WO2021249343A1 - 用于动力输出机构的动力传动装置及发电设备 - Google Patents

用于动力输出机构的动力传动装置及发电设备 Download PDF

Info

Publication number
WO2021249343A1
WO2021249343A1 PCT/CN2021/098631 CN2021098631W WO2021249343A1 WO 2021249343 A1 WO2021249343 A1 WO 2021249343A1 CN 2021098631 W CN2021098631 W CN 2021098631W WO 2021249343 A1 WO2021249343 A1 WO 2021249343A1
Authority
WO
WIPO (PCT)
Prior art keywords
push rod
permanent magnet
shaft
power
rod
Prior art date
Application number
PCT/CN2021/098631
Other languages
English (en)
French (fr)
Inventor
孙首泉
孙维真
Original Assignee
孙首泉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孙首泉 filed Critical 孙首泉
Publication of WO2021249343A1 publication Critical patent/WO2021249343A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa

Definitions

  • the present invention relates to a power transmission device, in particular to a power transmission device used in a power output mechanism and a power generating device having the device.
  • the purpose of the present invention is to solve the above-mentioned problems in the prior art.
  • the present invention provides a power transmission device and a power generation equipment including the power transmission device.
  • the power transmission device and generator are simple in structure, convenient to use, can be used for a long time after one-time input, and have little pollution.
  • the present invention provides a power transmission device for a power output mechanism
  • the power output mechanism includes a generator
  • the power transmission device includes: Power input shaft; a driving mechanism installed on the frame for transmitting driving force; a push rod mechanism installed on the frame and connected with the driving mechanism;
  • the driving mechanism is a mover mechanism or a rotor mechanism, and the The power input shaft is connected, which is matched with the track through a plane thrust bearing or linear thrust bearing or a roller, or a sliding block is matched with the track, or an electromagnet is matched with a permanent magnet, or a permanent magnet is matched with a permanent magnet to transmit power to
  • the push rod mechanism is connected to the power output mechanism; wherein, the push rod mechanism includes: a first connecting mechanism connected to the driving mechanism, a first connecting mechanism connected to the first connecting mechanism, and the The second connecting mechanism connected to the power output mechanism.
  • the present invention also provides another power transmission device for a power output mechanism, the power output mechanism includes a power output wheel, wherein the power transmission device includes: a power input shaft installed on a frame; A drive mechanism installed on the frame to transmit driving force; a push rod mechanism installed on the frame and connected to the drive mechanism; wherein the drive mechanism is a mover mechanism or a rotor mechanism, and is connected to the power input shaft , Which is matched with the track through a planar thrust bearing or a linear thrust bearing or a roller, or through a sliding block and a track, or through an electromagnet and a permanent magnet, or through a permanent magnet and a permanent magnet, and transmits power to the push rod Mechanism, the push rod mechanism is connected with the power output mechanism; wherein, the push rod mechanism includes: a first connecting mechanism connected with the driving mechanism, connected with the first connecting mechanism and the power output mechanism The second connecting mechanism.
  • the power input shaft is connected to the power output shaft of any power device that utilizes mechanical energy, wind energy, hydraulic energy, wave energy, etc., or is connected to the power device through a transmission mechanism.
  • the power output mechanism includes a power output wheel
  • the power input shaft is connected to the power output shaft of any power device that uses electrical energy, mechanical energy, wind energy, hydraulic energy, wave energy, etc., or through the power device
  • the transmission mechanism is connected in rotation.
  • the power input shaft may also be the power output shaft of the power device.
  • the mover mechanism includes a rotary drive mechanism, a linear linkage mechanism, and a power transmission mechanism
  • the rotary drive mechanism includes: a camshaft (39) connected to the power input shaft, which passes through a bearing box (34) ) Is installed on the frame (7); one or one or more pairs of cams (45) arranged on the camshaft (39), any one of the one or one or more pairs of cams (45) passes through the bearing (47) Installed on a corresponding cam sleeve (46), through the cam sleeve, the rotational power is transmitted to the linear linkage mechanism connected to the cam sleeve in a one-to-one correspondence;
  • the linear linkage mechanism includes: a connecting rod (9), a connection Piece (8), connecting plate (27), reciprocating parts (44, 64, 72, 89 or 43), guide rod (18); the connecting rod (9) is connected to the cam sleeve (46), the The coupling (8) connects the connecting rod (9), the connecting plate (27), the connecting
  • the linear linkage mechanism further includes a guide rail (43) installed on the frame (7) and extending in a direction perpendicular to the extending direction of the camshaft (39), and the connecting component is a connecting plate (27) ,
  • the connecting plate is connected between two adjacent rail bodies on the guide rails (43) on both sides;
  • the power transmission mechanism further includes: arranged on the advancing rail (69) and the retreating rail Planar thrust bearing (21) or roller (73) or sliding block (74) between (70), or linear thrust bearing (60) placed on the straight shaft track (61) of the track body (17); among them,
  • the cam (45) and the cam sleeve (46) are driven to rotate by the camshaft. Under the action of the cam (45), the cam sleeve (46) and the connecting rod (9), the circular motion of the cam sleeve (46) is turned into a connecting rod The linear reciprocating motion.
  • the reciprocating component is a mover push rod (72)
  • the linear linkage mechanism further includes: a linear bearing mounted on the frame (7) and located on one or both sides of the center line of the camshaft (39) (14), the mover push rod (72) is installed in the linear bearing (14) on the corresponding side, and one end of the mover push rod is placed in the frame end plate (15) on this side;
  • the power transmission mechanism is also Including: Planar thrust bearing (21) or roller (73) or sliding block (74) arranged between the forward rail (69) and retreat rail (70) of the rail body (17), or installed on a straight axis rail
  • the reciprocating component is a linear bearing (44) or a long beam (64)
  • the linear linkage mechanism further includes: a push arm (83) installed on the reciprocating component through a push arm seat (82), pushing Arm (83) and plane thrust bearing (21) or roller (73) or sliding block (74) or linear thrust bearing (60) or floating permanent magnet (80) and corresponding thrust arm seat (82) and mover push rod ( 72) or linear bearing (44) or long beam (64) or guide rail (43) to form a mover (56) that reciprocates relative to the frame
  • the power transmission mechanism further includes: a plane arranged on the push arm (83) Thrust bearing (21) or roller (73) or sliding block (74) or linear thrust bearing (60) or floating permanent magnet (80); installed on the forward track (69) and retreat track ( 70) plane thrust bearing (21) or roller (73) or sliding block (74), or linear thrust bearing (60) installed on the straight shaft track (61) of the push rod (13), or installed on The floating permanent magnet (80) between the advancing passive permanent magnet (76) and the retreating passive permanent
  • the mover mechanism includes a rotary drive mechanism, a linear linkage mechanism, and a power transmission mechanism, wherein the rotary drive mechanism includes a camshaft (39) connected to the power input shaft, which passes through a bearing box (34). ) Is installed on the frame (7); one or one or more pairs of cams (45) arranged on the camshaft (39), any one of the one or one or more pairs of cams (45) passes through the bearing (47) Installed on a corresponding cam sleeve (46), through the cam sleeve, the rotational power is transmitted to the linear linkage mechanism connected to the cam sleeve in a one-to-one correspondence; the linear linkage mechanism includes: a machine with one end placed on the frame In the frame end plate (15), the other end of the linear magnetic shaft (89) connected with the corresponding cam sleeve (46) through the connecting rod (9) and the coupling (8), the linear permanent mounted on the frame (7) Magnetic bearings (71), permanent magnets (90)
  • the mover mechanism includes a rotary drive mechanism, a linear linkage mechanism, and a power transmission mechanism
  • the rotary drive mechanism includes: a camshaft (39) connected to the power input shaft, which passes through a bearing box (34) ) Is installed on the frame (7); one or one or more pairs of cams (45) arranged on the camshaft (39), any one of the one or one or more pairs of cams (45) passes through the bearing (47) Installed on a corresponding cam sleeve (46), through the cam sleeve, the rotational power is transmitted to the linear linkage mechanism connected to the cam sleeve in a one-to-one correspondence; the linear linkage mechanism includes: installed on the frame (7) The linear bearing (44) above and located on one or both sides of the center line of the camshaft (39), the guide rail (43) is installed in the linear bearing (44) on the corresponding side; it is installed on the guide rail (43) and matches the corresponding cam sleeve (46)
  • a rail installed on
  • the driving mechanism of the power input shaft is a rotor mechanism, wherein: the rotor mechanism includes: a turntable (203) connected to the power input shaft; a forward active permanent magnet (134) and a retractor arranged on the turntable (203) To the active permanent magnet (137), or the forward track (107) and the retreat track (106), or the serpentine track (126); among them, the turntable (203) and the forward active permanent magnet (134) and The retreat active permanent magnet (137), or the advance track (107) and the retreat track (106), or the serpentine track (126) form a rotor (202); or, the rotor mechanism includes: connected to a power input shaft Track body (109); retreat track (106) and advance track (107) or serpentine track (126) or advance active permanent magnet (134) and retreat active respectively installed on the track body (109) Permanent magnet (137); among them, the orbital body (109) and the retreating track (106) and the advancing track (107) or the serpentine track (126) or the advancing active permanent magnet (134) and the retreating active
  • the rotor mechanism includes: a rotor shaft (156) connected to the power input shaft; a rotor (157) installed on the frame (102) through the rotor shaft (156); a track body installed on the rotor (157) (109); Advancing rail (107) and retreating rail (106) installed on the rail body (109), or serpentine rail (126), or advancing active permanent magnet (134) and retreating active permanent magnet (137), or N-pole active permanent magnet (152) and S-pole active permanent magnet (153) installed on the rotor (157);
  • the rotor mechanism includes: a rotor shaft (159) connected to the power input shaft, installed on the frame (7) through a bearing box (34); a rotor (162) installed on the rotor shaft (159); provided N-pole active permanent magnets (152) and S-pole active permanent magnets (153) on the rotor; alternatively, the rotor mechanism includes: a rotor shaft (193) connected to a power input shaft; installed on the rotor shaft (193) The rotor (195) on the frame (194); the forward active permanent magnet (134) and the retreat active permanent magnet (137) installed on the rotor (195), or the forward track (107) and the retreat track ( 106), or serpentine track (126).
  • the driving mechanism is a rotor mechanism, wherein: the rotor mechanism includes: a driving wheel (1006) connected to the power input shaft; the two ends of the rotor shaft are respectively mounted on the frame (7) through a bearing box (34) (156); Rotor disc (1008), passive wheel (1003), passive sprocket (1002) and flywheel (198) installed on the rotor shaft (156); installed on the rotor disc (1008) through a fixed seat (154)
  • the electromagnet mechanism includes : Multiple sets of electromagnets (1017) installed on the rack (7); electric control cabinet (97) installed on the rack; automatic controller (1016) installed in the electric control cabinet; automatic controller (1016) One end of) is connected to the electric control cabinet (97) through a wire (1015), and the other end is connected to multiple sets of
  • the automatic controller (1016) controls the switches of each group of electromagnets (1017) in a preset order through wires; when one or more groups of electromagnets (1017) are energized, the corresponding passive permanent magnets (147 ) Move towards the direction away from the electromagnet under the action of the same pole repulsive force to push the push rod (13) of the corresponding push rod mechanism to move in a straight line; when the previous one or more sets of electromagnets (1017) are de-energized, the next One or more sets of electromagnets (1017) are then energized, and the corresponding passive permanent magnets (147) push the corresponding push rod of the push rod mechanism to move linearly under the action of the same pole repulsion; it repeats the cycle through the relay cycle operation.
  • the rotor mechanism includes: a driving wheel (1006) connected to the power input shaft; both ends pass through a bearing box ( 34) Rotor shaft (156) installed on the frame (7); cam (1021), driven wheel (1003), passive sprocket (1002) and flywheel (198) installed on the rotor shaft (156); installation The drive belt (1007) on the driving wheel (1006) and the driven wheel (1003).
  • the driving mechanism is a rotor mechanism
  • the rotor mechanism includes: a base (174) mounted on the frame (163); wall panels (164) mounted on the base (174) and located on both sides of the base ; Permanent magnets (169) installed on both side wall panels (164); magnetic levitation rotors (165) installed on the frame; forward active permanent magnets 134 and retreat active permanent magnets respectively installed on the magnetic levitation rotor (165) Permanent magnet (137), or advance track 107 and retreat track 106, or serpentine track 126; the passive levitation permanent magnet (175) installed on the lower part of the magnetic levitation rotor (165), placed above the active permanent magnet (173) ,
  • the magnetic levitation rotor (165) is always in levitation by using the magnetic force of the same pole to repel;
  • the mover coil (176) placed corresponding to the permanent magnet (169) is installed on the maglev rotor (165) and placed Between the permanent magnets (169) on both sides; among them, under the interaction of the mover coil (176) and the permanent magnets
  • the first connecting mechanism includes: steel balls (53) arranged on the two working surfaces of the planar thrust bearing (21) of the driving mechanism, which are in contact with the track surfaces of the two tracks, or arranged on the track body (17)
  • the straight shaft track (61) on the upper side is connected with the linear thrust bearing (60); the linear bearings (14) installed on the frame (7) and located on both sides of the extension line of the connecting rod centerline;
  • the push rod (13) installed in the linear bearing (14); the coupling piece (16) connected to the push rod (13) at one end, and the plane thrust bearing (21) or roller (73) or sliding block ( 74) or linear thrust bearing (60) or floating permanent magnet (80) connected.
  • the second connecting mechanism is a mechanism that transmits power through a push rod and a swing rod, and includes: a support arm (66) installed on the frame (7); through a bearing (178) and a swing rod shaft (65)
  • the pendulum rod (68) installed on the support arm (66) has a pendulum power arm (58) and a pendulum resistance arm (59); one end is connected to the push rod (13) by a connecting plate (13) through a shaft (63) 57), the other end of which is connected to the swing lever power arm (58) through a shaft (63); one end is connected to the connecting plate (57) of the power output mechanism through a pin (22), and the other end is connected to a connecting plate (57) through a shaft (63)
  • the resistance arm (59) of the pendulum rod is connected.
