WO2021250179A1 - Vorrichtung und verfahren zur vermessung von display-systemen - Google Patents

Vorrichtung und verfahren zur vermessung von display-systemen Download PDF

Info

Publication number
WO2021250179A1
WO2021250179A1 PCT/EP2021/065651 EP2021065651W WO2021250179A1 WO 2021250179 A1 WO2021250179 A1 WO 2021250179A1 EP 2021065651 W EP2021065651 W EP 2021065651W WO 2021250179 A1 WO2021250179 A1 WO 2021250179A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
light source
pupil
microscope
measuring microscope
Prior art date
Application number
PCT/EP2021/065651
Other languages
English (en)
French (fr)
Inventor
Matthias Lobitz
Jürgen Neumeier
Original Assignee
Instrument Systems Optische Messtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instrument Systems Optische Messtechnik Gmbh filed Critical Instrument Systems Optische Messtechnik Gmbh
Publication of WO2021250179A1 publication Critical patent/WO2021250179A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0242Control or determination of height or angle information of sensors or receivers; Goniophotometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0403Mechanical elements; Supports for optical elements; Scanning arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0437Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using masks, aperture plates, spatial light modulators, spatial filters, e.g. reflective filters

Definitions

  • the invention relates to a measuring system for measuring the radio and photometric properties of a flat light source, with a goniometer, a measuring microscope that can be positioned and aligned by means of the goniometer along one or more spatial curves, and a light source carrying device.
  • the invention also relates to a method for measuring the radio and photometric properties of a flat light source.
  • Measurement systems of this type are known. They are used to check the quality of displays of various sizes. It can be used to measure radiometric and photometric quantities such as the spectral radiance or the luminance.
  • NED near-eye displays
  • ARA / R glasses augmented reality / virtual reality glasses
  • autostereoscopic displays in which very strong and spatially high-frequency moments of brightness arise.
  • a measuring system with a Measuring microscope is used because, in contrast to measurements with camera measuring systems, it can also be used to carry out spectral measurements.
  • the entrance pupil is in front of the lens.
  • the eye with its pupil is positioned close to the optical elements of the ARA / R glasses (e.g. lenses) in the spatial area of the exit pupil of the NED display system.
  • the optical axis points in a constant direction (e.g. parallel to the optical axis of the ARA / R glasses). All bundles of rays that come from the AR / VR glasses then enter the eye and image a point of the AR / VR glasses on the retina are limited by the pupil of the immobile eye. All the beams together create an image on the retina on the display of the ARA / R glasses.
  • the entrance pupil is at a certain distance from the tilt axis, namely in the area of the imaging optics of the measuring microscope and not, as in the case of the correspondingly positioned eye, at the intersection of the tilt and optical axes.
  • the entrance pupil also moves with the measuring microscope when the angle varies, which leads to a tilting of the entrance pupil relative to the fixedly positioned pupil of the human eye to be simulated, especially when it is tilted against the optical axis of the ARA / R glasses .
  • the entrance pupil acts as an elliptical delimitation for inclined bundles of rays relative to the direction of propagation.
  • the exit pupil of the display system can be detected with the entrance pupil of the assumed human eye or the equivalent measuring microscope.
  • a typical effect that must be correctly recorded is the clipping of the observation or measurement beam bundles by the entrance pupil.
  • the shape and spatial orientation of the entrance pupil have a major influence on the measurement result.
  • the invention proposes, based on a measuring system of the type mentioned at the beginning, that a pupil diaphragm can be positioned between the measuring microscope and the light source carrying device in a stationary manner relative to the light source carrying device and the measuring microscope is aligned along the respective spatial curve in such a way that the optical axis of the measuring microscope passes through the center of the pupil diaphragm runs.
  • a flat light source is positioned on the light source support device.
  • the measuring microscope then follows one or more spatial curves by means of the goniometer and detects a large number of light signals from the light source.
  • the pupil diaphragm is not moved during the measurement process and the measuring microscope is aligned in such a way that the optical axis of the measuring microscope runs through the center of the pupil diaphragm.
  • the pupil diaphragm (for example a diaphragm plate with a corresponding opening) is positioned and held at least during the measurement process at which the entrance pupil of the eye would be when viewed with the human eye, in the case of an ARA / R- Glasses as the light source to be measured, i.e. in an area near the exit pupil of the ARA / R glasses.
  • the so-called eye box i.e. the usable space of the AR / VR glasses, can be determined.
  • the measuring microscope is moved along one or more spatial curves. Simulate the space curves here the retina of the assumed human eye.
  • the optical axis of the measuring microscope runs through the center of the pupil diaphragm for every orientation.
  • the orientation of the pupil plane can be adjusted according to the measurement requirements.
  • the plane of the pupil diaphragm is aligned orthogonally to this optical axis.
  • the diaphragm plane of the pupil diaphragm is inclined accordingly with respect to the optical axis of the light source.
  • the physical design of the pupil diaphragm is based on the human eye.
  • the opening of the pupil diaphragm is therefore preferably designed to be circular.
  • the measuring system according to the invention and the method are in principle suitable for all applications in which the precise imaging properties of the human eye are to be simulated in order to simulate the correct visual impression. This is very advantageous in particular in the case of autostereoscopic displays, because with these very strong and spatially high-frequency brightness modulations arise, via which the entrance pupil of the eye and the measuring device must each integrate equivalently.
  • the pupil diaphragm is arranged in a stationary manner in the measuring system.
  • the pupil diaphragm can, for example, be fixed in place on the light source carrying device, on a housing belonging to the measuring system or on other suitable fixed components of the measuring system. Due to the fixed arrangement of the pupil diaphragm in the measuring system, the measuring microscope will always follow the same or very similar spatial curves during the measurement by means of the goniometer. Variations in the viewing direction and the viewing angle can be adjusted by moving the light source on the light source support device.
  • An alternative embodiment according to the invention provides that the pupil diaphragm is movable on the measuring microscope by means of a holding arm is mounted in such a way that the horizontal alignment of the pupil diaphragm is constant in every alignment of the measuring microscope.
  • the viewing directions and angles can be set with the aid of the goniometer.
  • Pupil diaphragm is rotatably mounted. This measure is particularly reliable in order to keep the plane of the pupil diaphragm constant, for example in the horizontal.
