WO2021250765A1 - Abnormal sound observation system for metal material machining equipment - Google Patents

Abnormal sound observation system for metal material machining equipment Download PDF

Info

Publication number
WO2021250765A1
WO2021250765A1 PCT/JP2020/022625 JP2020022625W WO2021250765A1 WO 2021250765 A1 WO2021250765 A1 WO 2021250765A1 JP 2020022625 W JP2020022625 W JP 2020022625W WO 2021250765 A1 WO2021250765 A1 WO 2021250765A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormal noise
abnormal
information
processing
estimated
Prior art date
Application number
PCT/JP2020/022625
Other languages
French (fr)
Japanese (ja)
Inventor
光彦 佐野
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to CN202080069627.6A priority Critical patent/CN114502926A/en
Priority to JP2021568168A priority patent/JP7151910B2/en
Priority to PCT/JP2020/022625 priority patent/WO2021250765A1/en
Publication of WO2021250765A1 publication Critical patent/WO2021250765A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a system for observing abnormal acoustic components (hereinafter, also referred to as "abnormal noise") generated in equipment for processing metal materials.
  • the processing process of the metal material typically includes a rolling process and an incidental process thereof.
  • various abnormal noises are generated during the operation.
  • Abnormal noise is an acoustic component having a frequency component, frequency distribution, and volume that does not occur during normal operation.
  • Abnormal noise is caused by various causes. For example, if the metal material warps in the vertical direction or bends in the horizontal direction (that is, the working side or the driving side of the metal material transport line), the metal material comes into contact with surrounding mechanical equipment. The vertical warp of the metal material occurs when there is a difference between the temperature on the upper surface and the temperature on the lower surface of the metal material. If there is a difference between the surface condition of the upper rolling roll and that of the lower rolling roll, and a difference in rolling ratio and the resulting elongation ratio occurs on the upper and lower surfaces of the metal material, vertical warpage also occurs.
  • the bending of the metal material in the left-right direction occurs, for example, as follows. That is, if the temperature on the left and right of the metal material is different due to the variation in temperature rise in the processing furnace, the rolling load on the left and right will be different due to the difference in deformation resistance of the metal material. In addition, there is a laterality in the elastic deformation (mill extension) of the rolling mill. Then, on the exit side of the rolling mill, a plate thickness difference (wedge) occurs in the left-right direction of the metal material. When a wedge is formed, there is a difference between the elongation on the right side of the metal material and that on the left side. Therefore, the metal material bends in the left-right direction.
  • Mill vibration is caused by elastic deformation of the rolling mill and changes in the frictional state between the rolling roll and the metal material. Eccentricity due to damage to a part of a rotating body such as a motor, a drive shaft, and a roll is another cause of abnormal noise.
  • the direction of arrival of abnormal sounds that can be recognized by the human ear is not accurate. Therefore, for example, it is extremely difficult for the human ear to identify whether the abnormal noise is generated on the left side or the right side of the rolling mill. In addition, if the worker's cognitive ability and experience are low, the occurrence of abnormal noise may be overlooked. Further, the work performed by the worker is not limited to the recognition of abnormal noise. Therefore, even if the worker's recognition ability is high, it is impossible to deal with the abnormal noise when it occurs while always paying attention to the abnormal noise. Therefore, there was a possibility that the occurrence of abnormal noise was overlooked and no countermeasures were taken.
  • a microphone or vibration sensor is installed in advance in a processing device that is expected to generate abnormal noise and the signals from these detection devices are analyzed, there is a possibility that the source of the abnormal noise can be automatically identified.
  • the processing equipment includes various devices, and many devices are expected to generate abnormal noise. Therefore, it is economically limited to attach a detection device to all of these devices.
  • it is necessary to install a large number of long connection cables. Wireless connection is conceivable, but some devices in processing equipment have sources of electromagnetic noise such as motors and drive devices. Therefore, in reality, it is necessary to reduce the number of detection devices to some extent, and there is a possibility that the generation of abnormal noise itself cannot be detected for the devices in which the detection devices are not installed.
  • Patent Documents 1 and 2 As a conventional technique for detecting the generation of abnormal noise, the techniques disclosed in Patent Documents 1 and 2 are exemplified.
  • a microphone device having a large number of directional microphones arranged in a matrix is used. Then, based on the information on the arrangement position of the microphone device, the position of the sound field collected by a certain directional microphone in the sound collecting area is specified.
  • Patent Document 3 discloses a technique for attaching a device that transmits a position specifying signal to a monitored object.
  • a transmitter it is not realistic to attach a transmitter to a metal material to be worked, and it is extremely difficult to apply the transmitter to a metal material that is hot-rolled.
  • Patent Document 4 discloses a device for specifying the direction of acoustic waves using a single microphone array.
  • this device although the direction from the microphone array to the source of the acoustic wave can be known, it is difficult to specify the distance from the microphone array to the source.
  • the present invention has been made to solve the above-mentioned problems, and to provide a technique capable of automatically and highly accurately identifying the position of the source of abnormal noise generated in a metal material processing facility. The purpose.
  • the first invention is an abnormal noise observation system for observing abnormal noise generated in a metal material processing facility.
  • the abnormal noise observation system is At least two microphone arrays that detect sound, and A processing device that performs acoustic signal processing that processes acoustic signals detected by at least two microphone arrays, and To prepare for.
  • the at least two microphone arrays A first microphone array directed to the first space including the location of the processing equipment, A second microphone array directed to a second space that shares a part of the space with the first space at the position of the processing equipment. including.
  • the processing device is used in the acoustic signal processing.
  • the first abnormal sound portion is extracted from the acoustic signal detected by the first microphone array, and the first abnormal sound portion is extracted.
  • the second abnormal sound portion is extracted from the acoustic signal detected by the second microphone array, and the second abnormal sound portion is extracted.
  • the first relative orientation indicating the relative orientation of the abnormal noise source with respect to the first microphone array is estimated.
  • the second relative direction indicating the relative direction with respect to the second microphone array is estimated.
  • the position of the abnormal noise source on the coordinate plane is estimated based on the positions of the first and second microphone arrays on the reference coordinate plane and the first and second relative orientations.
  • the second invention further has the following features in the first invention.
  • the at least two microphone arrays further include a third microphone array directed at a third space that shares a portion of space with at least one of the first and second spaces at the location of the processing equipment.
  • the processing device further The third abnormal sound part is extracted from the acoustic signal detected by the third microphone array, and the third abnormal sound portion is extracted. Based on the third abnormal sound portion, a third relative orientation indicating the relative orientation with respect to the third microphone array is estimated.
  • the processing device estimates the position of the abnormal noise source based on the combination of two microphone arrays of the first, second and third microphone arrays.
  • the third invention further has the following features in the first or second invention.
  • the processing device further estimates the position of the abnormal sound source in the acoustic signal processing, the coordinates from any microphone array of the at least two microphone arrays to the abnormal sound source. Based on the distance on the surface and the time when the abnormal sound from the abnormal sound source is detected in the arbitrary microphone array, the time when the abnormal sound is generated at the abnormal sound source is estimated.
  • the fourth invention further has the following features in the third invention.
  • the abnormal noise observation system further includes a display device for displaying the operating status of the processing equipment.
  • the processing device further Information acquisition processing to acquire information on the metal material processed in the processing equipment, An association process of associating the abnormal noise generation information including the estimated position of the abnormal noise source and the estimated occurrence time of the abnormal noise at the abnormal noise source with the information of the metal material.
  • the abnormal noise observation system further includes a storage device for recording the operating status of the processing equipment.
  • the processing device further Information acquisition processing to acquire information on the metal material processed in the processing equipment, An association process of associating the abnormal noise generation information including the estimated position of the abnormal noise source and the estimated occurrence time of the abnormal noise at the abnormal noise source with the information of the metal material.
  • the sixth invention further has the following features in any one of the third to fifth inventions.
  • the abnormal noise observation system further includes a control device for controlling the processing device constituting the processing facility.
  • the processing device further An emergency for urgently operating at least a part of the processing apparatus based on the abnormal noise generation information including the estimated position of the abnormal noise source and the estimated occurrence time of the abnormal noise at the abnormal noise source.
  • An emergency control process for outputting a control command to the control device is performed.
  • acoustic signal processing is performed.
  • the first abnormal sound part is extracted from the acoustic signal detected by the first microphone array, and the first relative direction of the abnormal sound source with respect to the first microphone array is determined based on the first abnormal sound part. It is calculated.
  • the second abnormal sound portion is extracted from the acoustic signal detected by the second microphone array, and the second relative direction of the abnormal sound source with respect to the second microphone array is calculated based on the second abnormal sound portion.
  • the position of the abnormal sound source on the reference coordinate plane is estimated based on the positions of the first and second microphone arrays on the reference coordinate plane and the first and second relative directions. Therefore, according to the acoustic signal processing, it is possible to automatically and highly accurately identify the position of the abnormal noise source.
  • the second invention it is possible to automatically and highly accurately identify the position of the abnormal noise source based on the combination of two microphone arrays of the first, second and third microphone arrays. It becomes.
  • the third invention when the position of the abnormal noise source is estimated, the time of occurrence of the abnormal noise at the abnormal noise source is estimated. Therefore, it is possible to automatically and highly accurately identify the time when the abnormal noise is generated.
  • the information of the metal material to which the abnormal noise generation information is attached is displayed on the display device. Therefore, it is possible to provide the operator who sees the display device with the information of the metal material to which the abnormal noise generation information is attached. This leads to a reduction in the burden on workers in processing equipment.
  • the information of the metal material to which the abnormal noise generation information is attached is recorded in the storage device. Therefore, after processing the metal material, it is possible to trace back from the abnormal noise generation information and identify the metal material related to this. It is also possible to utilize the abnormal noise generation information attached to the metal material information as product quality information.
  • an emergency control command is output to the control device based on the abnormal noise generation information.
  • An emergency control command is a control command for urgently operating at least a part of a processing device. Therefore, it is possible to prevent the generation of abnormal noise from developing into a big trouble.
  • FIG. 1 is a schematic top view showing a first application example of the abnormal noise observation system according to the embodiment to processing equipment.
  • a side guide SG is drawn.
  • the side guide SG is a device that stabilizes the transport direction DD of the metal material MTL processed in the processing equipment.
  • the side guide SG is installed, for example, on the entry side and the exit side of the rough rolling mill.
  • the side guide SG is installed between the stands of the finish rolling mill.
  • the side guide SG is installed on the entry side of the winder.
  • the side guide SG is an example of a "processing device" that constitutes a processing facility.
  • Other examples of processing equipment include rough rolling mills, finish rolling mills, skin pass rolling mills and winders.
  • FIG. 1 also depicts microphone arrays 10A and 10B. Configuration examples of these microphone arrays will be described later. These microphone arrays are installed on the same side (that is, the working side or the driving side) with respect to the metal MTL. These microphone arrays make up an abnormal noise observation system.
  • the sound collecting surface of the microphone array 10A is directed to the space SPA.
  • the spatial SPA includes at least the location of the processing equipment.
  • the sound collecting surface of the microphone array 10B is directed to the space SPB.
  • Spatial SPA also includes at least the location of the processing equipment. Part of the space SPA overlaps with part of the space SPB. In the example shown in FIG. 1, the overlapping space L12 is a part of the space of the transport line including the side guide SG.
  • FIG. 2 is a schematic top view showing a second application example to the processing equipment of the abnormal noise observation system according to the embodiment.
  • the microphone arrays 10A, 10B, 10C and 10D constitute an abnormal noise observation system.
  • the installation locations of the microphone arrays 10A and 10B are the same as those in the first application example.
  • the microphone arrays 10C and 10D are installed on the same side (that is, the working side or the driving side) with respect to the metal material MTL.
  • the sound collecting surface of the microphone array 10C is directed to the spatial SPC.
  • the sound collecting surface of the microphone array 10D is directed to the spatial SPD.
  • Spatial SPCs and SPDs also include at least the location of processing equipment.
  • the space in which any two of the spaces SPA to SPD overlap includes a part of the space of the transport line including the side guide SG.
  • microphone array 10 this microphone arrays are collectively referred to as “microphone array 10" except when the microphone arrays 10A to 10D are distinguished.
  • FIG. 3 is a diagram showing an overall configuration example of the abnormal noise observation system.
  • the abnormal noise observation system 100 includes a microphone array 10, a control device 20, a processing device 30, a processing device 40, a display device 50, and a storage device 60.
  • the microphone array 10 detects the sound in the space to which the sound collecting surface is directed. At least two microphone arrays 10 are installed around the processing equipment. The installation example of the microphone array 10 has already been described. Each of the microphone arrays 10 is connected to the processing device 40 via a cable. Since the amount of signals from the microphone array 10 is large, it is necessary to perform high-speed transmission between the microphone array 10 and the processing device 40. However, it is generally difficult to use a long cable for high-speed transmission. Therefore, it is desirable to provide a sub-processing device having a part of the functions of the processing device 40 for each microphone array 10 and connect the sub-processing device and the microphone array 10 via a short cable. In this case, each of the sub-processing devices is connected to the processing device 40 via a long cable.
  • Each of the microphone arrays 10 is equipped with an amplifier and an analog-to-digital converter (neither is shown).
  • the sampling period of the analog-to-digital conversion is set to be at least twice the upper limit frequency determined in consideration of the frequency component of the abnormal sound to be detected so that aliasing does not occur.
  • the range of the "frequency component of the abnormal sound to be detected" is, for example, 10 Hz to 100 kHz.
  • the recently developed MEMS microphone can capture an acoustic signal having a frequency exceeding 100 kHz, and is therefore preferably applicable to the microphone array 10.
  • FIG. 4 is a schematic diagram showing a configuration example of the microphone array 10.
  • the microphone array 10 includes five microphones 11 to 15 arranged in the horizontal direction.
  • a plurality of microphone groups similar to the microphones 11 to 15 may be arranged in the vertical direction.
  • the distance d between two adjacent microphones in the microphone array 10 is not particularly limited.
  • the interval d is set to 1 ⁇ 2 or less of the wavelength ⁇ at the above-mentioned upper limit frequency. If the interval d is longer than this wavelength, it may take a lot of time to scan the signal in the extraction process described later, or the estimation accuracy of the direction of the abnormal sound may decrease.
  • the distance L between the two microphones at both ends in the horizontal direction (that is, the microphones 11 and 15) is also not particularly limited. However, the volume detected by the microphone array 10 is inversely proportional to the square of the distance L. Therefore, it is desirable that the distance L is set to be equal to or lower than the lower limit value determined in consideration of the signal noise ratio of abnormal noise, the microphone sensitivity, and the ambient sound.
  • the control device 20 manages the operation in the processing equipment.
  • the control device 20 is a computer including a processor, a memory, and an input / output interface.
  • the control device 20 includes information on the operating status of the processing equipment (hereinafter, also referred to as “operating status information”), information on the metal material processed by the processing equipment (hereinafter, also referred to as “metal material information”), and. It has information on the processing conditions of the metal material (hereinafter, also referred to as "processing condition information").
  • the operating status information information indicating the operating status of the processing apparatus 30 is exemplified.
  • the metal material information include information on the metal material identification number, material type classification, and dimension classification.
  • information on the position of the metal material on the transport line is also exemplified. This position information is acquired based on a signal from a detection device installed at a key point on the transport line and a signal from a drive device of various motors.
  • processing condition information the target plate thickness on the output side of various rolling mills and the speed condition of the metal material in the processing process are exemplified.
  • the control device 20 sends the operation status information and the metal material information to the processing device 40 and the storage device 60.
  • the control device 20 also generates a control command for the processing device 30 based on the metal material information and the processing condition information.
  • As the control command information on the control amount input to various actuators of the processing apparatus 30 is exemplified.
  • the control device 20 sends a control command to the processing device 30 and the storage device 60.
  • the emergency control command is a control command generated in an emergency of the processing equipment.
  • Processing device 30 processes a metal material on a transport line.
  • Examples of the processing apparatus 30 include the side guide SG, the rough rolling mill, the finish rolling mill, the skin pass rolling mill, and the winding machine described with reference to FIGS. 1 and 2.
  • the processing device 40 detects the generation of abnormal noise in the processing equipment.
  • the processing device 40 is a computer including a processor, a memory, and an input / output interface, like the control device 20.
  • the processing device 40 determines whether or not it is necessary to detect the occurrence of abnormal noise based on the information received from the control device 20. When it is determined that it is necessary to detect the occurrence of abnormal noise, the processing device 40 detects the occurrence of abnormal noise based on the acoustic information detected by the microphone array 10. When the processing device 40 detects the occurrence of abnormal noise, the processing device 40 generates abnormal noise generation information. As the abnormal noise generation information, information on the estimated position of the abnormal noise generation source (Allophone source) and the estimated time of the abnormal noise generation is exemplified. The processing device 40 associates the generated abnormal noise generation information with the metal material information based on the metal material information received from the control device 20. Details of the series of processes will be described later.
  • the processing device 40 also performs processing (that is, display processing) for displaying the metal material information associated with the abnormal noise generation information on the display device 50.
  • the processing device 40 further performs a process (that is, a recording process) for recording the metal material information associated with the abnormal noise generation information in the storage device 60.