  • the second connecting mechanism is a mechanism that transmits power through a push rod, and includes: a joint (6) that connects the push rod (13) with the linear generator (12); or, the second connecting mechanism is a push rod A mechanism for transmitting power between a rod and a rocker, including: a joint (6) connected to the push rod (13); a rocker hinged to the joint; a crank (28) connected to the rocker through a crank shaft (3), the crank and the power output Mechanism connection; among them, the extension line of the advancing track (69) and retreating track (70) or the straight axis track (61) in contact with the planar thrust bearing (21) and the center line of the mover (56) of the mover mechanism It has a certain included angle; wherein, the driving mechanism transmits power to the plane arranged between the advancing rail (69) and the retreating rail (70) to push the bearing (21), so that the corresponding steel ball (53) and the advancing The two track surfaces of the forward rail (69) and the retreat rail (70) alternately contact
  • the second connecting mechanism is a mechanism that transmits power through a push rod, a swing rod, a rocker push rod, and a rocker, and includes: a support arm (66) installed on the frame (7); through a bearing and a swing rod
  • the shaft (65) is mounted on the swing rod (68) on the support arm (66), and has a swing rod power arm (58) and a swing rod resistance arm (59); one end of the connecting plate (57) connected to the push rod (13) ), the other end is connected to the swing rod power arm (58) through the shaft (63); one end is connected to the rocker push rod (62) through the pin (22), and the other end is connected to the rocker push rod (62) through the shaft (63)
  • the pendulum resistance arm (59) is connected; the rocker push rod (62) installed in the linear bearing (14); the rocker (5) whose one end is connected to the rocker push rod (62) through a pin (22),
  • the other end of the crankshaft (3) is connected with the crank (28);
  • crankshaft (3) is connected with the crank (28); the crank (28) is connected with the power output mechanism; among them, the advancing rail (69) and the retreating rail (70) which are in contact with the planar thrust bearing (21) ) Or the extension line of the straight shaft track (61) in contact with the linear thrust bearing (60) and the center line of the mover (56) of the mover mechanism have a certain included angle; wherein, the drive mechanism passes through the mover push rod (72)
  • the power is transmitted to the plane arranged between the advancing rail (69) and the retreating rail (70) to push the bearing (21), so that the corresponding steel ball (53) and advancing rail (69) and retreating rail (70)
  • the two track surfaces cyclically and alternately contact.
  • the retreat track surface cyclically and alternately rolls, or the sliding block (74) placed between the advance track (69) and the retreat track (70) slides alternately on the advance track and the retreat track, or linear thrust
  • the bearing (60) and the straight shaft track (61) are forced to roll, and the mover transmits power to the push rod through rolling friction or sliding friction, or is placed on the forward active permanent magnet (75) and the retreat active permanent magnet.
  • the floating permanent magnet (80) between the magnets (77), the mover transmits the power to the push rod through the interaction force between the magnets.
  • the reciprocating motion and interaction continuously change the axial position of the push rod, driving the second connecting mechanism to reciprocate to drive the power output mechanism to work.
  • the first connecting mechanism includes: steel balls (53) on the two working surfaces of the planar thrust bearing (21) arranged on the push arm (83), and placed on the push rod (13) rail body. Between the forward track and the retreat track, the steel ball (53) alternately contacts the two track surfaces; or the linear thrust bearing (60) arranged on the push arm, and the direct axis track on the track body (17) of the push rod (61) connected; or set on the push arm (83) on the roller (73) or sliding block (74), placed on the track body of the push rod (13) between the advancing track and the retreating track and with the two The two track surfaces alternately contact; or the floating permanent magnet (80) set on the push arm (83), one of the forward passive permanent magnet (76) and the retreat passive permanent magnet (78) placed on the track body of the push rod Between; the linear bearings (14) installed on the frame (7) and located on both sides of the extension of the connecting rod centerline; the push rods (13) and rocker push rods (62) respectively installed in the linear bearings (14) , The
  • the swing rod (68) installed on the support arm (66) through the bearing (178) and the swing rod shaft (65) has a swing rod power arm (58) and a swing rod resistance arm (59); one end of which is connected to the push rod ( 13)
  • the plane Thrust bearing, or roller, or sliding block, or linear thrust bearing, or floating permanent magnet follower synchronously reciprocating, forward track and track, or straight axis track, or forward passive permanent magnet (76) and retreat passive
  • the permanent magnet (78) changes the axial position of the push rod continuously under the reciprocating motion and interaction of the plane thrust bearing, or roller, or sliding block, linear thrust bearing, or floating permanent magnet, and drives the second connecting mechanism to reciprocate Exercise to drive the power output mechanism to work.
  • the first connecting mechanism includes: a linear permanent magnetic bearing (71) installed on the frame (7) and located on both sides of the extension line of the connecting rod center line; and a magnetic shaft installed in the linear permanent magnetic bearing (71)
  • the push rod (91), the passive N-pole permanent magnet (85) or the passive S-pole permanent magnet is installed on the magnetic shaft push rod (91);
  • the second connecting mechanism is a structure that transmits power through the push rod or the rocker, including : The joint (6) that connects the magnetic shaft push rod (91) and the power output mechanism, or the rocker (5) that connects the magnetic shaft push rod (91) and the power output mechanism; or, the second connecting mechanism is by pushing The power transmission mechanism of the rod and the pendulum rod, including:
  • the connecting plate (57) and the pendulum rod (68) connecting the magnetic shaft push rod (91) and the power output mechanism; or, the second connecting mechanism is through the magnetic shaft push rod (91, the above or below referred to as the push rod),
  • a mechanism for transmitting power to a pendulum rod, a rocker push rod and a rocker which includes: a pendulum rod (68), a rocker push rod (62) and a rocker connecting the magnetic shaft push rod and the power output mechanism; respectively installed on the linear bearing (14)
  • the push rod (13) and the rocker push rod (62); or, the second connecting mechanism is a mechanism that transmits power through a push rod, a swing rod, and a rocker, and is installed on the mover mechanism
  • the permanent magnet is bipolar, including an N-pole active permanent magnet (88) and an S-pole active permanent magnet (86).
  • the passive permanent magnet on the magnetic shaft push rod (91) is unipolar, including an N-pole passive permanent magnet. Magnet (85) or an S-pole passive permanent magnet, when the N-pole active permanent magnet and S-pole active permanent magnet on the mover mechanism reciprocate with the mover, the N-pole active permanent magnet and the N-pole passive permanent magnet on the push rod
  • the magnetic shaft push rod moves forward under the action of the same pole repulsive force.
  • the S-pole active permanent magnet corresponds to the N-pole passive permanent magnet on the push rod
  • the magnetic shaft push rod retreats under the action of the attraction force of different poles. Moving forward, the reciprocating movement of the magnetic shaft push rod drives the power output mechanism to work through the second connecting mechanism.
  • the first connecting mechanism includes: a linear bearing (103) installed on the frame (102); a push rod (13) installed in the linear bearing (103); the second connecting mechanism is a through push rod
  • the structure that transmits power to the swing rod includes: a support arm (66) mounted on the frame (102); a swing rod (68) mounted on the support arm (66) through a bearing (178) and a swing rod shaft (65) ), with a swing-rod power arm (58) and a swing-rod resistance arm (59), the swing-rod power arm (58) is connected to the push rod (13) through a connecting plate (57) and a shaft (63); one end of which is through the shaft ( 63)
  • the connecting lever (57) connected to the resistance arm (59) of the pendulum rod, the other end is connected to the power output mechanism through a pin (22); or, the second connecting mechanism is through a push rod, a pendulum rod, or a rocker.
  • a mechanism for transmitting power between a push rod and a rocker which includes: a rocker push rod (62) installed in a linear bearing (14), one end is connected to the pendulum resistance arm (59) through a shaft (63) and a connecting plate, and the other One end is connected to the rocker (5); the rocker (5) is connected to the power output mechanism through the crank shaft (3), the crank (28); or, the second connecting mechanism is a mechanism that transmits power through a push rod or a rocker Or, the second connecting mechanism is a mechanism that transmits power through a push rod, a swing rod, and a rocker; wherein, the advancing track (107) and the retreating track (106) installed on the track body (109) follow the rotor The motor (118) rotates.
  • the steel ball (53) advancing to the plane thrust bearing (105) is on the inclined surface of the advancing rail (107) Rolling and drive the push rod (13) to move forward.
  • the steel ball (53) retreating to the plane thrust bearing is on the retreating track (106). ) Rolls on the inclined surface and drives the push rod to retreat, and the push rod drives the second connecting mechanism to move forward and backward to drive the power output mechanism to work.
  • the first connection mechanism includes: a linear bearing (103) installed on the frame (102); a push rod (13) installed in the linear bearing (103), and the roller (73) passes through the coupling (16) It is connected with the push rod (13) and placed in the serpentine track (126) of the rotor mechanism.
  • the second connecting mechanism is a mechanism that transmits power through a push rod and a swing rod, and includes: an end plate (125) installed on the push rod (13); a support arm (125) installed on the frame (102) 66); One end of the connecting plate (57) connected with the end plate (125), and the other end connected to the swing rod power arm (58) through the shaft (63); installed through the bearing (178) and the swing rod shaft (65) On the swing rod (68) on the support arm (66), the swing rod resistance arm (59) is connected to the power output mechanism through the shaft (63), the connecting plate (57) and the pin shaft (22); or, the said first The second connecting mechanism is a mechanism that transmits power through a push rod, and includes: an end plate (125) installed on the push rod (13), and the end plate (125) is connected to the power output mechanism through a joint (6); or, the first The second connecting mechanism is a mechanism that transmits power through a push rod and a rocker, including: an end plate (125) installed on the push rod
  • the second connecting mechanism is a mechanism that transmits power through a push rod, a swing rod, and a rocker, and includes: an end plate (125) installed on the push rod (13); a support installed on the frame (102) Arm (66); one end of the connecting plate (57) connected to the end plate (125), the other end of which is connected to the swing rod power arm (58) through the shaft (63); through the bearing (178) and the swing rod shaft (65) )
  • the pendulum rod (68) installed on the support arm (66), the pendulum resistance arm (59) is connected to the rocker (5) through the shaft (63); the rocker (5) is connected through the crankshaft (3) and the crank (28).
  • the second connecting mechanism is a mechanism that transmits power through a rocker, including: a rocker (5) connected to a push rod at one end, and a crankshaft (3) at the other end,
  • the crank (28) is connected with the power output mechanism; among them, when the serpentine track (126) rotates with the power input shaft and the track body (109), the roller placed in the serpentine track drives the second connecting mechanism to reciprocate and drive
  • the power take-off mechanism works.
  • the first connecting mechanism includes: a linear bearing (103) installed on the frame (102); a push rod (13) installed in the linear bearing (103); a fixing device installed on the push rod (13)
  • the second connecting mechanism is transmitted through the push rod, the swing rod and the rocker
  • a power mechanism which includes: an end plate (125) installed on the push rod (13); a support arm (66) installed on the frame (102); installed through a bearing (178) and a swing rod shaft (65)
  • the swing link (68) on the support arm (66) has a swing link power arm (58) and a swing link resistance arm (59), and the swing link resistance arm (59) passes through the shaft (63) and the rocker (5) Connected; one end of the connecting plate (57) connected to the end plate (125), the other end of which is connected to the swing rod power arm (58) through the shaft (63); the rocker (5) through the cranks
  • the second connecting mechanism is a mechanism that transmits power through a push rod and a pendulum rod, which includes: a rocker (5) connected to the push rod at one end, and a crank shaft (5) at the other end. 3).
  • the crank (28) is connected to the power output mechanism; among them, the forward active permanent magnet (134) and the forward active permanent magnet (134) and Retract between the active permanent magnets (137); among them, when the main driven permanent magnet and the retreated active permanent magnet rotate with the power input shaft and the orbital body, the forward active permanent magnet corresponds to the forward passive permanent magnet , Under the action of the repulsive force of the same pole, the forward passive permanent magnet drives the push rod to move forward, and when the retreat active permanent magnet corresponds to the retreat passive permanent magnet, under the action of the same pole repulsion, it retreats to the passive permanent magnet. The push rod retreats, and the reciprocating push rod drives the second connecting mechanism to push the power output mechanism to work.
  • the first connecting mechanism includes: a linear bearing (103) mounted on the frame (102); a push rod (13) mounted on the linear bearing (103); a fixed mount mounted on the rotor motor (118) Disk (148); active permanent magnet (146) installed on the fixed disk (148) through the fixed seat (145); passive permanent magnet (147) installed on the push rod (13) through the fixed seat (154);
  • the second connecting mechanism is a mechanism that transmits power through a push rod, a swing rod and a rocker, and includes: an end plate (125) installed on the push rod (13); a support arm (125) installed on the frame (102) 66); One end of the connecting plate (57) connected to the end plate (125), the other end of which is connected to the swing rod power arm (58) through the shaft (63); it is installed on the support arm through the bearing and the swing rod shaft (65) (66) on the pendulum rod (68), the pendulum rod resistance arm (59) is connected to the rocker (5) through the shaft (63); the rocker (5) is connected through
  • the active permanent magnet (146) installed on the fixed disk (148) is bipolar, including the N-pole active permanent magnet (152) and the S-pole active permanent magnet (153).
  • the passive permanent magnet (147) on the push rod (13) is unipolar, including N-pole passive permanent magnets or S-pole passive permanent magnets.
  • the first connecting mechanism includes: a linear bearing (14) installed on the frame (7); a push rod (13) installed in the linear bearing (14); connected to the push rod through a fixed seat (154)
  • the second connecting mechanism is a mechanism that transmits power through a push rod, a swing rod, a rocker push rod and a rocker, including: a support arm (66) installed on the frame (7) ; The swing rod (68) installed on the support arm (66) through the bearing (178) and the swing rod shaft (65); the connecting plate (57) connected to the push rod (13) at one end, and the shaft ( 63) Connected to the swing rod power arm (58); one end is connected to the rocker push rod (62) through the pin (22), and the other end is connected to the swing rod resistance arm (59) through the shaft (63) ; Rocker push rod (62) installed in the linear bearing (14); One end of the rocker (5) connected to the rocker push rod (62) through a pin (22), and the other end through the
  • the passive permanent magnet (147) installed on the push rod is unipolar, including N-pole passive permanent magnet or S-pole passive permanent magnet. Magnet, the motor drives the rotor (162).
  • the active permanent magnet on the rotor rotates with the rotor
  • the N-pole active permanent magnet (152) corresponds to the N passive permanent magnet on the push rod
  • the push rod moves forward.
  • the S-pole active permanent magnet (153) corresponds to the N-pole passive permanent magnet (147) on the push rod
  • the power output mechanism is driven to work through the second connecting mechanism.
  • the first connection mechanism includes: a linear bearing (14) installed on the frame (163); a push rod (13) installed in the linear bearing (14); a floating rod (13) installed on the push rod (13) Permanent magnet (141), placed between the advancing active permanent magnet (134) and the retreating active permanent magnet (137) on the enclosing plate (179) of the magnetic suspension rotor (165), the floating permanent magnet (141) includes a fixed seat (138), the forward passive permanent magnet (135) installed on one side of the fixed seat and the retreat passive permanent magnet (139) on the other side; or the roller (73) installed on the push rod (13), placed Between the advancing rail (107) and the retreating rail (106) or in the serpentine rail (126); or the advancing plane thrust bearing (105) and the retreating plane thrust bearing (108) installed on the push rod (13) )), placed between the advancing track (107) and the retreating track (106); the second connecting mechanism is a mechanism that transmits power through a push rod, a swing rod and a rocker, including: mounted on the frame
  • the reciprocating push rod drives the power output mechanism to work through the second connection mechanism; or, the serpentine track rotates with the magnetic levitation rotor (165), and the roller drives the push rod to reciprocate under the interaction of the roller and the serpentine track.