  • Another alternative embodiment according to the invention provides that the pupil diaphragm is fixed in place on the light source. This is particularly useful when the position of the human eye to be simulated is constant relative to the light source to be measured, for example when measuring AVA / R glasses.
  • a particularly preferred embodiment of the invention provides that the measuring microscope has a single-channel optical sensor and / or a
  • Has spectroradiometer With such measuring systems, measurements with very high absolute accuracy are possible, especially color measurements, because the relatively simple optical configurations of such spot meter optics as single-channel optical sensors with precisely defined, constant beam path together, especially in combination with the highly precise and stable spectroradiometer, are very precise and stable over the long term and can be calibrated traceable to national standards.
  • FIG. 1 Schematic of the beam path in a measuring system according to the
  • Measuring system (right) and schematically the beam path in a human eye (left), each in a sectional view;
  • FIGS. 3a-c schematically, an application with a measuring system according to the prior art (a), with a human eye (b) and a measuring system according to the invention (c);
  • FIGS. 4a-c schematically, a measuring system according to the invention in a first exemplary embodiment
  • FIG. 5a schematically, a measuring system according to the invention as a 3D view in a second exemplary embodiment
  • FIG. 5b Schematically the detail A from FIG. 5a;
  • FIG. 6a Schematically the measuring system according to the invention from FIG. 6 with a changed alignment of the measuring microscope;
  • FIG. 6b Schematically the detail B from FIG. 6a.
  • a measuring microscope is designated with the reference number 1 on the left-hand side.
  • the measuring microscope 1 is shown in a vertical position P1 and an inclined position P2.
  • the measuring microscope 1 comprises entrance optics consisting of an entrance pupil 2 and an entrance lens 3, which images the detected beam path onto a sensor element 4.
  • the cross section of the individual beam paths is the same in both positions (P1, P2), since the beam paths run parallel to the optical axis A1 of the measuring microscope 1.
  • the measuring microscope 1 is movably arranged on a goniometer (not shown here). The microscope 1 can be rotated and tilted by means of the goniometer.
  • FIG. 1 The human eye 5 has a pupil 6 and a lens 7.
  • the pupil 6 delimits the beam path, provided that it does not run parallel to the optical axis A5 of the human eye 5. So-called vignetting occurs and the cross-section of the inclined beam path has an elliptical shape.
  • a pupil diaphragm 8 is arranged in front of the input optics of the measuring microscope 1.
  • the opening of the pupil diaphragm 8 is preferably designed to be circular, but can also be polygonal.
  • the pupil diaphragm 8 cuts the beam path in the same shape as the pupil 6 of the human eye.
  • the optical axis A1 of the measuring microscope 1 is pivoted and thus no longer runs orthogonally to the plane of the pupil diaphragm 8, the beam path through the pupil diaphragm 8 is cut into an ellipse. This vignetting corresponds to that of the human eye 5, as shown on the right in FIG.
  • the pupil diaphragm 8 is thus arranged in a stationary manner in the measuring system at least during a measuring process and thus relative to the light source to be measured. Possible realizations of this stationary positioning of the pupil diaphragm 8 during a measuring process in the measuring system according to the invention are described with reference to the following embodiments (cf. FIGS. 3c-6b).
  • FIG. 3a the measurement of AVA / R glasses 9 is carried out with a measuring system according to the prior art.
  • the measuring microscope 1 is arranged on a goniometer (not shown here).
  • the AVA / R glasses 9 are arranged on a light source carrying device (not shown here).
  • the AV / VR glasses 9 have a display 10, an exit pupil 11 and imaging optics 12.
  • Display 10, exit pupil 11 and imaging optics 12 are arranged in a spectacle housing 13.
  • a vignetting that differs from that of the human eye 5 occurs during measurement with an inclined beam path. This also worsens the measurement result because the beam path in the Simulation further deviates from the actually perceived beam path in the human eye 5 (cf. FIGS. 3 a and b).
  • a pupil diaphragm 8 is additionally arranged according to the invention between the measuring microscope 1 and the AVA / R glasses 9, as shown in FIG. 3c.
  • the pupil diaphragm 8 is, for example, positioned in a stationary manner on the light source carrying device (not shown here).
  • the beam path is limited in a similar way to that by the pupil 6 in the human eye 5.
  • the vignetting by the pupil diaphragm 8 is similar to that by the human eye 5 (see FIG. 3b).
  • the point of intersection of the tilt axis of the goniometer with the optical axis A1 of the measuring microscope 1 is positioned in the spatial area of the exit pupil 11 of the ARA / R glasses 9, where the center of the pupil 6 would be positioned when viewed with the human eye 5.
  • all beam directions can be set and so For example, all directions of viewing AR / VR glasses 9, that is to say onto the display 10 of the AR / VR glasses 9, are scanned sequentially.
  • FIGS. 4 ac A first exemplary embodiment of the arrangement of a pupil diaphragm 8 in a measuring system according to the invention is shown in FIGS. 4 ac.
  • FIG. 4a shows a front view of the vertically aligned measuring microscope 1
  • FIG. 4b shows the associated side view
  • FIG. 4c shows a front view of the measuring microscope from FIGS. 4a-b in an oblique orientation.
  • a holding arm 14 is arranged on the measuring microscope 1, at the end of which a holder 15 is provided.
  • the pupil diaphragm 8 is mounted on the axis of rotation A15. If the measuring microscope 1 is pivoted from the vertical, the holder arm 14 and the holder 15 are also pivoted, as shown in FIG. 4c.
  • the plane of the pupil diaphragm 8 is designed and supported in such a way that it remains horizontal when it is pivoted.
  • the optical axis A1 of the measuring microscope 1 runs independently of the movement of the measuring microscope 1 through the center of the pupil diaphragm 8 at any time. This makes it possible to simulate the pupil 6 of the immobile human eye 5 in a particularly advantageous manner.
  • a measuring system according to the invention is shown in a second exemplary embodiment in FIGS. 5a and 5b.
  • the measuring microscope 1 is arranged on a goniometer 16.
  • the goniometer can also be designed, for example, as a robot arm with further movable axes, differently from what is shown here.
  • a light source support device 17 is shown in the form of a positioning table 17a.
  • the light source to be measured for example AVA / R glasses 9 or an autostereoscopic display, can be positioned on the positioning table 17a.
  • the holding arm 14 is fastened to the measuring microscope 1, and the holder 15 is arranged at its distal end.
  • the pupil diaphragm 8 is rotatably mounted in the holder 15.
  • the pupil diaphragm 8 remains aligned parallel to the positioning table 17a, as shown in FIGS. 6a and 6b.
  • the measuring microscope 1 can therefore follow the three-dimensional curves in order to simulate and measure the individual images on the retina of the human eye.
  • the optical axis of the measuring microscope 1 runs through the center of the pupil diaphragm 8 for each measurement.
  • the pupil diaphragm 8 remains stationary in its position during this measuring process.
  • A1 optical axis of the measuring microscope 1 A5 optical axis of the human eye 5