  • the processing device 40 further performs a process for urgently controlling the processing device 30 (that is, an urgent control process) based on the information of the estimated position of the abnormal noise source. Details of these processes will also be described later.
  • the display device 50 is provided in, for example, a driver's cab in which a worker (field worker) is stationed. In another example, the display device 50 is provided in the management room where the manager (remote worker) is stationed. The operation status information is displayed on the display device 50. This display is performed based on the information stored in the storage device 60. The display device 50 also displays video data output from a camera installed at a key point of the processing equipment. The worker and the manager monitor the operating status of the processing equipment, the state of the movable portion of the processing device 30, and the like via the display device 50.
  • the storage device 60 stores information on the arrangement and outer shape of the processing device 30.
  • the storage device 60 also stores information on the state of the movable portion of the processing device 30. Information on the state of the moving part is included in the operating status information.
  • the storage device 60 also stores the acoustic information detected by the microphone array 10.
  • the storage device 60 may receive this acoustic information from the processing device 40 or may receive it directly from the microphone array 10.
  • the storage device 60 also stores metal material information with abnormal noise generation information.
  • FIG. 5 is a diagram showing a functional configuration example of the processing device 40.
  • the processing device 40 includes an information acquisition unit 41, an acoustic signal processing unit 42, a display processing unit 43, a recording processing unit 44, and an emergency control processing unit 45. These functional units are realized by the processing device 40 processor executing various programs stored in the memory.
  • the information acquisition unit 41 and a part of the acoustic signal processing unit 42 may be realized in the sub processing device.
  • the processing related to the acoustic signal processing of the information acquisition unit 41 and the processing performed by the extraction processing unit 42A and the direction estimation processing unit 42B, which will be described later, may be performed in the sub-processing device.
  • Information acquisition unit 41 performs a process of acquiring operation status information and metal material information (information acquisition process).
  • the information acquisition unit 41 also acquires the acoustic information detected by the microphone array 10.
  • the information acquisition unit 41 determines whether or not it is necessary to detect the occurrence of abnormal noise based on the operation status information and the metal material information. For example, the information acquisition unit 41 determines that it is necessary to detect the occurrence of abnormal noise when the processing equipment is in operation.
  • the information acquisition unit 41 sends the metal material information and the acoustic information to the acoustic signal processing unit 42.
  • the acoustic signal processing unit 42 processes the acoustic signal included in the acoustic information.
  • the acoustic signal processing unit 42 includes an extraction processing unit 42A, an orientation estimation processing unit 42B, a position estimation processing unit 42C, a time estimation processing unit 42D, and an association processing unit 42E. ing.
  • the extraction processing unit 42A performs processing (extraction processing) for extracting an abnormal sound portion from an acoustic signal. Specifically, the extraction processing unit 42A first performs digital filter processing, short-time Fourier transform, or wavelet transform on the acoustic signal, and extracts (the signal waveform) of the frequency component (signal waveform) equal to or lower than the above-mentioned upper limit frequency.
  • the number of frequency components to be extracted is F (F ⁇ 1).
  • the characteristic frequency of the bandpass filter is selected so that the overlap of the frequency spectra of the frequency components becomes sufficiently small, and the parameters suitable for the characteristic frequency are set.
  • the short-time Fourier transform a part of the acoustic signal is extracted by multiplying the acoustic signal by a window function represented by a Gaussian function or the like, and converted into a frequency spectrum by the Fourier transform.
  • the wavelet transform may be a continuous wavelet transform or a discrete wavelet transform.
  • the wavelet scaling factor is set so that the overlap of frequency spectra becomes sufficiently small in the continuous wavelet transform.
  • the extraction processing unit 42A determines, for example, whether or not the signal strength (volume) deviates from the range during normal operation for each frequency component. In another example, the extraction processing unit 42A determines whether or not the ratio of signal strength between frequency components (that is, signal strength ratio or volume ratio) deviates from the range during normal operation. If there is a frequency component that deviates from the normal range, or if there is a combination of frequency components that deviate from the normal range, the extraction processing unit 42A determines this as an abnormal sound, cuts out the abnormal sound portion on the time axis, and makes an orientation. It is sent to the estimation processing unit 42B.
  • Direction estimation processing unit 42B performs processing (direction estimation processing) for estimating the relative orientations of the abnormal sound sources with respect to the microphone array 10 based on the information of the abnormal noise unit received from the orientation estimation processing unit 42B. conduct.
  • Examples of the method for estimating the relative orientation include a method based on phase detection, a method based on the mutual correlation coefficient, and a method based on the eigenvalue analysis of the correlation matrix.
  • each frequency component of the abnormal sound part detected by each microphone is divided by the effective value of the amplitude (that is, the square root of the root mean square of the amplitude of each sampling point) to make the amplitude intensity uniform. ..
  • the frequency component having the same amplitude intensity is also referred to as a “normalized component”.
  • any two microphones arranged in the horizontal direction in one microphone array 10 (hereinafter, referred to as "microphone i" and “microphone j" for convenience of explanation).
  • the normalized components of the same frequency in the abnormal sound part detected by these two microphones are multiplied (that is, the amplitude of the microphone i and that of the microphone j are multiplied for each sampling point. ), And the average value (DC component) x is calculated.
  • the phase difference ⁇ ij is calculated by the following equation (1) using the inverse function of the cosine function from the addition theorem of the sine function.
  • the arrival direction ⁇ is calculated by substituting the phase difference ⁇ ij into the following equation (2).
  • d ij is the distance between the microphone i and the microphone j.
  • is an angle formed by a line (normal) NL that passes through the center of the microphone array 10 and is perpendicular to the sound collecting surface of the microphone array 10 and a line segment SL that connects the center and the abnormal sound source.
  • FIG. 6 shows an example of the arrival direction ⁇ , the normal NL, and the line segment SL.
  • NL 10A and NL 10B as normals NL and SL 10A and SL 10B as line segments SL are drawn.
  • a relative direction theta 10B of noise sources AS are depicted for the microphone array 10B.
  • the coordinate point center position of the reference coordinate system of the microphone array 10A (x a, y a) is represented by, is represented by it coordinate points of the microphone array 10B (x b, y b) .
  • the position of the abnormal noise source AS is represented by a coordinate point (x ab , yab).
  • the method based on the intercorrelation coefficient focuses on the same frequency component in the abnormal sound portion detected by the above-mentioned two microphones (that is, microphones i and j).
  • the intercorrelation coefficient rij when one of the frequency components is shifted by the time difference ⁇ t in the time axis direction is calculated by the following equation (3).
  • s ij is the covariance of each frequency component of the abnormal sound portion detected by the microphones i and j.
  • s i is the standard deviation of each frequency component of the abnormal sound portion detected by the microphone i
  • s j is that of the microphone j.
  • n is the total number of data (i, j)
  • ik and jk are numerical values of each frequency component
  • i - and j - are average values.
  • the intercorrelation coefficient rij is calculated while changing the time difference ⁇ t.
  • the phase difference ⁇ ij is calculated from the following equation (4) showing the product of the time difference ⁇ t when the mutual correlation coefficient r ij becomes maximum and the frequency f.
  • the arrival direction ⁇ is calculated by the equation (5) modified by substituting the phase difference ⁇ ij into the equation (2) described above.
  • the method based on the eigenvalue analysis of the correlation matrix can estimate the arrival direction ⁇ with high resolution.
  • Examples of this method include the MUSIC method, the Rot MUSIC method, and the ESPRIT method.
  • the MUSIC method will be described.
  • the total number of these abnormal sounds is set to n.
  • the arrival direction ⁇ is calculated as follows. First, the variable ⁇ is scanned in the range of ⁇ / 2 ⁇ ⁇ ⁇ ⁇ / 2, and the relative phase vector ⁇ ( ⁇ ) expressed by the following equation (6) and the evaluation value y expressed by the equation (7). ( ⁇ ) and are calculated. In equation (6), j is an imaginary unit. The variable ⁇ when the evaluation value y ( ⁇ ) indicates the minimum value ( ⁇ 0) is recorded as ⁇ p. This ⁇ p represents the arrival direction ⁇ of each signal.
  • the direction estimation processing unit 42B may perform weighting averaging processing in order to improve the estimation accuracy of the arrival direction ⁇ . For example, when the amplitudes of the plurality of frequency components in the abnormal sound portion are significant signals (that is, in the case of signals exceeding the noise level), the above-mentioned estimation method is applied to each of these frequency components. Then, the arrival direction ⁇ is obtained for each frequency component. In the weighted averaging process, a coefficient corresponding to the amplitude of the frequency component is multiplied by each arrival direction ⁇ , and the average value ⁇ ave of these is calculated.
  • the direction estimation processing unit 42B sends the calculated arrival direction ⁇ to the position estimation processing unit 42C.
  • the direction estimation processing unit 42B sends the arrival direction ⁇ to the position estimation processing unit 42C when the incident angle condition and the installation condition are satisfied.
  • these two conditions will be described.
  • the incident angle condition As the configuration example of the microphone array 10 described with reference to FIG. 4, sound can be collected in the range of ⁇ / 2 ⁇ ⁇ ⁇ ⁇ / 2. That is, the arrival direction can be estimated in the range of ⁇ / 2 ⁇ ⁇ ⁇ ⁇ / 2. However, when ⁇ exceeds a certain range, the estimation accuracy of the arrival direction drops sharply. If a decrease in estimation accuracy of about 10% is allowed, the range of ⁇ is ⁇ 70 ° ⁇ ⁇ ⁇ 70 °.
  • the incident angle condition means that the arrival direction ⁇ is within this allowable range.
  • any two microphone arrays 10 (hereinafter referred to as “microphone array p” and “microphone array q” for convenience of explanation).
  • microphone array p and “microphone array q” for convenience of explanation).
  • the arrival direction ⁇ of the abnormal sound having a different generation position has been calculated.
  • the installation conditions include the following two individual conditions.
  • First installation condition There is an overlapping portion in the space where the sound collecting surfaces of the microphone arrays p and q are facing, and the overlapping portion exists on the transport line.
  • Second installation condition Regarding the microphone arrays p and q.
  • the angles ⁇ p and ⁇ q formed by each normal line NL and the reference line satisfy ⁇ 45 ° ⁇
  • the position of the microphone array 10 and the direction of the sound collecting surface are known. Therefore, the determination of whether or not the installation condition is satisfied may be a prerequisite for the calculation of the arrival direction ⁇ . In this case, first, the two microphone arrays 10 are narrowed down based on the installation conditions. Subsequently, the arrival direction ⁇ is calculated for the two microphone arrays 10 that have been narrowed down. Then, it is determined whether or not the incident angle condition is satisfied with respect to the calculated arrival direction ⁇ .
  • FIG. 7 shows an example of the angle ⁇ and the normal NL.
  • NL 10A and NL 10C as normals NL are drawn.
  • the normal NL 10A is the same as that shown in FIG. Further, in FIG. 7, as the angle phi p and phi q, the angle phi 10A and phi 10C is depicted.
  • the angle ⁇ 10A is an angle formed by the reference line BL 10A passing through the center of the microphone array 10A and parallel to the X axis and the normal line NL 10A.
  • the angle ⁇ 10C is an angle formed by the reference line BL 10C passing through the center of the microphone array 10C and parallel to the X axis and the normal line NL 10C.
  • FIG. 7 shows an example of the angle ⁇ and the normal NL.
  • the center position coordinate point of the microphone array 10A (x a, y a) is represented by, it is represented by it coordinate points of the microphone array 10C (x c, y c) .
  • the position of the abnormal noise source AS is represented by a coordinate point (x ac , y ac).
  • Position estimation processing unit 42C estimates the position of the abnormal noise source AS based on the information of the arrival direction ⁇ received from the direction estimation processing unit 42B and the information of the position of the microphone array 10. (Position estimation processing) is performed. Specifically, the position estimation processing unit 42C first selects any two microphone arrays 10 from which the arrival direction ⁇ has been calculated (that is, the microphone arrays p and q). In making this selection, the above-mentioned incident angle conditions and installation conditions are used.
  • the position estimation processing unit 42C uses the following equations (8) and (9) to position the abnormal noise source in the reference coordinate system (x pq , y pq ). To calculate.
  • equations (8) and (9) (x p 0 , y p 0 ) and (x q 0 , y q 0 ) are the positions of the microphone arrays p and q in the frame of reference.
  • (x p 0 , y p 0 ) is the position of the microphone in the center of the microphone array p
  • (x q 0 , y q 0 ) is the position of that of the microphone array q.
  • the position estimation processing unit 42C calculates the position (x pq , y pq ) for all combinations of the two microphone arrays 10 in which the arrival direction ⁇ has been calculated. For example, when the total number of microphone arrays 10 for which the arrival direction ⁇ is calculated is u, there are u ⁇ (u-1) combinations of the two.
  • the position estimation processing unit 42C calculates the weighted average of u ⁇ (u-1) positions (x pq , y pq ) by the following equations (10) and (11). In equations (10) and (11), w pq is a weighting factor.
  • the position estimation processing unit 42C sends information on the estimated position ( xest , yest ) to the time estimation processing unit 42D, the display processing unit 43, the recording processing unit 44, and the emergency control processing unit 45.
  • the information of the estimated position (x est , y est ) constitutes the abnormal noise generation information.
  • Time estimation processing unit 42D includes information on the position (xest , yest ) received from the position estimation processing unit 42C, and any one microphone array 10 (for convenience of explanation, "microphone array p"). ) Performs processing (time estimation processing) to estimate the time when the abnormal noise occurred based on the information of the position. Specifically, the time estimation processing section 42D calculates the estimated time t est of noise generated by the following equation (12). In equation (12), L p is the distance from the position (x est , y est ) to the position (x p 0 , y p 0).
  • the time estimation processing unit 42D sends the estimated time test information to the display processing unit 43, the recording processing unit 44, and the emergency control processing unit 45.
  • the information at the time test constitutes information on the occurrence of abnormal noise.
  • Processing unit 42E association processor association associates the estimated position received from the position estimation processing section 42C (x est, y est) and information, the information of the estimated time t est received from the time estimation processing unit 42D, the. Further, the association processing unit 42E associates these abnormal noise generation information with the metal material information received from the information acquisition unit 41. By associating the abnormal noise generation information with the metal material information, the metal material existing at the estimated position (x est , y est ) at the estimated time test is specified. If the estimated position (x est , y est ) is the position of the processing device 30, it is specified that the processing device 30 is the abnormal noise source AS, and further, the metal material processed by the processing device 30. Is also identified.
  • FIG. 8 is a diagram showing an example of a list of metal material information associated with abnormal noise generation information.
  • the abnormal noise generation information is composed of the estimated position and the estimated time information.
  • the information on the estimated position is represented by the coordinate points (x, y), and the information on the estimated time is represented by the time (X: Y).
  • Information on the date on which the abnormal noise occurred may be added to the information on the estimated time.
  • the metal material information is composed of information on an identification number, a material type classification, and a dimensional classification.
  • the association processing unit 42E sends the metal material information to which the abnormal noise generation information is attached to the display processing unit 43, the recording processing unit 44, and the emergency control processing unit 45. It is desirable that the metal material information be transmitted each time the association process is performed.
  • Display processing unit 43 performs processing for displaying the metal material information with the abnormal noise generation information received from the association processing unit 42E on the display device 50.
  • the external shape information of the processing device 30 around the estimated position (xest , yest ) is stored in the storage device 60 based on the information of the estimated position (xest , yest ) included in the abnormal noise generation information.
  • an image is generated in which a schematic diagram showing the outer shape of the metal material and a figure (or symbol) showing the abnormal noise source AS are superimposed on the read outer shape of the processing apparatus 30.
  • the information of the generated image is sent to the display device 50.
  • Ancillary information may be added to the image information transmitted to the display device 50.
  • information on the estimated time test information on the metal material displayed on the display device 50, and information on the state of the movable portion of the processing device 30 existing at the estimated position (xest , yest) are exemplified. If a process for identifying the cause of the abnormal noise is separately performed based on the abnormal noise generation information, the operating status information, etc., the information on the cause is included in the attached information. If a process for diagnosing the severity of the occurrence of abnormal noise is performed separately, information on the result of the diagnosis (for example, caution required, suspension of operation, etc.) is included in the attached information.
  • FIG. 9 and 10 are schematic views showing an example of an image displayed on the display device 50.
  • a two-dimensional image is displayed on the display device 50.
  • a three-dimensional image is displayed on the display device 50.
  • the metal material that was present at the estimated position ( xest , yest ) at the estimated time test is placed in the center.
  • a figure indicating the source of abnormal noise is drawn at the estimated position (x est , y est).
  • the recording processing unit 44 performs processing for recording the metal material information with the abnormal noise generation information received from the association processing unit 42E in the storage device 60.
  • ancillary information may be added to the metal material information.
  • the attached information the same attached information as described in the display process is exemplified.
  • Emergency control unit emergency control processing unit 45 based on the estimated position received from the position estimation processing section 42C (x est, y est) and information, the estimated time t est of information received from the position estimation processing section 42D, the And generate an emergency control command.
  • Emergency control commands are generated to avoid the occurrence of malfunctions related to abnormal noise.
  • a control command for urgently opening the side guide SG installed on the downstream side of the estimated position (xest , est) in the transport line is exemplified.
  • As the emergency control command a control command for urgently widening the roll gap of the rolling mill installed on the downstream side of the estimated position (xest , yest) in the transport line is also exemplified.
  • the acoustic signal processing unit 42 performs extraction, direction estimation, and position estimation processing, so that information on the estimated position (xest , yest ) is automatically obtained. Moreover, it is possible to generate with high accuracy. Therefore, it is possible to automatically and highly accurately identify the position of the abnormal noise source AS.
  • time estimation processing unit 42D since the time estimation process is performed by the acoustic signal processing unit 42 (time estimation processing unit 42D), it is possible to automatically and accurately generate the estimated time test information. Therefore, it is possible to automatically and highly accurately identify the time when the abnormal noise occurs.
  • association processing unit 42E since the association processing is performed by the acoustic signal processing unit 42 (association processing unit 42E) , various measures based on the estimated position (xest , yest ), the estimated time test, and the metal material information can be taken immediately. It will be possible. Further, according to the association processing, it is possible to trace back from the abnormal noise generation information after the processing and identify the metal material related to the abnormal noise generation information. It is also possible to utilize the abnormal noise generation information attached to the metal material information as product quality information.