  • the moving push rod drives the power output mechanism to work through the second connecting mechanism; or, the advance track (107) and the retreat track (106) rotate with the rotor (165), in the interaction between the roller and the advance track and retreat track
  • the lower drives the push rod to reciprocate, and the reciprocating push rod drives the power output mechanism to work through the second connecting mechanism; or, the advancing track (107) and the retreating track (106) rotate with the rotor (165) when the advancing track ( 107)
  • the steel ball (53) advancing to the plane thrust bearing (105) rolls on the inclined surface of the advancing rail (107) and drives the push rod (13) to advance
  • the steel ball (53) of the retreat plane thrust bearing rolls on the slope of the
  • the first connecting mechanism includes: a push rod (13) installed on the frame (194) through a linear bearing (103); a floating permanent magnet (141) installed on the push rod (13), placed on the rotor (195) between the advancing active permanent magnet (134) and the retreating active permanent magnet (137); the floating permanent magnet (141) includes: a fixed seat (138); the advancing direction installed on one side of the fixed seat The passive permanent magnet (135) and the retreating passive permanent magnet (139) on the other side, or the roller (73) installed on the push rod (13), placed in the serpentine track of the rotor (195), or installed The roller (73) on the push rod (13) is placed between the advance track (107) and the retreat track (106) of the rotor (195); or the advance plane thrust bearing (105) and the retreat plane thrust The bearing (108) is placed between the advancing track (107) and the retreating track (106) of the rotor (195); the second connecting mechanism is a mechanism that transmits power through a push rod, a swing rod, and a rocker, including
  • the power input shaft drives the rotor (195) or the rotor (202) to rotate.
  • the advancing active permanent magnet and the retreating active permanent magnet rotate with the rotor (195) or the rotor (202)
  • the advancing active permanent magnet and the advancing permanent magnet drives the push rod to move forward
  • the retreating active permanent magnet corresponds to the retreating passive permanent magnet, under the action of the repulsive force of the same pole
  • the retreating passive permanent magnet drives the push rod to retreat
  • the reciprocating push rod drives the power output mechanism to work through the second connection mechanism; or, the serpentine track installed on the rotor (195) or the rotor (202) follows the rotor (195) )
  • the rotor (202) rotates the roller drives the push rod to reciprocate under the interaction of the roller and the serpentine track, and the reciprocating push rod drives the power output mechanism to work through the second connecting mechanism; or, it is installed on
  • the first connecting mechanism includes: steel balls (53) arranged on the two working surfaces of the planar thrust bearing (21), which are in contact with the track surfaces of the two tracks, or the rollers (73) and the advancing track (69) ) Are in contact with the track surface of the retreat track (70), and are symmetrically installed on the frame (7) and located on both sides of the extension line of the connecting rod centerline linear bearings (14); the thrusters installed in the linear bearing (14)
  • the rod (13) is placed symmetrically on both sides of the mover (6) of the mover mechanism, one end of which is connected to the connecting piece (16) connected to the push rod (13), and the other end is connected to the plane thrust bearing (21) or
  • the roller (73) or the sliding block (74) are connected;
  • the second connecting mechanism is a mechanism that transmits power through a push rod, a swing rod and a rocker, and includes: a support arm (66) installed on the frame (7);
  • the swing rod (68) installed on the support arm (66) through the bearing (178) and the swing rod shaft (65) has a swing rod power arm (58) and a swing rod resistance arm (59); one end of which passes through the shaft (63) )
  • the track (70) and the center line of the guide rail (43) have a certain included angle; wherein the driving mechanism transmits the power through the guide rail (43) to be placed between the advancing rail (69) and the retreating rail (70)
  • the bearing (21) or the roller (73) is pushed by the plane of the roller to make
  • Push rod when the mover of the mover mechanism reciprocates, the track on the track body reciprocates synchronously with the mover, and the plane thrust bearing (21) or roller (73) or slider (74) reciprocates and interacts with the track Constantly changing the axial position of the push rod to drive the second connecting mechanism to reciprocate and drive the power output mechanism to work; among them, changing the axial position of the push rod refers to the centerline of the track and the center of the guide rail (43) of the mover (56) There is a certain angle between the lines, which means that the track is placed at an oblique angle with respect to the centerline of the mover, and the linear distance of each point on the extension line of the track surface relative to the centerline of the mover is not equal , And the axis of the push rod is at a vertical angle relative to the center line of the mover (that is, the center line of the guide rail), or the axis of the push rod is at a vertical angle with respect to the extension line of the advancing track and the retreating track surface State, constantly
  • the first connecting mechanism includes: linear bearings (14) installed on the frame (7) and located on both sides of the center line of the rotor shaft (156); one end of the push rod (13) passes through the fixing seat (154)
  • a passive permanent magnet (147) is installed, the other end of which is connected to the swing rod power arm (58) through a connecting plate (57) and shaft (63), and is placed in a linear bearing (14); installed on the push rod (13)
  • Each passive permanent magnet (147) on the) is placed corresponding to each active permanent magnet (146) on the rotor disk (1008), and a certain air gap is left; or, the first connecting mechanism includes: installation The linear bearing (14) on the frame (7), the push rod (13) installed in the linear bearing (14), one end of the push rod is installed with a passive permanent magnet (147) through the fixed seat (154), the passive permanent magnet (147) is installed The magnet (147) is placed on the corresponding side of the electromagnet; or, the first connecting mechanism includes: a linear bearing (14) installed on the frame
  • the second connecting mechanism is a mechanism that transmits power through a push rod, a swing rod, and a connecting rod, and includes: a support arm (66) installed on the frame (7); through a bearing (178) and a swing rod shaft (65)
  • the swing rod (68) installed on the support arm (66) has a swing rod power arm (58) and a swing rod resistance arm (59); it is installed on the frame (7) through a bearing box (34) Crankshaft (1009); flywheel (198) and driving sprocket (1004) installed on crankshaft (1009); power output mechanism connected with crankshaft (1009) through coupling (24); installed on driving sprocket (1004) ) And the timing chain (1005) on the passive sprocket (1002).
  • the connecting rod (5a) is connected to the pendulum resistance arm (59) through the shaft (63), and the other end is connected through the connecting rod journal (1001),
  • the crank (1012) is connected with the crankshaft (1009); or, the arm (66) installed on the frame (7); the pendulum (66) is installed on the arm (66) through the bearing (178) and the swing rod shaft (65)
  • the rod (68) has a swing rod power arm (58) and a swing rod resistance arm (59); a crankshaft (1009) installed on the frame (7) through a bearing box (34); and a crankshaft (1009) installed on the frame (7) through a coupling (24)
  • the power output mechanism connected to the crankshaft (1009); one end of the connecting rod (5a) is connected to the swing resistance arm (59) through the shaft (63), and the other end is connected to the crankshaft through the connecting rod journal (1001) and the crank (1012) (1009) connected; the power input shaft drives the rotor shaft 156 and the cam 1021
  • the roller 73 mounted on the push rod pushes the push rod to make a straight line Move, and transmit force to the crankshaft 1009 through the pendulum rod 68, the connecting rod 5a, the connecting rod journal 1001 and the crank 1012, the crankshaft converts linear motion into rotary motion and drives the generator to generate electricity or output power; or ,
  • the power input shaft drives the rotor shaft 156 and the rotor disk 1008 to rotate through the driving wheel 1006, the driven wheel 1003 and the transmission belt 1007.
  • the active permanent magnet 146 on the rotor disk 1008 and the passive permanent magnet 147 on the push rod it is installed in the push rod.
  • the passive permanent magnet 147 on the rod pushes the push rod to move linearly under the action of the same pole repulsive force, and transmits the force to the crankshaft 1009 through the pendulum rod 68, connecting rod 5a, connecting rod journal 1001 and crank 1012, and the crankshaft will move linearly Transform into rotational motion and drive the generator to run to generate electricity, or output power; or, the interaction of the electromagnet placed on the frame and the passive permanent magnet 147 on the corresponding side push rod pushes the push rod to move in a straight line , And through the pendulum rod 68, connecting rod 5a, connecting rod journal 1001 and crank 1012 to transmit force to the crankshaft 1009, the crankshaft converts linear motion into rotary motion and drives the generator to generate electricity, or output power.
  • the present invention also provides a power generation device, including the power transmission device in which the power output mechanism includes a generator as described above.
  • the push rod mechanism is symmetrically placed on both sides of the mover (6) of the mover mechanism or the rotor of the rotor mechanism or the magnetic levitation rotor, and the torques of the push rods on both sides are equal in magnitude and opposite in direction, It can mutually offset the torque generated by the reciprocating movement of the push rod and reduce the vibration of the machine during operation.
  • the power transmission device of the present invention and the power generation equipment with the device have the following advantages:
  • the power transmission device of the present invention and the power generation equipment with the device have a simple structure, convenient use, one-time input can be used for a long time, and reliable performance.
  • the power transmission device of the present invention and the power generation equipment with the device use rolling friction, or sliding friction, or magnetic force to transmit power to drive the generator to generate electricity.
  • the cost of power generation is low, and it is clean, safe, free of waste gas and waste, and has no environmental impact. Pollution.
  • the power transmission device of the present invention and the power generation equipment with the device use friction and magnetism to generate electricity, which is not restricted by objective conditions and has a wide range of applications.
  • FIG. 1 is a schematic diagram of the structure of the linear bearing type mover and the push rod + linear engine, and the push rod + rocker + generator of the power generation equipment of the present invention
  • Figure 2 is a top view of Figure 1;
  • Fig. 3 is a cross-sectional view of AA of Fig. 1 and Fig. 2;
  • Figure 4 is a BB cross-sectional view of Figure 1 and Figure 2;
  • Figure 5 is a schematic diagram of the structure of the long beam mover and push rod + swing rod + linear engine, and push rod + swing rod + rocker + generator of the present invention
  • Figure 6 is a top view of Figure 5;
  • Fig. 7 is a sectional view of A-A in Fig. 6;
  • Fig. 8 is a structural schematic diagram of the cooperation of the mover and the push rod + pendulum rod + rocker + generator with the mover push rod installed in the linear bearing according to the present invention
  • Figure 9 is a sectional view of AA of Figure 8.
  • FIG. 10 is a schematic diagram of the structure of the power transmission component on the push rod of the power generation equipment of the present invention that can adopt a plane thrust bearing, or a roller, or a slider, or a permanent magnet, and a unilateral mover;
  • FIG. 11 is a schematic diagram of the structure of the plane thrust bearing, or roller, or sliding block, linear thrust bearing or permanent magnet of the power generation equipment of the present invention installed on the mover, and the track body installed on the push rod;
  • FIG. 12 is a schematic diagram of the structure of the linear permanent magnetic bearing and the magnetic shaft push rod mechanism of the power generation equipment of the present invention, the linear permanent magnetic bearing and the linear magnetic shaft mover mechanism, and the magnetic drive mechanism;
  • Figure 13 is a schematic diagram of the connection of the power connection line, the converter and the electric control system of the power generation equipment of the present invention
  • FIG. 14 is a schematic diagram of the rotor mechanism with the track body of the power generation equipment installed on the rotor of the present invention
  • Figure 15 is a cross-sectional view of Figure 14;
  • Fig. 16 is a plan view of the track body in Fig. 15 and Fig. 14 in a straight line expansion;
  • Figure 17 is a schematic diagram of the structure of the serpentine track rotor mechanism of the power generation equipment of the present invention and the push rod + end plate + pendulum rod + linear generator;
  • FIG. 18 is a schematic view of the structure of the serpentine track rotor mechanism and push rod + end plate + rocker + generator or power output wheel of the power generation equipment of the present invention
  • 19 is a schematic diagram of the structure of the serpentine track rotor mechanism of the power generation equipment of the present invention and the push rod + end plate + pendulum rod + rocker push rod + rocker + generator;
  • 20 is a schematic diagram of the magnetic transmission structure of the permanent magnet of the power generation equipment installed on the rotor through the track body of the present invention
  • Fig. 21 is a flat straight line development view of the magnetic transmission device of Fig. 20;
  • Figure 22 is a schematic structural diagram of a magnetic drive mechanism with permanent magnets installed on the side of the rotor of the power generation equipment of the present invention
  • Figure 23 is a cross-sectional view of Figure 22;
  • 24 is a schematic diagram of the structure of the power generating equipment of the present invention that can use various external powers to drive the rotor mechanism;
  • 25 is a schematic diagram of the structure of the long-axis rotor magnetic drive mechanism of the power generation equipment of the present invention.
  • Figure 26 is a cross-sectional view of Figure 25;
  • FIG. 27 is a schematic diagram of the structure of the magnetic suspension rotor and the magnetic transmission mechanism of the power generation equipment of the present invention.
  • Figure 28 is a cross-sectional view of Figure 27;
  • Figure 29 is a schematic diagram of the structure of the vertical rotor and magnetic drive mechanism of the power generation equipment of the present invention
  • Figure 30 is a cross-sectional view of Figure 29;
  • Figure 31 is a schematic structural diagram of a magnetic transmission mechanism with a turntable of a power generation equipment installed on a motor of the present invention
  • 32 is a schematic diagram of the structure of the linear guide rail mover of the power generating equipment of the present invention and the push rod + pendulum rod + rocker + generator coordination;
  • Figure 32A is a top view of Figure 32
  • FIG. 33 is a schematic diagram of the structure of the invention adopting the permanent magnet rotor and the permanent magnet + push rod + pendulum rod + connecting rod + crankshaft + generator to cooperate;
  • Figure 34 is a top view of Figure 33;
  • Fig. 35 is a sectional view of A-A of Fig. 34;
  • FIG. 36 is a schematic diagram of the structure of the invention adopting the cooperation of electromagnet and permanent magnet + push rod + pendulum rod + connecting rod + crankshaft + generator;
  • Figure 36A is a top view of Figure 36;
  • Fig. 37 is a schematic diagram of the structure of the present invention adopting cam-type rotor + roller + push rod + pendulum rod + connecting rod + crankshaft + generator;
  • Figure 38 is a top view of Figure 37;
  • Fig. 39 is a cross-sectional view taken along the line A-A of 38.
  • the core technology of the present invention is to use rolling friction or sliding friction and/or magnetic force to transmit power to generate power, or electricity, that is, to transmit the input power of the power input shaft to the power output mechanism, so that one or more of the power output mechanisms
  • the generator 1 or the linear generator 12 generates electricity, or rotates one or more power output wheels (power output wheels 131 as shown in FIG. 18) of the power output mechanism, or drives other mechanisms to operate through the power output wheels.
  • the present invention provides a power transmission device for a power output mechanism.
  • the power output mechanism includes a generator or a power output wheel.
  • the power transmission device includes: a power input shaft installed on a frame; The drive mechanism used to transmit the driving force on the frame; the push rod mechanism installed on the frame and connected with the drive mechanism; wherein, the drive mechanism is a mover mechanism or a rotor mechanism, which is connected to the power input shaft, which is connected to the power input shaft through a plane thrust bearing or The linear thrust bearing or the roller is matched with the track, or the sliding block is matched with the track, or the electromagnet is matched with the permanent magnet, or the permanent magnet is matched with the permanent magnet, and the power is transmitted to the push rod mechanism, and the push rod mechanism and the power
  • the output mechanism is connected; wherein the push rod mechanism includes: a first connecting mechanism connected with the driving mechanism, and a second connecting mechanism connected with the first connecting mechanism and the power output mechanism.