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Die Erfindung betrifft ein Messsystem und Verfahren zur Vermessung der radio- und photometrischen Eigenschaften einer flächigen Lichtquelle, mit einem Goniometer, einem mittels des Goniometers entlang einer oder mehrerer Raumkurve positionier- und ausrichtbaren Messmikroskop (1) und einer Lichtquellentragvorrichtung (17, 17a), sowie ein Verfahren zur Vermessung einer flächigen Lichtquelle. Es ist Ziel der Erfindung, das Messsystem und das Verfahren dahingehend weiterzubilden, dass die tatsächliche Abbildung des von der zu vermessenden Lichtquelle ausgesandten Signals auf der Netzhaut des menschlichen Auges (5) möglichst gut simuliert wird. Zur Lösung schlägt die Erfindung vor, dass zwischen dem Messmikroskop (1) und der Lichtquellentragvorrichtung (17, 17a) eine Pupillenblende (8) relativ zur Lichtquellentragvorrichtung (17,17a) ortsfest positionierbar ist, und das Messmikroskop (1) entlang der jeweiligen Raumkurve derart ausgerichtet ist, dass die optische Achse des Messmikroskops (1) durch das Zentrum der Pupillenblende (8) verläuft. Die Position und Ausrichtung der Pupillenblende (8) ist während eines Messvorgangs konstant.

