WO2021249415A1 - 一种锂离子蓄电池及其制备方法 - Google Patents

一种锂离子蓄电池及其制备方法 Download PDF

Info

Publication number
WO2021249415A1
WO2021249415A1 PCT/CN2021/099049 CN2021099049W WO2021249415A1 WO 2021249415 A1 WO2021249415 A1 WO 2021249415A1 CN 2021099049 W CN2021099049 W CN 2021099049W WO 2021249415 A1 WO2021249415 A1 WO 2021249415A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
core
positive
preparation
module
Prior art date
Application number
PCT/CN2021/099049
Other languages
English (en)
French (fr)
Inventor
徐兴无
申永宽
鞠林润
庄华杰
林少雄
鲁恒飞
卢芳
Original Assignee
合肥国轩高科动力能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥国轩高科动力能源有限公司 filed Critical 合肥国轩高科动力能源有限公司
Priority to EP21820992.2A priority Critical patent/EP4167338A1/en
Publication of WO2021249415A1 publication Critical patent/WO2021249415A1/zh
Priority to US18/079,751 priority patent/US20230113471A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a preparation method of a lithium ion storage battery, in particular to a preparation method of a lithium ion storage battery in which a module is directly prepared from a rolled core or a stacked core, and belongs to the technical field of battery preparation.
  • lead-acid batteries The history of lead-acid batteries is about 140 years earlier than that of lithium-ion batteries. Due to its low cost, high safety and reliability, and wide operating temperature range, it has always occupied a considerable market share. But the disadvantages of lead-acid batteries are also obvious, such as low specific energy, short life, and pollution in the manufacturing process. These shortcomings have become the fatal weakness in the development of lead-acid batteries.
  • lithium-ion power batteries have made great breakthroughs in specific energy and cost.
  • specific energy the specific energy of lithium iron phosphate batteries has exceeded 200Wh/Kg; in terms of cost, the cost of lithium iron phosphate batteries is close to that of lead-acid batteries. Therefore, in terms of cost performance or absolute price, lithium-ion batteries have very obvious advantages.
  • the electrification of automobiles is a world trend.
  • the main factors restricting the electrification of automobiles are that the energy density of its core components (power batteries) is not high enough and the cost cannot meet market demand.
  • a technical route currently adopted is to use a ternary battery. But the safety of the ternary battery is still an unresolved issue.
  • the cost of ternary batteries remains high.
  • Another technical route is to use lithium iron phosphate batteries, which have three outstanding advantages: high safety, long life, and low cost.
  • the energy density of lithium iron phosphate batteries has been greatly improved and improved.
  • the specific energy of a single unit has reached 200Wh/Kg, but there is still a certain gap between the cost and market requirements.
  • the current manufacturing process of lithium-ion batteries includes two parts: battery cell manufacturing and module manufacturing.
  • the battery cell manufacturing includes: pulping-coating-rolling-slitting-winding-shell-laser welding and sealing-chemical conversion-split
  • the manufacturing of the module includes: battery core matching-battery core into the shell-lug bus welding-signal wire welding-module shell welding or fixing.
  • the above process includes the cell preparation process and the module preparation process. There are both cell shells and module shells.
  • the cell shells are usually made of metal material or aluminum-plastic film, and the cost of the shell accounts for a lot. A large proportion.
  • Patent CN110518174A provides a battery and battery module. Although the battery adopts the process of one injection and formation in series in series, the overall cost is still relatively high because of the need for packaging materials and metal shells for the batteries. Moreover, this product is limited to a limited variety of electric vehicle battery packs, and cannot be widely used in markets similar to lead-acid batteries.
  • the purpose of the present invention is to provide a lithium ion battery with low cost, high energy density and good cycle stability.
  • Another object of the present invention is to provide a method for preparing the above-mentioned serialized standard-size lithium-ion storage battery.
  • the present invention first provides a method for preparing a lithium-ion battery.
  • the preparation method includes a step of encapsulating a plurality of cores in series and/or in parallel to obtain a module, wherein the cores are stacked Core or roll core.
  • the preparation method of the lithium ion battery of the present invention combines the preparation process of the lithium ion battery and the lead-acid battery, and realizes a preparation from the core (stacked or rolled core) (jelly-roll) directly to the module (module) (jelly-roll to module referred to as JTM).
  • the preparation method specifically includes the following steps:
  • Positive and negative electrode composite slurry prepare positive and negative electrode composite slurry from positive and negative electrode materials
  • Coating Coating the positive and negative electrode mixture slurry on the positive and negative current collectors
  • Slitting slitting the coated positive and negative current collectors to obtain pole pieces
  • the positive electrode sheet and the negative electrode sheet are laminated or wound to obtain a laminated core or a coiled core;
  • multiple cores are connected in series and/or in parallel to form a module, and then the module is packaged to obtain a lithium ion battery.
  • the preparation method of the lithium ion battery of the present invention includes the step of mixing the positive and negative electrodes. This step is the process of preparing the positive and negative electrode composite slurry through the positive and negative electrode materials.
  • the positive electrode material can be a conventional lithium ion battery positive electrode material
  • the negative electrode material can be a conventional lithium ion battery negative electrode material
  • the positive electrode material when the positive electrode is mixed slurry, can be selected from phosphoric acid One or several combinations of iron lithium, ternary cathode material NCM, lithium cobalt oxide, ternary cathode material NCA, lithium manganate, quaternary cathode material; preferably with high safety, long life, high energy density, low
  • the cost-effective lithium iron phosphate material is used as the cathode material.
  • the negative electrode material when the negative electrode is mixed with slurry, can be one or a combination of graphite material, silicon-doped negative electrode material and metallic lithium; specifically, the negative electrode material is graphite, silicon oxide , Nano silicon, lithium titanate, metal lithium, one or several combinations.
  • the mixing of the positive electrode and the negative electrode can be carried out by a conventional dry or wet mixing process in the art.
  • the pulping slurry can be a common pulping slurry for lithium ion batteries in the art.
  • water or an organic solvent N-methylpyrrolidone
  • positive and negative electrode materials, conductive agents and binders are added to the solvent.
  • the combined pulp slurry can be:
  • Positive electrode slurry 90%-99% positive electrode material (such as lithium iron phosphate), 0%-3% conductive agent (the lower limit is not 0), 0%-2% binder (the lower limit is not 0, such as PVDF), the total mass percentage of the positive electrode material, the binder, and the conductive agent is 100%; NMP is used as the solvent; the solid content of the positive electrode slurry is 40%-90%.
  • positive electrode material such as lithium iron phosphate
  • 0%-3% conductive agent the lower limit is not 0
  • 0%-2% binder the lower limit is not 0, such as PVDF
  • NMP is used as the solvent
  • the solid content of the positive electrode slurry is 40%-90%.
  • Negative electrode slurry 95%-99% negative electrode material (such as graphite), 0%-3% conductive agent (the lower limit is not 0), 0%-5% binder (the lower limit is not 0, such as CMC+ SBR), the total mass percentage of the negative electrode material, the binder, and the conductive agent is 100%; water is used as the solvent; the solid content of the negative electrode slurry is 30%-90%.
  • negative electrode material such as graphite
  • 0%-3% conductive agent the lower limit is not 0
  • 0%-5% binder the lower limit is not 0, such as CMC+ SBR
  • the mixed slurry uses an electrolyte as a solvent, and no binder is added at the same time.
  • the electrolyte solution can be a conventional electrolyte solution in the field, and even if no binder is added, the bonding performance of the slurry will not be affected.
  • the mixing slurry can be:
  • the positive electrode material such as lithium iron phosphate
  • the conductive agent such as graphene and carbon tube
  • the material cost is saved by changing the solvent of the slurry; the solid content of the slurry is increased, the viscosity is increased, and the electrode with an areal density of 100g/m 2 -1500g/m 2 can be prepared. piece.
  • the preparation method of the lithium ion battery of the present invention includes the step of coating. Coating is to coat the positive and negative electrode mixture slurry onto the positive and negative electrode current collectors.
  • an extrusion or contact coating method can be selected to coat the positive and negative electrode slurry on the positive and negative electrode current collectors.
  • a single-layer or multi-layer metal mesh or foil current collector can be used, or a three-dimensional grid-like current collector manufactured by casting or etching can be used.
  • the metal foil may be in the shape of holes or nets to further reduce the weight of the foil.
  • the positive electrode can use aluminum foil as the positive electrode current collector; the negative electrode can use copper foil as the negative electrode current collector.