Abstract

An abnormal sound observation system according to the present invention comprises: at least two microarrays which detect sound; and a processing device which performs sound signal processing in which sound signals that have been detected by the microarrays are processed. The at least two microarrays include first and second microarrays. In the sound signal processing, a first abnormal sound portion is extracted from the sound signal which has been detected by the first microarray, and a second abnormal sound portion is extracted from the sound signal which has been detected by the second microarray. Further, the direction of an abnormal sound source relative to the first microarray (first relative direction) is estimated on the basis of the first abnormal sound portion, and the direction relative to the second microarray (second relative direction) is estimated on the basis of the second abnormal sound portion. On the basis of the positions of the first and second microarrays on a reference coordinate plane and the first and second relative directions, the position of the abnormal sound source on the coordinate plane is estimated.

Description

金属材加工設備の異音観測システムAbnormal noise observation system for metal processing equipment
 本発明は、金属材の加工が行われる設備において発生する異常音響成分(以下、「異音」とも称す。)を観測するシステムに関する。 The present invention relates to a system for observing abnormal acoustic components (hereinafter, also referred to as "abnormal noise") generated in equipment for processing metal materials.
 金属材の加工工程は、典型的には、圧延工程およびそれに付帯する工程を含む。加工工程が行われる設備(以下、「加工設備」とも称す。)では、操業中に種々の異音が発生する。異音は、通常操業時に発生しない周波数成分、周波数分布および音量を有する音響成分である。 The processing process of the metal material typically includes a rolling process and an incidental process thereof. In the equipment where the processing process is performed (hereinafter, also referred to as "processing equipment"), various abnormal noises are generated during the operation. Abnormal noise is an acoustic component having a frequency component, frequency distribution, and volume that does not occur during normal operation.
 異音は、様々な原因により生じる。例えば、金属材が上下方向に反ったり、金属材が左右方向(すなわち、金属材の搬送ラインの作業側または駆動側)に曲がったりすると、金属材が周囲の機械設備に接触する。金属材の上下方向の反りは、金属材の上面における温度と下面における温度との間に差がある場合に起こる。上側の圧延ロールの表面状態と下側の圧延ロールのそれとの間に差があり、圧下率およびそれによる伸び率の差が金属材の上下面において生じる場合にも、上下方向の反りが起こる。 Abnormal noise is caused by various causes. For example, if the metal material warps in the vertical direction or bends in the horizontal direction (that is, the working side or the driving side of the metal material transport line), the metal material comes into contact with surrounding mechanical equipment. The vertical warp of the metal material occurs when there is a difference between the temperature on the upper surface and the temperature on the lower surface of the metal material. If there is a difference between the surface condition of the upper rolling roll and that of the lower rolling roll, and a difference in rolling ratio and the resulting elongation ratio occurs on the upper and lower surfaces of the metal material, vertical warpage also occurs.
 金属材の左右方向の湾曲は、例えば、次のように生じる。すなわち、加工炉における昇温ばらつきになどより、金属材の左右の温度が異なると、金属材の変形抵抗差により左右の圧延荷重に差が生じる。加えて、圧延機の弾性変形(ミル延び)に左右差が生じる。そうすると、圧延機の出側において、金属材の左右方向で板厚差(ウェッジ)が生じる。ウェッジが生じると、金属材の右側の伸び率と左側のそれとの間に差が生じる。故に、金属材が左右方向に曲がる。 The bending of the metal material in the left-right direction occurs, for example, as follows. That is, if the temperature on the left and right of the metal material is different due to the variation in temperature rise in the processing furnace, the rolling load on the left and right will be different due to the difference in deformation resistance of the metal material. In addition, there is a laterality in the elastic deformation (mill extension) of the rolling mill. Then, on the exit side of the rolling mill, a plate thickness difference (wedge) occurs in the left-right direction of the metal material. When a wedge is formed, there is a difference between the elongation on the right side of the metal material and that on the left side. Therefore, the metal material bends in the left-right direction.
 異音の別の発生原因としては、ミル振動が挙げられる。ミル振動は、圧延機の弾性変形や圧延ロールと金属材の間の摩擦状態が変化することにより生じる。電動機、駆動軸、ロールなどの回転体の一部が損傷するなどして偏心することは、異音のまた別の発生原因である。 Another cause of abnormal noise is mill vibration. Mill vibration is caused by elastic deformation of the rolling mill and changes in the frictional state between the rolling roll and the metal material. Eccentricity due to damage to a part of a rotating body such as a motor, a drive shaft, and a roll is another cause of abnormal noise.
 操業中に異音が発生する状態を放置することは、大きなトラブルにつながる可能性がある。そのため、異音の発生原因は、適宜特定され、適切に対処される必要がある。ただし、従来、加工設備で発生する異音の特定および対処は、専ら人的に行われてきた。すなわち、運転室や搬送ライン際において作業者が異音の発生を認めると、異音の大まかな到来方位と、過去の経験に基づいて発生原因を推定し、対策を講じていた。 Leaving a state in which abnormal noise is generated during operation may lead to major troubles. Therefore, it is necessary to appropriately identify the cause of the abnormal noise and take appropriate measures. However, conventionally, the identification and countermeasures of abnormal noise generated in the processing equipment have been performed exclusively by humans. That is, when the worker recognizes the occurrence of abnormal noise in the driver's cab or the transport line, the cause of the abnormal noise is estimated based on the rough direction of arrival of the abnormal noise and past experience, and countermeasures are taken.
 しかしながら、人間の耳で認識することのできる異音の到来方位は正確でない。そのため、例えば、圧延機の左側と右側のどちらで異音が発生したかを人間の耳で特定することは極めて困難である。加えて、作業者の認識能力や経験が低い場合は、異音の発生を聞き逃す可能性がある。更に、作業者が行う作業は、異音の認識だけに限られない。そのため、作業者の認識能力等が高いとしても、常時異音に注意を払いつつ異音が発生した場合にはそれに対応するのには無理がある。故に、異音の発生を聞き逃し、それへの対策が講じられない可能性があった。 However, the direction of arrival of abnormal sounds that can be recognized by the human ear is not accurate. Therefore, for example, it is extremely difficult for the human ear to identify whether the abnormal noise is generated on the left side or the right side of the rolling mill. In addition, if the worker's cognitive ability and experience are low, the occurrence of abnormal noise may be overlooked. Further, the work performed by the worker is not limited to the recognition of abnormal noise. Therefore, even if the worker's recognition ability is high, it is impossible to deal with the abnormal noise when it occurs while always paying attention to the abnormal noise. Therefore, there was a possibility that the occurrence of abnormal noise was overlooked and no countermeasures were taken.
 異音の発生が予想される加工装置に予めマイクや振動センサーを設置し、これらの検出機器からの信号を解析すれば、異音の発生源を自動的に特定できる可能性がある。しかしながら、加工設備には様々な装置が含まれ、異音の発生が予想される装置も多数に上る。そのため、これらの装置の全てに検出機器を取り付けることは経済的な側面から限界がある。加えて、検出機器からの信号を処理するためには、長い接続ケーブルを多数施設する必要がある。無線による接続が考えられるが、加工設備の一部の装置は、モーター、ドライブ装置といった電磁ノイズの発生源がある。したがって、現実には、検出機器の数をある程度絞る必要があり、検出機器が設置されなかった装置については異音の発生そのものを検出できていない可能性があった。 If a microphone or vibration sensor is installed in advance in a processing device that is expected to generate abnormal noise and the signals from these detection devices are analyzed, there is a possibility that the source of the abnormal noise can be automatically identified. However, the processing equipment includes various devices, and many devices are expected to generate abnormal noise. Therefore, it is economically limited to attach a detection device to all of these devices. In addition, in order to process the signal from the detection device, it is necessary to install a large number of long connection cables. Wireless connection is conceivable, but some devices in processing equipment have sources of electromagnetic noise such as motors and drive devices. Therefore, in reality, it is necessary to reduce the number of detection devices to some extent, and there is a possibility that the generation of abnormal noise itself cannot be detected for the devices in which the detection devices are not installed.
 異音の発生を検出する従来技術として、特許文献1および2に開示された技術が例示される。これらの従来技術では、マトリクス状に配列された多数の指向性マイクを有するマイク装置が用いられる。そして、このマイク装置の配設位置の情報に基づいて、ある指向性マイクで集音された音場の、集音エリア内での位置が特定される。しかしながら、位置分解能を上げるためには、指向性のより強いマイクをより多く配列する必要がある。そのため、これらの従来技術では、位置分解能の向上に限度がある。 As a conventional technique for detecting the generation of abnormal noise, the techniques disclosed in Patent Documents 1 and 2 are exemplified. In these conventional techniques, a microphone device having a large number of directional microphones arranged in a matrix is used. Then, based on the information on the arrangement position of the microphone device, the position of the sound field collected by a certain directional microphone in the sound collecting area is specified. However, in order to increase the position resolution, it is necessary to arrange more microphones with stronger directivity. Therefore, in these conventional techniques, there is a limit to the improvement of the position resolution.
 特許文献3には、監視対象に位置特定信号を発信する装置を取り付ける技術が開示されている。しかしながら、被加工物である金属材に発信装置を取り付けることは現実的ではなく、熱間圧延される金属材に発信装置を適用することは困難を極める。 Patent Document 3 discloses a technique for attaching a device that transmits a position specifying signal to a monitored object. However, it is not realistic to attach a transmitter to a metal material to be worked, and it is extremely difficult to apply the transmitter to a metal material that is hot-rolled.
 特許文献4には、単一のマイクアレイを用いて音響波動の方向を特定する装置が開示されている。しかしながら、この装置では、マイクアレイから音響波動の発生源までの方位は分かるものの、マイクアレイから発生源までの距離を特定することは困難である。 Patent Document 4 discloses a device for specifying the direction of acoustic waves using a single microphone array. However, in this device, although the direction from the microphone array to the source of the acoustic wave can be known, it is difficult to specify the distance from the microphone array to the source.
日本特開昭64-46672号公報Japanese Patent Application Laid-Open No. 64-46672 日本特許第4443247号明細書Japanese Patent No. 4443247 日本特開平10-132651号公報Japanese Patent Application Laid-Open No. 10-132651 日本特開平11-64089号公報Japanese Patent Application Laid-Open No. 11-64089
 本発明は、上述の課題を解決するためになされたもので、金属材の加工設備において発生する異音の発生源の位置を自動的かつ高精度に特定することのできる技術を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and to provide a technique capable of automatically and highly accurately identifying the position of the source of abnormal noise generated in a metal material processing facility. The purpose.
 第1の発明は、金属材の加工設備で発生する異音を観測するための異音観測システムである。
 前記異音観測システムは、
 音響を検出する少なくとも2台のマイクアレイと、
 前記少なくとも2台のマイクアレイが検出した音響信号を処理する音響信号処理を行う処理装置と、
 を備える。
 前記少なくとも2台のマイクアレイは、
 前記加工設備の位置を含む第1空間に向けられた第1マイクアレイと、
 前記加工設備の位置において前記第1空間と一部の空間を共有する第2空間に向けられた第2マイクアレイと、
 を含む。
 前記処理装置は、前記音響信号処理において、
 前記第1マイクアレイが検出した前記音響信号から第1異音部を抽出し、
 前記第2マイクアレイが検出した前記音響信号から第2異音部を抽出し、
 前記第1異音部に基づいて、前記第1マイクアレイに対する異音発生源の相対方位を示す第1相対方位を推定し、
 前記第2異音部に基づいて、前記第2マイクアレイに対する前記相対方位を示す第2相対方位を推定し、
 前記第1および第2マイクアレイの基準座標面上の位置と、前記第1および第2相対方位と、に基づいて、前記異音発生源の当該座標面上の位置を推定する。
The first invention is an abnormal noise observation system for observing abnormal noise generated in a metal material processing facility.
The abnormal noise observation system is
At least two microphone arrays that detect sound, and
A processing device that performs acoustic signal processing that processes acoustic signals detected by at least two microphone arrays, and
To prepare for.
The at least two microphone arrays
A first microphone array directed to the first space including the location of the processing equipment,
A second microphone array directed to a second space that shares a part of the space with the first space at the position of the processing equipment.
including.
The processing device is used in the acoustic signal processing.
The first abnormal sound portion is extracted from the acoustic signal detected by the first microphone array, and the first abnormal sound portion is extracted.
The second abnormal sound portion is extracted from the acoustic signal detected by the second microphone array, and the second abnormal sound portion is extracted.
Based on the first abnormal noise unit, the first relative orientation indicating the relative orientation of the abnormal noise source with respect to the first microphone array is estimated.
Based on the second abnormal sound portion, the second relative direction indicating the relative direction with respect to the second microphone array is estimated.
The position of the abnormal noise source on the coordinate plane is estimated based on the positions of the first and second microphone arrays on the reference coordinate plane and the first and second relative orientations.
 第2の発明は、第1の発明において更に次の特徴を有する。
 前記少なくとも2台のマイクアレイは、更に、前記加工設備の位置において前記第1および第2空間の少なくとも一方と一部の空間を共有する第3空間に向けられた第3マイクアレイを備える。
 前記処理装置は、前記音響信号処理において、更に、
 前記第3マイクアレイが検出した前記音響信号から第3異音部を抽出し、
 前記第3異音部に基づいて、前記第3マイクアレイに対する前記相対方位を示す第3相対方位を推定する。
 前記処理装置は、前記異音発生源の位置の推定を、前記第1、第2および第3マイクアレイのうちの2台のマイクアレイの組み合わせに基づいて行う。
The second invention further has the following features in the first invention.
The at least two microphone arrays further include a third microphone array directed at a third space that shares a portion of space with at least one of the first and second spaces at the location of the processing equipment.
In the acoustic signal processing, the processing device further
The third abnormal sound part is extracted from the acoustic signal detected by the third microphone array, and the third abnormal sound portion is extracted.
Based on the third abnormal sound portion, a third relative orientation indicating the relative orientation with respect to the third microphone array is estimated.
The processing device estimates the position of the abnormal noise source based on the combination of two microphone arrays of the first, second and third microphone arrays.
 第3の発明は、第1または2の発明において更に次の特徴を有する。
 前記処理装置が、前記音響信号処理において、更に、前記異音発生源の位置が推定された場合、前記少なくとも2台のマイクアレイのうちの任意のマイクアレイから前記異音発生源までの前記座標面上における距離と、前記異音発生源からの異音が前記任意のマイクアレイにおいて検出された時刻と、に基づいて、前記異音発生源での異音の発生時刻を推定する。
The third invention further has the following features in the first or second invention.
When the processing device further estimates the position of the abnormal sound source in the acoustic signal processing, the coordinates from any microphone array of the at least two microphone arrays to the abnormal sound source. Based on the distance on the surface and the time when the abnormal sound from the abnormal sound source is detected in the arbitrary microphone array, the time when the abnormal sound is generated at the abnormal sound source is estimated.
 第4の発明は、第3の発明において更に次の特徴を有する。
 前記異音観測システムは、前記加工設備の稼働状況を表示する表示装置を更に備える。
 前記処理装置は、更に、
 前記加工設備において加工される前記金属材の情報を取得する情報取得処理と、
 前記異音発生源の推定位置と、前記異音発生源での異音の推定発生時刻とを含む異音発生情報を、前記金属材の情報に関連付ける関連付け処理と、
 前記異音発生情報が関連付けられた前記金属材の情報を、前記表示装置に出力する表示処理と、
 を行う。
The fourth invention further has the following features in the third invention.
The abnormal noise observation system further includes a display device for displaying the operating status of the processing equipment.
The processing device further
Information acquisition processing to acquire information on the metal material processed in the processing equipment,
An association process of associating the abnormal noise generation information including the estimated position of the abnormal noise source and the estimated occurrence time of the abnormal noise at the abnormal noise source with the information of the metal material.
A display process for outputting information on the metal material associated with the abnormal noise generation information to the display device, and
I do.
 第5の発明は、第3または4の発明において更に次の特徴を有する。
 前記異音観測システムは、前記加工設備の稼働状況を記録する記憶装置を更に備える。
 前記処理装置は、更に、
 前記加工設備において加工される前記金属材の情報を取得する情報取得処理と、
 前記異音発生源の推定位置と、前記異音発生源での異音の推定発生時刻とを含む異音発生情報を、前記金属材の情報に関連付ける関連付け処理と、
 前記異音発生情報が関連付けられた前記金属材の情報を、前記記憶装置に記録する記録処理と、
 を行う。
The fifth invention further has the following features in the third or fourth invention.
The abnormal noise observation system further includes a storage device for recording the operating status of the processing equipment.
The processing device further
Information acquisition processing to acquire information on the metal material processed in the processing equipment,
An association process of associating the abnormal noise generation information including the estimated position of the abnormal noise source and the estimated occurrence time of the abnormal noise at the abnormal noise source with the information of the metal material.
A recording process for recording the information of the metal material associated with the abnormal noise generation information in the storage device, and
I do.
 第6の発明は、第3~5の発明の何れか1つにおいて更に次の特徴を有する。
 前記異音観測システムは、前記加工設備を構成する加工装置を制御する制御装置を更に備える。
 前記処理装置は、更に、
 前記異音発生源の推定位置と、前記異音発生源での異音の推定発生時刻とを含む異音発生情報に基づいて、前記加工装置の少なくとも一部を緊急的に作動するための緊急制御指令を前記制御装置に出力する緊急制御処理を行う。
The sixth invention further has the following features in any one of the third to fifth inventions.
The abnormal noise observation system further includes a control device for controlling the processing device constituting the processing facility.
The processing device further
An emergency for urgently operating at least a part of the processing apparatus based on the abnormal noise generation information including the estimated position of the abnormal noise source and the estimated occurrence time of the abnormal noise at the abnormal noise source. An emergency control process for outputting a control command to the control device is performed.
 第1の発明によれば、音響信号処理が行われる。音響信号処理によれば、第1マイクアレイが検出した音響信号から第1異音部が抽出され、この第1異音部に基づいて第1マイクアレイに対する異音発生源の第1相対方位が計算される。また、第2マイクアレイが検出した音響信号から第2異音部が抽出され、この第2異音部に基づいて第2マイクアレイに対する異音発生源の第2相対方位が計算される。そして、第1および第2マイクアレイの基準座標面上の位置と、第1および第2相対方位と、に基づいて、異音発生源の基準座標面上の位置が推定される。したがって、音響信号処理によれば、異音発生源の位置を自動的かつ高精度に特定することが可能となる。 According to the first invention, acoustic signal processing is performed. According to the acoustic signal processing, the first abnormal sound part is extracted from the acoustic signal detected by the first microphone array, and the first relative direction of the abnormal sound source with respect to the first microphone array is determined based on the first abnormal sound part. It is calculated. Further, the second abnormal sound portion is extracted from the acoustic signal detected by the second microphone array, and the second relative direction of the abnormal sound source with respect to the second microphone array is calculated based on the second abnormal sound portion. Then, the position of the abnormal sound source on the reference coordinate plane is estimated based on the positions of the first and second microphone arrays on the reference coordinate plane and the first and second relative directions. Therefore, according to the acoustic signal processing, it is possible to automatically and highly accurately identify the position of the abnormal noise source.
 第2の発明によれば、第1、第2および第3マイクアレイのうちの2台のマイクアレイの組み合わせに基づいて、異音発生源の位置を自動的かつ高精度に特定することが可能となる。 According to the second invention, it is possible to automatically and highly accurately identify the position of the abnormal noise source based on the combination of two microphone arrays of the first, second and third microphone arrays. It becomes.