Description

Vorrichtuna und Verfahren zur Vermessuna von Disolav-Svstemen Die Erfindung betrifft ein Messsystem zur Vermessung der radio- und photometrischen Eigenschaften einer flächigen Lichtquelle, mit einem Goniometer, einem mittels des Goniometers entlang einer oder mehrerer Raumkurven positionier- und ausrichtbaren Messmikroskop und einer Lichtquellentragvorrichtung. Des Weiteren betrifft die Erfindung ein Verfahren zur Vermessung der radio- und photometrischen Eigenschaften einer flächigen Lichtquelle.
Messsysteme dieser Art sind bekannt. Sie werden für die Qualitätsüberprüfung von Displays unterschiedlichster Größen verwendet. Es können damit radiometrische und photometrische Größen wie beispielsweise die spektrale Strahldichte oder die Leuchtdichte gemessen werden.
In einigen Anwendungsfällen ist es für eine möglichst realitätsgetreue Messung, d.h. eine Messung, die der menschlichen Wahrnehmung möglichst nahekommt, besonders vorteilhaft, die Abbildungseigenschaften des menschlichen Auges zu simulieren, um den korrekten visuellen Eindruck zu überprüfen. Dies betrifft insbesondere sogenannte Near-Eye-Displays (NED) in Augmented- RealityA/irtual-Reality-Brillen (ARA/R-Brillen) sowie autostereoskopische Displays, bei denen sehr starke und räumlich hochfrequente Helligkeitsmomente entstehen.
Für die Messung der optischen, d.h. radiometrischen und photometrischen Eigenschaften von Displays wird vorteilhafterweise ein Messsystem mit einem Messmikroskop eingesetzt, weil hiermit, im Gegensatz zu Messungen mit Kamera-Messsystemen, auch spektrale Messungen durchgeführt werden können.
Beim menschlichen Auge befindet sich die Eintrittspupille vor der Linse. Beim Betrachten des Bilds des NED-Displaysystems beispielsweise einer AR/VR- Brille wird das Auge mit seiner Pupille nahe an den optischen Elementen der ARA/R-Brille (z.B. Linsen) im räumlichen Bereich der Austrittspupille des NED- Displaysystems positioniert. Wenn das Auge sich dann nicht bewegt, zeigt dessen optische Achse in eine konstante Richtung (z.B. parallel zur optischen Achse der ARA/R-Brille). Alle Strahlenbündel, die dann von der AR/VR-Brille kommend ins Auge eintreten und auf der Netzhaut einen Punkt der AR/VR-Brille abbilden, werden durch die Pupille des unbewegten Auges begrenzt. Alle Strahlenbündel zusammen erzeugen auf der Netzhaut ein Bild des Displays der ARA/R-Brille. Bei der Verwendung herkömmlicher Messsysteme befindet sich die Eintrittspupille jedoch in einem bestimmten Abstand zur Neigeachse, nämlich im Bereich der Abbildungsoptik des Messmikroskops und nicht wie beim entsprechend positionierten Auge im Schnittpunkt von Neige- und optischer Achse. Im Gegensatz zum unbewegten menschlichen Auge bewegt sich des Weiteren die Eintrittspupille bei Winkelvariation mit dem Messmikroskop mit, was insbesondere bei einer Neigung gegen die optische Achse der ARA/R-Brille zu einer Verkippung der Eintrittspupille relativ zur ortsfest positionierten Pupille des zu simulierenden menschlichen Auges führt. Damit ergeben sich beim menschlichen Auge und beim geneigten Messmikroskop jedoch unterschiedliche Strahlbegrenzungen durch die einerseits ortsfeste und andererseits sich mitneigende Eintrittspupille. Beim menschlichen Auge wirkt die Eintrittspupille für geneigte Strahlenbündel als elliptische Begrenzung relativ zur Ausbreitungsrichtung. Beim Messmikroskop bleiben die Durchtrittsfläche der Eintrittspupille und damit der Strahlquerschnitt ohne weitere Maßnahme immer konstant rund.
Es ist wünschenswert, dass bei der optischen Vermessung solcher und ähnlicher Displaysysteme auch der Einfluss und die räumliche Interaktion der Austrittspupille des Displaysystems mit der Eintrittspupille des angenommenen menschlichen Auges bzw. des äquivalenten Messmikroskops erfasst werden. Ein typischer Effekt, der korrekt erfasst werden muss, ist die Beschneidung der Beobachtungs- bzw. Messstrahlenbündel durch die Eintrittspupille. Hierbei hat offensichtlich die Form und räumliche Orientierung der Eintrittspupille einen großen Einfluss auf das Messergebnis.
Es ist daher die Aufgabe der Erfindung, ein Messsystem der eingangs genannten Art dahingehend weiterzubilden, dass die tatsächliche Abbildung des von der zu vermessenden Lichtquelle ausgesandten Signals auf der Netzhaut des menschlichen Auges möglichst gut simuliert wird.
Zur Lösung dieser Aufgabe schlägt die Erfindung ausgehend von einem Messsystem der eingangs genannten Art vor, dass zwischen dem Messmikroskop und der Lichtquellentragvorrichtung eine Pupillenblende relativ zur Lichtquellentragvorrichtung ortsfest positionierbar ist und das Messmikroskop entlang der jeweiligen Raumkurve derart ausgerichtet ist, dass die optische Achse des Messmikroskops durch das Zentrum der Pupillenblende verläuft. Bei dem erfindungsgemäßen Verfahren wird eine flächige Lichtquelle auf der Lichtquellentragvorrichtung positioniert. Anschließend fährt das Messmikroskop mittels des Goniometers eine oder mehrere Raumkurven ab und detektiert dabei eine Vielzahl von Lichtsignalen der Lichtquelle. Die Pupillenblende wird während des Messvorgangs nicht bewegt und das Messmikroskop wird jeweils so ausgerichtet, dass die optische Achse des Messmikroskops durch das Zentrum der Pupillenblende verläuft.
Bei der erfindungsgemäßen Lösung wird die Pupillenblende (z.B. ein Blendenblech mit einer entsprechender Öffnung) an der Stelle positioniert und mindestens während des Messvorgangs gehalten, an welcher sich bei der Betrachtung mit dem menschlichen Auge die Eintrittspupille des Auges befinden würde, bei einer ARA/R-Brille als zu vermessende Lichtquelle also in einem Bereich in der Nähe der Austrittspupille der ARA/R-Brille. Auf diese Weise kann unter anderem die sogenannte Eye-Box, also der nutzbare Raumbereich der AR/VR-Brille, bestimmt werden. Das Messmikroskop wird bei der Vermessung entlang einer oder mehrerer Raumkurven bewegt. Die Raumkurven simulieren hierbei die Netzhaut des angenommenen menschlichen Auges. Die optische Achse des Messmikroskops verläuft bei jeder Orientierung durch das Zentrum der Pupillenblende. Die Orientierung der Pupillenebene kann entsprechend der Messanforderungen angepasst werden. Bei der Simulation des orthogonalen Einblicks in die Optik der Lichtquelle, also parallel zu dessen optischer Achse, wird die Ebene der Pupillenblende orthogonal zu dieser optischen Achse ausgerichtet. Bei der Simulation einer schrägen Blickrichtung wird die Blendenebene der Pupillenblende entsprechend gegen die optische Achse der Lichtquelle geneigt. Die Pupillenblende ist hierbei in ihrer körperlichen Ausführung am menschlichen Auge orientiert. Die Öffnung der Pupillenblende ist daher vorzugsweise kreisrund gestaltet.