  • the power input shaft is connected to the power output shaft of any power device that uses mechanical energy, wind energy, hydraulic energy, wave energy, etc., or is connected to the power device through a transmission mechanism ;
  • the power output mechanism includes a power output wheel
  • the power input shaft is connected to the power output shaft of any power device that uses electrical energy, mechanical energy, wind energy, hydraulic energy, wave energy, etc., or is connected to the power device through transmission
  • the mechanism is connected by rotation.
  • the driving force from the power device is transmitted to the driving mechanism, and the driving mechanism is transmitted to the push rod mechanism, so that the power is transmitted to the generator or the power output wheel through the push rod mechanism.
  • the drive mechanism of the present invention can be a mover mechanism including a rotary drive mechanism, a linear linkage mechanism, and a power transmission mechanism (as shown in Figures 1 to 13, Figure 32, and Figure 32A), or a rotor mechanism (such as (Shown in Figure 14- Figure 31, Figure 33-36A, Figure 37, Figure 38, Figure 39).
  • the rotary drive mechanism of the mover mechanism includes: a camshaft 39 connected to the power input shaft (when applied, the camshaft 39 can also be a shaft with the power input shaft), which is installed in the bearing box On the frame; a cam 45 (as shown in Figure 10 and Figure 11) or a pair of cams 45 (as shown in Figure 1 to Figure 9) or multiple pairs of cams 45 (not shown in the figure) provided on the cam shaft 39 ), any one of the one or one or more pairs of cams 45 is mounted on a corresponding cam sleeve 46 through a bearing, and the rotational power is transmitted to the linear linkage mechanism connected to the cam sleeve 46 in a one-to-one correspondence through the cam sleeve 46 .
  • one or more cams 45 can be provided on the camshaft 39, each cam 45 has a cam sleeve 46 outside, and each cam sleeve 46 transmits rotational power to a linear linkage mechanism. It should be noted that when multiple cams 45 are provided, the multiple cams 45 are arranged at intervals along the axial direction of the cam shaft 39, and are used in pairs as shown in FIGS. 1-9.
  • the linear linkage mechanism of the mover mechanism is connected with the corresponding cam sleeve, that is, the number is the same as the number of cam sleeves.
  • the linear linkage mechanism is also used in pairs.
  • the linear linkage mechanism used is symmetrically arranged on both sides of the center axis of the cam.
  • Each linear linkage mechanism includes a connecting rod 9 fixedly connected to the corresponding cam sleeve 46, a coupling 8 connected to the connecting rod 9, a guide rod 18 arranged in the frame end plate 15 on the corresponding side of the frame, and It is a component that transmits power from the camshaft 39 and the connecting rod 9 to the power transmission mechanism.
  • the components that transmit the power from the camshaft 39 and the connecting rod 9 to the power transmission mechanism may include: a guide rail 43, a plurality of rail bodies 17 installed on the guide rail 43 (two rail bodies are shown in FIG. 1), and A connecting plate 27 connecting adjacent rail bodies 17.
  • the component may include: a mover push rod 72, a linear bearing 14 mounted on the frame 7 and symmetrically located on one side of the center line of the camshaft 39, the mover push rod 72 is installed in the linear bearing 14 on the corresponding side, and One end of the mover push rod is placed in the frame end plate 15 on this side, and a plurality of track bodies 17 are mounted on the mover push rod 72 (two track bodies 17 are shown in FIG. 8).
  • the component may be a mover push rod 72 or a linear bearing 44 or a long beam 64, and a plurality of push arms 83 respectively mounted on the mover push rod 72 or a linear bearing 44 or a long beam 64 through a plurality of push arm seats 82 (As shown in Fig. 11, there are 6 push arms 83 on one side of the camshaft).
  • the component may include: a linear magnetic shaft 89; a pair of linear permanent magnetic bearings 71 installed on the frame 7 and located on the same side of the camshaft, located at both ends of the linear magnetic shaft 89; and installed on the linear magnetic shaft 89 Corresponding to the permanent magnet 90 in the linear permanent magnetic bearing 71; a plurality of permanent magnet holders 87 (two are shown in FIG. 12) mounted on the linear magnetic shaft 89.
  • each rail of the pair of rails includes two side surfaces, one side is the forward rail 69, and the other side is the retreat rail. 70.
  • a pair of rails may also be straight shaft rails 61.
  • a pair of rails are respectively located on both sides of the mover push rod 72 or the guide rail 43 or the long beam 64, and the extension lines of the forward rail 69 and the retreat rail 70 or the straight axis track 61 are connected to the mover push rod 72 or the guide rail 43 or the long beam
  • the center line of 64 has an included angle greater than 0 degrees.
  • the power transmission mechanism includes: an advancing rail 69 and a retreating rail 70 or a straight shaft rail 61 arranged on the rail body; a plane thrust bearing arranged between the advancing rail 69 and the retreating rail 70 of the rail body 17 21 or roller 73 or slider 74; or linear thrust bearing 60 placed on the straight shaft rail 61 of the track body 17; or placed between the forward active permanent magnet 75 and the retreat active permanent magnet 77 of the track body 17 Floating permanent magnet 80.
  • the power transmission mechanism includes: a planar thrust bearing 21 or a roller 73 or a slider 74 or a linear thrust bearing 60 or a floating permanent magnet 80 arranged on the push arm 83; the forward rail 69 and the retreat rail installed on the push rod 13 70 between the plane thrust bearing 21 or the roller 73 or the slider 74; or the linear thrust bearing 60 installed on the straight shaft track 61 of the push rod 13; or the forward passive permanent mounted on the track body 17 of the push rod 13
  • the floating permanent magnet 80 between the magnet 76 and the retreat passive permanent magnet 78; the floating permanent magnet (80) includes: a floating body seat 79; the forward active permanent magnet 75 installed on one side of the floating seat body and the retreat on the other side To the active permanent magnet 77.
  • the power transmission mechanism includes: an S-pole active permanent magnet 86 and an N-pole active permanent magnet 88 installed on the linear magnetic shaft 89 through a permanent magnet holder 87; an N-pole passive permanent magnet or an S-pole passive permanent magnet installed on the push rod mechanism Permanent magnet; Among them, when the power device 25 drives the camshaft 39 to rotate, under the action of the cam 45, the cam sleeve 46 and the connecting rod 9, the circular motion of the cam sleeve 46 becomes the linear reciprocating motion of the connecting rod.
  • the power transmission mechanism includes: an advancing rail 69 and a retreating rail 70 arranged on the track body 17; a planar thrust bearing 21 or a roller 73 or a roller 73 arranged between the advancing rail 69 and the retreating rail 70 of the rail body 17 Slider 74.
  • the mover mechanism can include a mover placed on one side of the centerline of the camshaft (as shown in Figures 10 and 11), and it can also include a pair of pairs placed on both sides of the centerline of the camshaft (such as Figures 1-9, etc.), preferably, the movers 56 are used in pairs, placed symmetrically on both sides of the center line of the camshaft.
  • the torque generated when the sub frame reciprocates relative to the frame can greatly reduce the vibration of the machine during operation.
  • the rotor mechanism may adopt the following structure, including: a turntable 203 connected to the power input shaft; a forward active permanent magnet 134 and a retreat active permanent magnet 137 arranged on the turntable 203, or a forward track (107) and retreat track (106), or serpentine track (126); among them, the turntable 203 and the forward active permanent magnet 134 and retreat active permanent magnet 137 on the turntable 203, or the forward track (107) and retreat Orbital track (106), or serpentine track (126) to form a rotor (202); alternatively, the rotor mechanism includes: connected with the power input shaft; The serpentine track 126 or the forward active permanent magnet 134 and the retreat active permanent magnet 137; wherein the track body 109 and the retreat track 106 and the forward track 107 or the serpentine track 126 or the forward active permanent magnet 134 and The retreating active permanent magnet 137 forms a rotor; alternatively, the rotor mechanism includes: a fixed disk 148 connected to the
  • the rotor mechanism includes: a driving wheel 1006 connected to the power input shaft; a rotor shaft 156 mounted on the frame 7 through a bearing box 34 at both ends; a rotor disc 1008, a driven wheel 1003, and a passive wheel mounted on the rotor shaft 156.
  • the electromagnet mechanism includes: multiple sets of electromagnets 1017 installed on the rack 7; an electric control cabinet 97 installed on the rack; an automatic controller 1016 installed in the electric control cabinet; one end of the automatic controller 1016 passes through a wire 1015 It is connected to the electric control cabinet 97, and its other end is connected to multiple sets of electromagnets 1017 through a wire 1015;
  • the power transmission mechanism includes: multiple sets of passive permanent magnets 147, which are respectively installed on the multiple sets of push rod mechanisms for matching with the corresponding electromagnets Among them, the automatic controller 1016 controls the switches of each group of electromagnets 1017 in a preset sequence through wires; when one or more groups of electromagnets 1017 are energized, the corresponding
  • the rotor mechanism includes: a base 174 mounted on the frame 163; wall panels 164 mounted on the base 174 and located on both sides of the base 174; permanent magnets 169 mounted on the wall panels 164 on both sides; and mounted on the frame
  • the passive levitation permanent magnet 175 at the lower part is placed above the active permanent magnet 173 to use the same pole repulsive magnetic force to keep the magnetic levitation rotor 165 in a levitation state; the mover coil 176 placed corresponding to the permanent magnet 169 is installed on The magnetic levitation rotor 165 is placed between the permanent magnets 169 on both sides; wherein, under the interaction of the mover coil
  • the push rod mechanism includes a first connecting mechanism connected to the driving mechanism, and a second connecting mechanism connected to the first connecting mechanism and the power output mechanism.
  • Power transmission is carried out through the structure of plane thrust bearing 21 or roller 73 or slider 74 or passive permanent magnet 147 + push rod 13 + pendulum rod 68 + rocker 5 + crank 28, or through plane thrust bearing 21 or roller 73 or slider 74 or passive permanent magnet 147 + push rod 13 + pendulum rod 68 + connecting rod 5a + crankshaft 1009 for power transmission, or use plane thrust bearing 21 or roller 73 or slider 74 or passive permanent magnet 147 + push rod 13 + pendulum
  • the structure of the rod 68 is used for power transmission, or the structure of the plane thrust bearing 21 or the roller 73 or the slider 74 or the passive permanent magnet 147 + the push rod 13 + the rocker 5 + the crank 28 is used for power transmission, or the plane thrust bearing is used 21 or roller 73 or slider 74 or passive permanent magnet 147 + push rod 13 structure for power transmission.
  • the final transmission components of the push rod mechanism are all connected with the power input shaft of the power output mechanism.
  • the number of push rod mechanisms is adapted to the number of power transmission mechanisms in the drive mechanism.
  • Each mechanism in the mover mechanism, rotor mechanism, and push rod mechanism of the present invention have different structures, and each structure can be matched with each other according to the situation, so that the power transmission device and power generation equipment of the present invention can have different structures.
  • Structure The structure of the power transmission device and power generation equipment of the present invention will be described in detail below in conjunction with some embodiments. However, it should be understood that the structure of the present invention is not limited to the structure of the following embodiments.
  • Embodiment 1 of the power transmission device and power generation equipment of the present invention includes: a frame; a drive mechanism installed on the frame, and a power input shaft Connection; a push rod mechanism installed on the frame and connected to the drive mechanism; a power output mechanism installed on the frame and connected to the push rod mechanism, which includes a generator; wherein, the power input shaft of this embodiment is a power device
  • the power output shaft of 25, the power device is a device that uses any kind of power energy such as mechanical energy, wind energy, hydraulic energy, wave energy, etc.
  • the driving mechanism is a mover mechanism, and the mover mechanism transmits power to The push rod mechanism makes the push rod mechanism drive the generator to generate electricity.
  • the power of the mover mechanism is transmitted to the push rod mechanism through the rolling friction method, which adopts the method of interacting between the planar thrust bearing and the track.
  • the mover mechanism of this embodiment includes: a power input shaft, which is the power output shaft of the power device 25; a camshaft 39 installed on the frame 7 through a bearing box 34, and is connected to the power input shaft through a coupling 24 ,
  • the cam shaft 39 extends along the first direction of the frame 7 (that is, the width direction of the frame shown in Figure 1); a pair of cams 45 are provided on the cam shaft 39; a cam sleeve 46 is installed on each cam, that is, a cam One end of the sleeve is respectively installed on the corresponding cam 45 through a bearing 47, and the other end of the cam sleeve is connected to one end of the connecting plate 27 through a connecting rod 9 and a connecting piece 8.
  • the guide rail 43 is installed on the frame 7 and runs along the frame Extending in the second direction (the second direction is the length direction of the rack shown in Figure 1, perpendicular to the first direction), the guide rail 43 can be one, or two guide rails symmetrically arranged on both sides of the rack (as shown in the figure) 1-shown in Figure 4); a plurality of track bodies 17 (two shown in the figure) are arranged on each guide rail 43, and each track body is provided with an advancing track 69 and a retreating track 70, and passing linear bearings 44 Installed on the guide rail 43; the two adjacent track bodies 17 and the track bodies 17 are connected to each other by a connecting plate 27, so that each track body and each linear bearing 44 become an integral mover 56, which can be installed on the guide rail.
  • the connecting rod 9 is connected with the rail body 17 through the connecting piece 8 and the connecting plate 27;
  • the piece 8 is connected with the connecting plate 27;
  • each guide rod 18 is installed with a compression spring 20 and a stop pad 19 in series, and the compression spring 20 and the stop pad 19 on a pair of guide rods 18 are respectively placed on the frame end plate 15 Correspondence.
  • the push rod mechanism of this embodiment includes: a planar thrust bearing 21 or a roller 73 or a sliding block 74 arranged between an advancing rail 69 and a retreating rail 70 arranged on the rail body 17; the linear bearing 14 is installed on the frame 7
  • the push rod 13 is installed in the linear bearing 14; one end of the push rod is connected to the plane thrust bearing 21 or the roller 73 or the sliding block 74 through the connecting piece 16, and the other end It is connected to the linear generator 12 through the joint 6; or the push rod 13 is connected to the generator 1 through the joint 6, the rocker 5, the crank shaft 3, the crank 28 and the generator shaft 2;
  • the power unit 25 drives the camshaft 39, the cam 45 and the cam sleeve 46 to rotate. Under the action of the cam 45, the cam sleeve 46 and the connecting rod 9, the circular motion becomes linear motion.
  • the connecting plate 27, The linear bearing 44 and the track body 17 reciprocate with the cam 45, the cam sleeve and the connecting rod, and the plane pushing the bearing 21 is placed between the advancing track 69 and the retreating track 70.
  • the steel ball 53 contacts the two track surfaces. 13 is in the advancing motion, the steel ball 53 on the contact surface with the first rail 69 rolls under force, when the push rod 13 is in the retreat motion, the steel ball on the contact surface with the retreat rail 70 rolls under force, and the plane thrust bearing 21.