 第3の発明によれば、異音発生源の位置が推定された場合、当該異音発生源での異音の発生時刻が推定される。したがって、異音の発生時刻を自動的かつ高精度に特定することが可能となる。 According to the third invention, when the position of the abnormal noise source is estimated, the time of occurrence of the abnormal noise at the abnormal noise source is estimated. Therefore, it is possible to automatically and highly accurately identify the time when the abnormal noise is generated.
 第4の発明によれば、異音発生情報が付された金属材の情報が表示装置に表示される。したがって、表示装置を見た作業者に異音発生情報が付された金属材の情報を提供することが可能となる。このことは、加工設備における作業者の負担削減に繋がる。 According to the fourth invention, the information of the metal material to which the abnormal noise generation information is attached is displayed on the display device. Therefore, it is possible to provide the operator who sees the display device with the information of the metal material to which the abnormal noise generation information is attached. This leads to a reduction in the burden on workers in processing equipment.
 第5の発明によれば、異音発生情報が付された金属材の情報が記憶装置に記録される。したがって、金属材の加工後において異音発生情報から遡ってこれに関係のある金属材を特定することが可能となる。金属材情報に付された異音発生情報を、製品の品質情報として活用することもできる。 According to the fifth invention, the information of the metal material to which the abnormal noise generation information is attached is recorded in the storage device. Therefore, after processing the metal material, it is possible to trace back from the abnormal noise generation information and identify the metal material related to this. It is also possible to utilize the abnormal noise generation information attached to the metal material information as product quality information.
 第6の発明によれば、異音発生情報に基づいて緊急制御指令が制御装置に出力される。緊急制御指令は、加工装置の少なくとも一部を緊急的に作動するための制御指令である。したがって、異音の発生が大きなトラブルに発展するのを未然に回避することが可能となる。 According to the sixth invention, an emergency control command is output to the control device based on the abnormal noise generation information. An emergency control command is a control command for urgently operating at least a part of a processing device. Therefore, it is possible to prevent the generation of abnormal noise from developing into a big trouble.
実施の形態に係る異音観測システムの加工設備への第1適用例を示す上面模式図である。It is a top schematic diagram which shows the 1st application example to the processing equipment of the abnormal noise observation system which concerns on embodiment. 実施の形態に係る異音観測システムの加工設備への第2適用例を示す上面模式図である。It is a top schematic diagram which shows the 2nd application example to the processing equipment of the abnormal noise observation system which concerns on embodiment. 実施の形態に係る異音観測システムの全体構成例を示す図である。It is a figure which shows the whole structure example of the abnormal noise observation system which concerns on embodiment. マイクアレイの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the microphone array. 処理装置の機能構成例を示す図である。It is a figure which shows the functional configuration example of a processing apparatus. 相対方位の一例を示す図である。It is a figure which shows an example of a relative direction. 設置条件(第2設置条件)を説明する図である。It is a figure explaining the installation condition (second installation condition). 異音発生情報が関連付けられた金属材情報の一覧の例を示す図である。It is a figure which shows the example of the list of the metal material information associated with the abnormal noise generation information. 表示装置に表示された画像例を示す模式図である。It is a schematic diagram which shows the image example displayed on the display device. 表示装置に表示された画像例を示す模式図である。It is a schematic diagram which shows the image example displayed on the display device.
 以下、本発明の実施の形態に係る異音観測システムについて図面を参照しながら説明する。なお、各図において共通する要素には、同一の符号を付して重複する説明を省略する。また、以下の実施形態によりこの発明が限定されるものではない。 Hereinafter, the abnormal noise observation system according to the embodiment of the present invention will be described with reference to the drawings. The elements common to each figure are designated by the same reference numerals, and duplicate description will be omitted. Further, the present invention is not limited to the following embodiments.
1.異音観測システムの適用例
1-1.第1適用例
 図1は、実施の形態に係る異音観測システムの加工設備への第1適用例を示す上面模式図である。図1には、サイドガイドSGが描かれている。サイドガイドSGは、加工設備において加工される金属材MTLの搬送方向DDを安定化させる装置である。サイドガイドSGは、例えば、粗圧延機の入側および出側に設置される。別の例では、サイドガイドSGは、仕上げ圧延機のスタンド間に設置される。更に別の例では、サイドガイドSGは、巻取り機の入側に設置される。サイドガイドSGは、加工設備を構成する「加工装置」の一例である。加工装置の他の例としては、粗圧延機、仕上げ圧延機、スキンパス圧延機および巻取り機が挙げられる。
1. 1. Application example of abnormal noise observation system 1-1. First Application Example FIG. 1 is a schematic top view showing a first application example of the abnormal noise observation system according to the embodiment to processing equipment. In FIG. 1, a side guide SG is drawn. The side guide SG is a device that stabilizes the transport direction DD of the metal material MTL processed in the processing equipment. The side guide SG is installed, for example, on the entry side and the exit side of the rough rolling mill. In another example, the side guide SG is installed between the stands of the finish rolling mill. In yet another example, the side guide SG is installed on the entry side of the winder. The side guide SG is an example of a "processing device" that constitutes a processing facility. Other examples of processing equipment include rough rolling mills, finish rolling mills, skin pass rolling mills and winders.
 図1には、また、マイクアレイ10Aおよび10Bが描かれている。これらのマイクアレイの構成例については後述される。これらのマイクアレイは、金属材MTLに対して同じ側(すなわち、作業側または駆動側)に設置されている。これらのマイクアレイは、異音観測システムを構成する。マイクアレイ10Aの集音面は、空間SPAに向けられている。空間SPAは、加工設備の位置を少なくとも含む。マイクアレイ10Bの集音面は、空間SPBに向けられている。空間SPAも、加工設備の位置を少なくとも含む。空間SPAの一部は、空間SPBの一部と重複する。図1に示す例において、重複空間L12は、サイドガイドSGを含む搬送ラインの一部の空間である。 FIG. 1 also depicts microphone arrays 10A and 10B. Configuration examples of these microphone arrays will be described later. These microphone arrays are installed on the same side (that is, the working side or the driving side) with respect to the metal MTL. These microphone arrays make up an abnormal noise observation system. The sound collecting surface of the microphone array 10A is directed to the space SPA. The spatial SPA includes at least the location of the processing equipment. The sound collecting surface of the microphone array 10B is directed to the space SPB. Spatial SPA also includes at least the location of the processing equipment. Part of the space SPA overlaps with part of the space SPB. In the example shown in FIG. 1, the overlapping space L12 is a part of the space of the transport line including the side guide SG.
1-2.第2適用例
 図2は、実施の形態に係る異音観測システムの加工設備への第2適用例を示す上面模式図である。第2適用例では、マイクアレイ10A、10B、10Cおよび10Dが異音観測システムを構成する。マイクアレイ10Aおよび10Bの設置箇所は、第1適用例と共通する。マイクアレイ10Cおよび10Dは、金属材MTLに対して同じ側に(すなわち、作業側または駆動側)に設置されている。マイクアレイ10Cの集音面は、空間SPCに向けられている。マイクアレイ10Dの集音面は、空間SPDに向けられている。空間SPCはおよびSPDも、加工設備の位置を少なくとも含む。空間SPA~SPDのうちの任意の2つが重複する空間は、何れも、サイドガイドSGを含む搬送ラインの一部の空間を含んでいる。
1-2. Second Application Example FIG. 2 is a schematic top view showing a second application example to the processing equipment of the abnormal noise observation system according to the embodiment. In the second application example, the microphone arrays 10A, 10B, 10C and 10D constitute an abnormal noise observation system. The installation locations of the microphone arrays 10A and 10B are the same as those in the first application example. The microphone arrays 10C and 10D are installed on the same side (that is, the working side or the driving side) with respect to the metal material MTL. The sound collecting surface of the microphone array 10C is directed to the spatial SPC. The sound collecting surface of the microphone array 10D is directed to the spatial SPD. Spatial SPCs and SPDs also include at least the location of processing equipment. The space in which any two of the spaces SPA to SPD overlap includes a part of the space of the transport line including the side guide SG.
 以下、マイクアレイ10A~10Dを区別する場合を除き、これらのマイクアレイを「マイクアレイ10」と総称する。 Hereinafter, these microphone arrays are collectively referred to as "microphone array 10" except when the microphone arrays 10A to 10D are distinguished.
2.異音観測システムの構成例
 図3は、異音観測システムの全体構成例を示す図である。図3に示される例では、異音観測システム100が、マイクアレイ10と、制御装置20と、加工装置30と、処理装置40と、表示装置50と、記憶装置60と、を備えている。
2. 2. Configuration example of the abnormal noise observation system FIG. 3 is a diagram showing an overall configuration example of the abnormal noise observation system. In the example shown in FIG. 3, the abnormal noise observation system 100 includes a microphone array 10, a control device 20, a processing device 30, a processing device 40, a display device 50, and a storage device 60.
2-1.マイクアレイ
 マイクアレイ10は、集音面が向けられている空間の音響を検出する。マイクアレイ10は、加工設備の周囲に少なくとも2台設置される。マイクアレイ10の設置例については既に説明したとおりである。マイクアレイ10のそれぞれは、ケーブルを介して処理装置40に接続されている。マイクアレイ10からの信号量は多いため、マイクアレイ10と処理装置40の間は伝送を高速で行う必要がある。ただし、一般的に、高速伝送に長いケーブルを用いることが難しい。そのため、処理装置40の一部の機能を有するサブ処理装置をマイクアレイ10ごとに設け、サブ処理装置とマイクアレイ10を短いケーブルを介して接続することが望ましい。この場合、サブ処理装置のそれぞれが、長いケーブルを介して処理装置40に接続される。
2-1. Microphone array The microphone array 10 detects the sound in the space to which the sound collecting surface is directed. At least two microphone arrays 10 are installed around the processing equipment. The installation example of the microphone array 10 has already been described. Each of the microphone arrays 10 is connected to the processing device 40 via a cable. Since the amount of signals from the microphone array 10 is large, it is necessary to perform high-speed transmission between the microphone array 10 and the processing device 40. However, it is generally difficult to use a long cable for high-speed transmission. Therefore, it is desirable to provide a sub-processing device having a part of the functions of the processing device 40 for each microphone array 10 and connect the sub-processing device and the microphone array 10 via a short cable. In this case, each of the sub-processing devices is connected to the processing device 40 via a long cable.
 マイクアレイ10のそれぞれは、アンプおよびアナログ-デジタル変換器(何れも図示しない)を備えている。折り返し雑音(Aliasing)が生じることのないよう、アナログ-デジタル変換のサンプリング周期は、検出しようとする異音の周波数成分を勘案して決められる上限周波数の2倍以上の周期に設定される。「検出しようとする異音の周波数成分」の範囲は、例えば、10Hz~100kHzである。近年開発されたMEMSマイクは、100kHzを超える周波数の音響信号を捉えることができるので、マイクアレイ10に好ましく適用できる。 Each of the microphone arrays 10 is equipped with an amplifier and an analog-to-digital converter (neither is shown). The sampling period of the analog-to-digital conversion is set to be at least twice the upper limit frequency determined in consideration of the frequency component of the abnormal sound to be detected so that aliasing does not occur. The range of the "frequency component of the abnormal sound to be detected" is, for example, 10 Hz to 100 kHz. The recently developed MEMS microphone can capture an acoustic signal having a frequency exceeding 100 kHz, and is therefore preferably applicable to the microphone array 10.
 図4は、マイクアレイ10の構成例を示す模式図である。図4に示される例では、マイクアレイ10が、水平方向に配列された5基のマイク11~15を備えている。マイク11~15と同様のマイク群が、鉛直方向に複数配列されていてもよい。 FIG. 4 is a schematic diagram showing a configuration example of the microphone array 10. In the example shown in FIG. 4, the microphone array 10 includes five microphones 11 to 15 arranged in the horizontal direction. A plurality of microphone groups similar to the microphones 11 to 15 may be arranged in the vertical direction.
 マイクアレイ10において隣り合う2基のマイクの間隔dは、特に限定されない。例えば、間隔dは、上述した上限周波数における波長λの1/2以下に設定される。間隔dがこの波長よりも長いと、後述する抽出処理において信号を走査するのに多くの時間を要し、または、異音の方位の推定精度が低下する場合がある。水平方向の両端の2基のマイク(すなわち、マイク11および15)の間の距離Lも特に限定されない。ただし、マイクアレイ10で検出される音量は、距離Lの2乗に反比例する。そのため、距離Lは、異音の信号ノイズ比、マイク感度および周囲環境音を勘案して決められる下限値以下に設定されることが望ましい。 The distance d between two adjacent microphones in the microphone array 10 is not particularly limited. For example, the interval d is set to ½ or less of the wavelength λ at the above-mentioned upper limit frequency. If the interval d is longer than this wavelength, it may take a lot of time to scan the signal in the extraction process described later, or the estimation accuracy of the direction of the abnormal sound may decrease. The distance L between the two microphones at both ends in the horizontal direction (that is, the microphones 11 and 15) is also not particularly limited. However, the volume detected by the microphone array 10 is inversely proportional to the square of the distance L. Therefore, it is desirable that the distance L is set to be equal to or lower than the lower limit value determined in consideration of the signal noise ratio of abnormal noise, the microphone sensitivity, and the ambient sound.
2-2.制御装置
 制御装置20は、加工設備での操業を管理する。制御装置20は、プロセッサ、メモリおよび入出力インタフェースを備えるコンピュータである。制御装置20は、加工設備の稼働状況の情報(以下、「稼働状況情報」とも称す。)、加工設備で加工される金属材の情報(以下、「金属材情報」とも称す。)、および、当該金属材の加工条件の情報(以下、「加工条件情報」とも称す。)を有している。
2-2. Control device The control device 20 manages the operation in the processing equipment. The control device 20 is a computer including a processor, a memory, and an input / output interface. The control device 20 includes information on the operating status of the processing equipment (hereinafter, also referred to as “operating status information”), information on the metal material processed by the processing equipment (hereinafter, also referred to as “metal material information”), and. It has information on the processing conditions of the metal material (hereinafter, also referred to as "processing condition information").
 稼働状況情報としては、加工装置30の稼働状態を示す情報が例示される。金属材情報としては、金属材の識別番号、材種区分および寸法区分の情報が例示される。金属材情報としては、金属材の搬送ライン上の位置の情報も例示される。この位置情報は、搬送ライン上の要所に設置された検出機器からの信号、各種モーターが有するドライブ装置からの信号に基づいて取得される。加工条件情報としては、各種圧延機の出側における目標板厚、および、加工工程における金属材の速度条件が例示される。 As the operating status information, information indicating the operating status of the processing apparatus 30 is exemplified. Examples of the metal material information include information on the metal material identification number, material type classification, and dimension classification. As the metal material information, information on the position of the metal material on the transport line is also exemplified. This position information is acquired based on a signal from a detection device installed at a key point on the transport line and a signal from a drive device of various motors. As the processing condition information, the target plate thickness on the output side of various rolling mills and the speed condition of the metal material in the processing process are exemplified.
 制御装置20は、稼働状況情報および金属材情報を、処理装置40および記憶装置60に送る。制御装置20は、また、金属材情報および加工条件情報に基づいて、加工装置30の制御指令を生成する。制御指令としては、加工装置30の各種アクチュエータに入力される制御量の情報が例示される。制御装置20は、制御指令を加工装置30および記憶装置60に送る。また、制御装置20は、処理装置40から緊急制御指令を受け取った場合は、これを加工装置30に送る。緊急制御指令は、加工設備の緊急時に生成される制御指令である。 The control device 20 sends the operation status information and the metal material information to the processing device 40 and the storage device 60. The control device 20 also generates a control command for the processing device 30 based on the metal material information and the processing condition information. As the control command, information on the control amount input to various actuators of the processing apparatus 30 is exemplified. The control device 20 sends a control command to the processing device 30 and the storage device 60. When the control device 20 receives an emergency control command from the processing device 40, the control device 20 sends it to the processing device 30. The emergency control command is a control command generated in an emergency of the processing equipment.
2-3.加工装置
 加工装置30は、搬送ライン上で金属材を加工する。加工装置30としては、図1および2で説明したサイドガイドSG、粗圧延機、仕上げ圧延機、スキンパス圧延機および巻取り機が例示される。
2-3. Processing device The processing device 30 processes a metal material on a transport line. Examples of the processing apparatus 30 include the side guide SG, the rough rolling mill, the finish rolling mill, the skin pass rolling mill, and the winding machine described with reference to FIGS. 1 and 2.
2-4.処理装置
 処理装置40は、加工設備での異音の発生を検出する。処理装置40は、制御装置20同様、プロセッサ、メモリおよび入出力インタフェースを備えるコンピュータである。
2-4. Processing device The processing device 40 detects the generation of abnormal noise in the processing equipment. The processing device 40 is a computer including a processor, a memory, and an input / output interface, like the control device 20.
 処理装置40は、制御装置20から受け取った情報に基づいて、異音の発生を検出する必要があるか否かを判定する。異音の発生を検出する必要があると判定した場合、処理装置40は、マイクアレイ10が検出した音響情報に基づいて、異音の発生を検出する。処理装置40は、異音の発生を検出した場合、異音発生情報を生成する。異音発生情報としては、異音発生源(Allophone source)の推定位置および異音発生の推定時刻の情報が例示される。処理装置40は、制御装置20から受け取った金属材情報に基づいて、生成した異音発生情報を金属材情報に関連付ける。一連の処理の詳細は後述される。 The processing device 40 determines whether or not it is necessary to detect the occurrence of abnormal noise based on the information received from the control device 20. When it is determined that it is necessary to detect the occurrence of abnormal noise, the processing device 40 detects the occurrence of abnormal noise based on the acoustic information detected by the microphone array 10. When the processing device 40 detects the occurrence of abnormal noise, the processing device 40 generates abnormal noise generation information. As the abnormal noise generation information, information on the estimated position of the abnormal noise generation source (Allophone source) and the estimated time of the abnormal noise generation is exemplified. The processing device 40 associates the generated abnormal noise generation information with the metal material information based on the metal material information received from the control device 20. Details of the series of processes will be described later.
 処理装置40は、また、異音発生情報が関連付けられた金属材情報を、表示装置50に表示するための処理(すなわち、表示処理)を行う。処理装置40は、更に、異音発生情報が関連付けられた金属材情報を、記憶装置60に記録するための処理(すなわち、記録処理)を行う。処理装置40は、また更に、異音発生源の推定位置の情報に基づいて、加工装置30を緊急制御するための処理(すなわち、緊急制御処理)を行う。これらの処理の詳細も後述される。 The processing device 40 also performs processing (that is, display processing) for displaying the metal material information associated with the abnormal noise generation information on the display device 50. The processing device 40 further performs a process (that is, a recording process) for recording the metal material information associated with the abnormal noise generation information in the storage device 60. The processing device 40 further performs a process for urgently controlling the processing device 30 (that is, an urgent control process) based on the information of the estimated position of the abnormal noise source. Details of these processes will also be described later.
2-5.表示装置
 表示装置50は、例えば、作業者(現場作業者)が駐在する運転室に設けられる。別の例では、表示装置50は、管理者(遠隔作業者)が駐在する管理室に設けられる。表示装置50には、稼働状況情報が表示される。この表示は、記憶装置60に格納された情報に基づいて行われる。表示装置50には、また、加工設備の要所に設置されたカメラから出力された映像データが表示される。作業者および管理者は、表示装置50を介して加工設備の稼働状況、加工装置30の可動部の状態などを監視する。
2-5. Display device The display device 50 is provided in, for example, a driver's cab in which a worker (field worker) is stationed. In another example, the display device 50 is provided in the management room where the manager (remote worker) is stationed. The operation status information is displayed on the display device 50. This display is performed based on the information stored in the storage device 60. The display device 50 also displays video data output from a camera installed at a key point of the processing equipment. The worker and the manager monitor the operating status of the processing equipment, the state of the movable portion of the processing device 30, and the like via the display device 50.