  • a mesh grid type current collector is used, the thickness of the positive electrode current collector is 3 ⁇ m-500 ⁇ m, and the thickness of the negative electrode current collector is 3 ⁇ m-500 ⁇ m; the grid shape in the grid can be triangle, square, Rectangle and polygon etc.
  • aluminum foil is selected for the positive electrode current collector with a thickness of 5 ⁇ m-25 ⁇ m; and the negative electrode current collector is copper foil with a thickness of 3 ⁇ m-25 ⁇ m.
  • the coating surface density is controlled as positive electrode: 100/m 2 -600g/m 2 , negative electrode 50g/m 2 -300g/m 2 ; coating speed is controlled at 20m/s-150m/s, drying temperature is 70°C-140°C .
  • the preparation method of the lithium ion battery of the present invention may further include a step of rolling.
  • different follow-up processes are selected. Among them, when the electrolyte is used as the solvent to mix the slurry, the steps of drying and rolling are not required after coating, which shortens the manufacturing cycle and reduces the manufacturing cost.
  • water or organic solvents are used as the solvent to mix the slurry, follow the conventional coating method, which is followed by drying after coating and a subsequent step of rolling.
  • the compaction density is controlled by rolling, for example, the compaction density of the positive electrode is 1.5-3.7 (preferably 1.5-3.1 or 2.0-3.7, more preferably 2.0-3.1), and the compaction density of the negative electrode is 1.5-3.7. It is 1.0-1.8 (preferably 1.4-1.8), and the rolling temperature is controlled at 20°C-90°C.
  • the preparation method of the lithium ion battery of the present invention includes the step of slitting. Both of the above-mentioned pulping processes require a slitting step.
  • the slitting is to slit the coated positive and negative current collectors to obtain pole pieces.
  • the slitting width of the pole piece is selected according to the size of the cell, and is generally 10mm-1000mm, preferably 60mm-1000mm.
  • the preparation method of the lithium ion storage battery of the present invention includes a step of preparing a sheet.
  • the purpose of sheet making is to cut out the shape of the tab on the pole piece, and then roll or stack the sheet so that the pole piece has an overhanging tab.
  • the preparation method of the lithium ion battery of the present invention includes the steps of lamination or winding.
  • the positive electrode sheet and the negative electrode sheet are laminated or rolled to obtain a laminated core or a rolled core.
  • the number of layers of the positive and negative electrodes of the core is selected according to the areal density of the coating of the positive and negative electrodes, and the specific number of layers is adapted to the thickness of the core and the size of the cell.
  • the separator used in the lamination or winding process may be a conventional separator of a lithium ion battery.
  • the thickness of the diaphragm is 3 ⁇ m-100 ⁇ m; the thickness of the core body is 93%-98% of the thickness of the inner cavity of the cell.
  • the lamination can be carried out by adopting a conventional lamination process in the field, for example, it can be manufactured by a soft-pack battery lamination method.
  • the winding process can be a conventional winding process in the field, and can be made into a rectangular parallelepiped winding core or a cylindrical winding core, for example, by winding a square lithium-ion battery.
  • the preparation method of the lithium ion battery of the present invention includes the step of inserting a core into a cell.
  • the prepared laminated core or roll core is placed in a cell for physically separating each core body.
  • the core body can be put into the cell by auxiliary tools or automated equipment or manually.
  • the formed or unformed core can be directly placed into the cell without the core, and can be placed in the cell after packaging and flattening with heat shrinkable film.
  • the heat-shrinkable film can adopt the soft-pack battery packaging process to wrap the core body with the heat-shrinkable film, and then perform liquid injection, formation, exhaust, fine sealing, and cutting.
  • the thermoplastic film may be one or a combination of aluminum plastic film, PP, PET, CPP, and the like.
  • the preparation method of the lithium ion battery of the present invention may include the step of welding.
  • the multiple cores are welded to the positive and negative electrode connecting pieces.
  • the welding of the connecting piece can be performed first, and then the steps of sealing and dividing the volume can be performed.
  • the conventional process is to form a single battery after sealing and dividing the capacity, and the single battery is connected by a bus bar to form a battery module in series.
  • the present invention can directly replace the busbar with the connecting piece, and the positive and negative connecting pieces can be welded first and then sealed and separated, eliminating the need for a module section process.
  • the cores can be directly connected in series and/or in parallel.
  • a battery box has two terminals, a positive and a negative electrode.
  • the outer core negative electrode of the positive electrode of the battery box and the inner adjacent core positive electrode are connected in series by welding.
  • the outer core positive electrode of the negative electrode of the battery box is connected to the inner adjacent core.
  • the negative electrodes are connected in series by welding, the two unconnected positive and negative electrodes of the inner core are welded in series, and the positive and negative electrodes of the outer core of the battery box are respectively welded with a positive electrode tab and a negative electrode tab.
  • a plastic-metal composite connecting plate can be used as the positive and negative electrode connecting pieces, and the positive and negative electrode tabs of the laminated core or the winding core can be welded together.
  • the welding method may be cast welding after the core body is inverted.
  • the cast solder is molten metal, preferably molten metal tin.
  • the preparation method of the lithium ion battery of the present invention includes the step of connecting signal wires.
  • the signal wires are welded to the positive, negative, and series positions of the battery box.
  • the signal connection wires can monitor the voltage and temperature of the core unit in real time.
  • the preparation method of the lithium ion battery of the present invention may further include the step of injecting electrolyte after the signal line is connected and before the module is packaged.
  • the core body impregnated with the electrolyte can be directly placed in the cell, or a thermoplastic film can be used to encapsulate the liquid-injected core body and then placed in the cell. This saves the step of injecting electrolyte into the cell.
  • the preparation method of the lithium ion battery of the present invention includes the step of module packaging.
  • a sealant is used to encapsulate the battery box cover plate and the battery box shell.
  • positive and negative terminal lug holes are reserved on the cover plate for connecting external circuits.
  • the holes can be sealed Glue for sealing.
  • the battery cover of the present invention is sealed by ultrasonic hot-melt welding or laser welding.
  • the connectors and poles on the battery box need to be sealed.
  • the investment in welding equipment is reduced and the design of the cover plate is simplified.
  • the standardized internal stacked cores of the battery are connected in series, which eliminates the manufacturing process of the module and further reduces the manufacturing cost.
  • the preparation method of the lithium ion battery of the present invention may further include a step of forming. Formation can be carried out on the core body before the core body is put into the cell; it can also be formed in series after the module is formed.
  • the respective cores are connected in series and then are collectively formed in series, or the cores are formed separately.
  • the preparation method of the lithium ion storage battery of the present invention also includes a step of dividing the capacity.
  • the capacity can be divided after the module is packaged. If the module is formed, the capacity can be divided after the conversion. When dividing the capacity, a series process can be adopted for capacity testing.
  • the present invention also provides a lithium-ion storage battery, which is prepared by the above-mentioned preparation method of the lithium-ion storage battery of the present invention, and the lithium-ion storage battery includes:
  • a plurality of cores are rolled cores, stacked cores or soft-pack batteries; one end of each core is provided with a positive electrode tab and a negative electrode tab, and the positive tab and negative electrode tab of the multiple cores pass
  • the connecting piece realizes the series and/or parallel connection of the cores, and forms the total positive electrode of the module and the total negative electrode of the module;
  • each partitioning part is used to accommodate a single core body, and the individual core bodies are physically separated, and the partitioning part has a structure with an open upper side;
  • the housing and the cover plate, the internal space after the housing and the cover plate is assembled is used to accommodate a plurality of partition parts and the cores in it, and the cover plate is provided with the connection part of the module total positive electrode and the connection part of the module total negative electrode .
  • the partition member is a monolithic shell, a partition film or a partition plate.
  • the partition plate is a structure formed by integral molding of the shell. It can also be directly made into a shell structure similar to a lead-acid battery, and directly formed into a plurality of partition plates in the outer shell to form a plurality of cavities (cells) to realize an integrated structure of the outer shell and the partition plate.
  • the number of cells formed by the partition can be adjusted according to actual voltage requirements, and it can be one or more.