  • the extension line of the advancing rail 69 and the retreating rail 70 that are in contact with each other has a certain angle with the mover 56 of the mover mechanism along the longitudinal centerline of the frame, that is to say, the advancing rail and the retreating rail are opposite to each other. Since the mover is placed obliquely, the track body reciprocates with the mover, and the forward track 69 and the retreat track 70 on the track body interact with the planar thrust bearing 21 to make the push rod continuously change the axial position. , The reciprocating push rod drives the linear generator 12 to run to generate electricity, or the reciprocating push rod + rocker + crank drives the generator 1 to generate electricity, or output power to the outside.
  • changing the axial position of the push rod refers to the fact that the center line of the push rod and the center line of the mover 56 along the length of the frame have a certain angle.
  • the advancing rail 69 and the retreating rail 70 follow the reciprocating
  • the advancing track and the retreating track are equivalent to a pair of opposite wedges that alternately reciprocate and act on the steel balls 53 on the two working surfaces of the planar thrust bearing 21, constantly changing the location of the planar thrust bearing at the center of the push rod.
  • the position of the line drives the push rod to reciprocate, which changes the direction of power movement while transmitting power.
  • changing the axial position of the push rod refers to the difference between the extension line of the rail (the advancing rail 69 and the retreating rail 70, the above or below may be referred to as the rail) and the center line of the mover 56 along the length of the frame.
  • the track is placed at an oblique angle relative to the centerline of the mover, and the linear distance of each point on the extension line of the track surface relative to the centerline of the mover along the length of the frame Is not equal, and the axis of the push rod is perpendicular to the center line of the mover.
  • the push rod is constantly changing.
  • the axial position is to convert the linear reciprocating motion of the mover into the vertical reciprocating movement of the push rod relative to the mover.
  • the principles of changing the axial position of the push rod in the following embodiments are the same as in this embodiment, and will not be repeated.
  • the mover mechanism includes: a power input shaft, which is the power output shaft of the power device 25; and is mounted on the frame 7 through a bearing box 34
  • the upper camshaft 39 is connected with the power input shaft through a coupling 24; the camshaft 39 is provided with a cam 45; one end of the cam sleeve 46 is mounted on the cam 45 through a bearing 47, and the other end is connected through a connecting rod 9 and
  • the piece 8 is connected to the long beam 64;
  • the linear bearing 44 is installed on the frame 7;
  • the rail body 17 is provided with an advancing rail 69 and a retreating rail 70, and is installed on the linear bearing 44 through the long beam, and the long beam 64 is installed on the
  • the linear bearing 44 becomes a reciprocating mover 56 and reciprocates on the linear bearing 44; the guide rod 18 is placed in the frame end plate 15, and one end is connected to the long beam through the coupling 8; the compression spring 20 and The pads 19 are
  • the push rod mechanism includes: linear bearings 14 are installed on the frame 7 respectively; the push rod 13 is installed in the linear bearing 14; the support arm 66 is installed on the frame 7; the swing rod 68 is installed through the bearing 178 and the swing rod shaft 65 On the support arm 66; one end of the connecting plate 57 is connected to the push rod 13 through the pin 22, and the other end is connected to the swing lever power arm 58 through the bearing 178 and the shaft 63; one end of the connecting plate is pushed to the rocker through the pin 22
  • the rod 62 is connected, the other end of which is connected to the pendulum resistance arm 59 through the shaft 63; the rocker push rod 62 is installed in the linear bearing 14; one end of the rocker 5 is connected to the rocker push rod 62 through the pin shaft 22, and the other end is connected to the rocker push rod 62.
  • the crankshaft 3 is connected to the crank 28; the crank 28 is mounted on the generator shaft 2 and connected to the engine 1; or one end of the connecting plate 57 is connected to the push rod 13 through the pin 22, and the other end is connected to the pendulum through the bearing 178 and the shaft 63
  • the lever power arm 58 is connected; one end of the connecting plate 57 is connected to the pendulum resistance arm 59 through the shaft 63; the other end is connected to the linear motor 12 through the pin shaft 22, one end of the connecting piece 16 is connected to the push rod 13, and the other end is connected to
  • the plane thrust bearing 21 is connected; the two working surfaces of the plane thrust bearing 21 are provided with steel balls 53; the push rod mechanism has various forms and can be selected for specific implementation.
  • the power unit 25 drives the camshaft 39, the cam 45 and the cam sleeve 46 to rotate. Under the action of the cam 45, the cam sleeve 46 and the connecting rod 9, the circular motion becomes linear motion.
  • the long beam 64 and the track body 17 follow the cam 45, The cam sleeve and the connecting rod reciprocate, the plane thrust bearing 21 is placed between the advancing rail 69 and the retreating rail 70, and the steel ball 53 respectively cyclically and alternately contacts the two rail surfaces.
  • the push rod 13 is in the advancing motion, it is in contact with The steel ball 53 coming into the contact surface of the track 69 rolls under force.
  • the steel ball coming into contact with the retreating track 70 rolls under the force, and the power from the mover is transmitted through rolling friction.
  • the extension lines of the advancing rail 69 and the retreating rail 70 in contact with the planar thrust bearing 21 have a certain angle with the centerline of the long beam 64 of the mover 56 along the length of the frame, that is to say The advancing track and the retreating track are placed obliquely with respect to the mover.
  • the mover mechanism includes: a power input shaft, which is the power output shaft of the power device 25; a cam mounted on the frame 7 through a bearing box 34
  • the shaft 39 is connected to the power input shaft through a coupling 24; the cam shaft 39 is provided with a cam 45; one end of the cam sleeve 46 is mounted on the cam 45 through a bearing 47, and the other end is connected to the mover through a connecting rod 9 and a coupling
  • the push rod 72 is connected; the linear bearing 14 is installed on the frame 7; the mover push rod 72 is installed in the linear bearing 14; the track body 17 is provided with an advancing track 69 and a retreating track 70, or a straight axis track 61, and Installed on the mover push rod 72; one end of the mover push rod is placed in the frame end plate 15; the compression spring 20 and the stop pad 19 are stringed on the mover push rod 72 and placed symmetrically on
  • the power unit 25 drives the camshaft 39, the cam 45 and the cam sleeve 46 to rotate. Under the action of the cam 45, the cam sleeve 46 and the connecting rod 9, the circular motion becomes linear motion.
  • the mover push rod 72 and the track body 17 follow the cam 45.
  • the cam sleeve and the connecting rod reciprocate, the plane thrust bearing 21 is placed between the advancing rail 69 and the retreating rail 70, and the steel ball 53 respectively cyclically and alternately contacts the two rail surfaces.
  • the steel ball 53 on the contact surface with the advancing rail 69 rolls under force.
  • the advancing track and the retreating track are placed obliquely with respect to the mover.
  • the mover reciprocates, the advancing track and the retreating track on the track body, or the straight shaft track 61 reciprocating synchronously with the mover, the planar thrust bearing 21, or the linear thrust bearing 60 constantly change the thrust along with the reciprocating movement of the track.
  • the axial position of the rod drives the push rod, the pendulum rod and the rocker to make a reciprocating motion to drive the generator to generate electricity, or to push the power output wheel 131 to output power to the outside.
  • the push rod mechanism includes; linear bearings 14 are installed on the frame 7 respectively; the push rod 13 is installed in the linear shaft 14; the support arm 66 is installed On the frame 7; the swing rod 68 is mounted on the support arm 66 through the bearing 178 and the swing rod shaft 65; one end of the connecting plate 57 is connected to the push rod 13 through the shaft 63, and the other end is connected to the swing rod power arm 58 through the shaft 63
  • One end of the rocker 5 is connected to the resistance arm 59 of the pendulum rod through the shaft 63, and the other end is connected to the engine 1 through the crank shaft 3, the crank 28, and the generator shaft 2;
  • the extension lines of the passive permanent magnet 76 and the retracted passive permanent magnet 78 have
  • the mover mechanism includes: a planar thrust bearing 21, or a roller 73, or a slider 74, or a floating permanent magnet 80 installed on the push arm 83; the push arm 83 is installed on the mover push rod 72 through the push arm seat 82;
  • the power unit 25 is installed on the frame 7;
  • the camshaft 39 is provided with a cam 45;
  • the camshaft 39 is installed on the frame 7 through the bearing box 34;
  • the power unit 25 is connected to the camshaft 39 through the coupling 24;
  • the cam sleeve One end of 46 is mounted on the cam 45 through a bearing 47, and the other end is connected to the mover push rod 72 through a connecting rod 9 and a coupling piece;
  • the linear bearing 14 is installed on the frame 7;
  • the mover push rod 72 is installed on the linear bearing 14 When the mover push rod reciprocates, the plane thrust bearing 21, or the roller 73, or the slider 74, or the floating permanent magnet 80 installed on the push arm 83 reciprocates along with the
  • one side of the floating seat body 79 is installed with an advancing active permanent magnet 75, and the other side is installed with a retreating active permanent magnet 77, which constitutes a floating permanent magnet 80, and the rail body 17 is provided with The forward passive permanent magnet 76 and the retreat passive permanent magnet 78, the floating permanent magnet 80 is placed between the forward passive permanent magnet 76 and the retreat passive permanent magnet 78, the floating permanent magnet is installed on the support arm 83 and the support arm seat 82
  • the mover push rod 72 drives the floating permanent magnet to reciprocate through the push arm seat 82 and the push arm 83.
  • the moving direction of the floating permanent magnet is the moving direction of the active permanent magnet and the moving direction of the moving permanent magnet and the track body. Under the interaction of the passive permanent magnet and the retreating passive permanent magnet, the push rod is driven to reciprocate and output power to the outside.
  • Embodiment 5 of the present invention the structure diagram of Embodiment 5 of the present invention; wherein, the planar thrust bearing 21 used for power transmission can also be made of rollers 73, or sliding blocks 74, or linear thrust bearings 60, or permanent magnets.
  • this embodiment is a single set of movers, which are located on the side of the cam.
  • the planar thrust bearing 21 in the above embodiment uses the rolling friction between the steel ball 53 and the advancing rail 69 and the retreating rail 70 to transmit power.
  • the linear thrust bearing 60 in the above embodiment uses the rolling friction generated by the steel ball 53 and the straight shaft rail 61 to transmit power.
  • the roller 73 in the above or the following embodiments uses rolling friction generated with the advancing rail 69 and the retreating rail 70, or the serpentine rail 126, or the advancing rail 107 and the retreating rail 106 to transmit power.
  • the slider 74 in the above or the following embodiments utilizes the sliding friction between the advancing rail 69 and the retreating rail 70, or the serpentine rail 126, or the advancing rail 107 and the retreating rail 106 to transmit power.
  • the advancing plane thrust bearing 105 and the retreating plane thrust bearing 108 use the rolling friction between the steel balls 53 and the advancing rail 107 and the retreating rail 106 to transmit power.
  • the mover mechanism includes: a power input shaft, which is the power output shaft of the power device 25; a camshaft 39 mounted on the frame 7 through a bearing box 34, It is connected to the power input shaft through a coupling 24; the cam shaft 39 is provided with a cam 45; one end of the cam sleeve 46 is respectively mounted on the cam 45 through a bearing 47, and the other end is connected to a linear magnetic shaft through a connecting rod 9 and a coupling 8 89 is connected, the linear magnetic shaft 89 is installed in the linear permanent magnetic bearing 71, the S-pole active permanent magnet 86 and the N-pole active permanent magnet 88 are installed on the linear magnetic shaft 89 through the permanent magnet base 87; one end of the linear magnetic shaft 89 is placed In the frame end plate 15; the compression spring 20 and the stop pad 19 are stringed on the linear magnetic shaft 89 and placed symmetrically on both sides of the frame end plate 15.
  • the push rod mechanism includes: the linear permanent magnetic bearing 71 is installed on the frame 7 and placed symmetrically on both sides of the center line of the linear magnetic shaft 89 of the mover; the magnetic shaft push rod 91 is installed in the linear permanent magnetic bearing 71, and the compression spring 20 and the stop pad 19 are connected in series on the magnetic shaft push rod 91, and are respectively placed on both sides of the linear permanent magnetic bearing 71; the magnetic shaft push rod 91 is connected to the linear generator 12 through the joint 6, or the magnetic shaft push rod 91 passes through the connecting plate 57.
  • the shaft 63 is connected to the swing lever power arm 58, the swing lever resistance arm 59 is connected to the linear generator 12 through the connecting plate 57 and the pin shaft 22, or the magnetic shaft push rod 91 is connected to the generator 1 through the rocker 5.
  • the magnetic shaft push rod 91 is connected to the generator 1 through the swing rod 68 and the rocker;
  • the passive N-pole permanent magnet 85 is installed on the magnetic shaft push rod 91;
  • the permanent magnet installed on the linear magnetic shaft 89 of the mover is bipolar , That is, an N-pole active permanent magnet 88 and an S-pole active permanent magnet 86.
  • the passive permanent magnet on the magnetic shaft push rod 91 is unipolar, that is, an N-pole passive permanent magnet 85, but an S-pole passive permanent magnet can also be set.
  • the magnet when the N-pole active permanent magnet on the mover mechanism and the S-pole active permanent magnet follow the linear magnetic shaft 89 of the mover to reciprocate, when the N-pole active permanent magnet corresponds to the N-pole passive permanent magnet on the push rod, Under the action of the same pole repulsive force, the magnetic shaft push rod 91 moves forward.
  • the S-pole active permanent magnet corresponds to the N-pole passive permanent magnet on the magnetic shaft push rod
  • the magnetic shaft push rod retreats and moves under the action of the attraction force of the different poles.
  • the reciprocating push rod (or the reciprocating push rod + pendulum rod) pushes the linear generator 12 to work to generate electricity, or the reciprocating push rod + pendulum rod + rocker pushes the generator 1 to operate to generate electricity.
  • FIG. 13 the structure diagram of the power transmission and electric control system of the present invention.
  • One end of the cable 92 is connected to the generator, and the other end is connected to the converter 93 through the main cable 94, and the converter 93 is connected through the connecting wire 95.
  • the power output line 98 is connected to the electrical control cabinet 97
  • the electrical control cabinet is connected to the power unit on the power unit 25 through the power line 99 and the junction box 100
  • the external power line 96 is connected to the electrical control cabinet 97
  • the generator converts the generated electricity through the converter 93 through the cable 92 and the main cable 94, and the converted electricity is output through the electric control cabinet 97, and the external power line 96 passes through the electric control cabinet.
  • the external power cord 96 can be cut off through the electric control cabinet to pass the power from the converter 93 through the power supply.
  • the control cabinet and the power cord feed power to the power consuming unit.