2-6.記憶装置
 記憶装置60には、加工装置30の配置および外形の情報が格納される。記憶装置60には、加工装置30の可動部の状態の情報も格納される。可動部の状態の情報は、稼働状況情報に含まれる。記憶装置60には、マイクアレイ10が検出した音響情報も格納される。記憶装置60は、この音響情報を処理装置40から受け取ってもよいし、マイクアレイ10から直接受け取ってもよい。記憶装置60には、また、異音発生情報付きの金属材情報も格納される。
2-6. Storage device The storage device 60 stores information on the arrangement and outer shape of the processing device 30. The storage device 60 also stores information on the state of the movable portion of the processing device 30. Information on the state of the moving part is included in the operating status information. The storage device 60 also stores the acoustic information detected by the microphone array 10. The storage device 60 may receive this acoustic information from the processing device 40 or may receive it directly from the microphone array 10. The storage device 60 also stores metal material information with abnormal noise generation information.
3.処理装置の構成例
 図5は、処理装置40の機能構成例を示す図である。図5に示される例では、処理装置40が、情報取得部41と、音響信号処理部42と、表示処理部43と、記録処理部44と、緊急制御処理部45と、を備えている。これらの機能部は、処理装置40プロセッサがメモリに格納された各種プログラムを実行することにより実現される。
3. 3. Configuration Example of Processing Device FIG. 5 is a diagram showing a functional configuration example of the processing device 40. In the example shown in FIG. 5, the processing device 40 includes an information acquisition unit 41, an acoustic signal processing unit 42, a display processing unit 43, a recording processing unit 44, and an emergency control processing unit 45. These functional units are realized by the processing device 40 processor executing various programs stored in the memory.
 これらの機能部の一部は、上述したサブ処理装置において実現されてもよい。例えば、情報取得部41と、音響信号処理部42の一部とは、サブ処理装置において実現されてもよい。具体的には、情報取得部41の音響信号処理に関連する処理、および、後述する抽出処理部42Aおよび方位推定処理部42Bにより行われる処理が、サブ処理装置において行われてもよい。 Some of these functional parts may be realized in the above-mentioned sub-processing device. For example, the information acquisition unit 41 and a part of the acoustic signal processing unit 42 may be realized in the sub processing device. Specifically, the processing related to the acoustic signal processing of the information acquisition unit 41 and the processing performed by the extraction processing unit 42A and the direction estimation processing unit 42B, which will be described later, may be performed in the sub-processing device.
3-1.情報取得部
 情報取得部41は、稼働状況情報および金属材情報を取得する処理を行う(情報取得処理)。情報取得部41は、マイクアレイ10が検出した音響情報も取得する。情報取得部41は、稼働状況情報および金属材情報に基づいて、異音の発生を検出する必要があるか否かを判定する。例えば、情報取得部41は、加工設備が稼働している場合、異音の発生を検出する必要があると判定する。情報取得部41は、異音の発生を検出する必要があると判定したら、金属材情報および音響情報を、音響信号処理部42に送る。
3-1. Information acquisition unit The information acquisition unit 41 performs a process of acquiring operation status information and metal material information (information acquisition process). The information acquisition unit 41 also acquires the acoustic information detected by the microphone array 10. The information acquisition unit 41 determines whether or not it is necessary to detect the occurrence of abnormal noise based on the operation status information and the metal material information. For example, the information acquisition unit 41 determines that it is necessary to detect the occurrence of abnormal noise when the processing equipment is in operation. When the information acquisition unit 41 determines that it is necessary to detect the occurrence of abnormal noise, the information acquisition unit 41 sends the metal material information and the acoustic information to the acoustic signal processing unit 42.
3-2.音響信号処理部
 音響信号処理部42は、音響情報に含まれる音響信号を処理する。図5に示される例では、音響信号処理部42が、抽出処理部42Aと、方位推定処理部42Bと、位置推定処理部42Cと、時刻推定処理部42Dと、関連付け処理部42Eと、を備えている。
3-2. Acoustic signal processing unit The acoustic signal processing unit 42 processes the acoustic signal included in the acoustic information. In the example shown in FIG. 5, the acoustic signal processing unit 42 includes an extraction processing unit 42A, an orientation estimation processing unit 42B, a position estimation processing unit 42C, a time estimation processing unit 42D, and an association processing unit 42E. ing.
3-2-1.抽出処理部
 抽出処理部42Aは、音響信号から異音部を抽出する処理(抽出処理)を行う。具体的に、抽出処理部42Aは、まず、音響信号に対してデジタルフィルター処理、短時間フーリエ変換またはウェーブレット変換を行い、上述した上限周波数以下の周波数成分(の信号波形)を抽出する。ここでは、抽出される周波数成分の数をF個(F≧1)とする。
3-2-1. Extraction processing unit The extraction processing unit 42A performs processing (extraction processing) for extracting an abnormal sound portion from an acoustic signal. Specifically, the extraction processing unit 42A first performs digital filter processing, short-time Fourier transform, or wavelet transform on the acoustic signal, and extracts (the signal waveform) of the frequency component (signal waveform) equal to or lower than the above-mentioned upper limit frequency. Here, the number of frequency components to be extracted is F (F ≧ 1).
 デジタルフィルター処理では、周波数成分の周波数スペクトルの重なりが十分小さくなるようにバンドパスフィルターの特性周波数が選択され、当該特性周波数に適合するパラメーターが設定される。短時間フーリエ変換では、音響信号にガウス関数などで表される窓関数を乗じて当該音響信号の一部分を抽出し、フーリエ変換により周波数スペクトルに変換する。このとき、窓関数を時間方向に走査することで、周波数スペクトルの時間変化を計算し、当該周波数スペクトルの一部分として所望の周波数成分を抽出する。ウェーブレット変換は、連続ウェーブレット変換でもよいし、離散ウェーブレット変換でもよい。2個以上の周波数成分を抽出する場合、連続ウェーブレット変換では周波数スペクトルの重なりが十分に小さくなるようにウェーブレットのスケーリング係数が設定される。 In the digital filter processing, the characteristic frequency of the bandpass filter is selected so that the overlap of the frequency spectra of the frequency components becomes sufficiently small, and the parameters suitable for the characteristic frequency are set. In the short-time Fourier transform, a part of the acoustic signal is extracted by multiplying the acoustic signal by a window function represented by a Gaussian function or the like, and converted into a frequency spectrum by the Fourier transform. At this time, by scanning the window function in the time direction, the time change of the frequency spectrum is calculated, and a desired frequency component is extracted as a part of the frequency spectrum. The wavelet transform may be a continuous wavelet transform or a discrete wavelet transform. When extracting two or more frequency components, the wavelet scaling factor is set so that the overlap of frequency spectra becomes sufficiently small in the continuous wavelet transform.
 抽出処理部42Aは、例えば、各周波数成分について、信号強度(音量)が通常操業時の範囲から逸脱しているか否かを判定する。別の例では、抽出処理部42Aは、周波数成分間の信号強度の比率(すなわち、信号強度比または音量比)が通常操業時の範囲から逸脱しているか否かを判定する。通常範囲から逸脱する周波数成分がある場合、または、通常範囲から逸脱する周波数成分の組み合わせがある場合、抽出処理部42Aは、これを異音と判断し、時間軸における異音部を切り出して方位推定処理部42Bに送る。 The extraction processing unit 42A determines, for example, whether or not the signal strength (volume) deviates from the range during normal operation for each frequency component. In another example, the extraction processing unit 42A determines whether or not the ratio of signal strength between frequency components (that is, signal strength ratio or volume ratio) deviates from the range during normal operation. If there is a frequency component that deviates from the normal range, or if there is a combination of frequency components that deviate from the normal range, the extraction processing unit 42A determines this as an abnormal sound, cuts out the abnormal sound portion on the time axis, and makes an orientation. It is sent to the estimation processing unit 42B.
3-2-2.方位推定処理部
 方位推定処理部42Bは、方位推定処理部42Bから受け取った異音部の情報に基づいて、マイクアレイ10に対する異音発生源の相対方位をそれぞれ推定する処理(方位推定処理)を行う。相対方位の推定方法としては、位相検波に基づく方法、相互相関係数に基づく方法、および、相関マトリックスの固有値解析に基づく方法が例示される。
3-2-2. Direction estimation processing unit The direction estimation processing unit 42B performs processing (direction estimation processing) for estimating the relative orientations of the abnormal sound sources with respect to the microphone array 10 based on the information of the abnormal noise unit received from the orientation estimation processing unit 42B. conduct. Examples of the method for estimating the relative orientation include a method based on phase detection, a method based on the mutual correlation coefficient, and a method based on the eigenvalue analysis of the correlation matrix.
 位相検波に基づく方法では、例えば、マイクアレイ10の各マイクで検出された異音部の同一周波数成分の間の位相差に基づいて、その周波数における異音の到来方位が推定される。具体的には、まず、各マイクで検出された異音部の各周波数成分をその振幅の実効値(すなわち、各サンプリング点の振幅の二乗平均の平方根)で除して、振幅強度が揃えられる。以下、振幅強度が揃えられた周波数成分を、「正規化成分」とも称す。 In the method based on phase detection, for example, the arrival direction of abnormal sound at that frequency is estimated based on the phase difference between the same frequency components of the abnormal sound portion detected by each microphone of the microphone array 10. Specifically, first, each frequency component of the abnormal sound part detected by each microphone is divided by the effective value of the amplitude (that is, the square root of the root mean square of the amplitude of each sampling point) to make the amplitude intensity uniform. .. Hereinafter, the frequency component having the same amplitude intensity is also referred to as a “normalized component”.
 1台のマイクアレイ10のうちの水平方向に並ぶ任意の2基のマイク(説明の便宜上、以下、“マイクi”および“マイクj”とする)に着目する。位相検波に基づく方法では、この2基のマイクで検出された異音部における同じ周波数の正規化成分同士が乗算され(すなわち、各サンプリング点についてマイクiの振幅とマイクjのそれが乗算される)、更に、その平均値(直流成分)xが計算される。位相差δijは、正弦関数の加法定理より、余弦関数の逆関数を用いた次式(1)により計算される。
Figure JPOXMLDOC01-appb-I000001
Focus on any two microphones arranged in the horizontal direction in one microphone array 10 (hereinafter, referred to as "microphone i" and "microphone j" for convenience of explanation). In the method based on phase detection, the normalized components of the same frequency in the abnormal sound part detected by these two microphones are multiplied (that is, the amplitude of the microphone i and that of the microphone j are multiplied for each sampling point. ), And the average value (DC component) x is calculated. The phase difference δ ij is calculated by the following equation (1) using the inverse function of the cosine function from the addition theorem of the sine function.
Figure JPOXMLDOC01-appb-I000001
 到来方位θは、位相差δijを次式(2)に代入することにより計算される。
Figure JPOXMLDOC01-appb-I000002
 式(2)において、λは波長であり、音速cと、位相差δijを算出したときの周波数fとを用いて表される(すなわち、λ=c/f)。dijは、マイクiとマイクjの間の距離である。θは、マイクアレイ10の中心を通り当該マイクアレイ10の集音面に対して垂直な線(法線)NLと、当該中心と異音発生源を結ぶ線分SLとのなす角度である。
The arrival direction θ is calculated by substituting the phase difference δ ij into the following equation (2).
Figure JPOXMLDOC01-appb-I000002
In equation (2), λ is a wavelength and is expressed using the speed of sound c and the frequency f when the phase difference δ ij is calculated (that is, λ = c / f). d ij is the distance between the microphone i and the microphone j. θ is an angle formed by a line (normal) NL that passes through the center of the microphone array 10 and is perpendicular to the sound collecting surface of the microphone array 10 and a line segment SL that connects the center and the abnormal sound source.
 図6に、到来方位θ、法線NLおよび線分SLの一例を示す。図6に示される例では、法線NLとしてのNL10AおよびNL10Bと、線分SLとしてのSL10AおよびSL10Bと、が描かれている。また、到来方位θとして、マイクアレイ10Aに対する異音発生源ASの相対方位θ10Aと、マイクアレイ10Bに対する異音発生源ASの相対方位θ10Bと、が描かれている。なお、図6では、マイクアレイ10Aの中心位置が基準座標系の座標点(x,y)で表され、マイクアレイ10Bのそれが座標点(x,y)で表されている。また、異音発生源ASの位置が座標点(xab,yab)で表されている。 FIG. 6 shows an example of the arrival direction θ, the normal NL, and the line segment SL. In the example shown in FIG. 6, NL 10A and NL 10B as normals NL and SL 10A and SL 10B as line segments SL are drawn. Further, as the arrival direction theta, and relative direction theta 10A of noise sources AS for the microphone array 10A, a relative direction theta 10B of noise sources AS, are depicted for the microphone array 10B. In FIG. 6, the coordinate point center position of the reference coordinate system of the microphone array 10A (x a, y a) is represented by, is represented by it coordinate points of the microphone array 10B (x b, y b) .. Further, the position of the abnormal noise source AS is represented by a coordinate point (x ab , yab).
 相互相関係数に基づく方法では、上述した2基のマイク(すなわち、マイクiおよびj)で検出された異音部における同じ周波数成分に着目する。この方法では、一方の周波数成分を時間軸方向に時間差Δtだけずらしたときの相互相関係数rijが、次式(3)により計算される。
Figure JPOXMLDOC01-appb-I000003
 式(3)において、sijはマイクiおよびjで検出された異音部の各周波数成分の共分散である。sは、マイクiで検出された異音部の各周波数成分の標準偏差であり、sはマイクjにおけるそれである。nはデータ(i,j)の総数であり、ikおよびjkは各周波数成分の数値であり、i-およびj-は平均値である。
The method based on the intercorrelation coefficient focuses on the same frequency component in the abnormal sound portion detected by the above-mentioned two microphones (that is, microphones i and j). In this method, the intercorrelation coefficient rij when one of the frequency components is shifted by the time difference Δt in the time axis direction is calculated by the following equation (3).
Figure JPOXMLDOC01-appb-I000003
In the formula (3), s ij is the covariance of each frequency component of the abnormal sound portion detected by the microphones i and j. s i is the standard deviation of each frequency component of the abnormal sound portion detected by the microphone i, and s j is that of the microphone j. n is the total number of data (i, j), ik and jk are numerical values of each frequency component, and i - and j - are average values.
 相互相関係数rijは、時間差Δtを変化させながら計算される。相互相関係数rijが最大となるときの時間差Δtと、周波数fとの積を示す次式(4)から位相差δijが計算される。到来方位θは、上述した式(2)にこの位相差δijを代入して変形した式(5)により計算される。
Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005
The intercorrelation coefficient rij is calculated while changing the time difference Δt. The phase difference δ ij is calculated from the following equation (4) showing the product of the time difference Δt when the mutual correlation coefficient r ij becomes maximum and the frequency f. The arrival direction θ is calculated by the equation (5) modified by substituting the phase difference δ ij into the equation (2) described above.
Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005
 相関マトリックスの固有値解析に基づく方法は、到来方位θを高い分解能で推定することができる。この方法としては、MUSIC法、Root MUSIC法、ESPRIT法などが例示される。以下、MUSIC法について説明する。 The method based on the eigenvalue analysis of the correlation matrix can estimate the arrival direction θ with high resolution. Examples of this method include the MUSIC method, the Rot MUSIC method, and the ESPRIT method. Hereinafter, the MUSIC method will be described.
 MUSIC法では、1台のマイクアレイ10について、上述した2基のマイクの全ての組み合わせに着目する。MUSIC法では、まず、これらの組み合わせのそれぞれについて相互相関係数rijが計算され、この相互相関係数rijが基づいて相関マトリックスR=[rij]が作成される(iおよびjは、組み合わせられた2基のマイクである)。続いて、相関マトリックスRの固有値λ、固有ベクトルe、および、そのエルミート共役e*が計算される。 In the MUSIC method, attention is paid to all combinations of the above-mentioned two microphones for one microphone array 10. In the MUSIC method, first, the intercorrelation coefficient rij is calculated for each of these combinations, and the correlation matrix R = [ rij ] is created based on the intercorrelation coefficient rij (i and j are Two microphones combined). Subsequently, the eigenvalue λ i of the correlation matrix R, the eigenvector e i , and its Hermitian conjugate e i * are calculated.
 到来する異音が複数あるときは、これらの異音の総数をnとする。MUSIC法では、各マイクの固有値λが大きい順に並べられ、新たに添字mが振られる(λ:m=1~N)。また、大きい方からn個のλに添字pを振り(p=1~n)、残りのλに添え字qを振る(q=n+1~N)。ある閾値以上のλを有効な異音としてカウントし、添字pを振るλを自動的に決定してもよい。 When there are a plurality of incoming abnormal sounds, the total number of these abnormal sounds is set to n. In the MUSIC method, the eigenvalues λ i of each microphone are arranged in descending order, and a new subscript m is added (λ m : m = 1 to N). Further, the subscript p is assigned to n λ m from the larger one (p = 1 to n), and the subscript q is assigned to the remaining λ m (q = n + 1 to N). Counting a certain threshold or more lambda m as effective abnormal noise, it may automatically determine the lambda m shake subscript p.
 到来方位θは、次のように計算される。先ず、変数θが-π/2≦θ≦π/2の範囲で走査され、次式(6)により表される相対位相ベクトルν(θ)と、式(7)により表される評価値y(θ)と、が計算される。
Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007
 式(6)においてjは虚数単位である。評価値y(θ)が極小値(≒0)を示すときの変数θを、θとして記録する。このθが各信号の到来方位θを表す。
The arrival direction θ is calculated as follows. First, the variable θ is scanned in the range of −π / 2 ≦ θ ≦ π / 2, and the relative phase vector ν (θ) expressed by the following equation (6) and the evaluation value y expressed by the equation (7). (Θ) and are calculated.
Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007
In equation (6), j is an imaginary unit. The variable θ when the evaluation value y (θ) indicates the minimum value (≈0) is recorded as θ p. This θ p represents the arrival direction θ of each signal.
 方位推定処理部42Bは、到来方位θの推定精度を向上させるために、重み付け平均処理を行ってもよい。例えば、異音部における複数の周波数成分の振幅が有意な信号であった場合(すなわち、ノイズレベルを超える信号の場合)、これらの周波数成分のそれぞれに対して上述した推定方法を適用する。そうすると、周波数成分ごとに到来方位θが得られる。重み付け平均処理では、周波数成分の振幅に応じた係数をそれぞれの到来方位θに乗じ、これらの平均値θaveが計算される。 The direction estimation processing unit 42B may perform weighting averaging processing in order to improve the estimation accuracy of the arrival direction θ. For example, when the amplitudes of the plurality of frequency components in the abnormal sound portion are significant signals (that is, in the case of signals exceeding the noise level), the above-mentioned estimation method is applied to each of these frequency components. Then, the arrival direction θ is obtained for each frequency component. In the weighted averaging process, a coefficient corresponding to the amplitude of the frequency component is multiplied by each arrival direction θ, and the average value θ ave of these is calculated.
 方位推定処理部42Bは、計算された到来方位θを位置推定処理部42Cに送る。ここで、方位推定処理部42Bは、入射角条件および設置条件が満たされる場合に、到来方位θを位置推定処理部42Cに送ることが望ましい。以下、これらの2つの条件について説明する。 The direction estimation processing unit 42B sends the calculated arrival direction θ to the position estimation processing unit 42C. Here, it is desirable that the direction estimation processing unit 42B sends the arrival direction θ to the position estimation processing unit 42C when the incident angle condition and the installation condition are satisfied. Hereinafter, these two conditions will be described.
 入射角条件に関し、図4で説明したマイクアレイ10の構成例によれば、-π/2≦θ≦π/2の範囲の集音が可能である。つまり、-π/2≦θ≦π/2の範囲で到来方位を推定することができる。ただし、θがある範囲を超えると到来方位の推定精度が急低下する。10%程度の推定精度の低下を許容した場合、θの範囲は-70°≦θ≦70°となる。入射角条件は、到来方位θがこの許容範囲であることを意味する。 Regarding the incident angle condition, according to the configuration example of the microphone array 10 described with reference to FIG. 4, sound can be collected in the range of −π / 2 ≦ θ ≦ π / 2. That is, the arrival direction can be estimated in the range of −π / 2 ≦ θ ≦ π / 2. However, when θ exceeds a certain range, the estimation accuracy of the arrival direction drops sharply. If a decrease in estimation accuracy of about 10% is allowed, the range of θ is −70 ° ≦ θ ≦ 70 °. The incident angle condition means that the arrival direction θ is within this allowable range.
