性液晶ポリマー成形体の内部や表面に存在する水分を除去することができ、その結果、得られた高温高湿条件下においても高い接着性をより高度に維持することができることを見出した。 <Degassing process (process 2)>
The first method for producing a thermoplastic liquid crystal polymer molded product of the present invention is (a) drying under vacuum for 30 minutes or more at a vacuum degree of 1500 Pa or less, and / or (b) heating in the range of 80 to 300 ° C. The degassing step (step 2) of drying underneath is included.
In the present invention, by performing the surface treatment step and the degassing step in combination, not only the surface can be activated, but also the moisture existing inside or on the surface of the thermoplastic liquid crystal polymer molded product can be removed. As a result, it was found that high adhesiveness can be maintained to a higher degree even under the obtained high temperature and high humidity conditions.
脱気工程では、上記(a)真空下での脱気工程または(b)加熱下での脱気工程のいずれか一方を充足する条件で脱気すればよいが、上記(a)および(b)の双方を充足する条件で脱気してもよい。
In the degassing step, degassing may be performed under the condition that either (a) the degassing step under vacuum or (b) the degassing step under heating is satisfied, but the above (a) and (b). ) May be degassed under the condition that both are satisfied.
(a)および(b)の双方を充足する条件で脱気する場合とは、(a)および(b)の双方が同時に充足される条件(すなわち、真空加熱下)で行われる脱気工程であってもよいし、熱可塑性液晶ポリマー成形体に対して(a)および(b)の条件が別々に行われる脱気工程、すなわち(a)から(b)の順、または(b)から(a)の順で別々に行われる脱気工程であってもよい。
The case of degassing under the condition that both (a) and (b) are satisfied is the degassing step performed under the condition that both (a) and (b) are satisfied at the same time (that is, under vacuum heating). There may be a degassing step in which the conditions (a) and (b) are separately performed on the thermoplastic liquid crystal polymer molded product, that is, in the order of (a) to (b), or from (b) to ( The degassing step may be performed separately in the order of a).
また、脱気工程では、第一の熱可塑性液晶ポリマー成形体を単独で脱気してもよいし、後述する接着対象と重ね合わせた状態で行われてもよく、その場合、重ね合わせた熱可塑性液晶ポリマー成形体および接着対象を加圧した状態で脱気を行ってもよいが、脱気乾燥性を向上させる観点から、実質的に加圧を行わない無加圧下(圧力解放下)で脱気を行ってもよい。例えば、低加圧または圧力解放状態(例えば、0~0.7MPa程度の圧力下、好ましくは0~0.5MPa程度の圧力下)で脱気工程を行ってもよい。
Further, in the degassing step, the first thermoplastic liquid crystal polymer molded product may be degassed alone, or may be performed in a state of being overlapped with an adhesion target described later. In that case, the overlapped heat may be obtained. Degassing may be performed while the thermoplastic liquid crystal polymer molded product and the object to be bonded are pressurized, but from the viewpoint of improving the degassing and drying property, under no pressure (under pressure release) where no pressure is substantially applied. Degassing may be performed. For example, the degassing step may be performed in a low pressure or pressure release state (for example, under a pressure of about 0 to 0.7 MPa, preferably under a pressure of about 0 to 0.5 MPa).
(a)真空下での乾燥は、真空度1500Pa以下で行われてもよく、好ましくは1300Pa以下、より好ましくは1100Pa以下で行われてもよい。真空下での乾燥を独立して行う場合、常温下(例えば10~50℃、好ましくは15~45℃の範囲)において行われてもよいが、脱気効率を高める観点から加熱下で行ってもよい。その場合の加熱温度は、例えば、50~300℃(例えば、50~250℃)、好ましくは80~250℃、より好ましくは80~200℃程度であってもよい。
(A) Drying under vacuum may be performed at a vacuum degree of 1500 Pa or less, preferably 1300 Pa or less, and more preferably 1100 Pa or less. When drying under vacuum is performed independently, it may be performed at room temperature (for example, in the range of 10 to 50 ° C., preferably 15 to 45 ° C.), but it is performed under heating from the viewpoint of improving degassing efficiency. May be good. In that case, the heating temperature may be, for example, 50 to 300 ° C. (for example, 50 to 250 ° C.), preferably 80 to 250 ° C., and more preferably about 80 to 200 ° C.
(b)加熱下での乾燥は、80~300℃の範囲で行われてもよく、好ましくは80~250℃の範囲、より好ましくは80~200℃の範囲で行ってもよい。また、加熱下での乾燥は、熱可塑性液晶ポリマー成形体の融点Tmに対して、所定の温度範囲を設定してもよい。その場合は、例えば、(Tm-235)℃~(Tm-10)℃の範囲(例えば、(Tm-200)℃~(Tm-50)℃の範囲)で加熱してもよく、好ましくは、(Tm-225)℃~(Tm-50)℃の範囲(例えば、(Tm-190)℃~(Tm-60)℃の範囲)、より好ましくは、(Tm-215)℃~(Tm-70)℃の範囲(例えば、(Tm-180)℃~(Tm-70)℃の範囲)で行われてもよい。なお、熱可塑性液晶ポリマー成形体の融点Tmは、示差走査熱量計を用いて、熱可塑性液晶ポリマー成形体から所定の大きさをサンプリングして試料容器に入れ、室温から400℃まで10℃/minの速度で昇温した際に現れる吸熱ピークの位置を示す。
(B) Drying under heating may be carried out in the range of 80 to 300 ° C., preferably in the range of 80 to 250 ° C., and more preferably in the range of 80 to 200 ° C. Further, for drying under heating, a predetermined temperature range may be set with respect to the melting point Tm of the thermoplastic liquid crystal polymer molded product. In that case, for example, heating may be performed in the range of (Tm-235) ° C. to (Tm-10) ° C. (for example, the range of (Tm-200) ° C. to (Tm-50) ° C.), preferably. Range from (Tm-225) ° C to (Tm-50) ° C (eg, range from (Tm-190) ° C to (Tm-60) ° C), more preferably (Tm-215) ° C to (Tm-70). ) ° C. (for example, the range of (Tm-180) ° C. to (Tm-70) ° C.). The melting point Tm of the thermoplastic liquid crystal polymer molded product is 10 ° C./min from room temperature to 400 ° C. by sampling a predetermined size from the thermoplastic liquid crystal polymer molded product using a differential scanning calorimeter and placing it in a sample container. The position of the endothermic peak that appears when the temperature is raised at the rate of.
上述のような、特定の温度範囲において加熱することにより、熱可塑性液晶ポリマー成形体から急激に水分が発生することを抑制しつつ、熱可塑性液晶ポリマー成形体中(例えば、フィルムの場合、フィルム内部やフィルム表面)の水を水蒸気として脱気乾燥したり、表面に存在するエアーの運動エネルギーを高めて熱可塑性液晶ポリマー成形体の表面から脱気乾燥することが可能となる。
By heating in a specific temperature range as described above, while suppressing sudden generation of water from the thermoplastic liquid crystal polymer molded body, in the thermoplastic liquid crystal polymer molded body (for example, in the case of a film, the inside of the film). It is possible to degas-dry the water on the surface of the film as water vapor, or to increase the kinetic energy of the air existing on the surface to degas-dry the surface of the thermoplastic liquid crystal polymer molded product.
なお、加熱下での乾燥を単独で行う場合、真空度1500Pa以下を含まない条件下で行われてもよく、例えば、圧力を調整しない大気圧下(または常圧下)で行ってもよいが、必要に応じて、大気圧から減圧された条件下(例えば、1500Paを超えて100000Pa未満、好ましくは3000~50000Pa程度)で加熱してもよい。
When drying under heating is performed alone, it may be performed under a condition that does not include a vacuum degree of 1500 Pa or less. For example, it may be performed under atmospheric pressure (or normal pressure) in which the pressure is not adjusted. If necessary, heating may be performed under conditions reduced from atmospheric pressure (for example, more than 1500 Pa and less than 100,000 Pa, preferably about 3000 to 50,000 Pa).
脱気工程に要する時間は、熱可塑性液晶ポリマー成形体の状態、真空度および/または加熱温度などの各種条件により適宜設定することができるが、熱可塑性液晶ポリマー成形体全体から水分やエアーを除去する観点から、例えば、それぞれの脱気工程(真空下、加熱下、真空加熱下)について、同一または異なって、30分以上、40分以上、または50分以上であってもよく、6時間以下、4時間以下、3時間以下、2時間以下、または1.5時間以下であってもよい。
また、脱気工程に要する時間は、例えば、熱可塑性液晶ポリマー成形体の水分率が、所定の範囲(例えば、380ppm以下、300ppm以下、または200ppm以下)になる時点を見計らって適宜設定してもよい。 The time required for the degassing step can be appropriately set depending on various conditions such as the state of the thermoplastic liquid crystal polymer molded product, the degree of vacuum and / or the heating temperature, and moisture and air are removed from the entire thermoplastic liquid crystal polymer molded product. For example, each degassing step (under vacuum, under heating, under vacuum heating) may be the same or different, and may be 30 minutes or more, 40 minutes or more, or 50 minutes or more, and 6 hours or less. It may be 4 hours or less, 3 hours or less, 2 hours or less, or 1.5 hours or less.
Further, the time required for the degassing step may be appropriately set in anticipation of the time when the moisture content of the thermoplastic liquid crystal polymer molded product falls within a predetermined range (for example, 380 ppm or less, 300 ppm or less, or 200 ppm or less). Good.
また、脱気工程に要する時間は、例えば、熱可塑性液晶ポリマー成形体の水分率が、所定の範囲(例えば、380ppm以下、300ppm以下、または200ppm以下)になる時点を見計らって適宜設定してもよい。 The time required for the degassing step can be appropriately set depending on various conditions such as the state of the thermoplastic liquid crystal polymer molded product, the degree of vacuum and / or the heating temperature, and moisture and air are removed from the entire thermoplastic liquid crystal polymer molded product. For example, each degassing step (under vacuum, under heating, under vacuum heating) may be the same or different, and may be 30 minutes or more, 40 minutes or more, or 50 minutes or more, and 6 hours or less. It may be 4 hours or less, 3 hours or less, 2 hours or less, or 1.5 hours or less.
Further, the time required for the degassing step may be appropriately set in anticipation of the time when the moisture content of the thermoplastic liquid crystal polymer molded product falls within a predetermined range (for example, 380 ppm or less, 300 ppm or less, or 200 ppm or less). Good.
脱気工程は、表面処理工程に先立って、熱可塑性液晶ポリマー成形体に対して行われてもよいし、表面処理工程の後に行われてもよいが、表面処理工程の後に行うことが好ましい。表面処理工程において、エステル結合より極性の高いカルボニル基が導入され、表面がより親水性になることにより、水分を抱き込みやすくなる可能性がある。その場合、脱気工程では、水分をより多く含む親水性表面に対して効率的に水分を除去することができる。
The degassing step may be performed on the thermoplastic liquid crystal polymer molded product prior to the surface treatment step, or may be performed after the surface treatment step, but it is preferably performed after the surface treatment step. In the surface treatment step, a carbonyl group having a higher polarity than the ester bond is introduced, and the surface becomes more hydrophilic, which may facilitate the inclusion of water. In that case, in the degassing step, water can be efficiently removed from the hydrophilic surface containing more water.
[第一の熱可塑性液晶ポリマー成形体]
本発明の製造方法により得られる第一の熱可塑性液晶ポリマー成形体は、少なくとも一部に被接着部位を有し、その被接着部位の表面のX線光電子分光分析結果において、C(1s)ピーク面積に対する[C-O結合]のピーク面積の割合<C-O>と[COO結合]のピーク面積の割合<COO>との比<C-O>/<COO>が1.5以上で、かつC(1s)ピーク面積に対する[C=O結合]のピーク面積の割合<C=O>と[COO結合]のピーク面積の割合<COO>との比<C=O>/<COO>が0.10以上であることが好ましい。 [First thermoplastic liquid crystal polymer molded product]
The first thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention has at least a part to be adhered, and the C (1s) peak is found in the X-ray photoelectron spectroscopic analysis result of the surface of the adhered portion. The ratio of the peak area of [CO bond] to the area <CO> and the ratio of the peak area of [COO bond] to <COO><CO> / <COO> is 1.5 or more. And the ratio of the peak area of [C = O bond] to the C (1s) peak area <C = O> and the ratio of the peak area of [COO bond] <COO> to <C = O> / <COO> It is preferably 0.10 or more.
本発明の製造方法により得られる第一の熱可塑性液晶ポリマー成形体は、少なくとも一部に被接着部位を有し、その被接着部位の表面のX線光電子分光分析結果において、C(1s)ピーク面積に対する[C-O結合]のピーク面積の割合<C-O>と[COO結合]のピーク面積の割合<COO>との比<C-O>/<COO>が1.5以上で、かつC(1s)ピーク面積に対する[C=O結合]のピーク面積の割合<C=O>と[COO結合]のピーク面積の割合<COO>との比<C=O>/<COO>が0.10以上であることが好ましい。 [First thermoplastic liquid crystal polymer molded product]
The first thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention has at least a part to be adhered, and the C (1s) peak is found in the X-ray photoelectron spectroscopic analysis result of the surface of the adhered portion. The ratio of the peak area of [CO bond] to the area <CO> and the ratio of the peak area of [COO bond] to <COO><CO> / <COO> is 1.5 or more. And the ratio of the peak area of [C = O bond] to the C (1s) peak area <C = O> and the ratio of the peak area of [COO bond] <COO> to <C = O> / <COO> It is preferably 0.10 or more.