Neben den beschriebenen NEDs, ist das erfindungsgemäße Messsystem und das Verfahren für alle Anwendungen prinzipiell geeignet, bei denen die genauen Abbildungseigenschaften des menschlichen Auges nachgebildet werden sollen, um den korrekten visuellen Eindruck nachzubilden. Dies ist insbesondere bei autostereoskopischen Displays sehr vorteilhaft, weil bei diesen sehr starke und räumlich hochfrequente Helligkeitsmodulationen entstehen, über welche die Eintrittspupille von Auge und Messgerät jeweils äquivalent integrieren muss.
Besonders vorteilhaft ist es, wenn die Pupillenblende ortsfest im Messsystem angeordnet ist. Die Pupillenblende kann beispielsweise an der Lichtquellentragvorrichtung ortsfest, an einem zum Messsystem gehörenden Gehäuse oder anderen geeigneten ortsfesten Komponenten des Messsystems befestigt sein. Durch die ortsfeste Anordnung der Pupillenblende im Messsystem, wird das Messmikroskop mittels des Goniometers immer die gleichen bzw. sehr ähnliche Raumkurven bei der Vermessung abfahren. Variationen der Blickrichtung und des Blickwinkels können durch Bewegungen der Lichtquelle auf der Lichtquellentragvorrichtung eingestellt werden. Eine alternative Ausführungsform gemäß der Erfindung sieht vor, dass die Pupillenblende mittels eines Haltearms beweglich an dem Messmikroskop gelagert ist, derart, dass die horizontale Ausrichtung der Pupillenblende in jeder Ausrichtung des Messmikroskops konstant ist. Die Blickrichtungen und -Winkel lassen sich bei dieser Ausführungsform mit Hilfe des Goniometers einstellen.
Hierbei ist es besonders zweckmäßig, wenn die Pupillenblende am distalen Ende des Haltearms an zwei gegenüberliegenden Punkten bezogen auf die
Pupillenblende drehbar gelagert ist. Diese Maßnahme ist besonders zuverlässig, um die Ebene der Pupillenblende konstant, beispielsweise in der Waagerechten, zu halten.
Eine weitere alternative erfindungsgemäße Ausführungsform sieht vor, dass die Pupillenblende an der Lichtquelle ortsfest befestigt ist. Dies ist insbesondere dann sinnvoll, wenn die zu simulierende Position des menschlichen Auges relativ zu der zu vermessenden Lichtquelle konstant ist, also beispielsweise bei der Vermessung von AVA/R-Brillen.
Eine besonders bevorzugte Ausführungsform der Erfindung sieht vor, dass das Messmikroskop einen einkanaligen optischen Sensor und/oder ein
Spektroradiometer aufweist. Mit solchen Messsystemen sind Messungen mit sehr hoher absoluter Genauigkeit möglich, insbesondere auch Farbmessungen, weil die relativ einfachen optischen Konfigurationen solcher Spotmeter-Optiken als einkanalige optische Sensoren mit genau definiertem, konstantem Strahlengang zusammen insbesondere in Kombination mit dem hochgenauen und stabilen Spektroradiometer sehr präzise, langzeitstabil und auf nationale Standards rückführbar kalibriert werden können.
Im Folgenden wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen: Figur 1 : Schematisch den Strahlengang bei einem Messsystem nach dem
Stand der Technik (rechts) und schematisch den Strahlengang bei einem menschlichen Auge (links) jeweils in einer Schnittansicht; Figur 2: Schematisch den Strahlengang bei einem erfindungsgemäßen
Messsystem (rechts) und schematisch den Strahlengang bei einem menschlichen Auge (links) jeweils in einer Schnittansicht;
Figur 3a-c: Schematisch einen Anwendungsfall mit einem Messsystem nach dem Stand der Technik (a), mit einem menschlichen Auge (b) und einem erfindungsgemäßen Messsystem (c);
Figur 4a-c: Schematisch eine erfindungsgemäßes Messsystem in einem ersten Ausführungsbeispiel;
Figur 5a: Schematisch ein erfindungsgemäßes Messsystem als 3D-Ansicht in einem zweiten Ausführungsbeispiel;
Figur 5b: Schematisch das Detail A aus Figur 5a;
Figur 6a: Schematisch das erfindungsgemäßes Messsystem aus Figur 6 mit einer veränderten Ausrichtung des Messmikroskops;
Figur 6b: Schematisch das Detail B aus Figur 6a. In Figur 1 ist auf der linken Seite ein Messmikroskop mit dem Bezugszeichen 1 bezeichnet. Das Messmikroskop 1 ist in einer vertikalen Position P1 und einer geneigten Position P2 dargestellt. Das Messmikroskop 1 umfasst eine Eingangsoptik bestehend aus einer Eintrittspupille 2 und einer Eintrittslinse 3, welche den detektieren Strahlengang auf ein Sensorelement 4 abbildet. Der Querschnitt der einzelnen Strahlengänge ist in beiden Positionen (P1, P2) gleich, da die Strahlengänge parallel zur optischen Achse A1 des Messmikroskops 1 verlaufen. In bekannten Messsystemen nach dem Stand der Technik ist das Messmikroskop 1 beweglich an einem hier nicht dargestellten Goniometer angeordnet. Das Mikroskop 1 kann mittels des Goniometers rotiert und geneigt werden. Flierdurch ist es möglich, verschiedene Blickrichtungen auf das zu vermessende Objekt einzustellen. Die Simulation der Strahlengänge im menschlichen Auge ist dagegen nicht möglich. Dies wird aus der rechten in Figur 1 dargestellten, sehr schematisch gehaltenen Darstellung eines menschlichen Auges 5 ersichtlich. Das menschliche Auge 5 weist eine Pupille 6 und eine Linse 7 auf. Wie aus der Abbildung ersichtlich wird, begrenzt die Pupille 6 den Strahlengang, sofern dieser nicht parallel zur optischen Achse A5 des menschlichen Auges 5 verläuft. Es entsteht eine sogenannte Vignettierung und der Querschnitt des schrägen Strahlengangs weist eine elliptische Form auf.