  • heating fins and liquid cooling plates can also be provided.
  • it can be arranged in the middle of each single shell, or it can be placed in the lower part of the whole module, which respectively play a role of heating or dissipating heat.
  • the heating sheet may be a metal sheet, graphene or PTC sheet. Due to the built-in heater, the lithium-ion battery module can be used in an extremely low-temperature environment, which overcomes the disadvantage that the lithium-ion battery is difficult to use in cold regions.
  • the energy density of the lithium ion battery is increased by about 15%, the volume utilization rate is increased by more than 10%, the impedance is reduced by about 10%, the manufacturing cycle is short, and the cost is reduced. About 20%, the normal temperature cycle increases by 20%.
  • the lithium ion battery of the present invention can be designed as a pluggable battery box with half the size of the lead-acid battery box or designed to be the same size as the lead-acid battery, or other sizes and shapes.
  • the voltage capacity of the lithium-ion battery of the present invention can be compared with a standard lead-acid battery, generally 12V ⁇ 20Ah, but the size (91mm ⁇ 76mm ⁇ 165mm) can be only half of the size of a standard battery.
  • the standard size lithium ion battery of the present invention can not only be used in the field of electric vehicles, but also can be widely used in electric bicycles, tricycles, UPS power supplies, automobile starting power supplies, 48V weak hybrid or dual-voltage systems, and the like.
  • the preparation method of the lithium ion battery of the present invention can greatly reduce the cost of the lithium ion battery, which is close to the level of a lead-acid battery; and by using lithium iron phosphate, the characteristics of high specific energy, long life and high safety can be achieved;
  • the lamination process makes it have excellent rate performance; due to the built-in heating plate, the battery can be used in an extremely low temperature environment, which overcomes the shortcomings of lithium-ion batteries that are difficult to use in cold regions.
  • the lithium-ion storage battery of the present invention can be designed as a series of standard modules, which brings great convenience to the standardization and versatility of the battery; and because it is a standardized battery, it has a very huge echelon utilization value and convenience.
  • the preparation method of the lithium ion battery of the present invention realizes the manufacturing process from the core directly to the module, eliminating the post-manufacturing process of the module, for example, battery cell assembly-battery cell insertion-tab bus welding- Signal wire welding-module housing welding or fixing steps reduce production costs, and at the same time have the characteristics of high specific energy, wide temperature range, high safety, and long life.
  • FIG. 1 is a schematic diagram of the structure of a lithium ion battery in an embodiment of the present invention.
  • FIG. 2 is another schematic diagram of the structure of a lithium ion battery in an embodiment of the present invention.
  • Fig. 3 is an external structure diagram of a lithium-ion storage battery in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a cell integrated structure of a lithium ion battery in an embodiment of the present invention.
  • Fig. 5 is a charging and discharging performance curve of a lithium-ion battery in an embodiment of the present invention.
  • Fig. 6 is a cycle performance curve of a lithium ion battery in an embodiment of the present invention.
  • This embodiment provides a lithium-ion battery storage battery, as shown in FIG. 1, including:
  • the cores are rolled cores, stacked cores or soft-pack batteries; one end of each core is provided with a positive electrode tab 5 and a negative electrode tab 7 respectively; the positive tab 5 and negative electrode tab of the multiple cores 7 Realize the series and/or parallel connection of the cores through the connecting pieces, and form the total positive electrode 11 of the module and the total negative electrode 12 of the module.
  • monomer shells 8 there are a plurality of monomer shells 8, each of which is used to accommodate a single core body, and the core bodies are physically separated, and the monomer shell 8 has a structure with an open upper side.
  • the positive electrode connecting piece 4 of the conductive structure is used to connect the positive electrode tab 5 of the core; the negative electrode connecting piece 6 of the conductive structure is used to connect the negative electrode tab 7 of the core.
  • the injection molding cover 10 is a structure for accommodating and fixing the core body. After being assembled with the injection molding shell, the internal space is used for accommodating a plurality of monomer shells 8 and the cores therein.
  • the injection-molded shell 9 serves as the outermost shell to protect and support multiple single-cell shells 8; the injection-molded top cover 1 is used to cover the injection-molded cover plate 10 and the packaging shell.
  • the winding core is prepared by crimping a plurality of small electric cores through the winding core process.
  • One end of the winding core is provided with a positive pole tab 5 and a negative pole tab 7 respectively.
  • the positive electrode tab 5 is connected by a positive electrode connecting piece 4
  • the negative electrode tab 7 is connected by a negative electrode connecting piece 6.
  • the positive electrode connecting piece 4 and the negative electrode connecting piece 6 can be connected in series and/or in parallel.
  • the negative connection piece of the core is connected to the positive connection piece of the adjacent core, and the unconnected positive connection piece and the unconnected negative connection piece serve as the module's total positive connection piece and the module's total negative connection piece.
  • the positive electrode connecting piece 4 and the negative electrode connecting piece 6 can be connected by bolts, and the positive electrode connecting piece 4 and the negative electrode connecting piece 6 may be respectively provided with connecting ports for passing through bolts or nuts.
  • the positive electrode connecting piece and the negative electrode connecting piece may also be connected by welding.
  • the core can be replaced with a stacked core according to actual needs.
  • the stacked core is prepared by a plurality of small electric cores through a stacked core process.
  • the 4 cores are respectively arranged in the 4 single shells 8.
  • the single shell 8 is used to physically separate the cores.
  • the 4 cores are arranged in space to complete the sealing at the core layer that is connected in series and/or in parallel. , Insulation, and isolation of ion transmission channels.
  • the single shell 8 can be a single plastic shell: it is not limited here, and it can be made of PET or PP heat-melt sealed film material, can be made of PVC heat shrinkable film material, or can be an injection molded structure of PC, PP, ABS.
  • the partition member is preferably a partition plate, which can be a plug-in plate, which is directly inserted into the injection molding shell 9 to divide the inner cavity of the injection molding shell 9 into a plurality of cells; or the partition plate is formed by integral molding of the shell
  • the partition structure is shown in Figure 4.
  • injection molding cover 10 is used to form a seal with the open structure on the upper side of the single shell 8.
  • the injection cover plate 10 is provided with a connection hole 2 for connecting an external signal line; at the same time, it can be used to realize a sealed connection between the injection cover plate 10 and the positive electrode connection piece 4 and the negative electrode connection piece 6.
  • the injection molding cover plate 10 is hermetically connected to the positive electrode connecting piece 4 and the negative electrode connecting piece 6 at one end of the winding core.
  • the connection method of the injection molding cover plate 10 to the positive electrode connecting piece 4 and the negative electrode connecting piece 6 can be bolt connection.
  • a bolt or nut can be passed through the connecting hole 2 and connected to the positive electrode connecting piece 4 and the negative electrode connection 6, and injection molding is performed at the same time. seal.
  • the injection-molded cover plate 10 and the injection-molded shell 9 are matched with each other to form a seal; ultrasonic thermal welding or laser welding can be used to ensure the sealing of the entire housing and the sealing of a single cavity (monolithic housing 8).
  • the injection molding cover 10, the positive connecting piece 4, and the negative connecting piece 6 are integrally injection molded, and no later assembly is required (the bolted nut is integrally injected, and the bolting process needs to increase the intermediate fixing parts, such as the positive and negative connecting pieces, Signal lines, etc., so follow-up processing and assembly are required).
  • the injection cover plate 10 is provided with a liquid injection hole 3 for injecting liquid into the monomer shell and exhausting air. Electrolyte can be injected according to actual needs.
  • the number of the injection holes 3 is the same as the number of the monomer shells, so as to realize the independent control of the injection holes 3 and the corresponding monomer shells 8.
  • each liquid injection hole 3 is equipped with a liquid injection hole sealing sheet to realize the sealing of the module. After the formation of the liquid injection hole is completed, the liquid injection hole sealing sheet is used to seal, and the injection hole sealing sheet 10 is used to cover the liquid injection hole sealing sheet. During use, when the internal gas pressure of the battery is too high, the liquid injection hole sealing sheet will pop open to proceed. The exhaust is exhausted through the small holes between the injection molding cover plates, and the liquid injection hole sealing sheet can be restored to its original shape after the exhaust.