  • FIG. 14 Figure 15, Figure 16, the structure diagram of the embodiment 8 of the present invention; wherein the power input shaft is connected to the rotating body 118, the rotating body 118 is mounted on the frame 102 through the shaft 116; the retreat rail 106 and The advancing rail 107 is respectively installed on the rail body 109; the rail body 109 is installed on the rotating body 118, the rail body 109, the retreating rail 106 and the advancing rail 107 and the rotating body 118 are combined to form the rotor 128;
  • the frame 102 includes: a support tube 113 is installed on the inner wall panel 112 and the outer wall panel 114 by connecting lugs 155 and bolts 35;
  • the push rod mechanism includes: a linear bearing 103 is installed on the frame 102; the push rod 13 is installed in the linear bearing 103; a support arm 66 is installed on the frame 102; On the support arm 66; the push rod 13 is connected to the swing rod power arm 58 through the pin shaft 22, the connecting plate 57, the bearing 178 and the shaft 63; the swing rod resistance arm 59 pushes the rocker through the shaft 63, the connecting plate 57 and the pin shaft 22
  • the rod 62 is connected; the rocker push rod 62 is installed in the linear bearing 14; one end of the rocker 5 is connected to the rocker push rod 62 through the pin 22; the other end is connected to the power generation through the crank shaft 3, the crank 28 and the generator shaft 2
  • the machine 1 is connected; the forward plane thrust bearing 105 and the retreat plane thrust bearing 108 are provided with steel balls 53 and are respectively installed on the push rod 13 through the coupling 16; the push rod mechanism has a variety of forms and can be selected for implementation. .
  • the advancing rail 107 and the retreating rail 106 mounted on the rail body 109 rotate with the rotating body 118.
  • the steel ball 53 advancing to the plane thrust bearing 105 is advancing Roll to the slope of the track 107 and drive the push rod 13 to move forward.
  • the steel ball 53 that retreats to the plane thrust bearing is on the slope of the retreat track 106 Rolling and drive the push rod to move backwards.
  • the push rod moves forward and backward to drive the linear generator 12 to work, or the push rod drives the swing rod and rocker to push the generator 1 to run, or push The rod drives the pendulum rod, the rocker push rod and the rocker to drive the generator to run.
  • the structure diagram of Embodiment 9 of the present invention wherein, the rotor mechanism includes: the power input shaft is connected with the rotating body 118; the rotating body 118 is installed on the frame 102 through the shaft 116; the track body 109 is provided with a snake The shaped rail 126 is mounted on the rotating body 118.
  • the push rod mechanism includes: the linear bearing 103 is installed on the frame 102; the push rod 13 is installed in the linear bearing 103; the end plate 125 is installed on the push rod 13; the support arm 66 is installed on the frame 102; the connecting plate 57 One end is connected to the end plate 125 through the pin shaft 22, and the other end is connected to the swing rod power arm 58 through the bearing 178 and the shaft 63; the swing rod 68 is mounted on the support arm 66 through the bearing 178 and the swing rod shaft 65, and the swing rod
  • the resistance arm 59 is connected to the linear generator 12 through the shaft 63, the connecting plate 57 and the pin shaft 22; or the end plate 125 is connected to the linear generator 12 through the joint 6; the roller 73 is connected to the push rod 13 through the roller shaft 127 and the connecting member 16 Connected and placed in the serpentine track 126 of the mover mechanism; when the serpentine track 126 rotates with the rotating body 118 and the track body 109, the roller 73 installed in the serpentine track
  • FIG. 18 a structural diagram of Embodiment 10 of the present invention; wherein, the rotor mechanism is the same as that in Fig. 17, and will not be repeated here.
  • the push rod mechanism includes: a linear bearing 103 is installed on the frame 102; a push rod 13 is installed in the linear bearing 103; an end plate 125 is installed on the push rod 13; the rocker 5 is connected to the end plate 125 through a joint 6, which The other end is connected to the generator 1 through the crank shaft 3, the crank 28 and the generator shaft 2; the roller 73 is connected to the push rod 13 through the roller shaft 127 and the coupling 16 and is placed in the serpentine track 126; when the serpentine track 126 When rotating with the rotating body 118 and the track body 109, the roller 73 installed in the serpentine track 126 interacts with the serpentine track to drive the push rod, the end plate and the rocker to reciprocate, and drive the generator 1 to work, or the rocker Promote the power output wheel 131 to output power to the outside.
  • the structure diagram of Embodiment 11 of the power transmission mechanism and power generation equipment of the present invention wherein, the rotor mechanism includes: a power input shaft is connected to a rotating body 118; the rotating body 11 is mounted on the frame 102 through a shaft 116; The track body 109 is provided with a serpentine track 126 and is mounted on the rotating body 118.
  • the push rod mechanism includes: the linear bearing 103 is installed on the frame 102; the push rod 13 is installed in the linear bearing 103; the end plate 125 is installed on the push rod 13; the support arm 66 is installed on the frame 102; the connecting plate 57 One end is connected to the end plate 125 through the pin shaft 22, and the other end is connected to the swing rod power arm 58 through the bearing 178 and the shaft 63; the swing rod 68 is mounted on the support arm 66 through the bearing 178 and the swing rod shaft 65.
  • roller 73 is connected to the push rod 13 through the roller shaft 127 and the connecting member 16, and is placed in the serpentine track 126 of the mover mechanism; when the serpentine track 126 rotates with the rotating body 118 and the track body 109, it is installed in the serpentine
  • the rollers in the track drive the push rod, the end plate, the swing rod and the rocker to reciprocate, and drive the generator 1 to work, or drive the power output wheel 131 to run, and output power to the outside.
  • the power transmission mechanism and power generation equipment of the present invention is a structural diagram of Embodiment 12; wherein, the rotor mechanism includes: a rotating body 118 is mounted on the frame 102 through a shaft 116; and a rail body 109 is respectively provided There are forward active permanent magnets 134 and retreat active permanent magnets 137 (the forward rail 107 and the retreat rail 106 can also be installed, and the serpentine rail 126 can also be installed) and are installed on the rotating body 118 to form a rotor 128.
  • the push rod mechanism includes: the linear bearing 103 is installed on the frame 102; the push rod 13 is installed in the linear bearing 103; the end plate 125 is installed on the push rod 13; the support arm 66 is installed on the frame 102; the connecting plate 57 One end is connected to the end plate 125, and the other end is connected to the swing rod power arm 58 through the bearing 178 and the shaft 63; the swing rod 68 is mounted on the support arm 66 through the bearing 178 and the swing rod shaft 65, and the swing rod resistance arm 59 passes
  • the shaft 63, the connecting plate 57 and the pin shaft 22 are connected to the rocker push rod 62; the rocker push rod 62 is installed in the linear bearing 14; one end of the rocker is connected to the rocker push rod 62 through the pin shaft 22, and the other end passes through
  • the crankshaft 3, the crank 28, and the generator shaft 2 are connected to the generator 1; or the rocker 5 is connected to the power output wheel 131 through the crankshaft 3 and the crank 28; the forward passive permanent
  • the reciprocating push rod (or the reciprocating push rod and the swing rod) push the linear motor 12 to work to generate electricity, or the reciprocating push rod, the swing rod (and the rocker push rod) and the rocker push the generator 1 to rotate Generate electricity. Or, the reciprocating push rod outputs power to the outside.
  • the serpentine track rotates with the rotor 128, and the roller drives the push rod to reciprocate under the interaction of the roller and the serpentine track, and the reciprocating push rod pushes the generator through the push rod mechanism to generate electricity, or Output power to the outside.
  • the advance track 107 and the retreat track 106 rotate with the rotor 128, and the push rod is driven to reciprocate under the interaction of the roller and the advance track and the retreat track.
  • the reciprocating push rod drives the generator to run through the push rod mechanism. Electricity, or output power.
  • the advancing rail 107 and the retreating rail 106 rotate with the rotor 128.
  • the steel ball 53 advancing to the plane thrust bearing 105 is on the inclined surface of the advancing rail 107
  • the steel ball 53 of the retreat plane thrust bearing rolls on the slope of the retreat rail 106 and drives the push rod 13 Backward movement, the reciprocating push rod pushes the generator to run through the push rod mechanism to generate electricity, or output power to the outside.
  • the power transmission mechanism and power generation equipment of the present invention is a structural diagram of Embodiment 13; wherein, the rotor mechanism includes: the power input shaft is connected to the rotating body 118; the rotating body 118 is installed on the frame 102; The N-pole active permanent magnet 152 and the S-pole active permanent magnet 153 are respectively installed on the fixed disk 148 through the fixed seat 145; the fixed disk 148 is installed on the rotating body 118.
  • the push rod mechanism includes: the linear bearing 103 is installed on the frame 102; the push rod 13 is installed in the linear bearing 103; the end plate 125 is installed on the push rod 13; the support arm 66 is installed on the frame 102; the connecting plate 57 One end is connected to the end plate 125, and the other end is connected to the swing rod power arm 58 through the bearing 178 and the shaft 63; the swing rod 68 is mounted on the support arm 66 through the bearing 178 and the swing rod shaft 65, and the swing rod resistance arm 59 passes
  • the shaft 63, the connecting plate 57 and the pin shaft 22 are connected to the rocker push rod 62; the rocker push rod 62 is installed in the linear bearing 14; one end of the rocker is connected to the rocker push rod 62 through the pin shaft 22, and the other end is connected
  • the crank shaft 3, the crank 28, and the generator shaft 2 are connected to the generator 1; or the rocker 5 is connected to the power output wheel 131 through the crank shaft 3 and the crank 28; the passive permanent magnet 147
  • the rotor mechanism includes: the rotor 157 is installed on the frame 102 through the rotor shaft 156, the fixed disk 117 and the shaft sleeve 115;
  • the device 25 is connected to the rotor shaft 156 through the coupling 24;
  • the rotor 157 is equipped with a track body 109;
  • the track body 109 can be equipped with the advancing track 107 and the retreating track 106, or the serpentine track 126, or
  • the forward active permanent magnet 134 and the retreat active permanent magnet 137 are installed, and the N-pole active permanent magnet 152 and the S-pole active permanent magnet 153 can also be installed.
  • the push rod mechanism of this embodiment is the same as the embodiment of FIG. 14, FIG. 15, FIG. 16, FIG. 17, FIG. 18, FIG. 19, FIG. 20, FIG. 22, and FIG.
  • the power transmission mechanism and power generation equipment of the present invention is a structural diagram of Embodiment 15; wherein, the rotor mechanism includes: an N-pole active permanent magnet 152 and an S-pole active permanent magnet 153 are arranged on the rotor 162, It is installed on the rotor shaft 159; the rotor shaft 159 is installed on the frame 7 through the bearing box 34; the power unit 25 is installed on the frame, and the power output shaft is connected to the rotor shaft through a coupling 24.
  • the push rod device includes: the linear bearing 14 is installed on the frame 7; the push rod 13 is installed in the linear bearing 14; the passive permanent magnet 147 is connected to the push rod through the fixed seat 154; among them, the other components of the push rod mechanism of this embodiment It is the same as the embodiment in Figure 1, Figure 5 and Figure 12, which will not be repeated here.
  • the push rod mechanism has multiple forms and can be selected for specific implementation; the permanent magnet installed on the rotor 162 is bipolar, that is, the N-pole active Permanent magnets 152 and S-pole active permanent magnets 153.
  • the passive permanent magnet 147 installed on the push rod is unipolar (N-pole), but S-pole passive permanent magnets can also be set.
  • the power unit drives the rotor 162, and the active permanent magnet on the rotor
  • the N-pole active permanent magnet 152 corresponds to the N passive permanent magnet on the push rod
  • the push rod moves forward under the action of the same pole repulsive force.
  • the S-pole active permanent magnet 153 and the push rod When the N-pole passive permanent magnet 147 corresponds to the opposite pole attraction, the push rod moves backward, and the reciprocating push rod outputs power.
  • the power transmission mechanism and power generation equipment of the present invention is a structural diagram of Embodiment 16; wherein, the rotor mechanism includes: permanent magnets 169 installed on both sides of the wall plate 164; The permanent magnet 169 is placed corresponding to the mover coil 176; the wall plate 164 is installed on the base 174; the base 174 is installed on the frame 163; the forward active permanent magnet 134 and the retreat active permanent magnet 137 (or forward track 107 and the retreat track 106, or serpentine track 126) are respectively installed on the upper part of the magnetic suspension rotor 165; the passive suspension permanent magnet 175 is installed at the lower part of the magnetic suspension rotor 165 and placed above the active permanent magnet 173, using the same poles to repel each other
  • the magnetic feature makes the magnetic levitation rotor 165 always in a suspended state; the mover coil 176 is installed on the magnetic levitation rotor 165 and placed between the permanent magnets 169 on both sides.
  • the magnetic suspension rotor 165 rotates and simultaneously drives the forward active permanent magnet 134 and the retreat active permanent magnet 137 to make a circular motion.
  • permanent magnet motors can also be used to replace magnetic levitation rotors.
  • the push rod mechanism includes: the linear bearing 14 is installed on the frame 163; the push rod 13 is installed in the linear bearing 14; Passive permanent magnets 139 together form a floating permanent magnet 141.
  • the floating permanent magnet is installed on the push rod 13 and placed between the forward active permanent magnet 134 and the retreat active permanent magnet 137 on the magnetic suspension rotor 165; among them, this embodiment
  • the other components and connection modes of the push rod mechanism in this example are the same as those in the embodiment of FIG. 1, FIG. 5, and FIG. 10, and will not be repeated here.
  • the advancing active permanent magnet and the retreating active permanent magnet rotate with the magnetic levitation rotor, and the advancing active permanent magnet corresponds to the advancing passive permanent magnet, under the action of the repulsive force of the same pole, the advancing passive permanent magnet drives the push rod to advance.
  • the retreating active permanent magnet corresponds to the retreating passive permanent magnet, under the action of the same pole repulsion, the retreating passive permanent magnet drives the push rod to move backward, and the reciprocating push rod pushes the generator through the push rod mechanism Electricity is generated by operation, or power is output externally.
  • the serpentine track rotates with the magnetic levitation rotor 165, and the roller drives the push rod to reciprocate under the interaction between the roller and the serpentine track, and the reciprocating push rod drives the generator to generate electricity through the push rod mechanism. Or output power to the outside.
  • the advance track 107 and the retreat track 106 rotate with the magnetic levitation rotor 165, and the push rod is driven to reciprocate under the interaction of the roller and the advance track and the retreat track, and the reciprocating push rod pushes the generator to run through the push rod mechanism Generate electricity, or output power to the outside.
  • the advancing rail 107 and the retreating rail 106 rotate with the magnetic levitation rotor 165.
  • the steel ball 53 advancing to the plane thrust bearing 105 is on the inclined surface of the advancing rail 107
  • the steel ball 53 of the retreat plane thrust bearing rolls on the slope of the retreat rail 106 and drives the push rod 13 to move upward.
  • the rod retreats, and the push rod (or push rod and pendulum rod) moves forward and backward to drive the linear generator 12 to work, or the push rod drives the pendulum rod and rocker to drive the generator 1 to run, or the push rod drives the pendulum rod,
  • the rocker push rod and rocker push the generator to run or output power.