X線光電子分光分析は、試料表面にターゲット金属からのX線を照射することにより原子の内殻電子を励起し、それにより放出された光電子の運動エネルギーを検出することによって、試料表面に存在する元素の同定や化学結合状態の分析を行う方法である。このX線光電子分光分析におけるC(1s)は、試料表面に存在する炭素原子由来の光電子により得られるピークである。このピークの中には、さらにその炭素原子の結合状態に依存する様々なピークが含まれており、その各ピークのスペクトル上での位置は結合状態により決まる。
X-ray photoelectron spectroscopy exists on the sample surface by irradiating the sample surface with X-rays from the target metal to excite the inner-shell electrons of the atom and detect the kinetic energy of the emitted photoelectrons. This is a method for identifying elements and analyzing chemical bond states. C (1s) in this X-ray photoelectron spectroscopy is a peak obtained by photoelectrons derived from carbon atoms present on the sample surface. This peak further includes various peaks that depend on the bonding state of the carbon atom, and the position of each peak on the spectrum is determined by the bonding state.
例えば、各結合状態のピーク位置としては、[CH結合]:285eV、[C-N結合]:285.7eV、[C-O結合]:286.6eV、[C=O結合]:287.7eV、[COO結合]:289.4eV、[OCOO結合]:290eV、[π-π*サテライトピーク]:291.9eVとなり、装置に取り付けられている波形分離機構により、それぞれのピークに分離することができる。なお、[C-O結合]のピークには、エーテル結合およびヒドロキシ基の両方のピークが含まれており、[COO結合]のピークには、エステル結合およびカルボキシ基の両方のピークが含まれている。
For example, as the peak position of each bond state, [CH bond]: 285 eV, [CN bond]: 285.7 eV, [CO bond]: 286.6 eV, [C = O bond]: 287.7 eV. , [COO bond]: 289.4 eV, [OCOO bond]: 290 eV, [π-π * satellite peak]: 291.9 eV, and can be separated into each peak by the waveform separation mechanism attached to the device. it can. The [CO bond] peak includes both ether bond and hydroxy group peaks, and the [COO bond] peak contains both ester bond and carboxy group peaks. There is.
ピーク分離方法について、ピーク形状を決定する分布関数は、ガウス関数とローレンツ関数の混合にし、各ピークの半値幅を出来るだけ一定にすることが好ましい。
Regarding the peak separation method, it is preferable that the distribution function for determining the peak shape is a mixture of the Gaussian function and the Lorentz function, and the half width of each peak is as constant as possible.
本発明の製造方法により得られる熱可塑性液晶ポリマー成形体では、上述のプラズマ処理によって、エステル結合またはカルボキシ基に由来する[COO結合]のピーク面積に対する、エーテル結合またはヒドロキシ基に由来する[C-O結合]のピーク面積の割合、およびカルボニル基に由来する[C=O結合]のピーク面積の割合の両方を高くすることができる。また、プラズマ処理によって生じる[C=O結合](カルボニル基)やエステル結合に由来しない[C-O結合](ヒドロキシ基)などの存在割合を増加させることにより、被接着部位の表面に様々な種類の極性を有する官能基を特定の割合で導入できるためか、従来のエポキシ系接着剤やアクリル系接着剤だけでなく、非極性骨格を含有する低誘電特性を有する接着剤などの様々な接着剤に対して、熱可塑性液晶ポリマー成形体の接着性を向上させることができると考えられる。
In the thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention, the above-mentioned plasma treatment results in an ether bond or a hydroxy group-derived [C-] with respect to the peak area of the [COO bond] derived from an ester bond or a carboxy group. Both the proportion of the peak area of the [O bond] and the proportion of the peak area of the [C = O bond] derived from the carbonyl group can be increased. In addition, by increasing the abundance ratio of [C = O bond] (carbonyl group) generated by plasma treatment and [CO bond] (hydroxy group) not derived from the ester bond, various types can be obtained on the surface of the bonded portion. Perhaps because functional groups with different types of polarity can be introduced at a specific ratio, various adhesives such as adhesives with low dielectric properties containing a non-polar skeleton as well as conventional epoxy adhesives and acrylic adhesives. It is considered that the adhesiveness of the thermoplastic liquid crystal polymer molded product to the agent can be improved.
(1)<C-O>/<COO>
本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、接着性向上の観点から、その被接着部位の表面の<C-O>と<COO>との比<C-O>/<COO>が、1.5以上であってもよく、好ましくは1.6以上、より好ましくは1.7以上であってもよい。また、ピーク面積の割合の比<C-O>/<COO>の上限は、特に限定されないが、例えば、3.0以下であってもよい。
(2)<C=O>/<COO>
また、被接着部位の表面の<C=O>と<COO>との比<C=O>/<COO>が、0.10以上であってもよく、好ましくは0.12以上、より好ましくは0.25以上、さらに好ましくは0.40以上であってもよい。また、ピーク面積の割合の比<C=O>/<COO>の上限は、特に限定されないが、プラズマ処理によって生じるカルボニル基に由来する[C=O結合]を過剰に増加させず、熱可塑性液晶ポリマー成形体表面の過剰な損傷を抑制する観点から、例えば、1.0未満であってもよく、好ましくは0.95以下、より好ましくは0.70以下、さらに好ましくは0.65以下であってもよい。 (1) <CO> / <COO>
From the viewpoint of improving adhesiveness, the thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention has a ratio of <CO> to <COO> on the surface of the adhered portion <CO> / <COO. > May be 1.5 or more, preferably 1.6 or more, and more preferably 1.7 or more. The upper limit of the ratio of the ratio of peak areas <CO> / <COO> is not particularly limited, but may be, for example, 3.0 or less.
(2) <C = O> / <COO>
Further, the ratio <C = O> / <COO> of <C = O> and <COO> on the surface of the adhered portion may be 0.10 or more, preferably 0.12 or more, more preferably 0.12 or more. May be 0.25 or more, more preferably 0.40 or more. The upper limit of the ratio of the ratio of peak areas <C = O> / <COO> is not particularly limited, but it does not excessively increase the [C = O bond] derived from the carbonyl group generated by the plasma treatment, and is thermoplastic. From the viewpoint of suppressing excessive damage to the surface of the liquid crystal polymer molded product, for example, it may be less than 1.0, preferably 0.95 or less, more preferably 0.70 or less, still more preferably 0.65 or less. There may be.
本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、接着性向上の観点から、その被接着部位の表面の<C-O>と<COO>との比<C-O>/<COO>が、1.5以上であってもよく、好ましくは1.6以上、より好ましくは1.7以上であってもよい。また、ピーク面積の割合の比<C-O>/<COO>の上限は、特に限定されないが、例えば、3.0以下であってもよい。
(2)<C=O>/<COO>
また、被接着部位の表面の<C=O>と<COO>との比<C=O>/<COO>が、0.10以上であってもよく、好ましくは0.12以上、より好ましくは0.25以上、さらに好ましくは0.40以上であってもよい。また、ピーク面積の割合の比<C=O>/<COO>の上限は、特に限定されないが、プラズマ処理によって生じるカルボニル基に由来する[C=O結合]を過剰に増加させず、熱可塑性液晶ポリマー成形体表面の過剰な損傷を抑制する観点から、例えば、1.0未満であってもよく、好ましくは0.95以下、より好ましくは0.70以下、さらに好ましくは0.65以下であってもよい。 (1) <CO> / <COO>
From the viewpoint of improving adhesiveness, the thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention has a ratio of <CO> to <COO> on the surface of the adhered portion <CO> / <COO. > May be 1.5 or more, preferably 1.6 or more, and more preferably 1.7 or more. The upper limit of the ratio of the ratio of peak areas <CO> / <COO> is not particularly limited, but may be, for example, 3.0 or less.
(2) <C = O> / <COO>
Further, the ratio <C = O> / <COO> of <C = O> and <COO> on the surface of the adhered portion may be 0.10 or more, preferably 0.12 or more, more preferably 0.12 or more. May be 0.25 or more, more preferably 0.40 or more. The upper limit of the ratio of the ratio of peak areas <C = O> / <COO> is not particularly limited, but it does not excessively increase the [C = O bond] derived from the carbonyl group generated by the plasma treatment, and is thermoplastic. From the viewpoint of suppressing excessive damage to the surface of the liquid crystal polymer molded product, for example, it may be less than 1.0, preferably 0.95 or less, more preferably 0.70 or less, still more preferably 0.65 or less. There may be.
(1)および(2)で述べた<C-O>/<COO>および<C=O>/<COO>が所定の範囲を示す限り、<C-O>、<C=O>、および<COO>は、それぞれ特に限定されない。
例えば、<C-O>は、12.0~30.0%であってもよく、好ましくは16.0~28.0%、さらに好ましくは18.0~26.0%、さらにより好ましくは19.0~25.0%であってもよい。
例えば、<C=O>は、1.0~10.0%(例えば、1.5~10.0%)であってもよく、好ましくは3.5~9.0%、さらに好ましくは4.0~8.0%、さらにより好ましくは4.3~6.5%であってもよい。
例えば、<COO>は、8.0~15.0%であってもよく、好ましくは8.3~14.0%、さらに好ましくは8.5~13.0%、さらにより好ましくは9.0~12.0%であってもよい。 As long as the <CO> / <COO> and <C = O> / <COO> described in (1) and (2) indicate a predetermined range, <CO>, <C = O>, and The <COO> is not particularly limited.
For example, <CO> may be 12.0 to 30.0%, preferably 16.0 to 28.0%, still more preferably 18.0 to 26.0%, and even more preferably. It may be 19.0 to 25.0%.
For example, <C = O> may be 1.0 to 10.0% (for example, 1.5 to 10.0%), preferably 3.5 to 9.0%, and more preferably 4. It may be 0.0 to 8.0%, and even more preferably 4.3 to 6.5%.
For example, <COO> may be 8.0 to 15.0%, preferably 8.3 to 14.0%, still more preferably 8.5 to 13.0%, and even more preferably 9. It may be 0 to 12.0%.
例えば、<C-O>は、12.0~30.0%であってもよく、好ましくは16.0~28.0%、さらに好ましくは18.0~26.0%、さらにより好ましくは19.0~25.0%であってもよい。
例えば、<C=O>は、1.0~10.0%(例えば、1.5~10.0%)であってもよく、好ましくは3.5~9.0%、さらに好ましくは4.0~8.0%、さらにより好ましくは4.3~6.5%であってもよい。
例えば、<COO>は、8.0~15.0%であってもよく、好ましくは8.3~14.0%、さらに好ましくは8.5~13.0%、さらにより好ましくは9.0~12.0%であってもよい。 As long as the <CO> / <COO> and <C = O> / <COO> described in (1) and (2) indicate a predetermined range, <CO>, <C = O>, and The <COO> is not particularly limited.
For example, <CO> may be 12.0 to 30.0%, preferably 16.0 to 28.0%, still more preferably 18.0 to 26.0%, and even more preferably. It may be 19.0 to 25.0%.
For example, <C = O> may be 1.0 to 10.0% (for example, 1.5 to 10.0%), preferably 3.5 to 9.0%, and more preferably 4. It may be 0.0 to 8.0%, and even more preferably 4.3 to 6.5%.
For example, <COO> may be 8.0 to 15.0%, preferably 8.3 to 14.0%, still more preferably 8.5 to 13.0%, and even more preferably 9. It may be 0 to 12.0%.
(3)<C-O>+<C=O>+<COO>
必要に応じて、本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、接着性向上の観点から、その被接着部位の表面の<C-O>、<C=O>および<COO>の和が、25%以上であってもよく、好ましくは28%以上、より好ましくは30%以上であってもよい。また、ピーク面積の割合<C-O>、<C=O>および<COO>の和の上限は、特に限定されないが、例えば、50%以下であってもよい。 (3) <CO> + <C = O> + <COO>
If necessary, the thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention has <CO>, <C = O> and <COO> on the surface of the adhered portion from the viewpoint of improving adhesiveness. The sum of the above may be 25% or more, preferably 28% or more, and more preferably 30% or more. The upper limit of the sum of the peak area ratios <CO>, <C = O> and <COO> is not particularly limited, but may be, for example, 50% or less.
必要に応じて、本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、接着性向上の観点から、その被接着部位の表面の<C-O>、<C=O>および<COO>の和が、25%以上であってもよく、好ましくは28%以上、より好ましくは30%以上であってもよい。また、ピーク面積の割合<C-O>、<C=O>および<COO>の和の上限は、特に限定されないが、例えば、50%以下であってもよい。 (3) <CO> + <C = O> + <COO>
If necessary, the thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention has <CO>, <C = O> and <COO> on the surface of the adhered portion from the viewpoint of improving adhesiveness. The sum of the above may be 25% or more, preferably 28% or more, and more preferably 30% or more. The upper limit of the sum of the peak area ratios <CO>, <C = O> and <COO> is not particularly limited, but may be, for example, 50% or less.
なお、本発明の製造方法により得られる熱可塑性液晶ポリマー成形体において、X線光電子分光分析に関する特定の関係は、プラズマ処理が行われた部分で充足していればよい。
In the thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention, the specific relationship regarding X-ray photoelectron spectroscopy may be satisfied by the portion subjected to the plasma treatment.
本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、被接着部位の表面の接着性が高められているため、さまざまな接着剤を介した接着性を向上することができるだけでなく、接着剤を介さない熱圧着などによる接着性も向上することができる。
Since the thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention has enhanced adhesiveness on the surface of the bonded portion, it is possible not only to improve the adhesiveness via various adhesives but also to adhere. Adhesiveness can also be improved by thermal pressure bonding without using an agent.
本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、脱気工程を経ているため、水分率が低減されている。その水分率は、高温高湿条件下においても高い接着性を維持させる観点から、例えば、380ppm以下であってもよく、好ましくは300ppm以下、より好ましくは200ppm以下であってもよい。なお、水分率は後述の実施例に記載した方法により測定される値である。
Since the thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention has undergone a degassing step, the water content is reduced. From the viewpoint of maintaining high adhesiveness even under high temperature and high humidity conditions, the water content may be, for example, 380 ppm or less, preferably 300 ppm or less, and more preferably 200 ppm or less. The water content is a value measured by the method described in Examples described later.