  • the injection molding cover plate 10 has the connecting part of the module's total positive electrode 11 and the connecting part of the module's total negative electrode 12, which serve as the positive and negative conductive structures of the entire module, and the positive and negative terminals are welded respectively. .
  • the injection-molded shell 9 is used to accommodate multiple single-cell shells 8; the injection-molded top cover 1, which covers the injection-molded cover plate 10, and is provided with an outlet for the total positive electrode 11 of the module and an outlet for the total negative electrode 12 of the module; Can be used to encapsulate the injection molded case 9.
  • the injection-molded top cover 1 and the injection-molded shell 9 can be fixed and packaged with potting glue to ensure the sealing of the module.
  • the injection cover plate 10, the injection top cover 1 and the injection case 9 are sealed by sealant, and the ultrasonic hot melt welding method or the laser welding method can be used for sealing at the same time.
  • Connectors and poles such as connecting hole 2 are sealed with sealant.
  • the battery shown in FIG. 3 can be used directly as a lithium ion battery, and two or more lithium ion battery modules as shown in FIG. 3 can be assembled together to be used as a lithium ion battery. Alternatively, one or more lithium ion battery modules as shown in FIG. 3 can be assembled with other lithium ion battery modules to be used as lithium ion batteries.
  • This embodiment also provides a 1/2-size lead-acid battery box with 4 cavities (monocoque 8) in the box, and a stacked core design with a capacity of 20Ah.
  • the parts that are not detailed in the embodiment use this Common technologies available in the field.
  • the specific preparation method is as follows:
  • the pulping process of this embodiment does not use water or NMP as a solvent, which saves material costs; the slurry has high solid content and high viscosity, and can be prepared with an areal density of 100-1500 g/m 2 Pole pieces, the conventional low solid content slurry cannot be coated with high areal density pole pieces. In addition, drying and liquid injection are not required after coating, which shortens the entire manufacturing cycle and reduces manufacturing costs.
  • the coating is carried out using a double-layer extrusion coater.
  • the current collector adopts a mesh grid type; the thickness of the positive electrode current collector is 8 ⁇ m, and the thickness of the negative electrode current collector is 8 ⁇ m.
  • the grid shape in the grid can be Using triangles, squares, rectangles and polygons, etc., the pole piece does not need to be dried and rolled after coating.
  • Slitting and sheet making the pole piece after the coating roll is cut into small rolls, and then laser cutting or die-cutting to complete the sheet making, and cut out the lugs.
  • the number of layers of the positive and negative electrodes of the unit cell is selected according to the areal density of the positive and negative electrode coatings.
  • the number of layers of the laminate in this embodiment adopts the number of layers that is compatible with the thickness of the laminated core and the size of the cell box; this embodiment
  • the diaphragm adopts a conventional lithium ion diaphragm, and the thickness of the diaphragm is 8 ⁇ m.
  • the outer surface of the stacked core unit is covered with a heat shrinkable film, and the directions of the positive and negative electrodes of each adjacent stacked core are placed in opposite directions, so that the four stacked core positive and negative electrodes are adjacent to each other.
  • the battery box has both sides of the positive and negative electrodes.
  • the outer laminated core negative electrode of the positive electrode of the battery box and the inner adjacent laminated core positive electrode are connected in series by welding.
  • the outer laminated core positive electrode of the negative electrode of the battery box and the inner adjacent laminated core The core and negative poles are connected in series by welding, the two unconnected positive and negative poles of the inner stacked core are welded in series, and the positive and negative poles of the stacked core on the outside of the battery box are respectively welded with positive and negative tabs.
  • the preferred welding method is electric.
  • the core is inverted and then cast and welded.
  • the cast solder is molten metal, preferably molten metal tin; the signal wires are welded to the positive, negative and serial positions of the battery box, and the signal connecting wires can monitor the voltage and temperature of the stacked core unit in real time.
  • a sealant is used to encapsulate the battery box cover and the battery box shell.
  • positive and negative terminal lug holes are reserved on the cover for connecting external circuits, and the holes can be sealed with the sealant.
  • Injection liquefaction The four injection holes on the battery cover can be used for injection. After the assembly is completed, it can be directly formed in series. The formation uses a current of 0.01-0.5C to charge the stacked core for 40min-5000min to activate the stacked core, and the injection hole formation is completed Then seal the rubber cap with the rubber cap, and use the cover plate to seal the rubber cap. During use, when the gas pressure inside the battery is too high, the cap will pop open to exhaust, and it will be discharged through the small holes between the cover plates. The rubber cap can be restored to its original shape.
  • Divide capacity charge and discharge the welded and sealed battery at a rate of 0.1-1C, calibrate the battery capacity, and then adjust the SOC of the battery to 20%-60%.
  • the lithium ion battery obtained in this embodiment has a 0.33C capacity of up to 21.1Ah, and the charge-discharge curve is shown in FIG. 5.
  • the voltage range of a normal single cell is 2.0-3.65.
  • a cell module generated in series is used, and the voltage range can reach 8.0-14.4.
  • Figure 6 shows the cycle performance of the battery of Example 1. At 25°C, the cycle of the battery can reach 4000 weeks.
  • This embodiment uses a lead-acid battery box with 4 cells set in the box, and the designed capacity of the battery core is 40Ah.
  • the parts that are not explained in the embodiment adopt existing common technologies.
  • the positive electrode components and weight ratio are: lithium iron phosphate 98%, graphene 1% and PVDF 1%, NMP is used as an infiltrant, and the slurry is mixed by dry or wet mixing; solid content of the positive electrode slurry 65%; negative electrode components and weight ratio are: graphite 96%, carbon black 1% and CMC+SBR 3%, using deionized hydrated slurry, mixed slurry through dry or wet mixing; solid content of negative electrode slurry Is 60%;
  • Coating Coat the positive and negative electrode slurries after mixing the slurry on the positive electrode and negative electrode current collectors by extrusion or contact coating; the positive electrode current collector is made of aluminum foil with a thickness of 3-25 microns, and the negative electrode current collector choose copper foil with a thickness of 3-25 microns.
  • Rolling Rolling the coated positive pole piece and negative pole piece, the positive electrode compaction density is controlled at 1.5-23.1g/m 2 , and the negative electrode compaction density is controlled at 1.0-1.8g/m 2 ;
  • Winding After the production of the film is completed, the core is formed by winding.
  • the thickness of the laminated core is controlled at 93-98% of the thickness of the cavity;
  • the material of the packaging film is PET, and the packaging film is heated on three sides. seal up. Inject electrolyte through the opening on the other side, and then seal it. After immersion for 12-80h, the cell is formed, and the stacked core is activated by charging the stacked core with a current of 0.01-0.5C for 40min-5000min. The laminated core after forming is exhausted, heat-sealed again and cut. Put the stacked core into the battery box by manual or semi-automatic tooling to complete the assembly.
  • Welding and sealing connect the stacked core tabs of the shell and the connecting piece on the cover by laser welding, then apply structural glue to the contact position of the battery cover and the battery box, and cure and glue the structural glue by heating To achieve the sealing of the entire cover plate and the battery box. At the same time, laser welding completes the series connection inside the entire battery.
  • the voltage and temperature collection wiring harness is fixed on the terminal of the battery by welding to realize signal collection.
  • Divide capacity charge and discharge the welded and sealed battery at a rate of 0.1-1C, calibrate the battery capacity, and then adjust the SOC of the battery to 20%-60%.
  • the 0.33C capacity of the lithium ion battery obtained in this example can reach 41 Ah, and the cycle performance is equivalent to that of Example 1.
  • the battery prepared according to the preparation method of the present invention has simplified parts through integrated manufacturing.
  • the energy density of the lithium iron phosphate module exceeds 190Wh/kg, which is much higher than the 160Wh/kg of the conventional lithium iron phosphate module and the lead-acid battery. 50Wh/kg, the volume utilization rate is more than 10% higher than that of the lithium battery module. Because of the fewer connectors, the impedance is also about 10% lower than that of the conventional module, and the cost is reduced by about 20%, which can be close to the cost level of lead-acid batteries.
  • the integrated manufacturing ensures the consistency of the stacked core of the module, and the normal temperature cycle can reach 4000 weeks, which is much higher than the level of lead-acid batteries, and has dual advantages in performance and cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