  • the power transmission mechanism and power generation equipment of the present invention is a structural diagram of Embodiment 17; wherein, the rotor mechanism includes: a forward active permanent magnet 134 and a retreat active permanent magnet are installed on the rotor web 186 137 (it can also install the advancing rail 107 and the retreating rail 106, and the serpentine rail 126 can also be installed) and installed on the rotor 195; the rotor 195 is installed on the frame 194 through the rotor shaft 193; the power unit 25 is installed on the frame On 194, the power output shaft is connected to the rotor shaft 193; among them, the frame 194 includes: a support arm frame 183 installed on the inner wall 184 of the support tube and the outer wall 185 of the support tube; the inner wall 184 of the support tube and the outer wall 185 of the support tube are installed on the base 199 .
  • the push rod mechanism includes: the push rod 13 is installed on the frame 194 through the linear bearing 103;
  • the floating permanent magnet 141 is composed; the floating permanent magnet 141 is installed on the push rod 13 and placed between the forward active permanent magnet 134 and the retreat active permanent magnet 137 of the rotor.
  • the other components of the push rod mechanism of this embodiment are the same as the embodiments involved in FIG. 1, FIG. 5, FIG. 10, FIG. 11, and FIG. 28, and will not be repeated here.
  • the advancing passive permanent magnet drives the push rod to advance.
  • the retreating passive permanent magnet drives the push rod to move backward, and the reciprocating push rod pushes the generator to run through the push rod mechanism Generate electricity, or output power to the outside.
  • the serpentine track rotates with the rotor 195, and the roller drives the push rod to reciprocate under the interaction of the roller on the push rod and the serpentine track, and the reciprocating push rod pushes the generator to run through the push rod mechanism. Generate electricity or output power to the outside.
  • the advancing track and the retreating track rotate with the rotor 195, and the push rod is driven to reciprocate under the interaction of the roller on the push rod and the advancing track and the retreating track, and the reciprocating push rod pushes the generator through the push rod mechanism Electricity is generated by operation, or power is output externally.
  • the advancing rail 107 and the retreating rail 106 rotate with the rotor 195.
  • the steel ball 53 advancing to the plane thrust bearing 105 is on the advancing rail 107 rolls on the inclined surface and drives the push rod 13 to move forward.
  • the retreat rail 106 contacts the retreat plane thrust bearing 108 on the push rod, the steel ball 53 retreats to the plane thrust bearing on the retreat rail 106. It rolls on the inclined surface and drives the push rod to move back and forth.
  • the push rod (or push rod and swing rod) moves forward and backward to drive the linear generator 12 to work, or the push rod drives the swing rod and rocker to drive the generator 1 to run. Or the push rod drives the pendulum rod, the rocker push rod and the rocker to push the generator to run, or output power.
  • the rotor mechanism includes: a turntable 203 is provided with a forward active permanent magnet 134 and a retreat active permanent magnet 137 (which can also be installed The advancing rail 107 and the retreating rail 106 can also be installed with serpentine rails) and installed on the motor 200 connected to the power output shaft of the power unit; the motor 200 is installed on the frame 194, wherein the frame 194 includes: The boom 183 is installed on the inner wall 184 of the support cylinder and the outer wall 185 of the support cylinder, the partition 201 is connected with the inner wall of the support cylinder; the inner wall 184 of the support cylinder and the outer wall 185 of the support cylinder are installed on the base 199;
  • the push rod mechanism of this embodiment is the same as the embodiment of FIG. 29 and FIG. 30, and will not be repeated here.
  • the advancing active permanent magnet 134 and the retreating active permanent magnet 137 (or advancing track 107 and retreating track 106, or serpentine track 126) on the turntable rotate with the motor, when the advancing active permanent magnet and the advancing passive permanent magnet
  • the forward passive permanent magnet drives the push rod to move forward.
  • the retreating active permanent magnet corresponds to the retreating passive permanent magnet
  • the repulsive force of the same pole it retreats to the passive
  • the permanent magnet drives the push rod to move backwards, and the reciprocating push rod pushes the generator through the push rod mechanism to generate electricity or output power.
  • the serpentine track rotates with the motor 200, and the roller drives the push rod to reciprocate under the interaction of the roller and the serpentine track, and the reciprocating push rod drives the generator through the push rod mechanism to generate electricity, or Output power to the outside.
  • the forward track and the backward track rotate with the motor 200, and the push rod is driven to reciprocate under the interaction of the roller and the forward track and the backward track, and the reciprocating push rod drives the generator to generate electricity through the push rod mechanism. Or output power to the outside.
  • the advancing rail 107 and the retreating rail 106 rotate with the motor 200.
  • the steel ball 53 of the advancing plane thrust bearing 105 is on the inclined surface of the advancing rail 107
  • the steel ball 53 of the retreat plane thrust bearing rolls on the slope of the retreat rail 106 and drives the push rod 13
  • the push rod (or push rod and swing rod) moves forward and backward to drive the linear generator 12 to work, or the push rod drives the pendulum and rocker to push the generator 1 to run, or the push rod drives the pendulum or rocker.
  • Rod push rod and rocker push the generator to run, or output power outward.
  • the mover mechanism includes: a power unit 25; a cam 45 and a flywheel 10 are provided on the camshaft 39; the camshaft 39 is installed on the frame 7 through a bearing box 34; the power unit 25 is connected to the camshaft 39 through a coupling 24 One end of the cam sleeve 46 is mounted on the cam 45 through the bearing 47, and the other end is connected to the track body 17 through the connecting rod 9 pin 26 and the coupling 8; the linear bearing 44 is mounted on the frame 7 and along the frame The length direction extends (that is, the direction perpendicular to the axis of the camshaft 39), the advancing rail 69 and the retreating rail 70 are respectively installed on the rail body 17 through bolts 35 and rail seats 17c; the rail body 17 is installed on the guide rail 43, and the guide rail 43 is installed on the linear bearing 44, the guide rail 43 and the track on the raceway
  • the push rod mechanism includes: linear bearings 14 are respectively installed on the frame 7 and placed symmetrically on both sides of the center line of the guide rail 43; the push rod 13 is installed in the linear bearing 14; The plane thrust bearing 21 or the roller 73 or the sliding block 74 between the track 69 and the retreat track 70; the support arm 66 is installed on the frame 7; the swing rod 68 is installed on the support arm 66 through the bearing 178 and the swing rod shaft 65; One end of the push rod is connected to the plane thrust bearing 21 or the roller 73 or the slider 74 through the connecting piece 16, and the other end is connected to the swing rod power arm 58 through the connecting plate 57 and the shaft 63; one end of the rocker 5 is connected to the pendulum through the shaft 63
  • the rod resistance arm 59 is connected, and the other end of the rod resistance arm 59 is connected to the engine 1 through the crank shaft 3, the crank 28, and the generator shaft 2;
  • the power unit 25 drives the camshaft 39, the cam 45 and the cam sleeve 46 to rotate. Under the action of the cam 45, the cam sleeve 46 and the connecting rod 9, the circular motion becomes linear motion.
  • the guide rail and the track on the track body 17 follow the cam 45.
  • the cam sleeve and the connecting rod reciprocate, the plane thrust bearing 21 is placed between the advancing track 69 and the retreating raceway 70, the steel ball 53 is in contact with the two track surfaces alternately and cyclically, when the push rod 13 is in the advancing motion ,
  • the steel ball 53 on the contact surface with the advancing rail 69 rolls under force.
  • the steel ball on the contact surface with the retreat rail 70 rolls under the force, and through the rolling friction will come from the mover
  • the power is transmitted to the push rod, and the extension line of the working surface of the advancing rail 69 and the retreating rail 70 in contact with the planar thrust bearing 21 has a certain angle with the centerline of the guide rail of the mover 56 along the length of the frame. That is to say, the advancing track and the following track are placed obliquely with respect to the mover.
  • Figure 33, Figure 34, Figure 35 is a structural diagram of the power transmission device embodiment 20 of the present invention; wherein the rotor mechanism includes: a driving wheel 1006 installed on the power output shaft of the power device 25; through the bearing box 34 The rotor shaft 156 installed on the frame 7; the rotor disk 1008, the driven wheel 1003, the passive sprocket 1002 and the flywheel 198 installed on the rotor shaft 156; the active permanent magnet 146 is installed on the rotor disk 1008 through the fixed seat 154; Transmission belt 1007 installed on the driving wheel 1006 and the driven wheel 1003;
  • the push rod mechanism includes: linear bearings 14 installed on the frame 7 and placed on both sides of the center line of the rotor shaft 156; support arms 66 installed on the frame 7;
  • the rod shaft 65 is connected to the support arm 66; one end of the push rod 13 is installed with a passive permanent magnet 147 through the fixed seat 154, and the other end is connected to the swing lever power arm 58 through the connecting plate 57 and the shaft 63, and is placed on the linear bearing 14
  • the shaft 63 is connected with the pendulum resistance arm 59, and the other end is connected with the crankshaft 1009 through the connecting rod journal 1001 and the crank 1012;
  • the timing chain 1005 is installed on the driving sprocket 1004 and the driven spro
  • the power device 25 drives the active permanent magnet 146 on the rotor disk 1008 to rotate through the transmission belt 1007.
  • the active permanent magnet 146 corresponds to the passive permanent magnet 147 on the push rod 13
  • the passive permanent magnet 147 pushes The push rod moves, and the push rod pushes the crankshaft 1009 to rotate through the pendulum rod 68 and the connecting rod 5a, and drives the generator to run to generate electricity, or output power to the outside.
  • FIG. 36 and Figure 36A it is a structural diagram of Embodiment 21 of the power transmission device of the present invention; wherein, the electromagnet mechanism includes; the electromagnet 1017 is installed on the frame 7; the electric control cabinet 97 is installed on the frame; An automatic controller 1016 installed in an electric control cabinet; one end of the automatic controller 1016 is connected to the electric control cabinet 97 through a wire 1015, and the other end is connected to each group of electromagnets 1017 through a wire 1015;
  • the power transmission mechanism includes: a linear bearing 14 installed on the frame 7 and placed on the corresponding side of the electromagnet; a support arm 66 installed on the frame 7; a swing rod 68 passing through a bearing 178 and a swing rod shaft 65 It is connected to the support arm 66; one end of the push rod 13 is installed with a passive permanent magnet 147 through a fixed seat 154, and the other end of the push rod 13 is connected to the swing rod power arm 58 through a connecting plate 57 and a shaft 63, and is placed in the linear bearing 14;
  • the permanent magnets 147 are placed corresponding to each group of electromagnets 1017; the crankshaft 1009 installed on the frame 7 through the bearing box 34; the flywheel 198 installed on the crankshaft 1009; the generator 1 connected to the crankshaft 1009 through the coupling 24
  • One end of the connecting rod 5a is connected to the pendulum resistance arm 59 through the shaft 63, and the other end is connected to the crankshaft 1009 through the connecting rod journal 100
  • the automatic controller 1016 controls the switches of each group of electromagnets 1017 in a preset sequence through wires; when one of the groups (or groups) of the electromagnets 1017 is energized, the corresponding passive permanent magnet 147 is under the action of the same pole repulsive force Push the push rod 13 to move in a straight line.
  • the upper group (or groups) of electromagnets 1017 is powered off, the next group (or groups) of electromagnets 1017 are energized immediately, and the corresponding passive permanent magnet 147 is at the same pole repulsion. Under the action of, the push rod is pushed to move in a straight line.
  • This relay cycle operation mode pushes the push rod 13 to make a linear motion again and again, and then transmits the force to the crankshaft 1009 through the pendulum rod 68 and the connecting rod 5a, and the crankshaft converts the linear motion into The rotating motion drives the generator to run to generate electricity, or output power to the outside.
  • the rotor mechanism includes: a driving wheel 1006 connected with the power output shaft of the power device 25; installed through the bearing box 34 The rotor shaft 156 on the frame 7; the cam 1021, the driven wheel 1003, the driven sprocket 1002 and the flywheel 198 installed on the rotor shaft 156; the drive belt 1007 installed on the driving wheel 1006 and the driven wheel 1003;
  • the push rod mechanism includes: linear bearings 14 installed on the frame 7 and placed on both sides of the center line of the rotor shaft 156; support arms 66 installed on the frame 7; the swing rod 68 passes through the swing rod shaft 65 It is connected to the bearing 178 and the support arm 66; one end of the push rod 13 is equipped with a roller 73 through the connecting piece 16, and the other end is connected to the swing lever power arm 58 through the connecting plate 57 and the shaft 63, and is placed in the linear bearing 14; One end of the connecting rod 5a is connected to the pendulum resistance arm 59 through the shaft 63, and the other end is connected to the crankshaft 1009 through the connecting rod journal 1001 and the crank 1012; the crankshaft 1009 installed on the frame 7 through the bearing box 34; installed on the crankshaft Flywheel 198 and driving sprocket 1004 on 1009; generator is connected to crankshaft 1009 through coupling 24; timing chain 1005 installed on driving sprocket 1004 and passive sprocket
  • the power input shaft drives the rotor shaft 156 and the cam 1021 to rotate through the driving wheel 1006, the driven wheel 1003 and the transmission belt 1007.
  • the roller 73 mounted on the push rod pushes the push rod to move linearly, and through the pendulum
  • the rod 68, the connecting rod 5a, the connecting rod journal 1001 and the crank 1012 transmit force to the crankshaft 1009, and the crankshaft converts linear motion into rotary motion and drives the generator to generate electricity or output power.
  • the mover 56 described in the above embodiment includes: a linear bearing 44, a connecting plate 27, and a track body 17; a long beam 64, a linear bearing 44, and a track body 17; a mover push rod 72 and a linear magnetic shaft 89 and track body 17: linear bearing 44, guide rail 43 and track body 17.
  • the movers 56 described in the above embodiments can be set to one or more groups.
  • the rotor described in the above embodiment includes the rotor 128, the rotor 157, the rotors 162, 195, and 202, and the magnetic suspension rotor 165.
  • the mover 56 is placed symmetrically on both sides of the center line of the camshaft.
  • the moments of the movers 56 on both sides are equal in magnitude and opposite in direction, which can offset the torque generated by the reciprocating movement of the mover, which can greatly reduce the machine running In the vibration.
  • the push rod mechanism is symmetrically placed on both sides of the mover 56, the rotor 128, 157, 162, 195, 202 and the magnetic levitation rotor 165.
  • the push rods on both sides have the same torque and opposite directions, which can cancel each other out the push rods.
  • the torque generated during reciprocating motion can reduce vibration during machine operation.
  • the function of the compression springs 20 and 119 in the above embodiments is that when the mover or push rod moves to one end, the compression spring buffers the impact inertia of the mover and absorbs the kinetic energy of the mover. When turning back in the opposite direction, the compression spring releases the absorbed kinetic energy of the mover, boosts and accelerates the mover, or moves the push rod in the opposite direction. This cyclical reciprocation can fully relieve shock vibration, reduce noise and greatly save energy.
  • the spring can also be replaced by an air spring and other buffer energy storage components, and the compression spring 119 can also be installed at both ends of the stator of the linear generator 12 to maintain a reasonable gap with the mover to achieve the above purpose.