[熱可塑性液晶ポリマー成形体の製造方法(第二の製造工程)]
本発明の第二の熱可塑性液晶ポリマー成形体の製造方法は、熱可塑性液晶ポリマー成形体の表面の少なくとも一部にプラズマ処理する表面処理工程(工程1)、および熱可塑性液晶ポリマー成形体を乾燥する脱気工程(工程2)(第一の製造工程)、ならびに前記プラズマ処理された部位の少なくとも一部を含む被接着部位に、接着対象を接着する接着工程(工程3)(第二の製造工程)を少なくとも備えていてもよい。 [Manufacturing method of thermoplastic liquid crystal polymer molded product (second manufacturing process)]
The second method for producing a thermoplastic liquid crystal polymer molded body of the present invention includes a surface treatment step (step 1) of plasma-treating at least a part of the surface of the thermoplastic liquid crystal polymer molded body, and drying the thermoplastic liquid crystal polymer molded body. Degassing step (step 2) (first manufacturing step), and bonding step (step 3) (second manufacturing step) of adhering the object to be bonded to the bonded portion including at least a part of the plasma-treated portion. Step) may be provided at least.
本発明の第二の熱可塑性液晶ポリマー成形体の製造方法は、熱可塑性液晶ポリマー成形体の表面の少なくとも一部にプラズマ処理する表面処理工程(工程1)、および熱可塑性液晶ポリマー成形体を乾燥する脱気工程(工程2)(第一の製造工程)、ならびに前記プラズマ処理された部位の少なくとも一部を含む被接着部位に、接着対象を接着する接着工程(工程3)(第二の製造工程)を少なくとも備えていてもよい。 [Manufacturing method of thermoplastic liquid crystal polymer molded product (second manufacturing process)]
The second method for producing a thermoplastic liquid crystal polymer molded body of the present invention includes a surface treatment step (step 1) of plasma-treating at least a part of the surface of the thermoplastic liquid crystal polymer molded body, and drying the thermoplastic liquid crystal polymer molded body. Degassing step (step 2) (first manufacturing step), and bonding step (step 3) (second manufacturing step) of adhering the object to be bonded to the bonded portion including at least a part of the plasma-treated portion. Step) may be provided at least.
前記接着工程では、接着対象に応じた接着方法を選択することができる。例えば、接着方法は、熱接着などにより、熱可塑性液晶ポリマー成形体に接着対象を接着することができる。
In the bonding step, a bonding method can be selected according to the bonding target. For example, in the bonding method, the object to be bonded can be bonded to the thermoplastic liquid crystal polymer molded product by heat bonding or the like.
熱接着では、プラズマ処理された部位の少なくとも一部を含む被接着部位に、接着対象を接触させ、両者を加熱することにより接着する工程が行われる。熱接着が可能な適切な温度にすることができる限り、加熱手段は、熱源を燃焼させる燃焼方式と、電気的に加熱する電気方式のいずれであってもよい。
In thermal bonding, a step of contacting an object to be bonded with a site to be bonded including at least a part of the plasma-treated site and heating both of them is performed. As long as the temperature can be set to an appropriate temperature at which heat adhesion is possible, the heating means may be either a combustion method for burning a heat source or an electric method for electrically heating.
熱接着で用いられる接着対象としては、熱可塑性液晶ポリマー成形体の被接着部位に直接接着することができる限り特に限定されず、目的に応じて適宜選択することができる。例えば、接着対象としては、接着剤(好ましくは接着剤シート)、および熱可塑性液晶ポリマー被着体(好ましくは熱可塑性液晶ポリマーフィルム)などを挙げることができる。なお、接着対象(例えば、熱可塑性液晶ポリマー被着体)に対しても、必要に応じて、上述の表面処理工程および/または脱気工程が行われていてもよい。表面処理工程は、接着対象の少なくとも被接着部位に行われることが好ましい。
The bonding target used in thermal bonding is not particularly limited as long as it can be directly bonded to the bonded portion of the thermoplastic liquid crystal polymer molded product, and can be appropriately selected depending on the purpose. For example, examples of the bonding target include an adhesive (preferably an adhesive sheet) and a thermoplastic liquid crystal polymer adherend (preferably a thermoplastic liquid crystal polymer film). The above-mentioned surface treatment step and / or degassing step may be performed on the object to be bonded (for example, a thermoplastic liquid crystal polymer adherend), if necessary. The surface treatment step is preferably performed on at least the bonded portion to be bonded.
熱接着の中でも、加熱と圧力を加える熱圧着が好ましい。熱圧着を行う場合、例えば、一般的な熱プレスや加熱ロールプレス、ダブルベルトプレス等の方法により行うことができる。熱圧着する際は、接着対象に応じて適切な処理温度および圧力を設定することができる。
Among the thermal bonding, thermocompression bonding that applies heating and pressure is preferable. When thermocompression bonding is performed, for example, it can be performed by a method such as a general heat press, a heating roll press, or a double belt press. When thermocompression bonding, an appropriate processing temperature and pressure can be set according to the bonding target.
接着対象が接着剤である場合、処理温度が130~250℃であってもよく、好ましくは140~220℃であってもよい。熱圧着の際の圧力は、例えば、0.5~10MPa、好ましくは1~8MPaであってもよい。熱圧着の際の時間は、例えば、10~90分間程度行われてもよく、好ましくは15~75分間程度、より好ましくは20~60分間程度行われてもよい。
接着対象が熱可塑性液晶ポリマー被着体(好ましくは熱可塑性液晶ポリマーフィルム)である場合、処理温度が180~350℃であってもよく、好ましくは200~330℃であってもよい。熱圧着の際の圧力は、例えば、1~10MPa、好ましくは2~8MPaであってもよい。熱圧着の際の時間は、例えば、15~90分間程度行われてもよく、好ましくは20~70分間程度、より好ましくは20~60分間程度行われてもよい。 When the object to be bonded is an adhesive, the treatment temperature may be 130 to 250 ° C, preferably 140 to 220 ° C. The pressure during thermocompression bonding may be, for example, 0.5 to 10 MPa, preferably 1 to 8 MPa. The time for thermocompression bonding may be, for example, about 10 to 90 minutes, preferably about 15 to 75 minutes, and more preferably about 20 to 60 minutes.
When the object to be adhered is a thermoplastic liquid crystal polymer adherend (preferably a thermoplastic liquid crystal polymer film), the treatment temperature may be 180 to 350 ° C., preferably 200 to 330 ° C. The pressure at the time of thermocompression bonding may be, for example, 1 to 10 MPa, preferably 2 to 8 MPa. The time for thermocompression bonding may be, for example, about 15 to 90 minutes, preferably about 20 to 70 minutes, and more preferably about 20 to 60 minutes.
接着対象が熱可塑性液晶ポリマー被着体(好ましくは熱可塑性液晶ポリマーフィルム)である場合、処理温度が180~350℃であってもよく、好ましくは200~330℃であってもよい。熱圧着の際の圧力は、例えば、1~10MPa、好ましくは2~8MPaであってもよい。熱圧着の際の時間は、例えば、15~90分間程度行われてもよく、好ましくは20~70分間程度、より好ましくは20~60分間程度行われてもよい。 When the object to be bonded is an adhesive, the treatment temperature may be 130 to 250 ° C, preferably 140 to 220 ° C. The pressure during thermocompression bonding may be, for example, 0.5 to 10 MPa, preferably 1 to 8 MPa. The time for thermocompression bonding may be, for example, about 10 to 90 minutes, preferably about 15 to 75 minutes, and more preferably about 20 to 60 minutes.
When the object to be adhered is a thermoplastic liquid crystal polymer adherend (preferably a thermoplastic liquid crystal polymer film), the treatment temperature may be 180 to 350 ° C., preferably 200 to 330 ° C. The pressure at the time of thermocompression bonding may be, for example, 1 to 10 MPa, preferably 2 to 8 MPa. The time for thermocompression bonding may be, for example, about 15 to 90 minutes, preferably about 20 to 70 minutes, and more preferably about 20 to 60 minutes.
なお、接着対象が接着剤である場合、接着剤を介して更なる被着体(例えば、金属層や、他のシートやフィルム、回路基板)が、第一の製造工程で得られた熱可塑性液晶ポリマー成形体(第一の熱可塑性液晶ポリマー成形体)に対して接着されてもよい。更なる被着体の接着は、第一の熱可塑性液晶ポリマー成形体に対して、接着剤を介して重ね合わせ、接着層の形成と同時に行ってもよい。または、第一の熱可塑性液晶ポリマー成形体に対して接着層を形成した後、接着層に対して更なる被着体を接着してもよい。
When the object to be bonded is an adhesive, a further adherend (for example, a metal layer, another sheet or film, or a circuit board) is provided with the thermoplasticity obtained in the first manufacturing step via the adhesive. It may be adhered to a liquid crystal polymer molded product (first thermoplastic liquid crystal polymer molded product). Further adhesion of the adherend may be carried out at the same time as the formation of the adhesive layer by superimposing the first thermoplastic liquid crystal polymer molded body via an adhesive. Alternatively, after forming an adhesive layer on the first thermoplastic liquid crystal polymer molded product, a further adherend may be adhered to the adhesive layer.
[第二の熱可塑性液晶ポリマー成形体]
本発明の製造方法により得られる第二の熱可塑性液晶ポリマー成形体は、第一の熱可塑性液晶ポリマー成形体の被接着部位に、上述した接着対象が接着されている熱可塑性液晶ポリマー成形体である。 [Second thermoplastic liquid crystal polymer molded product]
The second thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention is a thermoplastic liquid crystal polymer molded product in which the above-mentioned bonding target is adhered to the adhered portion of the first thermoplastic liquid crystal polymer molded product. is there.
本発明の製造方法により得られる第二の熱可塑性液晶ポリマー成形体は、第一の熱可塑性液晶ポリマー成形体の被接着部位に、上述した接着対象が接着されている熱可塑性液晶ポリマー成形体である。 [Second thermoplastic liquid crystal polymer molded product]
The second thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention is a thermoplastic liquid crystal polymer molded product in which the above-mentioned bonding target is adhered to the adhered portion of the first thermoplastic liquid crystal polymer molded product. is there.
本発明の製造方法により得られる第二の熱可塑性液晶ポリマー成形体は、製造方法にて上述したように、例えば、その被接着部位に接着剤が積層されていてもよい。接着剤としては、エポキシ系接着剤やアクリル系接着剤などの極性接着剤であってもよく、一部に非極性骨格を含有する非極性接着剤であってもよい。
The second thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention may have an adhesive laminated on the adhered portion, for example, as described above in the production method. The adhesive may be a polar adhesive such as an epoxy adhesive or an acrylic adhesive, or may be a non-polar adhesive partially containing a non-polar skeleton.
極性接着剤としては、例えば、ユリア樹脂系接着剤、メラミン樹脂系接着剤、フェノール樹脂系接着剤、酢酸ビニル樹脂系接着剤、イソシアネート系接着剤、エポキシ系接着剤、不飽和ポリエステル系接着剤、シアノアクリレート系接着剤、ポリウレタン系接着剤、アクリル樹脂系接着剤などが挙げられる。
Examples of the polar adhesive include a urea resin adhesive, a melamine resin adhesive, a phenol resin adhesive, a vinyl acetate resin adhesive, an isocyanate adhesive, an epoxy adhesive, and an unsaturated polyester adhesive. Examples thereof include cyanoacrylate-based adhesives, polyurethane-based adhesives, and acrylic resin-based adhesives.
非極性接着剤としては、例えば、周知の接着剤(例えば、ユリア樹脂系接着剤、メラミン樹脂系接着剤、フェノール樹脂系接着剤、酢酸ビニル樹脂系接着剤、イソシアネート系接着剤、エポキシ系接着剤、不飽和ポリエステル系接着剤、シアノアクリレート系接着剤、ポリウレタン系接着剤、アクリル樹脂系接着剤などが挙げられる)に対して、非極性骨格を主鎖とするポリマーが混合された接着剤組成物、および上記接着剤の主成分ポリマーの化学構造中に非極性骨格が導入された接着剤組成物などが挙げられる。
Examples of the non-polar adhesive include known adhesives (for example, urea resin adhesive, melamine resin adhesive, phenol resin adhesive, vinyl acetate resin adhesive, isocyanate adhesive, epoxy adhesive). , An unsaturated polyester adhesive, a cyanoacrylate adhesive, a polyurethane adhesive, an acrylic resin adhesive, etc.), and an adhesive composition in which a polymer having a non-polar skeleton as a main chain is mixed. , And an adhesive composition in which a non-polar skeleton is introduced into the chemical structure of the main component polymer of the adhesive.
熱可塑性液晶ポリマーフィルムを電子回路基板材料として用いる場合には、接着剤の誘電特性は、周波数10GHzにおける比誘電率(ε)が3.3以下であり、誘電正接(tanδ)が0.05以下であってもよい。特に、基板全体で低誘電特性が要求される場合、低誘電特性を有する接着剤(低誘電接着剤)であることが好ましい。低誘電特性を有する接着剤は、例えば、周波数10GHzにおける比誘電率(ε)が3.3以下であり、誘電正接(tanδ)が0.04以下(好ましくは0.03以下)であってもよい。
When a thermoplastic liquid crystal polymer film is used as an electronic circuit substrate material, the dielectric properties of the adhesive are that the relative permittivity (ε) at a frequency of 10 GHz is 3.3 or less and the dielectric loss tangent (tan δ) is 0.05 or less. It may be. In particular, when low dielectric properties are required for the entire substrate, an adhesive having low dielectric properties (low dielectric adhesive) is preferable. An adhesive having a low dielectric property has, for example, a relative permittivity (ε) of 3.3 or less at a frequency of 10 GHz and a dielectric loss tangent (tan δ) of 0.04 or less (preferably 0.03 or less). Good.