Bei einem erfindungsgemäßen Messsystem ist, wie in Figur 2 dargestellt, eine Pupillenblende 8 vor der Eingangsoptik des Messmikroskops 1 angeordnet. Die Öffnung der Pupillenblende 8 ist bevorzugt kreisrund ausgestaltet, kann aber auch polygonal sein. Die Pupillenblende 8 beschneidet den Strahlengang in der gleichen Form wie die Pupille 6 des menschlichen Auges. Wenn die optische Achse A1 des Messmikroskops 1 verschwenkt wird und somit nicht mehr orthogonal zu Ebene der Pupillenblende 8 verläuft, wird der Strahlengang durch die Pupillenblende 8 zu einer Ellipse beschnitten. Diese Vignettierung entspricht der des menschlichen Auges 5, wie rechts in Figur 2 dargestellt. Die Pupillenblende 8 ist erfindungsgemäß also zumindest während eines Messvorgangs ortsfest im Messsystem und somit relativ zur zu vermessenden Lichtquelle angeordnet. Mögliche Realsierungen dieser ortsfesten Positionierung der Pupillenblende 8 während eines Messvorgangs im erfindungsgemäßen Messsystem, werden anhand der folgenden Ausführungsformen beschrieben (vgl. Figur 3c - 6b).
In Figur 3a wird die Vermessung einer AVA/R-Brille 9 mit einem Messsystem nach dem Stand der Technik durchgeführt. Hierzu ist das Messmikroskop 1 an einem hier nicht dargestellten Goniometer angeordnet. Die AVA/R-Brille 9 ist auf einer hier nicht dargestellten Lichtquellentragvorrichtung angeordnet. Die AV/VR-Brille 9 weist ein Display 10, eine Austrittspupille 11 und eine Abbildungsoptik 12 auf. Display 10, Austrittspupille 11 und Abbildungsoptik 12 sind in einem Brillengehäuse 13 angeordnet. Bei der Vermessung der optischen Eigenschaften der AV/VR-Brille 9 entsteht, verursacht durch die Austrittspupille 11, eine im Vergleich zum menschlichen Auge 5 unterschiedliche Vignettierung bei der Vermessung mit schrägen Strahlengang. Hierdurch wird das Messergebnis zusätzlich verschlechtert, weil der Strahlengang bei der Simulation weiter vom tatsächlichen wahrgenommen Strahlengang beim menschlichen Auge 5 abweicht (vgl. Figur 3 a und b).
Um bei der Vermessung der AV/VR-Brille 9 das menschliche Auge möglichst gut zu simulieren, ist erfindungsgemäß zusätzlich eine Pupillenblende 8 zwischen dem Messmikroskop 1 und der AVA/R-Brille 9 angeordnet, wie in Figur 3c dargestellt. Die Pupillenblende 8 ist hierzu beispielsweise ortsfest an der hier nicht dargestellten Lichtquellentragvorrichtung positioniert. Hierdurch wird Strahlengang ähnlich begrenzt, wie durch die Pupille 6 beim menschlichen Auge 5. Die Vignettierung durch die Pupillenblende 8 gleicht derjenigen durch das menschlichen Auge 5 (vgl. Figur 3b).
Um mit einem erfindungsgemäßen Messsystem die optischen Eigenschaften einer ARA/R-Brille 9 in gleicher Weise zu messen, wie sie vom menschlichen Auge 5 aufgenommen werden, also insbesondere mit den gleichen abbildenden Strahlverläufen, wird der Schnittpunkt der Neigeachse des Goniometers mit der optischen Achse A1 des Messmikroskops 1 in den räumlichen Bereich der Austrittspupille 11 der ARA/R-Brille 9 positioniert, wo bei Betrachtung mit dem menschlichen Auge 5 das Zentrum der Pupille 6 positioniert wäre. Durch Variation der Einblickrichtung des Messmikroskops 1 relativ zur Austrittspupille 11 der AR/VR-B rill 9, durch Drehen des Messmikroskops 1 um die Neigeachse und z.B. durch Rotation der AR/VR-Brille 9 um deren optische Achse können alle Strahlrichtungen eingestellt werden und so z.B. sequenziell alle Blickrichtungen AR/VR-Brille 9, also auf das Display 10 der AR/VR-Brille 9 abgetastet werden.
In den Figuren 4 a-c ist eine erstes Ausführungsbeispiel der Anordnung einer Pupillenblende 8 in einem erfindungsgemäßen Messsystem dargestellt. Figur 4a zeigt eine Frontansicht des senkrecht ausgerichteten Messmikroskops 1, Figur 4b die zugehörige Seitenansicht und Figur 4c eine Frontansicht des Messmikroskops aus Figur 4a-b in schräger Ausrichtung. Am Messmikroskop 1 ist ein Haltearm 14 angeordnet, an dessen Ende eine Halterung 15 vorgesehen ist. In der Halterung 15 ist die Pupillenblende 8 an der Drehachse A15 gelagert. Wird das Messmikroskop 1 aus der Senkrechten verschwenkt, werden der Halterarm 14 und die Halterung 15 mit verschwenkt, wie in Figur 4c dargestellt. Die Ebene der Pupillenblende 8 ist derart ausgebildet und gelagert, dass sie bei der Verschwenkung in der Waagerechten verbleibt. Die optische Achse A1 des Messmikroskops 1 verläuft unabhängig von der Bewegung des Messmikroskops 1 jederzeit durch das Zentrum der Pupillenblende 8. Hierdurch ist es möglich, die Pupille 6 des unbewegten menschlichen Auges 5 in besonders vorteilhafter Weise zu simulieren.
In den Figuren 5a und 5b ist ein erfindungsgemäßes Messsystem in einem zweiten Ausführungsbeispiel dargestellt. Das Messmikroskop 1 ist an einem Goniometer 16 angeordnet. Das Goniometer kann in weiteren Ausführungsformen anders als hier dargestellt beispielsweise auch als Roboterarm mit weiteren beweglichen Achsen ausgebildet sein. Des Weiteren ist eine Lichtquellentragvorrichtung 17 in Form eines Positioniertisches 17a dargestellt. Auf dem Positioniertisch 17a kann die zu vermessende Lichtquelle, also beispielsweise eine AVA/R-Brille 9 oder autostereoskopisches Display positioniert werden. Am Messmikroskop 1 ist, wie auch im ersten Ausführungsbeispiel, der Haltearm 14 befestigt, an dessen distalem Ende die Halterung 15 angeordnet ist. Die Pupillenblende 8 ist in der Halterung 15 drehbar gelagert.
Wird das Messmikroskop 1 mittels des Goniometers 16 ausgerichtet und positioniert, verbleibt die Pupillenblende 8 parallel zum Positioniertisch 17a ausgerichtet, wie in den Figuren 6a und 6b dargestellt ist. Das Messmikroskop 1 kann also die Raumkurven abfahren, um die einzelnen Abbildungen auf der Netzhaut des menschlichen Auges zu simulieren und zu vermessen. Hierbei verläuft die optische Achse des Messmikroskops 1 bei jeder Messung durch das Zentrum der Pupillenblende 8. Die Pupillenblende 8 bleibt während dieses Messvorgangs ortsfest in ihrer Position.
io
Bezugszeichenliste:
1 Messmikroskop
2 Eintrittspupille des Messmikroskops 3 Eintrittslinse des Messmikroskops
4 Sensorelement
5 menschliches Auge
6 Pupille des menschlichen Auges 5
7 Linse des menschlichen Auges 5 8 Pupillenblende
9 AVA/R-B rille
10 Display
11 Austrittspupille der AVA/R-Brille 9
12 Abbildungsoptik der AV/VR-Brille 9 13 Brillengehäuse
14 Haltearm 15 Halterung
16 Goniometer
17 Lichtquellentragvorrichtung 17a Positioniertisch P1,P2 Position des Messmikroskops 1
A1 optische Achse des Messmikroskops 1 A5 optische Achse des menschlichen Auges 5
A15 Drehachse an der Halterung 15