提供了一种锂离子蓄电池及其制备方法。制备方法包括由多个芯体串联和/或并联后进行封装得到模组的步骤,芯体为叠芯或卷芯。制备方法的工艺简单,同时把电芯壳体和模组壳体合为一体,大大降低了成本。同时,在电池设计上电池内置了石墨烯等加热片,克服锂离子蓄电池的低温瓶颈。这种标准化电池,直接做到了从卷芯到模组的一体化制造,具有低成本、高比能、宽温度范围、高安全、长寿命的特点,且省去了模组的后制造工序,降低了生产成本。

Description

一种锂离子蓄电池及其制备方法 技术领域
本发明涉及一种锂离子蓄电池的制备方法,尤其涉及一种由卷芯或叠芯直接制备得到模组的锂离子蓄电池的制备方法,属于电池制备技术领域。
背景技术
铅酸电池的历史比锂离子蓄电池早约140年,由于其低成本、高安全可靠性、宽使用温度范围等优点一直占据着相当大的市场份额。但铅酸电池的缺点也是显而易见的,比如比能量低,寿命短,制造过程有污染等。这些缺点成为铅酸电池发展的致命软肋。
近十几年来,由于全世界新能源汽车的迅猛发展,锂离子动力电池在比能量以及成本上都有了非常巨大的突破。在比能量方面,磷酸铁锂电芯的比能量已突破200Wh/Kg;在成本方面,磷酸铁锂电池的成本已接近铅酸电池。所以,无论从性价比还是绝对价格方面,锂离子蓄电池都有着非常明显的优势。
汽车电动化是世界潮流。制约汽车电动化的主要因素是其核心零部件(动力电池)的能量密度不是足够高和成本不能满足市场需求。为了提高电池的能量密度,目前采取的一种技术路线是使用三元电池。但三元电池的安全性仍然是一个悬而未决的问题。同时,三元电池的成本也居高不下。另一种技术路线是使用磷酸铁锂电池,其突出的三大优点是:高安全性、长寿命、低成本。但由于担心其能量密度低而未得到应有的重视。近年来由于技术的进步,磷酸铁锂电池的能量密度得到了非常大的进步和提升,单体比能量已达到200Wh/Kg,但是成本距市场要求仍有一定的差距。
目前锂离子蓄电池的制造工艺包括电芯制造和模组制造两个部分,其中电芯制造包括:合浆-涂布-辊压-分切-卷绕-入壳-激光焊接封口-化成-分容,模组的制造包括:电芯配组-电芯入壳-极耳汇流片焊接-信号线焊接-模组壳体焊接或固定。上述工艺包括电芯制备过程又包括模组制备过程,既有电芯壳体,又有模组壳体,电芯壳体通常为金属材料或铝塑膜制成,壳体的成本占了很大的比重。
专利CN110518174A提供了一种电池、电池模组。该电池虽然采取了内部串联一次注液及串联化成的工艺,但由于电芯需要包装材料以及金属壳体,综合成本仍然较高。况且,该产品只局限于种类有限的电动车电池包,不能广泛应用于类似铅酸电池的市场。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种同时具有低成本和高能量密度 以及循环稳定性好的锂离子蓄电池。
本发明的又一目的在于提供上述系列化标准尺寸的锂离子蓄电池的制备方法。
为了实现上述任一目的,本发明首先提供了一种锂离子蓄电池的制备方法,该制备方法包括由多个芯体串联和/或并联后进行封装得到模组的步骤,其中,芯体为叠芯或卷芯。
本发明的锂离子蓄电池的制备方法结合了锂离子蓄电池和铅酸电池的制备工艺,实现了一种从芯体(叠芯或卷芯)(jelly-roll)直接到模组(module)的制备(jelly-roll to module简称JTM)。
在本发明的一具体实施方式中,该制备方法具体包括以下步骤:
正负极合浆:通过正、负极材料制备正、负极合浆浆料;
涂布:将正、负极合浆浆料涂布在正、负极集流体上;
分切:对涂布后的正、负极集流体进行分切得到极片;
制片:在极片上切出极耳,使极片具有外伸的极耳;
叠片或卷绕:将正极片、负极片通过叠片工艺或卷绕工艺得到叠芯或卷芯;
芯体入单元格;将得到的叠芯或卷芯置入单元格,单元格用于物理分隔各个芯体;
然后将多个芯体进行串联和/或并联连接形成模组,之后进行模组封装,得到一种锂离子蓄电池。
本发明的锂离子蓄电池的制备方法中包括正负极合浆的步骤。这一步是通过正、负极材料制备得到正、负极合浆浆料的过程。
正、负极合浆时,正极材料可以为常规锂离子电池正极材料,负极材料可以为常规锂离子电池负极材料;在本发明的一具体实施方式中,正极合浆时,正极材料可以选自磷酸铁锂、三元正极材料NCM、钴酸锂、三元正极材料NCA、锰酸锂、四元正极材料的一种或几种组合;优选具有高安全性、长寿命、较高能量密度、低成本的磷酸铁锂材料作为正极材料。
在本发明的一具体实施方式中,负极合浆时,负极材料可以为石墨材料、掺硅负极材料和金属锂中的一种或几种的组合;具体地,负极材料为石墨、氧化亚硅、纳米硅、钛酸锂、金属锂中的一种或几种组合。
在本发明的一具体实施方式中,正、负极合浆时可以采用本领域常规的干法或湿法合浆工艺进行。
在本发明的一具体实施方式中,合浆浆料可以采用本领域锂离子电池常规的合浆浆 料。比如以水或有机溶剂(N-甲基吡咯烷酮)作为溶剂,向溶剂中添加正、负极材料、导电剂和粘结剂。
具体地,合浆浆料可以为:
正极浆料:90%-99%的正极材料(比如磷酸铁锂),0%-3%的导电剂(下限不为0),0%-2%的粘结剂(下限不为0,比如PVDF),正极材料、粘结剂、导电剂的质量百分含量之和为100%;NMP作为溶剂;正极浆料的固含量为40%-90%。
负极浆料:95%-99%的负极材料(比如石墨),0%-3%的导电剂(下限不为0),0%-5%的粘结剂(下限不为0,比如CMC+SBR),负极材料、粘结剂、导电剂的质量百分含量之和为100%;水作为溶剂;负极浆料的固含量为30%-90%。
在本发明一优选实施方式中,合浆浆料以电解液为溶剂,同时不添加粘结剂。其中,电解液采用本领域常规的电解液即可,而且即使不添加粘结剂也不影响浆料的粘结性能。比如,以电解液为溶剂进行合浆时,合浆浆料可以为:
正极浆料:90%-99%的正极材料(比如磷酸铁锂),1%-10%的导电剂(比如石墨烯和碳管),正极材料和导电剂的质量百分含量之和为100%,不添加粘结剂;以电解液为溶剂,可以采用本领域常规的电解液;比如,电解液可以采用EC:EMC:DMC=25:50:25;锂盐为浓度为0.8mol/L-1.2mol/L的LiPF 6;正极浆料的固含量为50%-95%。
负极浆料:92%-99%的负极材料(比如石墨),1%-8%的导电剂(比如炭黑),正极材料和导电剂的质量百分含量之和为100%,不添加粘结剂;以电解液为溶剂,可以采用本领域常规的电解液;比如,电解液可以采用EC:EMC:DMC=25:50:25;锂盐为浓度为0.8mol/L-1.2mol/L的LiPF 6;负极浆料的固含量为40%-95%。
在本发明的优选实施方式中,通过改变合浆的溶剂,节约了物料成本;提高了浆料的固含量,粘度增大,可以制备得到面密度为100g/m 2-1500g/m 2的极片。
本发明的锂离子蓄电池的制备方法包括涂布的步骤。涂布是将正、负极合浆浆料涂布到正、负极集流体上。
在本发明的一具体实施方式中,可以选择通过挤压或接触式的涂布方法,将正、负极浆料涂布在正、负极集流体上。
涂布正、负极合浆浆料时,可以采用单层或多层的金属网或箔材集流体,也可以采用铸造或蚀刻方式制造的三维结构的板栅状集流体。进一步地,金属箔材可以为孔状、网状,以进一步降低箔材的重量。比如正极可以采用铝箔作为正极集流体;负极可以采 用铜箔作为负极集流体。
在本发明的一具体实施方式中,采用网状板栅式集流体,正极集流体厚度为3μm-500μm,负极集流体的厚度为3μm-500μm;板栅内网格形状可为三角形、正方形、长方形和多边形等。
在本发明的另一具体实施方式中,正极集流体选用铝箔,厚度为5μm-25μm;负极集流体选用铜箔,厚度3μm-25μm。涂布面密度控制为正极:100/m 2-600g/m 2,负极50g/m 2-300g/m 2;涂布速度控制在20m/s-150m/s,烘干温度70℃-140℃。
本发明的锂离子蓄电池的制备方法还可以包括辊压的步骤。根据合浆浆料不同,选择不同的后续工艺。其中,以电解液为溶剂合浆时,涂布之后不需要烘干和辊压的步骤,缩短了制造周期,降低了制造成本。以水或有机溶剂为溶剂合浆时,按照常规的涂布的方式,既涂布之后进行烘干,且需要后续接辊压的步骤。
在本发明的一具体实施方式中,辊压控制压实密度,比如,正极压实密度为1.5-3.7(优选为1.5-3.1或者2.0-3.7,更优选为2.0-3.1),负极压实密度为1.0-1.8(优选1.4-1.8),辊压温度控制在20℃-90℃。
本发明的锂离子蓄电池的制备方法包括分切的步骤。上述两种合浆工艺均需要进行分切的步骤。分切是对涂布后的正、负极集流体进行分切得到极片。
在本发明的一具体实施方式中,极片分切宽度根据电芯尺寸选择,一般为10mm-1000mm,优选60mm-1000mm。
本发明的锂离子蓄电池的制备方法包括制片步骤。制片的目的是在极片上切出极耳的形状,然后进行卷绕或叠片,使极片具有外伸的极耳。
本发明的锂离子蓄电池的制备方法包括叠片或卷绕的步骤。将正极片、负极片通过叠片工艺或卷绕工艺得到叠芯或卷芯。