好ましい低誘電接着剤としては、例えば、オレフィン骨格を含有した接着剤組成物(例えば、結晶性酸変性ポリオレフィンおよびエポキシ樹脂を少なくとも含有する接着剤組成物、オレフィン骨格を含有した変性ポリアミド接着剤組成物、芳香族オレフィンオリゴマー型改質剤とエポキシ樹脂を用いた接着剤組成物など)、ポリフェニレンエーテル骨格を含有した接着剤組成物などが挙げられる。
Preferred low-dielectric adhesives include, for example, an adhesive composition containing an olefin skeleton (for example, an adhesive composition containing at least a crystalline acid-modified polyolefin and an epoxy resin, and a modified polyamide adhesive composition containing an olefin skeleton. , An adhesive composition using an aromatic olefin oligomer type modifier and an epoxy resin, etc.), an adhesive composition containing a polyphenylene ether skeleton, and the like.
例えば、結晶性酸変性ポリオレフィンおよびエポキシ樹脂を少なくとも含有する接着剤組成物としては、WO2016/031342に記載された接着剤などが挙げられ、オレフィン骨格を含有した変性ポリアミド接着剤組成物としては、特開2007-284515号公報に記載された接着剤などが挙げられ、芳香族オレフィンオリゴマー型改質剤とエポキシ樹脂を用いた接着剤組成物としては、特開2007-63306号公報に記載された接着剤などが挙げられ、ポリフェニレンエーテル骨格を含有した接着剤組成物としては、WO2014/046014に記載された接着層などが挙げられる。これらの接着剤の中でも、例えば、誘電特性の観点から、結晶性酸変性ポリオレフィンおよびエポキシ樹脂を少なくとも含有する接着剤組成物は、当該接着剤の前記結晶性酸変性ポリオレフィンを5質量%以上含有することがより好ましい。
For example, examples of the adhesive composition containing at least a crystalline acid-modified polyolefin and an epoxy resin include the adhesive described in WO2016 / 031342, and examples of the modified polyamide adhesive composition containing an olefin skeleton include. Examples thereof include the adhesive described in Japanese Patent Application Laid-Open No. 2007-284515, and examples of the adhesive composition using the aromatic olefin oligomer type modifier and the epoxy resin include the adhesive described in Japanese Patent Application Laid-Open No. 2007-63306. Examples of the adhesive composition include an agent and the like, and examples of the adhesive composition containing a polyphenylene ether skeleton include the adhesive layer described in WO2014 / 046014. Among these adhesives, for example, from the viewpoint of dielectric properties, an adhesive composition containing at least a crystalline acid-modified polyolefin and an epoxy resin contains 5% by mass or more of the crystalline acid-modified polyolefin of the adhesive. Is more preferable.
第一の熱可塑性液晶ポリマー成形体(好ましくは熱可塑性液晶ポリマーフィルム)に積層された接着層は、接着剤シートであってもよく、第一の熱可塑性液晶ポリマー成形体(好ましくは熱可塑性液晶ポリマーフィルム)に接着剤組成物を塗布して乾燥したものであってもよい。接着層の厚さは1~50μmであってもよく、好ましくは5~40μm、より好ましくは10~30μmであってもよい。
The adhesive layer laminated on the first thermoplastic liquid crystal polymer molded body (preferably the thermoplastic liquid crystal polymer film) may be an adhesive sheet, or the first thermoplastic liquid crystal polymer molded body (preferably the thermoplastic liquid crystal). A polymer film) may be coated with an adhesive composition and dried. The thickness of the adhesive layer may be 1 to 50 μm, preferably 5 to 40 μm, and more preferably 10 to 30 μm.
本発明の製造方法により得られる第二の熱可塑性液晶ポリマー成形体は、接着対象が熱可塑性液晶ポリマー被着体であってもよい。例えば、本発明に係るフィルム形状の熱可塑性液晶ポリマー成形体は、その被接着部位上へ、熱可塑性液晶ポリマーフィルムが積層されていてもよく、本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、熱可塑性液晶ポリマーフィルム同士が直接積層された積層体であってもよい。熱可塑性液晶ポリマーフィルムの厚さは10~500μmであってもよく、好ましくは20~200μm、より好ましくは25~150μmであってもよい。
In the second thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention, the adhesion target may be a thermoplastic liquid crystal polymer adherend. For example, in the film-shaped thermoplastic liquid crystal polymer molded product according to the present invention, the thermoplastic liquid crystal polymer film may be laminated on the adhered portion, and the thermoplastic liquid crystal polymer molding obtained by the production method of the present invention. The body may be a laminate in which thermoplastic liquid crystal polymer films are directly laminated. The thickness of the thermoplastic liquid crystal polymer film may be 10 to 500 μm, preferably 20 to 200 μm, and more preferably 25 to 150 μm.
接着対象の熱可塑性液晶ポリマー被着体は、上述の熱可塑性液晶ポリマーで少なくとも構成されていればよく、表面処理工程および脱気工程を行った熱可塑性液晶ポリマー成形体と同じ成分であってもよく、異なる成分であってもよい。
The thermoplastic liquid crystal polymer adherend to be adhered may be composed of at least the above-mentioned thermoplastic liquid crystal polymer, and may have the same components as the thermoplastic liquid crystal polymer molded body subjected to the surface treatment step and the degassing step. It may be a different component.
また、熱可塑性液晶ポリマー被着体は、表面処理工程および/または脱気工程に供されていても、供されていなくてもよいが、接着性向上(特に、高温高湿条件下での接着性維持)の観点から、熱可塑性液晶ポリマー被着体における熱可塑性液晶ポリマー成形体との被接着部位の少なくとも一部において上述のプラズマ処理が行われ、および/または熱可塑性液晶ポリマー被着体に脱気工程を行っていることが好ましい。その場合、熱可塑性液晶ポリマー被着体では、第一の熱可塑性液晶ポリマー成形体と同様に、例えば、X線光電子分光分析結果における<C-O>/<COO>が1.5以上で、かつ<C=O>/<COO>が0.10以上であってもよい。
Further, the thermoplastic liquid crystal polymer adherend may or may not be subjected to a surface treatment step and / or a degassing step, but has improved adhesiveness (particularly, adhesion under high temperature and high humidity conditions). From the viewpoint of (maintenance of property), the above-mentioned plasma treatment is performed on at least a part of the adhered portion of the thermoplastic liquid crystal polymer adherend to the thermoplastic liquid crystal polymer molded body, and / or the thermoplastic liquid crystal polymer adherend is It is preferable that the degassing step is performed. In that case, in the thermoplastic liquid crystal polymer adherend, for example, <CO> / <COO> in the X-ray photoelectron spectroscopy analysis result is 1.5 or more, as in the case of the first thermoplastic liquid crystal polymer molded body. Moreover, <C = O> / <COO> may be 0.10 or more.
熱圧着による積層において、同じ成分または異なる成分の熱可塑性液晶ポリマーフィルムを熱圧着させる場合には、それぞれの熱可塑性液晶ポリマーフィルムにプラズマ処理を行った表面同士を向かい合わせて熱圧着させることが好ましい。
In the case of thermocompression bonding, when thermoplastic liquid crystal polymer films having the same or different components are thermocompression bonded, it is preferable to thermocompression-bond the plasma-treated surfaces of the thermoplastic liquid crystal polymer films to each other. ..
熱可塑性液晶ポリマー成形体と接着対象との接着強度は、0.70N/mm以上であってもよく、好ましくは0.75N/mm以上、より好ましくは0.80N/mm以上、さらにより好ましくは1.00N/mm以上であってもよい。上限は特に制限されないが、3.0N/mm以下であってもよい。また、上記範囲を満たす接着強度は、熱可塑性液晶ポリマーフィルムと接着剤との接着強度であってもよく、好ましくは熱可塑性液晶ポリマーフィルムと低誘電接着剤との接着強度であってもよい。上記のような低誘電接着剤は、誘電特性を向上させるために非極性骨格を含有していることから、従来のエポキシ系接着剤と比較して接着性が低いが、後述する実施例において示されるように、本発明の製造方法により得られる熱可塑性液晶ポリマーフィルムとの接着性は良好である。
The adhesive strength between the thermoplastic liquid crystal polymer molded product and the object to be bonded may be 0.70 N / mm or more, preferably 0.75 N / mm or more, more preferably 0.80 N / mm or more, and even more preferably. It may be 1.00 N / mm or more. The upper limit is not particularly limited, but may be 3.0 N / mm or less. The adhesive strength satisfying the above range may be the adhesive strength between the thermoplastic liquid crystal polymer film and the adhesive, and preferably the adhesive strength between the thermoplastic liquid crystal polymer film and the low dielectric adhesive. Since the low-dielectric adhesive as described above contains a non-polar skeleton in order to improve the dielectric properties, the adhesiveness is lower than that of the conventional epoxy-based adhesive, but it will be shown in Examples described later. As can be seen, the adhesiveness to the thermoplastic liquid crystal polymer film obtained by the production method of the present invention is good.
接着対象が積層された本発明の製造方法により得られる熱可塑性液晶ポリマー成形体(特に熱可塑性液晶ポリマーフィルム)は、高温高湿条件下においても高い接着性を維持できる。なお、接着性は後述の実施例に記載した方法により測定される接着強度で評価される。
The thermoplastic liquid crystal polymer molded product (particularly the thermoplastic liquid crystal polymer film) obtained by the manufacturing method of the present invention in which the objects to be bonded are laminated can maintain high adhesiveness even under high temperature and high humidity conditions. The adhesiveness is evaluated by the adhesive strength measured by the method described in Examples described later.
実際に製品が使用される常態下では、寿命が長いことが好ましい。従って、高温高湿条件下において、接着強度が十分に維持されると、常態下における製品寿命は長く、熱可塑性液晶ポリマー成形体の長期信頼性は高いと判断できる。さらに、そのような熱可塑性液晶ポリマー成形体は、高温高湿環境下での使用に置かれた場合であっても、接着界面は変化せず、接着強度を維持でき、高温高湿条件下における耐久性が高いと判断できる。例えば、23℃、50%RHの条件下で24時間保管された場合における接着強度に対する、121℃、100%RHの条件下で24時間保管された場合における接着強度の比が、60%以上(例えば、70%以上)であってもよく、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、さらにより好ましくは98%以上であってもよい。上限は特に制限されないが、150%以下であってもよい。
Under normal conditions in which the product is actually used, it is preferable that the product has a long life. Therefore, if the adhesive strength is sufficiently maintained under high temperature and high humidity conditions, it can be judged that the product life under normal conditions is long and the long-term reliability of the thermoplastic liquid crystal polymer molded product is high. Further, such a thermoplastic liquid crystal polymer molded product can maintain the adhesive strength without changing the adhesive interface even when placed in a high temperature and high humidity environment, and under high temperature and high humidity conditions. It can be judged that the durability is high. For example, the ratio of the adhesive strength when stored for 24 hours under the conditions of 23 ° C. and 50% RH to the adhesive strength when stored for 24 hours under the conditions of 121 ° C. and 100% RH is 60% or more ( For example, it may be 70% or more), preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, still more preferably 98% or more. The upper limit is not particularly limited, but may be 150% or less.
特に、本発明に係るフィルム形状の熱可塑性液晶ポリマー成形体は、熱可塑性液晶ポリマー自体が誘電特性に優れ吸湿性が低く、また、接着剤や他の材料に対する接着性が向上していることから、回路基板材料(例えば、電子回路基板の絶縁体、フレキシブル回路基板の補強板、回路面のカバーフィルム等)として特に有用である。
さらに、第一の熱可塑性液晶ポリマー成形体である熱可塑性液晶ポリマーフィルムに、金属層を積層した積層体や回路を形成した回路基板は、熱可塑性液晶ポリマーフィルムと金属層または回路との接着性が向上されていることから信頼性が高く、好ましい。 In particular, in the film-shaped thermoplastic liquid crystal polymer molded product according to the present invention, the thermoplastic liquid crystal polymer itself has excellent dielectric properties and low moisture absorption, and has improved adhesiveness to adhesives and other materials. , Particularly useful as a circuit board material (for example, an insulator of an electronic circuit board, a reinforcing plate of a flexible circuit board, a cover film of a circuit surface, etc.).
Further, a circuit board in which a laminate or a circuit in which a metal layer is laminated on a thermoplastic liquid crystal polymer film which is the first thermoplastic liquid crystal polymer molded body is formed has adhesiveness between the thermoplastic liquid crystal polymer film and the metal layer or the circuit. It is highly reliable and preferable because it is improved.
さらに、第一の熱可塑性液晶ポリマー成形体である熱可塑性液晶ポリマーフィルムに、金属層を積層した積層体や回路を形成した回路基板は、熱可塑性液晶ポリマーフィルムと金属層または回路との接着性が向上されていることから信頼性が高く、好ましい。 In particular, in the film-shaped thermoplastic liquid crystal polymer molded product according to the present invention, the thermoplastic liquid crystal polymer itself has excellent dielectric properties and low moisture absorption, and has improved adhesiveness to adhesives and other materials. , Particularly useful as a circuit board material (for example, an insulator of an electronic circuit board, a reinforcing plate of a flexible circuit board, a cover film of a circuit surface, etc.).
Further, a circuit board in which a laminate or a circuit in which a metal layer is laminated on a thermoplastic liquid crystal polymer film which is the first thermoplastic liquid crystal polymer molded body is formed has adhesiveness between the thermoplastic liquid crystal polymer film and the metal layer or the circuit. It is highly reliable and preferable because it is improved.