Claims

Patentansprüche
1. Messsystem zur Vermessung der radio- und photometrischen
Eigenschaften einer flächigen Lichtquelle, mit einem Goniometer, einem mittels des Goniometers entlang einer oder mehrerer Raumkurven positionier- und ausrichtbaren Messmikroskop (1) und einer
Lichtquellentragvorrichtung (17, 17a), dadurch gekennzeichnet, dass zwischen dem Messmikroskop (1) und der Lichtquellentragvorrichtung (17, 17a) eine Pupillenblende (8) relativ zur Lichtquellentragvorrichtung (17,17a) ortsfest positionierbar ist und das Messmikroskop (1) entlang der jeweiligen Raumkurve derart ausgerichtet ist, dass die optische Achse (A1) des Messmikroskops (1) durch das Zentrum der Pupillenblende (8) verläuft.
2. Messsystem nach Anspruch 1, dadurch gekennzeichnet, dass die
Pupillenblende (4) ortsfest im Messsystem angeordnet ist.
3. Messsystem nach Anspruch 1, dadurch gekennzeichnet, dass die
Pupillenblende (8) mittels eines Haltearms (14) beweglich an dem Messmikroskop (1) gelagert ist, derart, dass die horizontale Ausrichtung der Pupillenblende (8) in jeder Ausrichtung des Messmikroskops (1) konstant ist.
4. Messsystem nach Anspruch 3, dadurch gekennzeichnet, dass die
Pupillenblende (8) am distalen Ende des Haltearms (14) an zwei gegenüberliegenden Punkten drehbar gelagert ist.
5. Messsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Pupillenblende (8) an der Lichtquellentragvorrichtung (17, 17a) ortsfest befestigt ist.
6. Messsystem nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Messmikroskop (1) einen einkanaligen optischen
Sensor aufweist.
7. Messsystem nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Messmikroskop (1) ein Spektroradiometer aufweist.
8. Verfahren unter Verwendung eines Messsystems nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass
- eine flächige Lichtquelle auf der Lichtquellentragvorrichtung (17, 17a) positioniert wird,
- das Messmikroskop (1) mittels des Goniometers eine oder mehrere Raumkurven abfährt und dabei eine Vielzahl von Lichtsignalen der
Lichtquelle detektiert,
- wobei die Pupillenblende (8) während des Messvorgangs nicht bewegt wird und das Messmikroskop (1) jeweils so ausgerichtet wird, dass die optische Achse des Messmikroskops (1) durch das Zentrum der Pupillenblende (8) verläuft.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als flächige Lichtquelle ein autostereoskopisches Display bzw. ein autostereoskopischer Displayaufbau verwendet wird.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als flächige Lichtquelle ein Near-Eye-Display bzw. Near-Eye-Displayaufbau verwendet wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass als Near-Eye- Displayaufbau eine AV/VR-Brille (9) vermessen wird.
PCT/EP2021/065651 2020-06-10 2021-06-10 Vorrichtung und verfahren zur vermessung von display-systemen WO2021250179A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020115511.5 2020-06-10
DE102020115511.5A DE102020115511A1 (de) 2020-06-10 2020-06-10 Vorrichtung und Verfahrung zur Vermessung von Display-Systemen