在本发明的一具体实施方式中,根据正、负极涂布的面密度来选择芯体正、负极的层数,具体层数与芯体厚度和单元格的尺寸相适应。
在本发明的一具体实施方式中,在叠片或卷绕工艺中采用的隔膜为锂离子电池常规的隔膜即可。其中,隔膜的厚度为3μm-100μm;芯体的厚度为单元格内腔厚度的93%-98%。
在本发明的一具体实施方式中,叠片采用本领域常规的叠片工艺即可进行,比如通过软包电池叠片的方式制造。卷绕工艺可以采用本领域常规的卷绕工艺即可,可以制成长方体卷芯或圆柱形卷芯,比如,通过方型锂离子蓄电池卷绕的方式制造。
本发明的锂离子蓄电池的制备方法包括芯体入单元格的步骤。将制备得到的叠芯或卷芯置入用于对各个芯体进行物理分隔的单元格中。
在本发明的一具体实施方式中,芯体可以通过辅助工具或自动化设备或手工方式放入单元格中。
在本发明的一具体实施方式中,化成或未化成的芯体可以直接裸芯置入单元格,可以经过热缩膜包装及压平处理后再置入单元格。其中,热缩膜可以采用软包电池封装工艺对芯体包裹热缩膜,然后进行注液、化成、排气、精封、剪裁。具体地,热塑膜可以是铝塑膜、PP、PET、CPP等中的一种或几种的组合。
本发明的锂离子蓄电池的制备方法可以包括焊接的步骤。将多个芯体进行正、负极连接片的焊接。在本发明的制备方法中,可以先进行连接片的焊接再进行密封和分容的步骤。常规工艺为先密封分容后形成单体电池,单体电池通过汇流排连接形成串联的电池模组。不同于常规方式,本发明可以直接用连接片取代汇流排,并且可以先对正、负极连接片进行焊接后再密封分容,省去了模组一段的工艺。
在本发明的一具体实施方式中,芯体可以直接串联和/或并联。比如,电池盒具有正负极两个端子,电池盒正极的外侧芯体负极和内侧相邻的芯体正极通过焊接的方式进行串联,电池盒负极的外侧芯体正极和内侧相邻的芯体负极通过焊接的方式进行串联,内部芯体的两个未连接的正负极进行焊接串联,电池盒外侧芯体的正负极分别焊接正极接线片和负极接线片。
在本发明的一具体实施方式中,可以采用塑料-金属复合连接板作为正、负极连接片,将叠芯或卷芯的正、负极极耳焊接起来。
在本发明的一具体实施方式中,焊接方式可以采用芯体倒置后铸焊,铸焊焊料为熔融金属,优选的采用熔融的金属锡。
本发明的锂离子蓄电池的制备方法包括信号线连接的步骤。
将信号线焊接在电池盒正极、负极和串联位置,信号连接线可以实时监测芯体单元的电压和温度。
本发明的锂离子蓄电池的制备方法在信号线连接之后,进行模组封装之前,还可以包括注电解液的步骤。
在本发明的一具体实施方式中,可以将电解液浸润过的芯体直接置入单元格内,还可以使用热塑膜对注液化成好的芯体封装后再置入单元格中。这样可以省去向单元格内注电解液的步骤。
通过对芯体入单元格后的焊接和注液方式的改变,降低焊接设备的投入,简化盖板的设计方式。标准化的电池内部叠芯串联,取消了模组的制造工序,进一步降低了制造成本。
本发明的锂离子蓄电池的制备方法包括模组封装的步骤。
在本发明的一具体实施方式中,采用密封胶将电池盒盖板和电池盒壳体进行封装,优选在盖板上预留有正、负极接线片孔洞,用于连接外部电路,孔洞可用密封胶进行密封。
本发明的电池盖采用超声热熔焊接方式或激光焊接方式进行密封。电池盒上的接插件、极柱等需要进行密封处理。
通过对芯体入壳后的焊接和注液方式的改变,降低焊接设备的投入,简化盖板的设计方式。标准化的电池内部叠芯串联,取消了模组的制造工序,进一步降低了制造成本。
本发明的锂离子蓄电池的制备方法中还可以包括化成的步骤。化成可以在芯体装入单元格之前对芯体进行化成;也可以形成模组后,对模组进行串联化成。
在本发明的一具体实施方式中,对芯体进行化成时,对各个芯体进行串联后统一进行串联化成,或,将芯体单独进行化成。
本发明的锂离子蓄电池的制备方法还包括分容的步骤。分容可以在模组封装后,如果对模组进行化成,可以在化成之后进行分容。分容时可以采取串联工艺进行容量测试。
本发明还提供了一种锂离子蓄电池,该锂离子蓄电池是由本发明的上述锂离子蓄电池的制备方法制备得到的,该锂离子蓄电池包括:
多个芯体,所述芯体为卷芯、叠芯或软包电池;每个芯体的一端分别设有正极极耳与负极极耳,多个芯体的正极极耳与负极极耳通过连接片实现芯体的串联和/或并联,并形成模组总正极和模组总负极;
多个分隔部件,每个分隔部件用于容装单个芯体,并将各个芯体进行物理间隔,分隔部件具有上侧敞开口的结构;
外壳及盖板,外壳及盖板组装后内部空间用于容装多个分隔部件及其内的芯体,并且,盖板上设置有模组总正极的连接部和模组总负极的连接部。
在本发明的一具体实施方式中,分隔部件为单体壳、分隔膜或分隔板。其中,分隔板为外壳一体成型形成的结构。也可以直接做成类似于铅酸电池壳体结构,在外壳体中直接成型为多个分隔板形成多个腔体(单元格),实现外壳与分隔板一体化的结构。其中,通过分隔部件形成的单元格的数量可以根据实际电压需要进行调整,可以为一个或 多个。
根据实际需要,还可以设置有加热片、液冷板。配合外部设计模组热管理系统,以实现更高的效率。其中,可以设置在每个单体壳的中间,也可能放在整个模组的下部,分别起到加热或散热的作用。
在本发明的另一具体实施方式中,加热片可以为金属片、石墨烯或PTC片。由于内置了加热片,使得该锂离子电池模组能够在极低温度环境下使用,克服了锂离子电池很难在寒冷地区使用的缺点。
在本发明的一具体实施方式中,其中,该锂离子蓄电池与常规锂离子电池比,能量密度提高15%左右,体积利用率提高10%以上,阻抗降低10%左右,制造周期短,成本降低约20%,常温循环提升20%。
本发明的锂离子蓄电池,可以设计成铅酸电池盒尺寸一半的可插接式电池盒或设计成与铅酸电池尺寸一样,或其他尺寸和形状。本发明的锂离子蓄电池的电压电量可与标准铅酸电池相比,一般为12V·20Ah,但是尺寸(91mm×76mm×165mm)可以仅为标准电池的尺寸的一半。
本发明的标准尺寸的锂离子蓄电池不仅可以应用在电动汽车领域中,还可以广泛应用于电动自行车、三轮车、UPS电源、汽车启动电源、48V弱混或双电压系统等。
本发明的上述锂离子蓄电池的制备方法可以使锂离子蓄电池的成本大幅降低,接近铅酸电池的水平;而且通过采用磷酸铁锂可以实现高比能、长寿命、高安全性的特点;由于采用叠片工艺,使得其具有优良的倍率性能;由于内置了加热片,使得该蓄电池可以在极低温度环境下使用,克服了锂离子蓄电池难以在寒冷地区使用的缺点。
本发明的锂离子蓄电池可以设计为系列标准模组,这对电池的标准化以及通用性带来了巨大便利;而且由于是标准化电池,使其具有非常巨大的梯次利用价值和便利性。
本发明的锂离子蓄电池的制备方法实现了从芯体直接到模组的制造工序,省去了模组的后制造工序,比如,电芯配组-电芯入壳-极耳汇流片焊接-信号线焊接-模组壳体焊接或固定等步骤,降低了生产成本,同时具有高比能、宽温度范围、高安全、长寿命的特点。
附图说明
图1为本发明一实施例中的锂离子蓄电池的结构示意图。
图2为本发明一实施例中的锂离子蓄电池的另一结构示意图。
图3为本发明一实施方式中的锂离子蓄电池的外观结构图。
图4为本发明一实施方式中锂离子蓄电池的单元格一体化结构的示意图。
图5为本发明一实施例中的锂离子蓄电池的充放电性能曲线。
图6为本发明一实施例中的锂离子蓄电池的循环性能曲线。
主要附图符号说明:
1、注塑顶盖;2、连接孔;3、注液孔;4、正极连接片;5、正极极耳;6、负极连接片;7、负极极耳;8、单壳体;9、注塑外壳;10、注塑盖板;11、模组总正极;12、模组总负极。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种锂离子电池蓄电池,如图1所示,包括:
多个芯体,芯体为卷芯、叠芯或软包电池;每个芯体的一端分别设有正极极耳5与负极极耳7;多个芯体的正极极耳5与负极极耳7通过连接片实现芯体的串联和/或并联,并形成模组总正极11和模组总负极12。
多个单体壳8,每个单体壳8用于容装单个芯体,将各个芯体进行物理间隔,单体壳8具有上侧敞开口结构。
导电结构正极连接片4,用于连接芯体的正极极耳5;导电结构负极连接片6,用于连接芯体的负极极耳7。
注塑盖板10,容装、固定芯体的结构,与注塑外壳组装后内部空间用于容装多个单体壳8及其内的芯体,注塑盖板10与单体壳8的上侧敞开口结构之间形成密封,并且,注塑盖板10上设置有模组总正极11的连接部和模组总负极12的连接部。
注塑外壳9,作为最外层的壳体,起到保护支撑的作用,用于容装多个单体壳8;注塑顶盖1,用于覆盖注塑盖板10及封装外壳。
包括4个卷芯。该卷芯是由多个小电芯通过卷芯工艺卷曲制备得到的。卷芯的一端分别设置有正极极耳5和负极极耳7。正极极耳5通过正极连接片4连接,负极极耳7通过负极连接片6连接。其中,正极连接片4与负极连接片6可以串联和/或并联。比如,芯体的负极连接片与相邻芯体的正极连接片连接,没有连接的正极连接片和没有连接的负极连接片作为模组总正极连接片和模组总负极连接片。