[導電部形成工程]
さらに、本発明において、熱可塑性液晶ポリマー成形体の製造方法は、第一の製造工程または第二の製造工程に加えて、さらに、導電部(例えば、金属部分や回路)の形成工程を備えていてもよい。なお、導電部形成工程は、第一の製造工程に先立って未処理の熱可塑性液晶ポリマー成形体に対して行われてもよく、および/または、接着対象に対して予め行われてもよい。例えば、導電部形成工程では、熱接着、スパッタリング、蒸着、無電解メッキなどにより、熱可塑性液晶ポリマー成形体に導電部を形成することができる。 [Conducting part forming process]
Further, in the present invention, the method for producing a thermoplastic liquid crystal polymer molded product further includes, in addition to the first manufacturing step or the second manufacturing step, a step of forming a conductive portion (for example, a metal portion or a circuit). You may. The conductive portion forming step may be performed on the untreated thermoplastic liquid crystal polymer molded product prior to the first manufacturing step, and / or may be performed in advance on the bonding target. For example, in the conductive portion forming step, the conductive portion can be formed on the thermoplastic liquid crystal polymer molded product by thermal adhesion, sputtering, vapor deposition, electroless plating, or the like.
さらに、本発明において、熱可塑性液晶ポリマー成形体の製造方法は、第一の製造工程または第二の製造工程に加えて、さらに、導電部(例えば、金属部分や回路)の形成工程を備えていてもよい。なお、導電部形成工程は、第一の製造工程に先立って未処理の熱可塑性液晶ポリマー成形体に対して行われてもよく、および/または、接着対象に対して予め行われてもよい。例えば、導電部形成工程では、熱接着、スパッタリング、蒸着、無電解メッキなどにより、熱可塑性液晶ポリマー成形体に導電部を形成することができる。 [Conducting part forming process]
Further, in the present invention, the method for producing a thermoplastic liquid crystal polymer molded product further includes, in addition to the first manufacturing step or the second manufacturing step, a step of forming a conductive portion (for example, a metal portion or a circuit). You may. The conductive portion forming step may be performed on the untreated thermoplastic liquid crystal polymer molded product prior to the first manufacturing step, and / or may be performed in advance on the bonding target. For example, in the conductive portion forming step, the conductive portion can be formed on the thermoplastic liquid crystal polymer molded product by thermal adhesion, sputtering, vapor deposition, electroless plating, or the like.
例えば、熱接着による導電部形成工程では、熱可塑性液晶ポリマー成形体(被着体、第一の熱可塑性液晶ポリマー成形体、および/または第二の熱可塑性液晶ポリマー成形体)または接着対象に対して、金属を熱接着することによって金属部分を形成してもよい。熱接着の中でも、加熱と圧力を加える熱圧着により金属箔を接着させることが好ましい。この場合、処理温度が180~350℃であってもよく、好ましくは200~330℃であってもよい。熱圧着の際の圧力は、例えば、1~10MPa、好ましくは2~8MPaであってもよい。熱圧着の際の時間は、例えば、10~90分間程度行われてもよく、好ましくは15~75分間程度、より好ましくは20~60分間程度行われてもよい。
For example, in the step of forming a conductive portion by thermal bonding, a thermoplastic liquid crystal polymer molded body (an adherend, a first thermoplastic liquid crystal polymer molded body, and / or a second thermoplastic liquid crystal polymer molded body) or an object to be bonded is subjected to. The metal portion may be formed by thermally adhering the metal. Among the thermal bonding, it is preferable to bond the metal foil by thermocompression bonding in which heating and pressure are applied. In this case, the treatment temperature may be 180 to 350 ° C., preferably 200 to 330 ° C. The pressure at the time of thermocompression bonding may be, for example, 1 to 10 MPa, preferably 2 to 8 MPa. The time for thermocompression bonding may be, for example, about 10 to 90 minutes, preferably about 15 to 75 minutes, and more preferably about 20 to 60 minutes.
スパッタリング法または蒸着法では、プラズマ処理された部位の少なくとも一部を含む被接着部位や接着対象に、金属をスパッタリングまたは蒸着することにより金属部分を接触させ、両者を接着する工程が行われる。スパッタリング法または蒸着法は、電子基板製造の分野では公知の方法である。スパッタリング用または蒸着用の金属としては、例えば、銅、アルミニウム、金、すず、クロム等が挙げられる。
In the sputtering method or the vapor deposition method, a step of bringing the metal portion into contact with the bonded portion including at least a part of the plasma-treated portion or the object to be bonded by sputtering or vapor deposition of the metal and adhering the two is performed. The sputtering method or the vapor deposition method is a known method in the field of manufacturing electronic substrates. Examples of the metal for sputtering or vapor deposition include copper, aluminum, gold, tin, chromium and the like.
無電解メッキ法では、プラズマ処理された部位の少なくとも一部を含む被接着部位に、金属イオンを含む溶液から金属を析出させることにより両者を接着する工程が行われる。無電解メッキ法は、非導電性材料(プラスチックやセラミック等)にメッキ製品の製造分野で公知の方法であり、金属としては、銅、ニッケル、コバルト、金、すず、クロム等が挙げられる。
In the electroless plating method, a step of adhering the two by precipitating metal from a solution containing metal ions is performed on the adhered portion including at least a part of the plasma-treated portion. The electroless plating method is a method known in the field of manufacturing plated products on non-conductive materials (plastics, ceramics, etc.), and examples of the metal include copper, nickel, cobalt, gold, tin, and chromium.
また、上記方法により積層された金属層をエッチングして導電部として回路を形成してもよいし、回路を被接着部位へ直接接着する等により回路を形成してもよい。
さらにまた、例えば、熱可塑性液晶ポリマーフィルム上に回路を形成した後に回路面をカバーフィルムで保護したり、ガラス/エポキシ材や他の回路基板を積層してもよい。 Further, the metal layer laminated by the above method may be etched to form a circuit as a conductive portion, or the circuit may be formed by directly adhering the circuit to the bonded portion.
Furthermore, for example, the circuit surface may be protected by a cover film after the circuit is formed on the thermoplastic liquid crystal polymer film, or a glass / epoxy material or another circuit board may be laminated.
さらにまた、例えば、熱可塑性液晶ポリマーフィルム上に回路を形成した後に回路面をカバーフィルムで保護したり、ガラス/エポキシ材や他の回路基板を積層してもよい。 Further, the metal layer laminated by the above method may be etched to form a circuit as a conductive portion, or the circuit may be formed by directly adhering the circuit to the bonded portion.
Furthermore, for example, the circuit surface may be protected by a cover film after the circuit is formed on the thermoplastic liquid crystal polymer film, or a glass / epoxy material or another circuit board may be laminated.
本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、さらに導電部を備えてもよい。例えば、本発明に係る熱可塑性液晶ポリマー成形体(第一の熱可塑性液晶ポリマー成形体、または第二の熱可塑性液晶ポリマー成形体)は、その表面(プラズマ処理されていない未処理の表面、および/またはプラズマ処理された表面)上に金属部分(好ましくは金属層、より好ましくは金属箔)を備えていてもよく、本発明に係る熱可塑性液晶ポリマー成形体は、その被接着部位上に接着されている上記の接着対象上に金属部分を備えていてもよい。
具体的には、本発明に係るフィルム形状の熱可塑性液晶ポリマー成形体は、その被接着部位上へ、金属箔が積層されていてもよく、本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、熱可塑性液晶ポリマーフィルムと金属層とが直接積層された積層体であってもよい。また、本発明に係るフィルム形状の熱可塑性液晶ポリマー成形体は、その被接着部位上に接着されている上記の接着対象上に金属層が積層されている積層体であってもよい。 The thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention may further include a conductive portion. For example, the thermoplastic liquid crystal polymer molded product (first thermoplastic liquid crystal polymer molded body or second thermoplastic liquid crystal polymer molded product) according to the present invention has its surface (untreated surface that has not been plasma-treated, and untreated surface). / Or a metal portion (preferably a metal layer, more preferably a metal foil) may be provided on the plasma-treated surface), and the thermoplastic liquid crystal polymer molded product according to the present invention is adhered on the adhered portion. A metal portion may be provided on the above-mentioned bonding target.
Specifically, the film-shaped thermoplastic liquid crystal polymer molded product according to the present invention may have a metal foil laminated on the adhered portion, and the thermoplastic liquid crystal polymer molding obtained by the production method of the present invention. The body may be a laminate in which a thermoplastic liquid crystal polymer film and a metal layer are directly laminated. Further, the film-shaped thermoplastic liquid crystal polymer molded product according to the present invention may be a laminated body in which a metal layer is laminated on the above-mentioned adhesive object adhered on the adhered portion.
具体的には、本発明に係るフィルム形状の熱可塑性液晶ポリマー成形体は、その被接着部位上へ、金属箔が積層されていてもよく、本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、熱可塑性液晶ポリマーフィルムと金属層とが直接積層された積層体であってもよい。また、本発明に係るフィルム形状の熱可塑性液晶ポリマー成形体は、その被接着部位上に接着されている上記の接着対象上に金属層が積層されている積層体であってもよい。 The thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention may further include a conductive portion. For example, the thermoplastic liquid crystal polymer molded product (first thermoplastic liquid crystal polymer molded body or second thermoplastic liquid crystal polymer molded product) according to the present invention has its surface (untreated surface that has not been plasma-treated, and untreated surface). / Or a metal portion (preferably a metal layer, more preferably a metal foil) may be provided on the plasma-treated surface), and the thermoplastic liquid crystal polymer molded product according to the present invention is adhered on the adhered portion. A metal portion may be provided on the above-mentioned bonding target.
Specifically, the film-shaped thermoplastic liquid crystal polymer molded product according to the present invention may have a metal foil laminated on the adhered portion, and the thermoplastic liquid crystal polymer molding obtained by the production method of the present invention. The body may be a laminate in which a thermoplastic liquid crystal polymer film and a metal layer are directly laminated. Further, the film-shaped thermoplastic liquid crystal polymer molded product according to the present invention may be a laminated body in which a metal layer is laminated on the above-mentioned adhesive object adhered on the adhered portion.
金属としては、目的に応じて適宜決定することができるが、銅、ニッケル、コバルト、アルミニウム、金、すず、クロム等が好ましく用いられる。金属層の厚さは0.01~200μm、好ましくは0.1~100μmであってもよく、より好ましくは1~80μm、特に好ましくは2~50μmであってもよい。
The metal can be appropriately determined according to the purpose, but copper, nickel, cobalt, aluminum, gold, tin, chromium and the like are preferably used. The thickness of the metal layer may be 0.01 to 200 μm, preferably 0.1 to 100 μm, more preferably 1 to 80 μm, and particularly preferably 2 to 50 μm.
金属層として金属箔を直接積層する場合、金属箔の厚さは1~80μmであってもよく、好ましくは2~50μmであってもよい。また、第一の熱可塑性液晶ポリマー成形体と接する側の金属箔の表面粗度Rzは、例えば2.0μm以下、好ましくは1.5μm以下であってもよい。表面粗度Rzの下限は例えば0.8μmであってもよい。なお、表面粗度Rzとは、JIS B 0601-1994を参考に測定される十点平均粗さを示す。
When the metal foil is directly laminated as the metal layer, the thickness of the metal foil may be 1 to 80 μm, preferably 2 to 50 μm. Further, the surface roughness Rz of the metal foil on the side in contact with the first thermoplastic liquid crystal polymer molded product may be, for example, 2.0 μm or less, preferably 1.5 μm or less. The lower limit of the surface roughness Rz may be, for example, 0.8 μm. The surface roughness Rz indicates a ten-point average roughness measured with reference to JIS B 0601-1994.
また、例えば、本発明に係る熱可塑性液晶ポリマー成形体(第一の熱可塑性液晶ポリマー成形体、または第二の熱可塑性液晶ポリマー成形体)は、その表面(プラズマ処理されていない未処理の表面、および/またはプラズマ処理された表面)上に回路を備えていてもよく、その被接着部位上に接着されている上記の接着対象上に回路を備えていてもよい。
Further, for example, the thermoplastic liquid crystal polymer molded product (first thermoplastic liquid crystal polymer molded product or second thermoplastic liquid crystal polymer molded product) according to the present invention has a surface (untreated surface that has not been plasma-treated). , And / or a plasma-treated surface), and the circuit may be provided on the above-mentioned bonding object that is bonded on the bonded portion.
以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何ら限定されるものではない。なお、以下の実施例および比較例においては、下記の方法により各種物性を測定した。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the present Examples. In the following examples and comparative examples, various physical properties were measured by the following methods.
[<C-O>、<C=O>および<COO>]
実施例および比較例で作製した熱可塑性液晶ポリマーフィルムの被接着部位の表面について、走査型X線光電子分光分析装置(アルバック・ファイ社製、「PHI Quantera SXM」)を用いて、以下の測定条件により、<C-O>、<C=O>および<COO>を測定し、それらのピーク面積の割合の和<C-O>+<C=O>+<COO>と、ピーク面積の割合の比<C-O>/<COO>および<C=O>/<COO>を算出した。ピーク面積の割合は、各結合状態に応じて観察されるC(1s)の各ピークのピーク面積の合計に対する[C-O結合]、[C=O結合]および[COO結合]のピーク面積の割合を算出し、上記和と比を求めた。
X線源:単色化 AlKα(1486.6eV)
X線ビーム径:100μmφ(25W、15kV)
測定範囲:1000μm(ヨコ)×300μm(タテ)
信号の取り込み角:45°
帯電中和条件:中和電子銃、Ar+イオン銃
真空度:1×10-6Pa以下 [<CO>, <C = O> and <COO>]
The surface of the adhered portion of the thermoplastic liquid crystal polymer film produced in Examples and Comparative Examples was measured under the following measurement conditions using a scanning X-ray photoelectron spectroscopic analyzer (“PHI Quantera SXM” manufactured by ULVAC-PHI, Inc.). <CO>, <C = O> and <COO> are measured, and the sum of the ratios of their peak areas is <CO> + <C = O> + <COO>, and the ratio of the peak areas. The ratios <CO> / <COO> and <C = O> / <COO> were calculated. The ratio of the peak area is the ratio of the peak areas of [CO bond], [C = O bond] and [COO bond] to the total peak area of each peak of C (1s) observed according to each bond state. The ratio was calculated, and the sum and ratio were calculated.