Publications (1)

Publication Number Publication Date
WO2021250179A1 true WO2021250179A1 (de) 2021-12-16

Family

ID=76730501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/065651 WO2021250179A1 (de) 2020-06-10 2021-06-10 Vorrichtung und verfahren zur vermessung von display-systemen

Country Status (2)

Country Link
DE (1) DE102020115511A1 (de)
WO (1) WO2021250179A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023165223A1 (zh) * 2022-03-04 2023-09-07 杭州远方光电信息股份有限公司 一种近眼显示器的测量方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116183169B (zh) * 2023-05-04 2023-08-01 武汉精立电子技术有限公司 一种显示产品图像中心对位方法、装置、设备及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AUSTIN RICHARD L. ET AL: "Qualified viewing space determination of near-eye and head-up displays : QVS determination of near-eye and head-up displays", JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY - SID, vol. 26, no. 9, 1 September 2018 (2018-09-01), US, pages 567 - 575, XP055831025, ISSN: 1071-0922, Retrieved from the Internet <URL:https://sid.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jsid.729> DOI: 10.1002/jsid.729 *
FELLOWES DAVID A. ET AL: "Near-to-eye display test station", PROCEEDINGS OF SPIE, vol. 5079, 8 September 2003 (2003-09-08), US, pages 51, XP055831336, ISSN: 0277-786X, ISBN: 978-1-5106-4374-1, DOI: 10.1117/12.487767 *
PENCZEK JOHN ET AL: "Absolute radiometric and photometric measurements of near-eye displays : Radiometric and photometric measurements of NED", JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY - SID, vol. 25, no. 4, 1 April 2017 (2017-04-01), US, pages 215 - 221, XP055831028, ISSN: 1071-0922, Retrieved from the Internet <URL:https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fjsid.537> DOI: 10.1002/jsid.537 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023165223A1 (zh) * 2022-03-04 2023-09-07 杭州远方光电信息股份有限公司 一种近眼显示器的测量方法及装置

Also Published As

Publication number Publication date
DE102020115511A1 (de) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2021250179A1 (de) Vorrichtung und verfahren zur vermessung von display-systemen
DE102009043523A1 (de) Endoskop
EP3588175B1 (de) Vorrichtung zur bestimmung von zentrierparametern für die brillenanpassung
EP3346230B1 (de) Vorrichtung und verfahren zur erfassung einer drahtkrümmung
EP2256516B1 (de) Lasergerät zur elektrooptischen Distanzmessung
EP2948732B1 (de) System zur lagebestimmung eines prüfobjektes
EP3557523A1 (de) Verfahren zur erzeugung eines korrekturmodells einer kamera zur korrektur eines abbildungsfehlers
EP3362848B1 (de) Verfahren und vorrichtung zur überprüfung der brechkraftverteilung und der zentrierung
DE3015488C2 (de)
EP2436305A1 (de) Sehtestgerät
DE102013213599B4 (de) Verfahren und Vorrichtung zur spektrometrischen Reflexionsmessung bei sphärischen Flächen
EP3182062A1 (de) Kalibrierung eines interferometers
DE102006052047A1 (de) Verfahren und Vorrichtung zur Bestimmung der Lage einer Symmetrieachse einer asphärischen Linsenfläche
WO2008138687A1 (de) Objektivanordnung für eine bildverarbeitung und verfahren zur reduzierung von bildfehlern bei dieser objektivanordnung
DE102009043538A1 (de) Messendoskop
EP4288756A1 (de) Messvorrichtung und verfahren zum vermessen einer modulationstransferfunktion eines afokalen optischen systems
DE19602862C1 (de) Meßeinrichtung zum Erfassen optischer Eigenschaften einer elektro-optischen Anzeige
EP4088086A1 (de) Konfokale messvorrichtung zur 3d-vermessung einer objektoberfläche
DE3107835C2 (de)
DE102006005874A1 (de) Vorrichtung und Verfahren zum berührungsfreien Vermessen
EP3086151B1 (de) System und verfahren zum ausrichten einer blende relativ zu einer optischen achse
DE102018123605B4 (de) Binokulares Einblickgerät zum Prüfen der Augen einer Person und zugehöriges Verfahren
WO2023186801A1 (de) Verfahren und vorrichtung zum bestimmen einer abbildungsqualität eines zu prüfenden optischen systems
DE102015005779B4 (de) Verfahren zur Kalibrierung einer Vorrichtung zum Untersuchen einer optischen Einrichtung und Verfahren zum Untersuchen einer optischen Einrichtung
DE19619684C2 (de) Fixierlinienabstandmeßgerät

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21736519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21736519

Country of ref document: EP

Kind code of ref document: A1