其中,正极连接片4和负极连接片6可以通过螺栓连接,可以在正极连接片4和负 极连接片6上分别设置有连接口,用于穿过螺栓或螺母。或者,正极连接片与负极连接片也可以通过焊接方式连接。
卷芯可以根据实际需要替换为叠芯。叠芯为多个小电芯通过叠芯工艺制备得到。
4个卷芯分别设置在4个单体壳8中,单体壳8用于物理分隔各个卷芯,将4个卷芯分空间设置,以在彼此串联和/或并联的芯体层面完成密封、绝缘、以及离子传输通道的隔断。单壳体8可以为单体塑料壳:这里不做限定,可以是PET、PP热熔密封的膜材质,可以是PVC热缩膜材质,也可以是PC、PP、ABS类的注塑结构。
分隔部件优选为分隔板,该分隔板可以为插板,直接插到注塑外壳9的内部,将注塑外壳9的内腔分隔为多个单元格;或分隔板为外壳一体化成型形成的分隔结构,如图4所示。当分隔部件为分隔板时,不需要额外的壳体包装芯体,由小电芯到模组的过程仅仅需要一个外壳即可完成封装,大大简化了工艺和成本。
包括注塑盖板10。注塑盖板10用于与单体壳8上侧敞开口结构之间形成密封。注塑盖板10上设置有连接孔2,连接孔2用于连接外部信号线;同时,可以用于实现注塑盖板10与正极连接片4和负极连接片6的密封连接。
注塑盖板10与卷芯一端的正极连接片4和负极连接片6密封连接。注塑盖板10与正极连接片4和负极连接片6的连接方式可以是螺栓连接,比如,连接孔2中可以穿过螺栓或螺母,并与正极连接片4和负极连接6连接,同时进行注塑密封。
另外,注塑盖板10与注塑外壳9互相匹配形成密封;可以采用超声热熔焊接或激光焊接,保证整个壳体的密封以及单个腔体(单体壳8)的密封。注塑盖板10与正连接片4、负极连接片6采用一体注塑成型,无需后期装配(螺栓连接的螺母一体注塑,而螺栓连接过程中因需要增加中间的固定部件,如正负极连接片、信号线等,因此需要后续加工装配完成)。
同时注塑盖板10上设置有注液孔3,用于向单体壳中注入液体和排气。根据实际需要可以注入电解液。其中,注液孔3的个数与单体壳的个数相同,以实现注液孔3与对应的单体壳8单独控制。另外,每个注液孔3配置一个注液孔封片,用于实现模组的密封。注液孔化成完成后通过注液孔封片进行封口,并使用注塑盖板10将注液孔封片封盖,使用过程中电池内部气体压力过大时,注液孔封片会弹开进行排气,通过注塑盖板间的细小孔进行排出,排气后的注液孔封片可以恢复原状。
如图2所示,注塑盖板10上具有模组总正极11的连接部和模组总负极12的连接部,作为整个模组的正极、负极导电结构,分别焊接正极接线片和负极接线片。
包括注塑外壳9和注塑顶盖1。其中,注塑外壳9用于容装多个单体壳8;注塑顶盖1,注塑顶盖1覆盖注塑盖板10,并设置模组总正极11的出口和模组总负极12的出口;也可以用于封装注塑外壳9。其中,注塑顶盖1与注塑外壳9可以通过灌封胶水进行固定封装,保证模组的密封。
采用密封胶将注塑盖板10、注塑顶盖1与注塑外壳9进行封装,可以同时采用超声热熔焊接方式或激光焊接方式进行密封。连接孔2等接插件、极柱采用密封胶进行密封。
图3所示的电池可以直接作为锂离子电池使用,可以将2个或多个如图3所示的锂离子电池模组组装在一起,作为锂离子电池使用。又或者,可以将一个或多个如图3所示的锂离子电池模组与其他锂离子电池模组组装一起,作为锂离子电池使用。
本实施例还提供了使用1/2尺寸的铅酸电池盒,盒内设置4个腔体(单体壳8),叠芯设计的容量20Ah,实施例中未给出细节的部分均采用本领域现有常用技术。具体制备方法如下:
合浆:本实施例正极采用磷酸铁锂90%-99%,导电剂石墨烯加碳管1%-10%,不采用粘结剂;负极材料选用石墨92%-99%,炭黑1%-8%,不采用粘结剂,使用电解液对正负极进行合浆,溶剂采用电解液EC:EMC:DMC=25:50:25,锂盐使用0.8mol/L的LiPF 6。正极固含量为75%,负极固含量为68%。与传统的合浆工艺相比,本实施例的合浆工艺不采用水或NMP作为溶剂,节约了物料成本;浆料固含高,粘度大,可以制备面密度为100-1500g/m 2的极片,常规的低固含量的浆料无法涂布高面密度极片。且涂布之后不需要烘干和注液,缩短了整个制造周期,降低制造成本。
在合浆完成后进行涂布,采用双层挤压式涂布机进行涂布,集流体采用网状板栅式;正极集流体厚度8μm,负极集流体厚度8μm,板栅内网格形状可采用三角形、正方形、长方形和多边形等,涂布之后极片不需要烘干和辊压。
分切及制片:将涂布辊压后的极片经过分切成小卷,进一步激光切或模切完成制片,切出极耳。
叠片:根据正负极涂布的面密度来选择单元电芯正负极的层数,本实施例的叠片层数采用叠芯厚度和电芯盒尺寸相适应的层数;本实施例隔膜采用常规锂离子隔膜,隔膜厚度采用8μm。叠芯单元外表面采用热缩膜包覆,每个相邻的叠芯正负极的方向相反放置,使得4个叠芯正极负极相邻。
入壳焊接:电池盒具有正负极两侧,电池盒正极的外侧叠芯负极和内侧相邻的叠芯正极通过焊接的方式进行串联,电池盒负极的外侧叠芯正极和内侧相邻的叠芯负极通过 焊接的方式进行串联,内部叠芯的两个未连接的正负极进行焊接串联,电池盒外侧叠芯的正负极分别焊接正极接线片和负极接线片,优选的焊接方式采用电芯倒置后铸焊,铸焊焊料为熔融金属,优选熔融的金属锡;将信号线焊接在电池盒正极、负极和串联位置,所述的信号连接线可以实时监测叠芯单元的电压和温度。本实施例采用密封胶将电池盒盖板和电池盒壳体进行封装,优选地盖板上预留有正负极接线片孔洞,用于连接外部电路,所述孔洞可用密封胶进行密封。
注液化成:电池盖板上四个注液孔进行注液,组装完成后能够直接进行串联化成,化成采用0.01-0.5C的电流对叠芯充电40min-5000min激活叠芯,注液孔化成完成后通过橡胶盖帽进行封口,并使用盖板将橡胶帽封盖,使用过程中电池内部气体压力过大时,盖帽会弹开进行排气,通过盖板间的细小孔进行排出,排气后的胶帽可以恢复原状。
分容:将所述焊接封口好的电池采用0.1-1C的倍率进行充放电,标定出电池容量,然后将电池调整SOC至20%-60%。
本实施例得到的锂离子蓄电池,其0.33C容量可达21.1Ah,充放电曲线如图5所示。正常单体电芯的电压范围是2.0-3.65,本实施例是用串联产生的电芯模组,电压范围可以达到8.0-14.4。
图6为实施例1的电池的循环性能,在25℃,电池的循环可达4000周。
实施例2
本实施例使用铅酸电池盒,盒内设置4个单元格,电芯设计的容量40Ah,实施例中未讲明的部分采用现有常用技术。
合浆:其中正极组分及重量配比为:磷酸铁锂98%、石墨烯1%和PVDF 1%,NMP作为浸润剂,通过干混或者湿混的方式进行合浆;正极浆料固含量65%;负极组分及重量配比为:石墨96%、炭黑1%和CMC+SBR 3%,使用去离子水合浆,通过干混或者湿混的方式进行合浆;负极浆料固含量为60%;
涂布:将上述合浆后的正、负极浆料通过挤压式或者接触式涂布的方式涂布在正极、负极集流体上;正极集流体选用铝箔,厚度3-25微米,负极集流体选用铜箔,厚度3-25微米。涂布面密度控制在正极100-600g/m 2,负极50-300g/m 2;涂布速度控制在20-150m/s,烘干温度70-140℃;烘干之后测量NMP和水分残留控制在600ppm以内;
辊压:将涂布后的正极极片、负极极片进行过辊辊压,正极压实密度控制在1.5-23.1g/m 2,负极压实密度控制在1.0-1.8g/m 2
分切制片:将涂布辊压后的极片经过分切成小卷,进一步激光切或模切完成制片, 切出极耳;
卷绕:将制片完成后的通过卷绕方式形成叠芯。叠芯的厚度控制在腔体内腔厚度的93-98%;
化成入壳:将所述叠芯焊接上涂有热封胶的极耳片上,然后将所述的叠芯外层包覆一层封装膜,封装膜材质选用PET,对封装膜进行三侧热封。通过另一侧的开口注入电解液,然后封口。浸润12-80h后,对电芯进行化成,化成采用0.01-0.5C的电流对叠芯充电40min-5000min激活叠芯。对所述化成后的叠芯进行排气和再次热封并裁剪。将叠芯通过手工或者半自动工装放入电池盒内,完成组装。
焊接封口:将所述入壳的叠芯极耳与盖板上的连接件通过激光焊接方式进行连接,然后对电池盖与电池盒接触的位置涂结构胶,通过加温对结构胶进行固化粘结,实现整个盖板和电池盒的密封。同时激光焊接完成了整个电池内部的串联连接。将电压和温度采集线束通过焊接固定在电池的端子上实现信号的采集。
分容:将所述焊接封口好的电池采用0.1-1C的倍率进行充放电,标定出电池容量,然后将电池调整SOC至20%-60%。
本实施例得到的锂离子蓄电池0.33C容量可达41Ah,循环性能与实施例1相当。
按照本发明的制备方法制备得到的电池,通过一体化制造简化零部件,其磷酸铁锂模组能量密度超过190Wh/kg,远高于常规磷酸铁锂模组的160Wh/kg和铅酸电池的50Wh/kg,体积利用率比锂电模组提高10%以上,由于连接件较少其阻抗也比常规模组低约10%,成本降低约20%,可以接近铅酸电池成本水平。同时一体化制造保证了模组叠芯的一致性,常温循环可达4000周,远远高于铅酸电池水平,在性能和成本上面具有双重优势。