X-ray source: monochromatic AlKα (1486.6 eV)
X-ray beam diameter: 100 μmφ (25 W, 15 kV)
Measurement range: 1000 μm (horizontal) x 300 μm (vertical)
Signal capture angle: 45 °
Charge neutralization conditions: Neutralizing electron gun, Ar + ion gun Vacuum degree: 1 x 10-6 Pa or less
実施例および比較例で作製した熱可塑性液晶ポリマーフィルムの被接着部位の表面について、走査型X線光電子分光分析装置(アルバック・ファイ社製、「PHI Quantera SXM」)を用いて、以下の測定条件により、<C-O>、<C=O>および<COO>を測定し、それらのピーク面積の割合の和<C-O>+<C=O>+<COO>と、ピーク面積の割合の比<C-O>/<COO>および<C=O>/<COO>を算出した。ピーク面積の割合は、各結合状態に応じて観察されるC(1s)の各ピークのピーク面積の合計に対する[C-O結合]、[C=O結合]および[COO結合]のピーク面積の割合を算出し、上記和と比を求めた。
X線源:単色化 AlKα(1486.6eV)
X線ビーム径:100μmφ(25W、15kV)
測定範囲:1000μm(ヨコ)×300μm(タテ)
信号の取り込み角:45°
帯電中和条件:中和電子銃、Ar+イオン銃
真空度:1×10-6Pa以下 [<CO>, <C = O> and <COO>]
The surface of the adhered portion of the thermoplastic liquid crystal polymer film produced in Examples and Comparative Examples was measured under the following measurement conditions using a scanning X-ray photoelectron spectroscopic analyzer (“PHI Quantera SXM” manufactured by ULVAC-PHI, Inc.). <CO>, <C = O> and <COO> are measured, and the sum of the ratios of their peak areas is <CO> + <C = O> + <COO>, and the ratio of the peak areas. The ratios <CO> / <COO> and <C = O> / <COO> were calculated. The ratio of the peak area is the ratio of the peak areas of [CO bond], [C = O bond] and [COO bond] to the total peak area of each peak of C (1s) observed according to each bond state. The ratio was calculated, and the sum and ratio were calculated.
X-ray source: monochromatic AlKα (1486.6 eV)
X-ray beam diameter: 100 μmφ (25 W, 15 kV)
Measurement range: 1000 μm (horizontal) x 300 μm (vertical)
Signal capture angle: 45 °
Charge neutralization conditions: Neutralizing electron gun, Ar + ion gun Vacuum degree: 1 x 10-6 Pa or less
[接着強度]
実施例および比較例で作製した、熱可塑性液晶ポリマーフィルムと接着対象との積層体を評価用サンプルとした。評価用サンプルを後述の条件下で24時間保管した後、各積層体から1.0cm幅の剥離試験片を作製し、そのフィルム層を両面接着テープで平板に固定し、JIS C 6471に準じて、90°法により、50mm/minの速度で接着対象と熱可塑性液晶ポリマーフィルムとの界面で剥離したときの強度を測定した。23℃、50%RHの条件下で24時間保管後の接着強度、121℃、100%RHの条件下で24時間保管後の接着強度をそれぞれ測定した。
なお、接着性の高温高湿条件下における長期信頼性評価として、23℃、50%RHの条件下で24時間保管後に接着力を測定した接着強度に対する、121℃、100%RHの条件下で24時間保管後に接着力を測定した接着強度の比を算出した。 [Adhesive strength]
The laminate of the thermoplastic liquid crystal polymer film and the adhesion target produced in Examples and Comparative Examples was used as an evaluation sample. After storing the evaluation sample for 24 hours under the conditions described below, a 1.0 cm wide peeling test piece was prepared from each laminate, and the film layer was fixed to a flat plate with double-sided adhesive tape according to JIS C 6471. The strength at the interface between the object to be bonded and the thermoplastic liquid crystal polymer film was measured at a speed of 50 mm / min by the 90 ° method. The adhesive strength after storage for 24 hours under the conditions of 23 ° C. and 50% RH, and the adhesive strength after storage for 24 hours under the conditions of 121 ° C. and 100% RH were measured, respectively.
As a long-term reliability evaluation under high temperature and high humidity conditions of adhesiveness, the adhesive strength was measured after storage for 24 hours under the conditions of 23 ° C. and 50% RH under the conditions of 121 ° C. and 100% RH. The ratio of the adhesive strength was calculated by measuring the adhesive strength after storage for 24 hours.
実施例および比較例で作製した、熱可塑性液晶ポリマーフィルムと接着対象との積層体を評価用サンプルとした。評価用サンプルを後述の条件下で24時間保管した後、各積層体から1.0cm幅の剥離試験片を作製し、そのフィルム層を両面接着テープで平板に固定し、JIS C 6471に準じて、90°法により、50mm/minの速度で接着対象と熱可塑性液晶ポリマーフィルムとの界面で剥離したときの強度を測定した。23℃、50%RHの条件下で24時間保管後の接着強度、121℃、100%RHの条件下で24時間保管後の接着強度をそれぞれ測定した。
なお、接着性の高温高湿条件下における長期信頼性評価として、23℃、50%RHの条件下で24時間保管後に接着力を測定した接着強度に対する、121℃、100%RHの条件下で24時間保管後に接着力を測定した接着強度の比を算出した。 [Adhesive strength]
The laminate of the thermoplastic liquid crystal polymer film and the adhesion target produced in Examples and Comparative Examples was used as an evaluation sample. After storing the evaluation sample for 24 hours under the conditions described below, a 1.0 cm wide peeling test piece was prepared from each laminate, and the film layer was fixed to a flat plate with double-sided adhesive tape according to JIS C 6471. The strength at the interface between the object to be bonded and the thermoplastic liquid crystal polymer film was measured at a speed of 50 mm / min by the 90 ° method. The adhesive strength after storage for 24 hours under the conditions of 23 ° C. and 50% RH, and the adhesive strength after storage for 24 hours under the conditions of 121 ° C. and 100% RH were measured, respectively.
As a long-term reliability evaluation under high temperature and high humidity conditions of adhesiveness, the adhesive strength was measured after storage for 24 hours under the conditions of 23 ° C. and 50% RH under the conditions of 121 ° C. and 100% RH. The ratio of the adhesive strength was calculated by measuring the adhesive strength after storage for 24 hours.
[水分率]
水分の測定法としてカールフィッシャー法(カール・フィッシャー滴定の原理を利用し、水分を溶媒に吸収させ電位差の変化により水分を測定する)を使用した。
1)微量水分測定装置名:(株)三菱化学アナリテック社製(VA-07,CA-07)
2)加熱温度:260(℃)
3)N2パージ圧:150(ml/min)
4)測定準備(自動)
Purge 1分
Preheat 2分 試料ボード空焼き
Cooling 2分 試料ボード冷却
5)測定
滴定セル内溜め込み時間(N2で水分を送り出す時間):3分
6)試料量:1.0~1.3g [Moisture percentage]
The Karl Fischer method (using the principle of Karl Fischer titration, absorbing water in a solvent and measuring the water content by changing the potential difference) was used as the method for measuring the water content.
1) Name of trace moisture measuring device: Mitsubishi Chemical Analytech Co., Ltd. (VA-07, CA-07)
2) Heating temperature: 260 (° C)
3) N 2 purge pressure: 150 (ml / min)
4) Measurement preparation (automatic)
Purge 1 minute preheat 2 minutes the sample board bake Cooling 2 minutes the sample board cooling 5) Measurement titration cell entrapment time (the time for feeding water in N 2): 3 minutes 6) Sample amount: 1.0 ~ 1.3 g
水分の測定法としてカールフィッシャー法(カール・フィッシャー滴定の原理を利用し、水分を溶媒に吸収させ電位差の変化により水分を測定する)を使用した。
1)微量水分測定装置名:(株)三菱化学アナリテック社製(VA-07,CA-07)
2)加熱温度:260(℃)
3)N2パージ圧:150(ml/min)
4)測定準備(自動)
Purge 1分
Preheat 2分 試料ボード空焼き
Cooling 2分 試料ボード冷却
5)測定
滴定セル内溜め込み時間(N2で水分を送り出す時間):3分
6)試料量:1.0~1.3g [Moisture percentage]
The Karl Fischer method (using the principle of Karl Fischer titration, absorbing water in a solvent and measuring the water content by changing the potential difference) was used as the method for measuring the water content.
1) Name of trace moisture measuring device: Mitsubishi Chemical Analytech Co., Ltd. (VA-07, CA-07)
2) Heating temperature: 260 (° C)
3) N 2 purge pressure: 150 (ml / min)
4) Measurement preparation (automatic)
Purge 1 minute preheat 2 minutes the sample board bake Cooling 2 minutes the sample board cooling 5) Measurement titration cell entrapment time (the time for feeding water in N 2): 3 minutes 6) Sample amount: 1.0 ~ 1.3 g
(実施例1)
熱可塑性液晶ポリマーフィルム(株式会社クラレ製、「ベクスター」、厚さ50μm)を、フィルムの巻出しおよび巻取りが真空槽内部に設置されているプラズマ連続処理装置において、平行平板電極間(電極面積5cm×60cm、ヘッド-フィルム間距離5mm)を通すようにセットした(ダイレクト方式)。真空槽内部を真空ポンプにより排気した後、N2を導入し、真空槽内部の真空度を3Paに調整した。処理モードをダイレクトプラズマモード(DP)に設定し、放電周波数150kHz、電力1kWとして、連続波形の電圧を加える放電方式により電極間にプラズマを発生させ(出力3.3W/cm2)、フィルムを速度3m/min(処理時間1.0秒)で巻き取ることで連続的に熱可塑性液晶ポリマーフィルムの表面のプラズマ処理を行った。プラズマ処理を行った熱可塑性液晶ポリマーフィルムの被接着部位の表面のX線光電子分光分析により得られた結果から算出した<C-O>、<C=O>および<COO>、ならびにそれらの和と比を表7に示す。 (Example 1)
A thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., "Vecstar", thickness 50 μm) is placed between parallel plate electrodes (electrode area) in a plasma continuous processing device in which unwinding and winding of the film are installed inside a vacuum chamber. It was set so as to pass through (5 cm × 60 cm, head-film distance 5 mm) (direct method). After exhausting the inside of the vacuum chamber with a vacuum pump, N 2 was introduced to adjust the degree of vacuum inside the vacuum chamber to 3 Pa. The processing mode is set to the direct plasma mode (DP), the discharge frequency is 150 kHz, the power is 1 kW, and plasma is generated between the electrodes by a discharge method in which a continuous waveform voltage is applied (output 3.3 W / cm 2 ) to speed the film. The surface of the thermoplastic liquid crystal polymer film was continuously plasma-treated by winding at 3 m / min (treatment time: 1.0 second). <CO>, <C = O> and <COO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the adhered portion of the plasma-treated thermoplastic liquid crystal polymer film, and their sum. And the ratio are shown in Table 7.
熱可塑性液晶ポリマーフィルム(株式会社クラレ製、「ベクスター」、厚さ50μm)を、フィルムの巻出しおよび巻取りが真空槽内部に設置されているプラズマ連続処理装置において、平行平板電極間(電極面積5cm×60cm、ヘッド-フィルム間距離5mm)を通すようにセットした(ダイレクト方式)。真空槽内部を真空ポンプにより排気した後、N2を導入し、真空槽内部の真空度を3Paに調整した。処理モードをダイレクトプラズマモード(DP)に設定し、放電周波数150kHz、電力1kWとして、連続波形の電圧を加える放電方式により電極間にプラズマを発生させ(出力3.3W/cm2)、フィルムを速度3m/min(処理時間1.0秒)で巻き取ることで連続的に熱可塑性液晶ポリマーフィルムの表面のプラズマ処理を行った。プラズマ処理を行った熱可塑性液晶ポリマーフィルムの被接着部位の表面のX線光電子分光分析により得られた結果から算出した<C-O>、<C=O>および<COO>、ならびにそれらの和と比を表7に示す。 (Example 1)
A thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., "Vecstar", thickness 50 μm) is placed between parallel plate electrodes (electrode area) in a plasma continuous processing device in which unwinding and winding of the film are installed inside a vacuum chamber. It was set so as to pass through (5 cm × 60 cm, head-film distance 5 mm) (direct method). After exhausting the inside of the vacuum chamber with a vacuum pump, N 2 was introduced to adjust the degree of vacuum inside the vacuum chamber to 3 Pa. The processing mode is set to the direct plasma mode (DP), the discharge frequency is 150 kHz, the power is 1 kW, and plasma is generated between the electrodes by a discharge method in which a continuous waveform voltage is applied (output 3.3 W / cm 2 ) to speed the film. The surface of the thermoplastic liquid crystal polymer film was continuously plasma-treated by winding at 3 m / min (treatment time: 1.0 second). <CO>, <C = O> and <COO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the adhered portion of the plasma-treated thermoplastic liquid crystal polymer film, and their sum. And the ratio are shown in Table 7.