 設置条件に関し、図1および2で説明したマイクアレイ10の設置例によれば、任意の2台のマイクアレイ10(説明の便宜上、以下、“マイクアレイp”および“マイクアレイq”とする)の集音面が向いている空間には重なり合う部分が存在する。ただし、重なり合う部分が存在しない場合には、発生位置の異なる異音の到来方位θが計算されている可能性が高い。重なり合う部分が搬送ライン上に存在しない場合も、これと同じことが言える。マイクアレイpの集音面と、マイクアレイqのそれとのなす角度が大き過ぎる場合も、これと同じことが言える。 Regarding the installation conditions, according to the installation example of the microphone array 10 described with reference to FIGS. 1 and 2, any two microphone arrays 10 (hereinafter referred to as “microphone array p” and “microphone array q” for convenience of explanation). There is an overlapping part in the space where the sound collecting surface of is facing. However, if there is no overlapping portion, it is highly possible that the arrival direction θ of the abnormal sound having a different generation position has been calculated. The same is true if there are no overlapping parts on the transport line. The same can be said when the angle between the sound collecting surface of the microphone array p and that of the microphone array q is too large.
 故に、設置条件は、次の2つの個別条件を含む。
 第1設置条件:マイクアレイpおよびqの集音面が向いている空間に重なり合う部分が存在し、かつ、当該重なり合う部分が搬送ライン上に存在する
 第2設置条件:マイクアレイpおよびqについて、各法線NLと基準線とのなす角度φおよびφが-45°≦|φ-φ|≦45°を満たす
 なお、マイクアレイ10の位置および集音面の指向方向は既知であることから、設置条件が満たされているか否かの判定は、到来方位θの計算の前提条件としてもよい。この場合は、まず、設置条件に基づいて2台のマイクアレイ10の絞り込みが行われる。続いて、絞り込まれた2台のマイクアレイ10について到来方位θが計算される。そして、計算された到来方位θについて入射角条件が満たされるか否かが判定される。
Therefore, the installation conditions include the following two individual conditions.
First installation condition: There is an overlapping portion in the space where the sound collecting surfaces of the microphone arrays p and q are facing, and the overlapping portion exists on the transport line. Second installation condition: Regarding the microphone arrays p and q. The angles φ p and φ q formed by each normal line NL and the reference line satisfy −45 ° ≦ | φ p −φ q | ≦ 45 °. The position of the microphone array 10 and the direction of the sound collecting surface are known. Therefore, the determination of whether or not the installation condition is satisfied may be a prerequisite for the calculation of the arrival direction θ. In this case, first, the two microphone arrays 10 are narrowed down based on the installation conditions. Subsequently, the arrival direction θ is calculated for the two microphone arrays 10 that have been narrowed down. Then, it is determined whether or not the incident angle condition is satisfied with respect to the calculated arrival direction θ.
 図7に、角度φおよび法線NLの一例を示す。図7に示される例では、法線NLとしてのNL10AおよびNL10Cが描かれている。法線NL10Aは、図6に示したものと同じである。また、図7には、角度φおよびφとして、角度φ10Aおよびφ10Cが描かれている。角度φ10Aは、マイクアレイ10Aの中心を通りX軸に平行な基準線BL10Aと、法線NL10Aのなす角度である。角度φ10Cは、マイクアレイ10Cの中心を通りX軸に平行な基準線BL10Cと、法線NL10Cのなす角度である。なお、図7では、マイクアレイ10Aの中心位置が座標点(x,y)で表され、マイクアレイ10Cのそれが座標点(x,y)で表されている。また、異音発生源ASの位置が座標点(xac,yac)で表されている。 FIG. 7 shows an example of the angle φ and the normal NL. In the example shown in FIG. 7, NL 10A and NL 10C as normals NL are drawn. The normal NL 10A is the same as that shown in FIG. Further, in FIG. 7, as the angle phi p and phi q, the angle phi 10A and phi 10C is depicted. The angle φ 10A is an angle formed by the reference line BL 10A passing through the center of the microphone array 10A and parallel to the X axis and the normal line NL 10A. The angle φ 10C is an angle formed by the reference line BL 10C passing through the center of the microphone array 10C and parallel to the X axis and the normal line NL 10C. In FIG. 7, the center position coordinate point of the microphone array 10A (x a, y a) is represented by, it is represented by it coordinate points of the microphone array 10C (x c, y c) . Further, the position of the abnormal noise source AS is represented by a coordinate point (x ac , y ac).
3-2-3.位置推定処理部
 位置推定処理部42Cは、方位推定処理部42Bから受け取った到来方位θの情報と、マイクアレイ10の位置の情報と、に基づいて、異音発生源ASの位置を推定する処理(位置推定処理)を行う。具体的に、位置推定処理部42Cは、まず、到来方位θが計算されたマイクアレイ10のうちから任意の2台を選ぶ(すなわち、マイクアレイpおよびq)。この選択に際しては、上述した入射角条件および設置条件が用いられる。
3-2-3. Position estimation processing unit The position estimation processing unit 42C estimates the position of the abnormal noise source AS based on the information of the arrival direction θ received from the direction estimation processing unit 42B and the information of the position of the microphone array 10. (Position estimation processing) is performed. Specifically, the position estimation processing unit 42C first selects any two microphone arrays 10 from which the arrival direction θ has been calculated (that is, the microphone arrays p and q). In making this selection, the above-mentioned incident angle conditions and installation conditions are used.
 マイクアレイpおよびqについて少なくとも第1設置条件が満たされる場合、位置推定処理部42Cは、次式(8)および(9)により異音発生源の基準座標系における位置(xpq,ypq)を計算する。
Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009
 式(8)および(9)において、(x ,y )および(x ,y )は、マイクアレイpおよびqの基準座標系における位置である。典型的に、(x ,y )はマイクアレイpの中央のマイクの位置であり、(x ,y )はマイクアレイqのそれの位置である。
When at least the first installation condition is satisfied for the microphone arrays p and q, the position estimation processing unit 42C uses the following equations (8) and (9) to position the abnormal noise source in the reference coordinate system (x pq , y pq ). To calculate.
Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009
In equations (8) and (9), (x p 0 , y p 0 ) and (x q 0 , y q 0 ) are the positions of the microphone arrays p and q in the frame of reference. Typically, (x p 0 , y p 0 ) is the position of the microphone in the center of the microphone array p, and (x q 0 , y q 0 ) is the position of that of the microphone array q.
 位置推定処理部42Cは、到来方位θが計算されたマイクアレイ10のうち、2台を組み合わせる全ての組み合わせに対して位置(xpq,ypq)を計算する。例えば、到来方位θが計算されたマイクアレイ10の総数がu台ある場合、2台の組み合わせはu×(u-1)通りある。位置推定処理部42Cは、u×(u-1)個の位置(xpq,ypq)の重み付き平均を、次式(10)および(11)により計算する。
Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011
 式(10)および(11)において、wpqは重み付け係数である。
The position estimation processing unit 42C calculates the position (x pq , y pq ) for all combinations of the two microphone arrays 10 in which the arrival direction θ has been calculated. For example, when the total number of microphone arrays 10 for which the arrival direction θ is calculated is u, there are u × (u-1) combinations of the two. The position estimation processing unit 42C calculates the weighted average of u × (u-1) positions (x pq , y pq ) by the following equations (10) and (11).
Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011
In equations (10) and (11), w pq is a weighting factor.
 u×(u-1)個の位置(xpq,ypq)の重み付き平均により計算された位置(xest,yest)は、異音発生源ASの推定位置に相当する。位置推定処理部42Cは、推定位置(xest,yest)の情報を、時刻推定処理部42D、表示処理部43、記録処理部44および緊急制御処理部45に送る。推定位置(xest,yest)の情報は、異音発生情報を構成する。 u × (u-1) pieces of position (x pq, y pq) calculated position by weighted average of (x est, y est) corresponds to the estimated position of noise source AS. The position estimation processing unit 42C sends information on the estimated position ( xest , yest ) to the time estimation processing unit 42D, the display processing unit 43, the recording processing unit 44, and the emergency control processing unit 45. The information of the estimated position (x est , y est ) constitutes the abnormal noise generation information.
3-2-4.時刻推定処理部
 時刻推定処理部42Dは、位置推定処理部42Cから受け取った位置(xest,yest)の情報と、任意の1台のマイクアレイ10(説明の便宜上、“マイクアレイp”とする)の位置の情報と、に基づいて、異音が発生した時刻を推定する処理(時刻推定処理)を行う。具体的に、時刻推定処理部42Dは、異音発生の推定時刻testを次式(12)により計算する。
Figure JPOXMLDOC01-appb-I000012
 式(12)において、Lは、位置(xest,yest)から位置(x ,y )までの距離である。
3-2-4. Time estimation processing unit The time estimation processing unit 42D includes information on the position (xest , yest ) received from the position estimation processing unit 42C, and any one microphone array 10 (for convenience of explanation, "microphone array p"). ) Performs processing (time estimation processing) to estimate the time when the abnormal noise occurred based on the information of the position. Specifically, the time estimation processing section 42D calculates the estimated time t est of noise generated by the following equation (12).
Figure JPOXMLDOC01-appb-I000012
In equation (12), L p is the distance from the position (x est , y est ) to the position (x p 0 , y p 0).
 時刻推定処理部42Dは、推定時刻testの情報を表示処理部43、記録処理部44および緊急制御処理部45に送る。時刻testの情報は、異音発生情報を構成する。 The time estimation processing unit 42D sends the estimated time test information to the display processing unit 43, the recording processing unit 44, and the emergency control processing unit 45. The information at the time test constitutes information on the occurrence of abnormal noise.
3-2-5.関連付け処理部
 関連付け処理部42Eは、位置推定処理部42Cから受け取った推定位置(xest,yest)の情報と、時刻推定処理部42Dから受け取った推定時刻testの情報と、を関連付ける。また、関連付け処理部42Eは、これらの異音発生情報を、情報取得部41から受け取った金属材情報に関連付ける。異音発生情報が金属材情報に関連付けられることで、推定時刻testにおいて推定位置(xest,yest)に存在していた金属材が特定される。推定位置(xest,yest)が加工装置30の位置であれば、当該加工装置30が異音発生源ASであることが特定され、更には、当該加工装置30で加工されていた金属材も特定される。
3-2-5. Processing unit 42E association processor association associates the estimated position received from the position estimation processing section 42C (x est, y est) and information, the information of the estimated time t est received from the time estimation processing unit 42D, the. Further, the association processing unit 42E associates these abnormal noise generation information with the metal material information received from the information acquisition unit 41. By associating the abnormal noise generation information with the metal material information, the metal material existing at the estimated position (x est , y est ) at the estimated time test is specified. If the estimated position (x est , y est ) is the position of the processing device 30, it is specified that the processing device 30 is the abnormal noise source AS, and further, the metal material processed by the processing device 30. Is also identified.
 図8は、異音発生情報が関連付けられた金属材情報の一覧の例を示す図である。図8に示される例では、異音発生情報が推定位置および推定時刻の情報から構成されている。推定位置の情報は座標点(x,y)で表され、推定時刻の情報は時間(X:Y)で表されている。推定時刻の情報に、異音が発生した日付の情報が追加されていてもよい。金属材情報は、識別番号、材種区分および寸法区分の情報から構成されている。 FIG. 8 is a diagram showing an example of a list of metal material information associated with abnormal noise generation information. In the example shown in FIG. 8, the abnormal noise generation information is composed of the estimated position and the estimated time information. The information on the estimated position is represented by the coordinate points (x, y), and the information on the estimated time is represented by the time (X: Y). Information on the date on which the abnormal noise occurred may be added to the information on the estimated time. The metal material information is composed of information on an identification number, a material type classification, and a dimensional classification.
 関連付け処理部42Eは、異音発生情報が付された金属材情報を、表示処理部43、記録処理部44および緊急制御処理部45に送る。金属材情報の送信は、関連付け処理の都度行われることが望ましい。 The association processing unit 42E sends the metal material information to which the abnormal noise generation information is attached to the display processing unit 43, the recording processing unit 44, and the emergency control processing unit 45. It is desirable that the metal material information be transmitted each time the association process is performed.
3-3.表示処理部
 表示処理部43は、関連付け処理部42Eから受け取った異音発生情報付きの金属材情報を、表示装置50に表示するための処理を行う。この表示処理では、異音発生情報に含まれる推定位置(xest,yest)の情報に基づいて、この推定位置(xest,yest)の周辺の加工装置30の外形情報が記憶装置60から読み出される。続いて、金属材の外形を示す模式図と、異音発生源ASを示す図形(または記号)を、読み出された加工装置30の外形に重ねた画像が生成される。そして、生成された画像の情報が表示装置50に送られる。
3-3. Display processing unit The display processing unit 43 performs processing for displaying the metal material information with the abnormal noise generation information received from the association processing unit 42E on the display device 50. In this display process, the external shape information of the processing device 30 around the estimated position (xest , yest ) is stored in the storage device 60 based on the information of the estimated position (xest , yest ) included in the abnormal noise generation information. Read from. Subsequently, an image is generated in which a schematic diagram showing the outer shape of the metal material and a figure (or symbol) showing the abnormal noise source AS are superimposed on the read outer shape of the processing apparatus 30. Then, the information of the generated image is sent to the display device 50.
 表示装置50に送信される画像の情報には、付属情報が追加されてもよい。追加情報としては、推定時刻testの情報、表示装置50に表示される金属材情報、推定位置(xest,yest)に存在する加工装置30の可動部の状態の情報が例示される。異音発生情報、稼働状況情報などに基づいて、異音の発生の原因を特定する処理が別途行われている場合は、当該原因の情報が付属情報に含まれる。異音の発生の深刻度を診断する処理が別途行われている場合は、当該診断の結果の情報(例えば、要注意、操業の一時停止など)が付属情報に含まれる。 Ancillary information may be added to the image information transmitted to the display device 50. As additional information, information on the estimated time test , information on the metal material displayed on the display device 50, and information on the state of the movable portion of the processing device 30 existing at the estimated position (xest , yest) are exemplified. If a process for identifying the cause of the abnormal noise is separately performed based on the abnormal noise generation information, the operating status information, etc., the information on the cause is included in the attached information. If a process for diagnosing the severity of the occurrence of abnormal noise is performed separately, information on the result of the diagnosis (for example, caution required, suspension of operation, etc.) is included in the attached information.
 図9および10は、表示装置50に表示された画像例を示す模式図である。図9に示される例では、表示装置50上に二次元画像が表示される。図10に示される例では、表示装置50上に3次元画像が表示される。これらの例では、推定時刻testにおいて推定位置(xest,yest)に存在していた金属材が中心に据えられる。推定位置(xest,yest)には異音発生源を示す図形が描かれる。また、これらの例では、金属材情報としての識別番号MTL_IDと、推定時刻testの情報としての時間(X:Y)と、が表示されている。 9 and 10 are schematic views showing an example of an image displayed on the display device 50. In the example shown in FIG. 9, a two-dimensional image is displayed on the display device 50. In the example shown in FIG. 10, a three-dimensional image is displayed on the display device 50. In these examples, the metal material that was present at the estimated position ( xest , yest ) at the estimated time test is placed in the center. A figure indicating the source of abnormal noise is drawn at the estimated position (x est , y est). Also, in these examples, the identification number MTL_ID as a metal material information, as the information of the estimated time t est time (X: Y) and, are displayed.
3-4.記録処理部
 記録処理部44は、関連付け処理部42Eから受け取った異音発生情報付きの金属材情報を、記憶装置60に記録するための処理を行う。この記録処理では、金属材情報に付属情報が追加されてもよい。この付属情報としては、表示処理において説明した付属情報と同じものが例示される。
3-4. Recording processing unit The recording processing unit 44 performs processing for recording the metal material information with the abnormal noise generation information received from the association processing unit 42E in the storage device 60. In this recording process, ancillary information may be added to the metal material information. As the attached information, the same attached information as described in the display process is exemplified.
3-5.緊急制御処理部
 緊急制御処理部45は、位置推定処理部42Cから受け取った推定位置(xest,yest)の情報と、位置推定処理部42Dから受け取った推定時刻testの情報と、に基づいて、緊急制御指令を生成する。緊急制御指令は、異音に関連する不具合の発生を回避するために生成される。緊急制御指令としては、搬送ラインにおいて推定位置(xest,yest)よりも下流側に設置されたサイドガイドSGを緊急的に開放するための制御指令が例示される。緊急制御指令としては、搬送ラインにおいて推定位置(xest,yest)よりも下流側に設置された圧延機のロールギャップを的に緊急的に拡大させるための制御指令も例示される。
3-5. Emergency control unit emergency control processing unit 45, based on the estimated position received from the position estimation processing section 42C (x est, y est) and information, the estimated time t est of information received from the position estimation processing section 42D, the And generate an emergency control command. Emergency control commands are generated to avoid the occurrence of malfunctions related to abnormal noise. As the emergency control command, a control command for urgently opening the side guide SG installed on the downstream side of the estimated position (xest , est) in the transport line is exemplified. As the emergency control command, a control command for urgently widening the roll gap of the rolling mill installed on the downstream side of the estimated position (xest , yest) in the transport line is also exemplified.
4.効果
 以上説明した実施の形態に係る異音観測システムによれば、音響信号処理部42により抽出、方位推定および位置推定処理が行われるので、推定位置(xest,yest)の情報を自動的かつ高精度に生成することが可能となる。したがって、異音発生源ASの位置を自動的かつ高精度に特定することが可能となる。
4. Effect According to the abnormal sound observation system according to the embodiment described above, the acoustic signal processing unit 42 performs extraction, direction estimation, and position estimation processing, so that information on the estimated position (xest , yest ) is automatically obtained. Moreover, it is possible to generate with high accuracy. Therefore, it is possible to automatically and highly accurately identify the position of the abnormal noise source AS.
 また、音響信号処理部42(時刻推定処理部42D)により時刻推定処理が行われるので、推定時刻testの情報も自動的かつ高精度に生成することが可能となる。したがって、異音が発生した時刻も自動的かつ高精度に特定することが可能となる。 Further, since the time estimation process is performed by the acoustic signal processing unit 42 (time estimation processing unit 42D), it is possible to automatically and accurately generate the estimated time test information. Therefore, it is possible to automatically and highly accurately identify the time when the abnormal noise occurs.
 また、音響信号処理部42(関連付け処理部42E)により関連付け処理が行われるので、推定位置(xest,yest)、推定時刻testおよび金属材情報に基づいた各種対策を早急に講じることが可能となる。また、関連付け処理によれば、加工後において異音発生情報から遡ってこれに関係のある金属材を特定することも可能となる。金属材情報に付された異音発生情報を、製品の品質情報として活用することもできる。 Further, since the association processing is performed by the acoustic signal processing unit 42 (association processing unit 42E) , various measures based on the estimated position (xest , yest ), the estimated time test, and the metal material information can be taken immediately. It will be possible. Further, according to the association processing, it is possible to trace back from the abnormal noise generation information after the processing and identify the metal material related to the abnormal noise generation information. It is also possible to utilize the abnormal noise generation information attached to the metal material information as product quality information.
 また、表示処理や記録処理がこの関連付け処理と共に行われるので、関連付け処理の実行による効果を高めることも可能となる。更には、緊急制御処理が行われるので、異音の発生が大きなトラブルに発展するのを未然に回避することも可能となる。 Further, since the display process and the record process are performed together with this association process, it is possible to enhance the effect of executing the association process. Further, since the emergency control process is performed, it is possible to prevent the generation of abnormal noise from developing into a big trouble.
 10、10A、10B、10C、10D マイクアレイ
 11、12、13、14、15 マイク
 20 制御装置
 30 加工装置
 40 処理装置
 41 情報取得部
 42 音響信号処理部
 42A 抽出処理部
 42B 方位推定処理部
 42C 位置推定処理部
 42D 時刻推定処理部
 42E 関連付け処理部
 43 表示処理部
 44 記録処理部
 45 緊急制御処理部
 50 表示装置
 60 記憶装置
 100 異音観測システム
 MTL 金属材
 SG サイドガイド
 SPA、SPB、SPC、SPD 空間
 θ、θ10A、θ10B 到来方位(相対方位)
10, 10A, 10B, 10C, 10D Microphone array 11, 12, 13, 14, 15 Microphone 20 Control device 30 Processing device 40 Processing device 41 Information acquisition unit 42 Sound signal processing unit 42A Extraction processing unit 42B Direction estimation processing unit 42C Position Estimating processing unit 42D Time estimation processing unit 42E Association processing unit 43 Display processing unit 44 Recording processing unit 45 Emergency control processing unit 50 Display device 60 Storage device 100 Abnormal sound observation system MTL Metal material SG Side guide SPA, SPB, SPC, SPD space θ, θ 10A , θ 10B Arrival direction (relative direction)