Claims (16)

  1. 一种锂离子蓄电池的制备方法,该制备方法包括由多个芯体串联和/或并联后进行封装得到模组的步骤,其中,芯体为叠芯或卷芯。
  2. 根据权利要求1所述的制备方法,其中,该制备方法包括以下步骤:
    正负极合浆:通过正、负极材料制备正、负极合浆浆料;
    涂布:将正、负极合浆浆料涂布在正、负极集流体上;
    分切:对涂布后的正、负极集流体进行分切得到极片;
    制片:在极片上切出极耳,使极片具有外伸的极耳;
    叠片或卷绕:将正极片、负极片通过叠片工艺或卷绕工艺得到叠芯或卷芯;
    芯体入单元格;将得到的叠芯或卷芯置入单元格,单元格用于物理分隔各个芯体;
    然后将多个芯体进行串联和/或并联连接形成模组,之后进行模组封装,得到一种锂离子蓄电池。
  3. 根据权利要求2所述的制备方法,其中,正、负极合浆浆料以水或有机溶剂为溶剂。
  4. 根据权利要求2所述的制备方法,其中,正、负极合浆浆料以电解液为溶剂,且合浆中不添加粘结剂。
  5. 根据权利要求3或4所述的制备方法,其中,正极材料为常规锂离子电池正极材料,负极材料为常规锂离子电池负极材料。
  6. 根据权利要求5所述的制备方法,其中,正极材料选自磷酸铁锂、NCM、钴酸锂、NCA、锰酸锂、四元正极材料中的一种或几种组合。
  7. 根据权利要求5所述的制备方法,其中,负极材料为石墨材料、掺硅负极材料和金属锂中的一种或几种的组合。
  8. 根据权利要求7所述的制备方法,其中,负极材料为石墨、氧化亚硅、纳米硅、钛酸锂中的一种或几种组合。
  9. 根据权利要求1所述的制备方法,其中,该方法还包括化成的步骤,化成在模组封装之前对芯体进行化成,或在模组封装之后,对模组进行串联化成。
  10. 根据权利要求9所述的制备方法,其中,对芯体进行化成时,对单独芯体进行化成,或芯体串联后进行化成。
  11. 根据权利要求2所述的制备方法,其中,化成后或未化成的芯体裸芯入单元格,或通过热缩膜包装及压平处理后入单元格。
  12. 根据权利要求3所述的制备方法,其中,该制备方法还包括在涂布后进行辊压的步骤。
  13. 一种锂离子蓄电池,该锂离子蓄电池是由权利要求1-12任一项所述的制备方法制备得到的,该锂离子蓄电池包括:
    多个芯体,所述芯体为卷芯、叠芯或软包电池;每个芯体的一端分别设有正极极耳与负极极耳,多个芯体的正极极耳与负极极耳通过连接片实现芯体的串联和/或并联,并形成模组总正极和模组总负极;
    多个分隔部件,每个分隔部件用于容装单个芯体,并将各个芯体进行物理间隔,分隔部件具有上侧敞开口的结构;
    外壳及盖板,外壳及盖板组装后内部空间用于容装多个分隔部件及其内的芯体,并且,盖板上设置有模组总正极的连接部和模组总负极的连接部。
  14. 根据权利要求13所述的锂离子蓄电池,其中,分隔部件为单体壳、分隔膜或分隔板。
  15. 根据权利要求13所述的锂离子蓄电池,其中,与常规锂离子电池相比,该锂离子蓄电池的能量密度提高15%,体积利用率提高10%以上,阻抗降低10%,制造周期短,成本降低20%,常温循环性能提升20%。
  16. 根据权利要求13所述的锂离子蓄电池,其中,该锂离子蓄电池的尺寸与标准电池组的尺寸相同或为标准电池组尺寸的一半。
PCT/CN2021/099049 2020-06-10 2021-06-09 一种锂离子蓄电池及其制备方法 WO2021249415A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21820992.2A EP4167338A1 (en) 2020-06-10 2021-06-09 Lithium-ion battery and preparation method therefor
US18/079,751 US20230113471A1 (en) 2020-06-10 2022-12-12 Lithium-ion secondary battery and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010522660.1 2020-06-10
CN202010522660.1A CN113851729A (zh) 2020-06-10 2020-06-10 一种锂离子蓄电池及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/079,751 Continuation US20230113471A1 (en) 2020-06-10 2022-12-12 Lithium-ion secondary battery and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2021249415A1 true WO2021249415A1 (zh) 2021-12-16

Family

ID=78845340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099049 WO2021249415A1 (zh) 2020-06-10 2021-06-09 一种锂离子蓄电池及其制备方法

Country Status (4)

Country Link
US (1) US20230113471A1 (zh)
EP (1) EP4167338A1 (zh)
CN (1) CN113851729A (zh)
WO (1) WO2021249415A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274315A (zh) * 2022-09-27 2022-11-01 江苏中奕和创智能科技有限公司 一种储能锂电池系统用电容器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388810A (zh) * 2022-01-21 2022-04-22 戴文韬 一种硅负极材料及使用该硅负极材料的高容量快充电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964126A (zh) * 2005-11-08 2007-05-16 比亚迪股份有限公司 锂离子二次电池
CN101141010A (zh) * 2007-07-24 2008-03-12 雷天电池技术有限公司 高电压动力型锂离子可充电电池
US20100273061A1 (en) * 2006-09-29 2010-10-28 Maxwell Technologies, Inc. Low-inductive impedance, thermally decoupled, radii-modulated electrode core
CN202585648U (zh) * 2012-02-20 2012-12-05 宁德新能源科技有限公司 软包装叠片式电池结构
CN110364674A (zh) * 2019-06-11 2019-10-22 温州大学新材料与产业技术研究院 一种高电压的软包电池及其制备方法
CN110518174A (zh) 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN212517324U (zh) * 2020-06-10 2021-02-09 合肥国轩高科动力能源有限公司 一种锂离子电池模组

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286577A (zh) * 2008-05-23 2008-10-15 清华大学 一种大功率的锂离子动力电池
CN101794914A (zh) * 2009-08-05 2010-08-04 江西中投新能源有限公司 一种使用寿命长的大容量锂电池的制造方法
CN103887556B (zh) * 2014-03-13 2015-08-19 深圳格林德能源有限公司 一种动力储能聚合物锂离子电池及制备方法
CN106159302B (zh) * 2015-04-08 2019-03-29 北京好风光储能技术有限公司 一种锂浆料电池反应器
CN105244506A (zh) * 2015-10-15 2016-01-13 青岛领军节能与新材料研究院 一种锂离子电池材料和锂离子电池结构及其制作方法
CN106356586A (zh) * 2016-11-25 2017-01-25 江西迪比科股份有限公司 一种集散热加热一体的动力电池模块
CN107134548B (zh) * 2017-04-13 2020-01-31 深圳市华宝新能源股份有限公司 一种电池包
CN208970686U (zh) * 2018-11-02 2019-06-11 惠州市烯谷新能源产业技术研究院有限公司 一种锂电池结构
CN209880747U (zh) * 2019-04-01 2019-12-31 深圳市雄韬电源科技股份有限公司 一种内串联式的锂电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964126A (zh) * 2005-11-08 2007-05-16 比亚迪股份有限公司 锂离子二次电池
US20100273061A1 (en) * 2006-09-29 2010-10-28 Maxwell Technologies, Inc. Low-inductive impedance, thermally decoupled, radii-modulated electrode core
CN101141010A (zh) * 2007-07-24 2008-03-12 雷天电池技术有限公司 高电压动力型锂离子可充电电池
CN202585648U (zh) * 2012-02-20 2012-12-05 宁德新能源科技有限公司 软包装叠片式电池结构
CN110364674A (zh) * 2019-06-11 2019-10-22 温州大学新材料与产业技术研究院 一种高电压的软包电池及其制备方法
CN110518174A (zh) 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN212517324U (zh) * 2020-06-10 2021-02-09 合肥国轩高科动力能源有限公司 一种锂离子电池模组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274315A (zh) * 2022-09-27 2022-11-01 江苏中奕和创智能科技有限公司 一种储能锂电池系统用电容器

Also Published As

Publication number Publication date
EP4167338A1 (en) 2023-04-19
US20230113471A1 (en) 2023-04-13
CN113851729A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN107069086B (zh) 二次电池、复合电解质、电池包以及车辆
EP3916860B1 (en) Negative electrode plate, secondary battery and device having same
JP5079782B2 (ja) ソフトパッケージ大容量リチウムイオン電池およびその製造方法
CN216872114U (zh) 电池和用电设备
US20230113471A1 (en) Lithium-ion secondary battery and preparation method thereof
CN201146222Y (zh) 新型叠片式锂离子二次电池
CN107230801A (zh) 一种安全大容量锂离子电池
CN212517324U (zh) 一种锂离子电池模组
CN217361642U (zh) 电极组件、电池单体、电池和用电设备
CN115133020A (zh) 锰酸锂正极活性材料及包含其的正极极片、二次电池、电池模块、电池包和用电装置
CN116075955A (zh) 负极集流体、含有其的二次电池、电池模块、电池包及用电装置
US20230411700A1 (en) Electrode assembly, manufacturing method therefor, battery cell, battery, and electric apparatus
CN116670847A (zh) 电极及其制备方法、电池及用电装置
WO2013021432A1 (ja) 固体電池及びその製造方法
CN202917600U (zh) 一种铝塑包装锂离子高功率电池
CN101771173A (zh) 高功率锂离子电池及其制造方法
CN115842093B (zh) 极片及制作方法、电极组件及制作方法、电池单体和电池
CN115842118A (zh) 锂盐复合材料、负极片及其制备方法、电池和用电装置
WO2021249416A1 (zh) 一种锂离子电池模组及其应用
CN206976496U (zh) 一种安全大容量锂离子电池
CN111540960A (zh) 一种液态锂离子极片电池包及其应用
EP4333103A1 (en) Compound electrode sheet, electrode assembly, secondary battery and electric apparatus
CN116936953B (zh) 电极组件、电池单体、电池及用电装置
CN212571140U (zh) 软包锂电池及锂电池模组
CN221226311U (zh) 一种正负同向锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21820992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021820992

Country of ref document: EP

Effective date: 20230110