その後、プラズマ処理を行った熱可塑性液晶ポリマーフィルムを、熱風オーブンを用いて200℃で60分間脱気乾燥を行い、水分率を100ppmとした後に、熱可塑性液晶ポリマーフィルムに、低誘電接着剤シート(ニッカン工業株式会社製、「NIKAFLEX SAFY」、厚さ25μm、比誘電率3.0、誘電正接0.005)を重ねた上で、160℃、4MPaの条件で40分間熱プレスし、熱可塑性液晶ポリマーフィルムと接着剤との積層体を作製した。この積層体の接着強度を表7に示す。
Then, the thermoplastic liquid crystal polymer film subjected to the plasma treatment was degassed and dried at 200 ° C. for 60 minutes using a hot air oven to bring the moisture content to 100 ppm, and then the thermoplastic liquid crystal polymer film was coated with a low dielectric adhesive sheet. (Made by Nikkan Kogyo Co., Ltd., "NIKAFLEX SAFY", thickness 25 μm, relative permittivity 3.0, dielectric loss tangent 0.005), and then heat-pressed at 160 ° C and 4 MPa for 40 minutes to make it thermoplastic. A laminate of a liquid crystal polymer film and an adhesive was prepared. The adhesive strength of this laminated body is shown in Table 7.
(実施例2)
接着剤シートを、低誘電接着剤シート(東亞合成株式会社製、「AF711」、厚さ25μm、比誘電率2.4、誘電正接0.003)に変更した以外は実施例1と同様に積層体を作製した。この積層体の接着強度を表7に示す。 (Example 2)
Laminated in the same manner as in Example 1 except that the adhesive sheet was changed to a low-dielectric adhesive sheet (manufactured by Toagosei Co., Ltd., "AF711", thickness 25 μm, relative permittivity 2.4, dielectric loss tangent 0.003). The body was made. The adhesive strength of this laminated body is shown in Table 7.
接着剤シートを、低誘電接着剤シート(東亞合成株式会社製、「AF711」、厚さ25μm、比誘電率2.4、誘電正接0.003)に変更した以外は実施例1と同様に積層体を作製した。この積層体の接着強度を表7に示す。 (Example 2)
Laminated in the same manner as in Example 1 except that the adhesive sheet was changed to a low-dielectric adhesive sheet (manufactured by Toagosei Co., Ltd., "AF711", thickness 25 μm, relative permittivity 2.4, dielectric loss tangent 0.003). The body was made. The adhesive strength of this laminated body is shown in Table 7.
(比較例1)
熱可塑性液晶ポリマーフィルム(株式会社クラレ製、「ベクスター」、厚さ50μm)に、低誘電接着剤シート(ニッカン工業株式会社製、「NIKAFLEX SAFY」、厚さ25μm、比誘電率3.0、誘電正接0.005)を重ねた上で、160℃、4MPaの条件で40分間熱プレスし、熱可塑性液晶ポリマーフィルムと接着剤との積層体を作製した。未処理の熱可塑性液晶ポリマーフィルムの被接着部位の表面のX線光電子分光分析により得られた結果から算出した<C-O>、<C=O>および<COO>、それらの和と比、ならびに積層体の接着強度を表7に示す。 (Comparative Example 1)
Thermoplastic liquid crystal polymer film (Kurare Co., Ltd., "Vexter", thickness 50 μm), low dielectric adhesive sheet (Nikkan Kogyo Co., Ltd., "NIKAFLEX SAFY", thickness 25 μm, relative permittivity 3.0, dielectric After stacking the dielectrics 0.005), heat pressing was performed at 160 ° C. and 4 MPa for 40 minutes to prepare a laminate of a thermoplastic liquid crystal polymer film and an adhesive. <CO>, <C = O> and <COO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the bonded portion of the untreated thermoplastic liquid crystal polymer film, their sum and ratio, Table 7 shows the adhesive strength of the laminate.
熱可塑性液晶ポリマーフィルム(株式会社クラレ製、「ベクスター」、厚さ50μm)に、低誘電接着剤シート(ニッカン工業株式会社製、「NIKAFLEX SAFY」、厚さ25μm、比誘電率3.0、誘電正接0.005)を重ねた上で、160℃、4MPaの条件で40分間熱プレスし、熱可塑性液晶ポリマーフィルムと接着剤との積層体を作製した。未処理の熱可塑性液晶ポリマーフィルムの被接着部位の表面のX線光電子分光分析により得られた結果から算出した<C-O>、<C=O>および<COO>、それらの和と比、ならびに積層体の接着強度を表7に示す。 (Comparative Example 1)
Thermoplastic liquid crystal polymer film (Kurare Co., Ltd., "Vexter", thickness 50 μm), low dielectric adhesive sheet (Nikkan Kogyo Co., Ltd., "NIKAFLEX SAFY", thickness 25 μm, relative permittivity 3.0, dielectric After stacking the dielectrics 0.005), heat pressing was performed at 160 ° C. and 4 MPa for 40 minutes to prepare a laminate of a thermoplastic liquid crystal polymer film and an adhesive. <CO>, <C = O> and <COO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the bonded portion of the untreated thermoplastic liquid crystal polymer film, their sum and ratio, Table 7 shows the adhesive strength of the laminate.
(比較例2)
接着剤シートを、低誘電接着剤シート(東亞合成株式会社製、「AF711」、厚さ25μm、比誘電率2.4、誘電正接0.003)に変更した以外は比較例1と同様に積層体を作製した。この積層体の接着強度を表7に示す。 (Comparative Example 2)
Laminated in the same manner as in Comparative Example 1 except that the adhesive sheet was changed to a low dielectric adhesive sheet (manufactured by Toagosei Co., Ltd., "AF711", thickness 25 μm, relative permittivity 2.4, dielectric loss tangent 0.003). The body was made. The adhesive strength of this laminated body is shown in Table 7.
接着剤シートを、低誘電接着剤シート(東亞合成株式会社製、「AF711」、厚さ25μm、比誘電率2.4、誘電正接0.003)に変更した以外は比較例1と同様に積層体を作製した。この積層体の接着強度を表7に示す。 (Comparative Example 2)
Laminated in the same manner as in Comparative Example 1 except that the adhesive sheet was changed to a low dielectric adhesive sheet (manufactured by Toagosei Co., Ltd., "AF711", thickness 25 μm, relative permittivity 2.4, dielectric loss tangent 0.003). The body was made. The adhesive strength of this laminated body is shown in Table 7.
(参考例1)
熱可塑性液晶ポリマーフィルム(株式会社クラレ製、「ベクスター」、厚さ50μm)を、フィルムの巻出しおよび巻取りが真空槽内部に設置されているプラズマ連続処理装置において、平行平板電極間(電極面積5cm×60cm、ヘッド-フィルム間距離5mm)を通すようにセットした(ダイレクト方式)。真空槽内部を真空ポンプにより排気した後、N2を導入し、真空槽内部の真空度を3Paに調整した。処理モードをダイレクトプラズマモード(DP)に設定し、放電周波数150kHz、電力1kWとして、連続波形の電圧を加える放電方式により電極間にプラズマを発生させ(出力3.3W/cm2)、フィルムを速度3m/min(処理時間1.0秒)で巻き取ることで連続的に熱可塑性液晶ポリマーフィルムの表面のプラズマ処理を行った。プラズマ処理を行った熱可塑性液晶ポリマーフィルムの被接着部位の表面のX線光電子分光分析により得られた結果から算出した<C-O>、<C=O>および<COO>、ならびにそれらの和と比を表7に示す。 (Reference example 1)
A thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., "Vecstar", thickness 50 μm) is placed between parallel plate electrodes (electrode area) in a plasma continuous processing device in which unwinding and winding of the film are installed inside a vacuum chamber. It was set so as to pass through (5 cm × 60 cm, head-film distance 5 mm) (direct method). After exhausting the inside of the vacuum chamber with a vacuum pump, N 2 was introduced to adjust the degree of vacuum inside the vacuum chamber to 3 Pa. The processing mode is set to the direct plasma mode (DP), the discharge frequency is 150 kHz, the power is 1 kW, and plasma is generated between the electrodes by a discharge method in which a continuous waveform voltage is applied (output 3.3 W / cm 2 ) to speed the film. The surface of the thermoplastic liquid crystal polymer film was continuously plasma-treated by winding at 3 m / min (treatment time: 1.0 second). <CO>, <C = O> and <COO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the adhered portion of the plasma-treated thermoplastic liquid crystal polymer film, and their sum. And the ratio are shown in Table 7.
熱可塑性液晶ポリマーフィルム(株式会社クラレ製、「ベクスター」、厚さ50μm)を、フィルムの巻出しおよび巻取りが真空槽内部に設置されているプラズマ連続処理装置において、平行平板電極間(電極面積5cm×60cm、ヘッド-フィルム間距離5mm)を通すようにセットした(ダイレクト方式)。真空槽内部を真空ポンプにより排気した後、N2を導入し、真空槽内部の真空度を3Paに調整した。処理モードをダイレクトプラズマモード(DP)に設定し、放電周波数150kHz、電力1kWとして、連続波形の電圧を加える放電方式により電極間にプラズマを発生させ(出力3.3W/cm2)、フィルムを速度3m/min(処理時間1.0秒)で巻き取ることで連続的に熱可塑性液晶ポリマーフィルムの表面のプラズマ処理を行った。プラズマ処理を行った熱可塑性液晶ポリマーフィルムの被接着部位の表面のX線光電子分光分析により得られた結果から算出した<C-O>、<C=O>および<COO>、ならびにそれらの和と比を表7に示す。 (Reference example 1)
A thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., "Vecstar", thickness 50 μm) is placed between parallel plate electrodes (electrode area) in a plasma continuous processing device in which unwinding and winding of the film are installed inside a vacuum chamber. It was set so as to pass through (5 cm × 60 cm, head-film distance 5 mm) (direct method). After exhausting the inside of the vacuum chamber with a vacuum pump, N 2 was introduced to adjust the degree of vacuum inside the vacuum chamber to 3 Pa. The processing mode is set to the direct plasma mode (DP), the discharge frequency is 150 kHz, the power is 1 kW, and plasma is generated between the electrodes by a discharge method in which a continuous waveform voltage is applied (output 3.3 W / cm 2 ) to speed the film. The surface of the thermoplastic liquid crystal polymer film was continuously plasma-treated by winding at 3 m / min (treatment time: 1.0 second). <CO>, <C = O> and <COO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the adhered portion of the plasma-treated thermoplastic liquid crystal polymer film, and their sum. And the ratio are shown in Table 7.
その後、プラズマ処理後の熱可塑性液晶ポリマーフィルムに、低誘電接着剤シート(ニッカン工業株式会社製、「NIKAFLEX SAFY」、厚さ25μm、比誘電率3.0、誘電正接0.005)を重ねた上で、160℃、4MPaの条件で40分間熱プレスし、熱可塑性液晶ポリマーフィルムと接着剤との積層体を作製した。この積層体の接着強度を表7に示す。
Then, a low-dielectric adhesive sheet (manufactured by Nikkan Kogyo Co., Ltd., "NIKAFLEX SAFY", thickness 25 μm, relative permittivity 3.0, dielectric loss tangent 0.005) was laminated on the thermoplastic liquid crystal polymer film after the plasma treatment. Above, heat pressing was performed at 160 ° C. and 4 MPa for 40 minutes to prepare a laminate of a thermoplastic liquid crystal polymer film and an adhesive. The adhesive strength of this laminated body is shown in Table 7.
(参考例2)
接着剤シートを、低誘電接着剤シート(東亞合成株式会社製、「AF711」、厚さ25μm、比誘電率2.4、誘電正接0.003)に変更した以外は参考例1と同様に積層体を作製した。この積層体の接着強度を表7に示す。 (Reference example 2)
Laminated in the same manner as in Reference Example 1 except that the adhesive sheet was changed to a low-dielectric adhesive sheet (manufactured by Toagosei Co., Ltd., "AF711", thickness 25 μm, relative permittivity 2.4, dielectric loss tangent 0.003). The body was made. The adhesive strength of this laminated body is shown in Table 7.
接着剤シートを、低誘電接着剤シート(東亞合成株式会社製、「AF711」、厚さ25μm、比誘電率2.4、誘電正接0.003)に変更した以外は参考例1と同様に積層体を作製した。この積層体の接着強度を表7に示す。 (Reference example 2)
Laminated in the same manner as in Reference Example 1 except that the adhesive sheet was changed to a low-dielectric adhesive sheet (manufactured by Toagosei Co., Ltd., "AF711", thickness 25 μm, relative permittivity 2.4, dielectric loss tangent 0.003). The body was made. The adhesive strength of this laminated body is shown in Table 7.
表7に示すように、比較例1および2では、表面処理工程および脱気工程のいずれも行っていないため、常態下(23℃、50RH%)で24時間保管後の接着強度が低い。
As shown in Table 7, in Comparative Examples 1 and 2, since neither the surface treatment step nor the degassing step was performed, the adhesive strength after storage for 24 hours under normal conditions (23 ° C., 50 RH%) was low.
一方、実施例1および2では、特定の表面処理工程および脱気工程を行ったため、被接着部位の表面を特定の化学結合状態に改質できるとともに、熱可塑性液晶ポリマーフィルムの水分率を低減することができており、常態下で24時間保管後の接着強度が高い。同一の低誘電接着剤シートを用いた比較例1および2と比較した場合、実施例1および2は、比較例1および2のそれぞれに対して、常態下で24時間保管後の接着強度が2倍以上であった。
On the other hand, in Examples 1 and 2, since the specific surface treatment step and degassing step were performed, the surface of the bonded portion can be modified to a specific chemical bond state, and the water content of the thermoplastic liquid crystal polymer film can be reduced. It has a high adhesive strength after being stored for 24 hours under normal conditions. When compared with Comparative Examples 1 and 2 using the same low-dielectric adhesive sheet, Examples 1 and 2 had an adhesive strength of 2 after storage under normal conditions for 24 hours with respect to each of Comparative Examples 1 and 2. It was more than double.