Claims (6)

  1.  金属材の加工設備で発生する異音を観測するための異音観測システムであって、
     音響を検出する少なくとも2台のマイクアレイと、
     前記少なくとも2台のマイクアレイが検出した音響信号を処理する音響信号処理を行う処理装置と、
     を備え、
     前記少なくとも2台のマイクアレイは、
     前記加工設備の位置を含む第1空間に向けられた第1マイクアレイと、
     前記加工設備の位置において前記第1空間と一部の空間を共有する第2空間に向けられた第2マイクアレイと、
     を含み、
     前記処理装置が、前記音響信号処理において、
     前記第1マイクアレイが検出した前記音響信号から第1異音部を抽出し、
     前記第2マイクアレイが検出した前記音響信号から第2異音部を抽出し、
     前記第1異音部に基づいて、前記第1マイクアレイに対する異音発生源の相対方位を示す第1相対方位を推定し、
     前記第2異音部に基づいて、前記第2マイクアレイに対する前記相対方位を示す第2相対方位を推定し、
     前記第1および第2マイクアレイの基準座標面上の位置と、前記第1および第2相対方位と、に基づいて、前記異音発生源の当該座標面上の位置を推定する
     ことを特徴とする異音観測システム。
    It is an abnormal noise observation system for observing abnormal noise generated in metal material processing equipment.
    At least two microphone arrays that detect sound, and
    A processing device that performs acoustic signal processing that processes acoustic signals detected by at least two microphone arrays, and
    Equipped with
    The at least two microphone arrays
    A first microphone array directed to the first space including the location of the processing equipment,
    A second microphone array directed to a second space that shares a part of the space with the first space at the position of the processing equipment.
    Including
    The processing device in the acoustic signal processing
    The first abnormal sound portion is extracted from the acoustic signal detected by the first microphone array, and the first abnormal sound portion is extracted.
    The second abnormal sound portion is extracted from the acoustic signal detected by the second microphone array, and the second abnormal sound portion is extracted.
    Based on the first abnormal noise unit, the first relative orientation indicating the relative orientation of the abnormal noise source with respect to the first microphone array is estimated.
    Based on the second abnormal sound portion, the second relative direction indicating the relative direction with respect to the second microphone array is estimated.
    It is characterized in that the position of the abnormal noise source on the coordinate plane is estimated based on the position of the first and second microphone arrays on the reference coordinate plane and the first and second relative orientations. Abnormal noise observation system.
  2.  請求項1に記載の異音観測システムであって、
     前記少なくとも2台のマイクアレイは、更に、前記加工設備の位置において前記第1および第2空間の少なくとも一方と一部の空間を共有する第3空間に向けられた第3マイクアレイを備え、
     前記処理装置が、前記音響信号処理において、更に、
     前記第3マイクアレイが検出した前記音響信号から第3異音部を抽出し、
     前記第3異音部に基づいて、前記第3マイクアレイに対する前記相対方位を示す第3相対方位を推定し、
     前記異音発生源の位置の推定を、前記第1、第2および第3マイクアレイのうちの2台のマイクアレイの組み合わせに基づいて行う
     ことを特徴とする異音観測システム。
    The abnormal noise observation system according to claim 1.
    The at least two microphone arrays further include a third microphone array directed to a third space that shares a portion of space with at least one of the first and second spaces at the location of the processing equipment.
    In the acoustic signal processing, the processing device further
    The third abnormal sound part is extracted from the acoustic signal detected by the third microphone array, and the third abnormal sound portion is extracted.
    Based on the third abnormal sound portion, a third relative orientation indicating the relative orientation with respect to the third microphone array is estimated.
    An abnormal noise observation system characterized in that the position of the abnormal noise source is estimated based on a combination of two microphone arrays among the first, second and third microphone arrays.
  3.  請求項1または2に記載の異音観測システムであって、
     前記処理装置が、前記音響信号処理において、更に、
     前記異音発生源の位置が推定された場合、前記少なくとも2台のマイクアレイのうちの任意のマイクアレイから前記異音発生源までの前記座標面上における距離と、前記異音発生源からの異音が前記任意のマイクアレイにおいて検出された時刻と、に基づいて、前記異音発生源での異音の発生時刻を推定する
     ことを特徴とする異音観測システム。
    The abnormal noise observation system according to claim 1 or 2.
    In the acoustic signal processing, the processing device further
    When the position of the abnormal sound source is estimated, the distance on the coordinate plane from any microphone array of the at least two microphone arrays to the abnormal sound source and the abnormal sound source from the abnormal sound source. An abnormal sound observation system characterized in that an abnormal sound generation time is estimated at the abnormal sound generation source based on the time when the abnormal sound is detected in the arbitrary microphone array.
  4.  請求項3に記載の異音観測システムであって、
     前記加工設備の稼働状況を表示する表示装置を更に備え、
     前記処理装置が、更に、
     前記加工設備において加工される前記金属材の情報を取得する情報取得処理と、
     前記異音発生源の推定位置と、前記異音発生源での異音の推定発生時刻とを含む異音発生情報を、前記金属材の情報に関連付ける関連付け処理と、
     前記異音発生情報が関連付けられた前記金属材の情報を、前記表示装置に出力する表示処理と、
     を行うことを特徴とする異音観測システム。
    The abnormal noise observation system according to claim 3.
    Further equipped with a display device for displaying the operating status of the processing equipment,
    The processing device further
    Information acquisition processing to acquire information on the metal material processed in the processing equipment,
    An association process of associating the abnormal noise generation information including the estimated position of the abnormal noise source and the estimated occurrence time of the abnormal noise at the abnormal noise source with the information of the metal material.
    A display process for outputting information on the metal material associated with the abnormal noise generation information to the display device, and
    An abnormal noise observation system characterized by performing.
  5.  請求項3または4に記載の異音観測システムであって、
     前記加工設備の稼働状況を記録する記憶装置を更に備え、
     前記処理装置が、更に、
     前記加工設備において加工される前記金属材の情報を取得する情報取得処理と、
     前記異音発生源の推定位置と、前記異音発生源での異音の推定発生時刻とを含む異音発生情報を、前記金属材の情報に関連付ける関連付け処理と、
     前記異音発生情報が関連付けられた前記金属材の情報を、前記記憶装置に記録する記録処理と、
     を行うことを特徴とする異音観測システム。
    The abnormal noise observation system according to claim 3 or 4.
    Further equipped with a storage device for recording the operating status of the processing equipment,
    The processing device further
    Information acquisition processing to acquire information on the metal material processed in the processing equipment,
    An association process of associating the abnormal noise generation information including the estimated position of the abnormal noise source and the estimated occurrence time of the abnormal noise at the abnormal noise source with the information of the metal material.
    A recording process for recording the information of the metal material associated with the abnormal noise generation information in the storage device, and
    An abnormal noise observation system characterized by performing.
  6.  請求項3~5の何れか1項に記載の異音観測システムであって、
     前記加工設備を構成する加工装置を制御する制御装置を更に備え、
     前記処理装置が、更に、
     前記異音発生源の推定位置と、前記異音発生源での異音の推定発生時刻とを含む異音発生情報に基づいて、前記加工装置の少なくとも一部を緊急的に作動するための緊急制御指令を前記制御装置に出力する緊急制御処理を行う
     ことを特徴とする異音観測システム。
    The abnormal noise observation system according to any one of claims 3 to 5.
    Further equipped with a control device for controlling the processing device constituting the processing facility,
    The processing device further
    An emergency for urgently operating at least a part of the processing device based on the abnormal noise generation information including the estimated position of the abnormal noise source and the estimated occurrence time of the abnormal noise at the abnormal noise source. An abnormal noise observation system characterized by performing emergency control processing that outputs control commands to the control device.
PCT/JP2020/022625 2020-06-09 2020-06-09 Abnormal sound observation system for metal material machining equipment WO2021250765A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080069627.6A CN114502926A (en) 2020-06-09 2020-06-09 Abnormal sound observation system of metal material processing equipment
JP2021568168A JP7151910B2 (en) 2020-06-09 2020-06-09 Abnormal sound observation system for metal processing equipment
PCT/JP2020/022625 WO2021250765A1 (en) 2020-06-09 2020-06-09 Abnormal sound observation system for metal material machining equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022625 WO2021250765A1 (en) 2020-06-09 2020-06-09 Abnormal sound observation system for metal material machining equipment

Publications (1)

Publication Number Publication Date
WO2021250765A1 true WO2021250765A1 (en) 2021-12-16

Family

ID=78845432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022625 WO2021250765A1 (en) 2020-06-09 2020-06-09 Abnormal sound observation system for metal material machining equipment

Country Status (3)

Country Link
JP (1) JP7151910B2 (en)
CN (1) CN114502926A (en)
WO (1) WO2021250765A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210327174A1 (en) * 2020-04-21 2021-10-21 Hyundai Motor Company Allophone inspection device and inspection method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253354A (en) * 1994-03-16 1995-10-03 Nisshin Steel Co Ltd Method and apparatus for detecting abnormal noise source in factory or the like
JP2011080868A (en) * 2009-10-07 2011-04-21 Hitachi Ltd Sound monitoring system, and speech collection system
WO2015122288A1 (en) * 2014-02-17 2015-08-20 三菱電機株式会社 Abnormal sound detection device, abnormal processing-machine-sound detection system, and abnormal sound detection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6467736B2 (en) * 2014-09-01 2019-02-13 株式会社国際電気通信基礎技術研究所 Sound source position estimating apparatus, sound source position estimating method, and sound source position estimating program
DE102014217598A1 (en) * 2014-09-03 2016-03-03 Gesellschaft zur Förderung angewandter Informatik e.V. Method and arrangement for acquiring acoustic and optical information and a corresponding computer program and a corresponding computer-readable storage medium
US10264350B2 (en) * 2017-03-03 2019-04-16 Panasonic Intellectual Property Corporation Of America Sound source probing apparatus, sound source probing method, and storage medium storing program therefor
CN109254266A (en) * 2018-11-07 2019-01-22 苏州科达科技股份有限公司 Sound localization method, device and storage medium based on microphone array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253354A (en) * 1994-03-16 1995-10-03 Nisshin Steel Co Ltd Method and apparatus for detecting abnormal noise source in factory or the like
JP2011080868A (en) * 2009-10-07 2011-04-21 Hitachi Ltd Sound monitoring system, and speech collection system
WO2015122288A1 (en) * 2014-02-17 2015-08-20 三菱電機株式会社 Abnormal sound detection device, abnormal processing-machine-sound detection system, and abnormal sound detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210327174A1 (en) * 2020-04-21 2021-10-21 Hyundai Motor Company Allophone inspection device and inspection method thereof
US11636717B2 (en) * 2020-04-21 2023-04-25 Hyundai Motor Company Allophone inspection device and inspection method thereof

Also Published As

Publication number Publication date
JP7151910B2 (en) 2022-10-12
JPWO2021250765A1 (en) 2021-12-16
CN114502926A (en) 2022-05-13

Similar Documents

Publication Publication Date Title
JP6061693B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method using the same
CN101714255B (en) Abnormal behavior detection device
US20220074808A1 (en) System and method for testing structure mode of vibration based on digital image recognition
JP4592123B2 (en) Unsteady signal analyzer and medium on which unsteady signal analysis program is recorded
WO2016152076A1 (en) Structure condition assessing device, condition assessing system, and condition assessing method
WO2021250765A1 (en) Abnormal sound observation system for metal material machining equipment
DE102008055528A1 (en) Augmented reality inspection system and method for data visualization
WO2010130144A1 (en) System, device for structural damage detection and method for structural damage detection
WO2006054599A1 (en) Sound source direction judging device and method
EP3397935B1 (en) Vibration and noise mapping system and method
JP2018091640A (en) Apparatus inspection device and apparatus inspection method
JP4248458B2 (en) Sound pressure measurement method
Buyukozturk et al. Smaller than the eye can see: Vibration analysis with video cameras
WO1998011417A1 (en) Unsteady signal analyzer and medium for recording unsteady signal analyzer program
JP4912612B2 (en) Acoustic measuring device
KR20110100533A (en) Device for sound source tracing and object recognition and method for sound source tracing and object recognition
Shang et al. Multi-point vibration measurement for mode identification of bridge structures using video-based motion magnification
JP5826663B2 (en) Acoustic measuring device
WO2019189424A1 (en) Acoustic analysis device and acoustic analysis method
CN108387308B (en) Gearbox is uttered long and high-pitched sounds off-line test method and its detection system
EP3862307A1 (en) Elevator car acoustic integrity check
JPH07209035A (en) Watching device for state of apparatus
JP4894638B2 (en) Acoustic input device
JP2007263639A (en) Method and apparatus for fault diagnosis of equipment
JP2000324639A (en) Method of monitoring slackness degree of aerial line

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021568168

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939478

Country of ref document: EP

Kind code of ref document: A1