また、実施例1および2は、常態下で24時間保管後の接着強度に対する、高温高湿条件下(121℃、100%RH)で24時間保管後の接着強度の比も100%以上と極めて高い。脱気工程を行っていない参考例1および2と比較しても、実施例1および2は、被接着部位の表面が同じ化学結合状態であるにもかかわらず、その比は高いため、高温高湿条件下において接着強度の維持性に優れ、長期信頼性を向上させることができる。
Further, in Examples 1 and 2, the ratio of the adhesive strength after storage for 24 hours under normal conditions to the adhesive strength after storage for 24 hours under high temperature and high humidity conditions (121 ° C., 100% RH) is extremely high, which is 100% or more. high. Even when compared with Reference Examples 1 and 2 in which the degassing step is not performed, Examples 1 and 2 have a high temperature and high temperature because the ratio is high even though the surface of the adhered portion has the same chemical bond state. It is excellent in maintaining adhesive strength under wet conditions and can improve long-term reliability.
本発明の製造方法により得られる熱可塑性液晶ポリマー成形体は、熱可塑性液晶ポリマーの高温高湿条件下における長期接着強度の維持性に優れ、長期信頼性が高い。そのため、その形状に合わせて各種用途に使用することができ、多層回路基板、電子回路基板の絶縁体、フレキシブル回路基板の補強板、回路面のカバーフィルム、接着剤を使用した多層回路などとして特に有用である。
The thermoplastic liquid crystal polymer molded product obtained by the production method of the present invention is excellent in maintaining the long-term adhesive strength of the thermoplastic liquid crystal polymer under high temperature and high humidity conditions, and has high long-term reliability. Therefore, it can be used for various purposes according to its shape, especially as a multilayer circuit board, an insulator of an electronic circuit board, a reinforcing plate of a flexible circuit board, a cover film on a circuit surface, a multilayer circuit using an adhesive, and the like. It is useful.
以上のとおり、本発明の好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。
したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, a preferred embodiment of the present invention has been described, but those skilled in the art will easily assume various changes and modifications within a self-evident range by looking at the present specification.
Therefore, such changes and amendments are construed as being within the scope of the invention as defined by the claims.
したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, a preferred embodiment of the present invention has been described, but those skilled in the art will easily assume various changes and modifications within a self-evident range by looking at the present specification.
Therefore, such changes and amendments are construed as being within the scope of the invention as defined by the claims.
Claims (9)
- 熱可塑性液晶ポリマー成形体の表面の少なくとも一部に、処理方式がダイレクト方式であり、出力2.5W/cm2以上、処理時間5秒未満で、プラズマ処理を行う表面処理工程、ならびに
熱可塑性液晶ポリマー成形体を(a)真空度1500Pa以下で30分以上、真空下で乾燥する、および/または(b)80~300℃の範囲で、加熱下で乾燥する脱気工程を含む、
熱可塑性液晶ポリマー成形体の製造方法。 A surface treatment process in which at least a part of the surface of the thermoplastic liquid crystal polymer molded product is treated by a direct method, the output is 2.5 W / cm 2 or more, the treatment time is less than 5 seconds, and the plasma treatment is performed, and the thermoplastic liquid crystal The polymer molded article is (a) dried under vacuum at a degree of vacuum of 1500 Pa or less for 30 minutes or more, and / or (b) includes a degassing step of drying under heating in the range of 80 to 300 ° C.
A method for producing a thermoplastic liquid crystal polymer molded product. - 請求項1に記載の製造方法であって、表面処理工程後に脱気工程を行う、熱可塑性液晶ポリマー成形体の製造方法。 The manufacturing method according to claim 1, wherein a degassing step is performed after the surface treatment step to manufacture a thermoplastic liquid crystal polymer molded product.
- 請求項1または2に記載の製造方法であって、熱可塑性液晶ポリマー成形体がフィルムである、熱可塑性液晶ポリマー成形体の製造方法。 The production method according to claim 1 or 2, wherein the thermoplastic liquid crystal polymer molded product is a film.
- 請求項1~3のいずれか一項に記載の製造方法であって、プラズマ処理におけるガス種が、窒素含有ガスおよび/または酸素含有ガス種を少なくとも含む、熱可塑性液晶ポリマー成形体の製造方法。 The production method according to any one of claims 1 to 3, wherein the gas type in the plasma treatment contains at least a nitrogen-containing gas and / or an oxygen-containing gas type, and the method for producing a thermoplastic liquid crystal polymer molded product.
- 請求項1~4のいずれか一項に記載の製造方法であって、前記表面処理工程がロールtoロール処理である、熱可塑性液晶ポリマー成形体の製造方法。 A method for producing a thermoplastic liquid crystal polymer molded product, which is the production method according to any one of claims 1 to 4, wherein the surface treatment step is a roll-to-roll treatment.
- 請求項1~5のいずれか一項に記載の製造方法であって、さらに、前記プラズマ処理された部位の少なくとも一部を含む被接着部位に、接着対象を接着する接着工程を少なくとも備えている、熱可塑性液晶ポリマー成形体の製造方法。 The manufacturing method according to any one of claims 1 to 5, further comprising at least an adhesion step of adhering an object to be adhered to an adhered portion including at least a part of the plasma-treated portion. , A method for producing a thermoplastic liquid crystal polymer molded product.
- 請求項1~6のいずれか一項に記載の製造方法であって、表面処理工程後の熱可塑性液晶ポリマー成形体が、
表面のX線光電子分光分析結果において、C(1s)ピーク面積に対する[C-O結合]のピーク面積の割合<C-O>と[COO結合]のピーク面積の割合<COO>との比<C-O>/<COO>が1.5以上で、かつC(1s)ピーク面積に対する[C=O結合]のピーク面積の割合<C=O>と[COO結合]のピーク面積の割合<COO>との比<C=O>/<COO>が0.10以上である処理面を有する、
熱可塑性液晶ポリマー成形体の製造方法。 The production method according to any one of claims 1 to 6, wherein the thermoplastic liquid crystal polymer molded product after the surface treatment step is formed.
In the X-ray photoelectron spectroscopic analysis result of the surface, the ratio of the peak area of [CO bond] to the C (1s) peak area <CO> and the ratio of the peak area of [COO bond] <COO><COO> / <COO> is 1.5 or more, and the ratio of the peak area of [C = O bond] to the C (1s) peak area <C = O> and the ratio of the peak area of [COO bond] < It has a treated surface having a ratio <C = O> / <COO> to COO> of 0.10 or more.
A method for producing a thermoplastic liquid crystal polymer molded product. - 請求項1~7のいずれか一項に記載の製造方法であって、脱気工程後の熱可塑性液晶ポリマー成形体の水分率が380ppm以下である、熱可塑性液晶ポリマー成形体の製造方法。 The production method according to any one of claims 1 to 7, wherein the water content of the thermoplastic liquid crystal polymer molded product after the degassing step is 380 ppm or less.
- 被接着部位に接着対象が接着されている熱可塑性液晶ポリマー成形体であって、熱可塑性液晶ポリマー成形体の水分率が380ppm以下であり、前記被接着部位の表面のX線光電子分光分析結果において、C(1s)ピーク面積に対する[C-O結合]のピーク面積の割合<C-O>と[COO結合]のピーク面積の割合<COO>との比<C-O>/<COO>が1.5以上で、かつC(1s)ピーク面積に対する[C=O結合]のピーク面積の割合<C=O>と[COO結合]のピーク面積の割合<COO>との比<C=O>/<COO>が0.10以上である、熱可塑性液晶ポリマー成形体。 It is a thermoplastic liquid crystal polymer molded body in which the object to be adhered is adhered to the bonded portion, and the water content of the thermoplastic liquid crystal polymer molded body is 380 ppm or less, and in the X-ray photoelectron spectroscopic analysis result of the surface of the bonded portion , The ratio of the peak area of [CO bond] to the C (1s) peak area <CO> and the ratio of the peak area of [COO bond] <COO> to <CO> / <COO> 1.5 or more, and the ratio of the peak area of [C = O bond] to the C (1s) peak area <C = O> and the ratio of the peak area of [COO bond] <COO> <C = O A thermoplastic liquid crystal polymer molded product having a> / <COO> of 0.10 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021542919A JP7520854B2 (en) | 2019-08-29 | 2020-08-25 | Thermoplastic liquid crystal polymer molded body and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019156906 | 2019-08-29 | ||
JP2019-156906 | 2019-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039769A1 true WO2021039769A1 (en) | 2021-03-04 |
Family
ID=74685880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/031984 WO2021039769A1 (en) | 2019-08-29 | 2020-08-25 | Thermoplastic liquid crystal polymer molded body and method for producing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7520854B2 (en) |
WO (1) | WO2021039769A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021251263A1 (en) * | 2020-06-09 | 2021-12-16 | 株式会社クラレ | Thermoplastic liquid crystal polymer molded article |
WO2021251264A1 (en) * | 2020-06-09 | 2021-12-16 | 株式会社クラレ | Thermoplastic liquid crystal polymer molded article |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001049002A (en) * | 1999-08-10 | 2001-02-20 | Kuraray Co Ltd | Thermoplastic liquid crystal polymer film and its preparation |
JP2004082554A (en) * | 2002-08-27 | 2004-03-18 | Kyocera Corp | Insulating film and multilayer printed circuit board using the same |
JP2008103559A (en) * | 2006-10-19 | 2008-05-01 | Japan Gore Tex Inc | Production method of electronic circuit board |
WO2012117850A1 (en) * | 2011-03-01 | 2012-09-07 | Jx日鉱日石金属株式会社 | Liquid crystal polymer film based copper-clad laminate, and method for producing same |
WO2015064437A1 (en) * | 2013-11-01 | 2015-05-07 | 株式会社クラレ | Production method for thermoplastic liquid crystal polymer film, circuit substrate and production method therefor |
WO2017029917A1 (en) * | 2015-08-19 | 2017-02-23 | 東洋紡株式会社 | Low dielectric adhesive composition |
JP2019135301A (en) * | 2013-10-03 | 2019-08-15 | 株式会社クラレ | Thermoplastic liquid crystal polymer film, circuit board, and methods for manufacturing the same |
-
2020
- 2020-08-25 JP JP2021542919A patent/JP7520854B2/en active Active
- 2020-08-25 WO PCT/JP2020/031984 patent/WO2021039769A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001049002A (en) * | 1999-08-10 | 2001-02-20 | Kuraray Co Ltd | Thermoplastic liquid crystal polymer film and its preparation |
JP2004082554A (en) * | 2002-08-27 | 2004-03-18 | Kyocera Corp | Insulating film and multilayer printed circuit board using the same |
JP2008103559A (en) * | 2006-10-19 | 2008-05-01 | Japan Gore Tex Inc | Production method of electronic circuit board |
WO2012117850A1 (en) * | 2011-03-01 | 2012-09-07 | Jx日鉱日石金属株式会社 | Liquid crystal polymer film based copper-clad laminate, and method for producing same |
JP2019135301A (en) * | 2013-10-03 | 2019-08-15 | 株式会社クラレ | Thermoplastic liquid crystal polymer film, circuit board, and methods for manufacturing the same |
WO2015064437A1 (en) * | 2013-11-01 | 2015-05-07 | 株式会社クラレ | Production method for thermoplastic liquid crystal polymer film, circuit substrate and production method therefor |
WO2017029917A1 (en) * | 2015-08-19 | 2017-02-23 | 東洋紡株式会社 | Low dielectric adhesive composition |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021251263A1 (en) * | 2020-06-09 | 2021-12-16 | 株式会社クラレ | Thermoplastic liquid crystal polymer molded article |
WO2021251264A1 (en) * | 2020-06-09 | 2021-12-16 | 株式会社クラレ | Thermoplastic liquid crystal polymer molded article |
Also Published As
Publication number | Publication date |
---|---|
TW202115152A (en) | 2021-04-16 |
JPWO2021039769A1 (en) | 2021-03-04 |
JP7520854B2 (en) | 2024-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7382926B2 (en) | Thermoplastic liquid crystal polymer molded body and its manufacturing method | |
JP6792668B2 (en) | Manufacturing method of thermoplastic liquid crystal polymer film, circuit board and its manufacturing method | |
JP4892274B2 (en) | Highly adhesive liquid crystal polymer molded body and method for producing the same | |
CN110678503B (en) | Fluorine-containing resin film, laminate, and method for producing hot-pressed laminate | |
WO2021251261A1 (en) | Thermoplastic liquid crystal polymer molded article | |
JP7520854B2 (en) | Thermoplastic liquid crystal polymer molded body and method for producing same | |
JP5183981B2 (en) | Surface modification method and surface coating method for articles made of liquid crystal polymer material | |
CN113348208B (en) | Dispersion liquid | |
JPWO2019142790A1 (en) | Long laminate, its manufacturing method and printed wiring board | |
JP2008291168A (en) | Method for producing liquid crystal polymer film and substrate for printed circuit board | |
WO2021251262A1 (en) | Thermoplastic liquid crystal polymer molded body | |
CN112334301A (en) | Metal foil with resin | |
TWI851799B (en) | Thermoplastic liquid crystal polymer shaped article and production method thereof | |
WO2021251265A1 (en) | Thermoplastic liquid crystal polymer molded body | |
WO2021251264A1 (en) | Thermoplastic liquid crystal polymer molded article | |
WO2021251263A1 (en) | Thermoplastic liquid crystal polymer molded article | |
KR20230125199A (en) | Thermoplastic liquid crystal polymer film molded body having a colored layer and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20857467 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021542919 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20857467 Country of ref document: EP Kind code of ref document: A1 |