  • the flywheel 198 in the above embodiment is installed on the generator 1 of all the above embodiments through the generator shaft 2, and the flywheel 10 in the above embodiment is installed on the camshaft 39 of all the above embodiments.
  • the flywheel uses its own moment of inertia to Part of the work input to the crankshaft or cam during the work stroke is stored to overcome resistance in other strokes and drive the crank connecting rod mechanism to cross the top and bottom dead points to ensure that the crankshaft and the rotational angular velocity and output torque are as uniform as possible, and
  • the engine or mover overcomes short-term overtaking, stabilizes the speed, and stores energy.
  • the advancing rails 107 and 69 and the retreating rails 106 and 70 or the serpentine rail 12 in the above embodiments may be referred to simply as rails.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Transmission Devices (AREA)

Abstract

一种用于动力输出机构的动力传动装置及发电设备,所述动力输出机构包括发电机(1)或动力输出轮,所述动力传动装置包括:安装在机架(7)上的动力输入轴;安装在机架(7)上的驱动机构;安装在机架(7)上且与驱动机构连接的推杆机构;其中,所述驱动机构与所述动力输入轴连接,其通过平面推力轴承(21)或直线推力轴承或滚轮与轨道配合,或者通过滑块与轨道配合,或者通过电磁铁与永磁体配合,或者通过永磁体与永磁体配合,将驱动力传递给所述推杆机构与所述动力输出机构;所述驱动机构为动子机构或转子结构;所述推杆结构包括:与所述驱动机构连接的第一连接机构、与所述第一连接机构和所述动力输出机构连接的第二连接机构。本装置传输动力清洁、安全,适用范围广。

Description

用于动力输出机构的动力传动装置及发电设备 技术领域
本发明涉及一种动力传动装置,尤其涉及一种用于动力输出机构的动力传动装置及具有该装置的发电设备。
背景技术
除了新能源发电和水力发电外,现有的发电设备几乎都采用煤、或石油、或天然气、或核子等作为发电燃料,上述原料资源量有限,发电成本高,化石燃料排放到大气的烟尘等又会污染环境,而核电有时候也会产生核泄漏,污染则更大,因此,研发一种节能、污染少的发电机是该领域从业人员急需解决的问题。
发明内容
本发明的目的就是为了解决上述现有技术中存在的问题,本发明提供一种动力传动装置以及包含该动力传动装置的发电设备。该动力传动装置及发电机结构简单、使用方便、一次投入可以长期使用,污染少。
为实现本发明的上述目的,一方面,本发明提供一种用于动力输出机构的动力传动装置,所述动力输出机构包括发电机,其中,所述动力传动装置包括:安装在机架上的动力输入轴;安装在机架上用于传递驱动力的驱动机构;安装在机架上且与驱动机构连接的推杆机构;其中,所述驱动机构为动子机构或转子机构,与所述动力输入轴连接,其通过平面推力轴承或直线推力轴承或滚轮与轨道配合,或者通过滑块与轨道配合,或者通过电磁铁与永磁体配合,或者通过永磁体与永磁体配合,将动力传递给所述推杆机构,所述推杆机构与所述动力输出机构连接;其中,所述推杆机构包括:与所述驱动机构连接的第一连接机构、与所述第一连接机构和所述动力输出机构连接的第二连接机构。
另一方面,本发明还提供另一种用于动力输出机构的动力传动装置,所述动力输出机构包括动力输出轮,其中,所述动力传动装置包括:安装在机架上的动力输入轴;安装在机架上用于传递驱动力的驱动机构;安装在机架上且与驱动机构连接的推杆机构;其中,所述驱动机构为动子机构或转子机构,与所述动力输入轴连接,其通过平面推力轴承或直线推力轴承或滚轮与轨道配合,或者通过滑块与轨道配合,或者通过电磁铁与永磁体配合,或者通过永磁体与永磁体配合,将动力传递给所述推杆机构,所述推杆机构与所述动力输出机构连接;其中,所述推杆机构包括:与所述驱动机构连接的第一连接机构、与所述第一连接机构和所述动力输出机构连接的第二连接机构。
其中,本发明的动力输出机构包括发电机时,动力输入轴与利用机械能、风能、水力能、波浪能等能量的任一种动力装置的动力输出转轴连接,或者,与该动力装置通过传动机构连接;而当动力输出机构包括动力输出轮时,动力输入轴与利用电能、机械能、风能、水力能、波浪能等能量的任一种动力装置的动力输出转轴连接,或者,与该动力装置通过传动机构转动连接。此外,动力输入轴也可为该动力装置的动力输出转轴。其中,所述动子机构包括旋转驱动机构、直线连动机构、动力传递机构,其中:所述旋转驱动机构包括:与所述动力输入轴相连的凸轮轴(39),其通过轴承箱(34)安装在机架(7)上;设置在凸轮轴(39)上的一个或一对或多对凸轮(45),所述一个或一对或多对凸轮(45)中的任一个通过轴承(47)安装在对应一个凸轮套(46)上,通过凸轮套将旋转动力传递给与凸轮套一一对应连接的直线连动机构;所述直线连动机构包括:连杆(9)、联接件(8)、连板(27)、往复运动部件(44、64、72、89或者43)、导杆(18);所述连杆(9)连接在凸轮套(46)上,所述联接件(8)将所述连杆(9)、连板(27)、往复运动部件(44、64、72、89或者43)、连接起来,以将来自凸轮轴(39)的动力传递到动力传递机构;所述导杆(18)一端安置于机架一侧的机架端板(15)中,其另一端通过所述联接件(8)与同侧的所述往复运动部件(44、64、72、89或者43)相连;所述动力传递机构包括:轨道体(17),其上设置进向轨道(69)和退向轨道(70)或直轴轨道(61);所述往复运动部件(44、64、72、89或者43)连接在轨道体上。
优选的,所述直线连动机构还包括安装在机架(7)上且延伸方向与所述凸轮轴(39)延伸方向垂直放置的导轨(43),所述连接部件为连板(27),所述连板连接在所述两侧导轨(43)上的相邻两个轨道体之间;所述动力传递机构还包括:安置在所述进向轨道(69)和所述退向轨道(70)之间的平面推力轴承(21)或滚轮(73)或滑块(74),或置于轨道体(17)的直轴轨道(61)上的直线推力轴承(60);其中,通过凸轮轴带动凸轮(45)和凸轮套(46)转动,在凸轮(45)、凸轮套(46)和连杆(9)的作用下,将凸轮套(46)的圆周运动变为连杆的直线往复运动。
或者,所述往复运动部件为动子推杆(72),所述直线连动机构还包括:安装在机架(7)上且位于凸轮 轴(39)中心线一侧或两侧的直线轴承(14),动子推杆(72)安装在对应侧的直线轴承(14)中,且动子推杆的一端置于该侧的机架端板(15)中;所述动力传递机构还包括:安置在轨道体(17)的进向轨道(69)和退向轨道(70)之间的平面推力轴承(21)或滚轮(73)或滑块(74),或安装在直轴轨道(61)上的直线推力轴承(60),或安置在轨道体(17)的进向主动永磁体(75)和退向主动永磁体(77)之间的浮动永磁体(80),其中,当凸轮轴(39)旋转时,在凸轮(45)、凸轮套(46)和连杆(9)的作用下,将凸轮套(46)的圆周运动变为连杆的直线往复运动;其中,轨道体(17)和动子推杆(72)随连杆直线往复运动,在进向轨道(69)和退向轨道(70)与平面推力轴承(21)或滚轮(73)或滑块(74)的相互作用下,或直轴轨道(61)与直线推力轴承(60)的相互作用下,或进向主动永磁体(75)和退向主动永磁体(77)与浮动永磁体(80)的磁力相互作用下,将动力传输给推杆机构,并带动动力输出机构工作。
或者,所述往复运动部件为直线轴承(44)或长梁(64),所述直线连动机构还包括:通过推臂座(82)安装在往复运动部件上的推臂(83),推臂(83)和平面推力轴承(21)或滚轮(73)或滑块(74)或直线推力轴承(60)或浮动永磁体(80)及对应推臂座(82)和动子推杆(72)或直线轴承(44)或长梁(64)或导轨(43)形成相对机架往复运动的动子(56);所述动力传递机构还包括:设置在推臂(83)上的平面推力轴承(21)或滚轮(73)或滑块(74)或直线推力轴承(60)或浮动永磁体(80);安装在推杆(13)的进向轨道(69)和退向轨道(70)之间的平面推力轴承(21)或滚轮(73)或滑块(74),或者安装在推杆(13)的直轴轨道(61)上的直线推力轴承(60),或者安装在推杆(13)的轨道体(17)上的进向被动永磁体(76)和退向被动永磁体(78)之间的浮动永磁体(80);浮动永磁体(80)包括:浮动体座(79);安装于浮动座体一侧的进向主动永磁体(75)和另一侧的退向主动永磁体(77);其中,当凸轮轴(39)旋转时,在凸轮(45)、凸轮套(46)和连杆(9)的作用下,将凸轮套(46)的圆周运动变为直线轴承(44)或长梁(64)的直线往复运动;其中,当直线轴承(44)或长梁(64)直线往复运动时,带动推臂(83)及安装在推臂(83)上的平面推力轴承(21)或滚轮(73)或滑块(74)或直线推力轴承(60)或浮动永磁体(80)一同往复运动,平面推力轴承(21)或滚轮(73)或滑块(74)与推杆的轨道体(17)上的进向轨道(69)和退向轨道(70)相互作用,或者浮动永磁体(80)与轨道体(17)上设置的进向被动永磁体(76)和退向被动永磁体(78)相互作用,或直线推力轴承(60)与直轴轨道(61)的相互作用下,将动力传输给推杆机构,并带动动力输出机构工作。
或者,所述动子机构包括旋转驱动机构、直线连动机构、动力传递机构,其中,所述旋转驱动机构包括:与所述动力输入轴相连的凸轮轴(39),其通过轴承箱(34)安装在机架(7)上;设置在凸轮轴(39)上的一个或一对或多对凸轮(45),所述一个或一对或多对凸轮(45)中的任一个通过轴承(47)安装在对应一个凸轮套(46)上,通过凸轮套将旋转动力传递给与凸轮套一一对应连接的直线连动机构;所述直线连动机构包括:一端安置于机架的机架端板(15)中、其另一端与对应凸轮套(46)通过连杆(9)和联接件(8)连接的直线磁轴(89),安装在机架(7)上的直线永磁轴承(71),设置在直线磁轴(89)两侧且安装于直线永磁轴承(71)中的永磁体(90);安装在直线磁轴(89)上的永磁体座(87),永磁体座(87)和直线磁轴(89)形成相对机架往复运动的动子(56);串联安置在直线磁轴(89)一端的压簧(20)和档垫(19);所述动力传递机构包括:通过永磁体座(87)安装在直线磁轴(89)上的S极主动永磁体(86)和N极主动永磁体(88);安装在推杆机构上的N极被动永磁体或S极被动永磁体,与直线磁轴(89)上的S极主动永磁体(86)以及N极主动永磁体(88)配用;其中,当凸轮轴(39)旋转时,在凸轮(45)、凸轮套(46)和连杆(9)的作用下,将凸轮套(46)的圆周运动变为连杆的直线往复运动;其中,直线磁轴(89)、S极主动永磁体(86)和N极主动永磁体(88)随连杆直线往复运动,当N极主动永磁体与推杆机构上的N极被动永磁体位置相对应时,将同极相斥力的作用力传递给推杆机构;当S极主动永磁体与推杆机构上的N极被动永磁体位置相对应时,将异极相吸力的作用力传递给推杆机构;或者,当S极主动永磁体与推杆机构上的S极被动永磁体位置相对应时,将同极相斥力的作用力传递给推杆机构;当N极主动永磁体与推杆机构上的S极被动永磁体位置相对应时,将异极相吸力的作用力传递给推杆机构,往复运动的推杆机构带动动力输出机构工作。
或者,所述动子机构包括旋转驱动机构、直线连动机构、动力传递机构,其中:所述旋转驱动机构包括:与所述动力输入轴相连的凸轮轴(39),其通过轴承箱(34)安装在机架(7)上;设置在凸轮轴(39)上的一个或一对或多对凸轮(45),所述一个或一对或多对凸轮(45)中的任一个通过轴承(47)安装在对应一个凸轮套(46)上,通过凸轮套将旋转动力传递给与凸轮套一一对应连接的直线连动机构;所述直线连 动机构包括:安装在机架(7)上且位于凸轮轴(39)中心线一侧或两侧的直线轴承(44),导轨(43)安装在对应侧的直线轴承(44)中;安装在导轨(43)上且与对应凸轮套(46)另一端通过连杆(9)和联接件(8)相连接的轨道体(17),轨道体和导轨(43)形成相对于机架往复运动的动子(56);所述动力传递机构包括:设置在轨道体(17)上的进向轨道(69)和退向轨道(70);安置在轨道体(17)的进向轨道(69)和退向轨道(70)之间的平面推力轴承(21)或滚轮(73)或滑块(74)。
或者,动力输入轴所述驱动机构为转子机构,其中:所述转子机构包括:与动力输入轴连接的转盘(203);设置在转盘(203)上的进向主动永磁体(134)和退向主动永磁体(137),或进向轨道(107)和退向轨道(106),或蛇形轨道(126);其中,转盘(203)及其上的进向主动永磁体(134)和退向主动永磁体(137),或进向轨道(107)和退向轨道(106),或蛇形轨道(126)形成转子(202);或者,所述转子机构包括:与动力输入轴连接的轨道体(109);分别安装在轨道体(109)上的退向轨道(106)和进向轨道(107)或蛇形轨道(126)或进向主动永磁体(134)和退向主动永磁体(137);其中,轨道体(109)及其上的退向轨道(106)和进向轨道(107)或蛇形轨道(126)或进向主动永磁体(134)和退向主动永磁体(137)形成转子;或者,所述转子机构包括:与动力输入轴连接的固定盘(148);通过固定座(145)分别安装在固定盘(148)上的N极主动永磁体(152)和S极主动永磁体(153);其中,固定盘(148)及其上的N极主动永磁体(152)和S极主动永磁体(153)形成转子。或者,所述转子机构包括:与动力输入轴连接的转子轴(156);通过转子轴(156)安装在机架(102)上的转子(157);安装在转子(157)上的轨道体(109);安装在轨道体(109)上的进向轨道(107)和退向轨道(106),或蛇形轨道(126),或进向主动永磁体(134)和退向主动永磁体(137),或安装在转子(157)上的N极主动永磁体(152)和S极主动永磁体(153);
或者,所述转子机构包括:与动力输入轴连接的转子轴(159),通过轴承箱(34)安装在机架(7)上;安装在转子轴(159)上的转子(162);设置在转子上的N极主动永磁体(152)和S极主动永磁体(153);或者,所述转子机构包括:与动力输入轴连接的转子轴(193);通过转子轴(193)安装在机架(194)上的转子(195);安装在转子(195)上的进向主动永磁体(134)和退向主动永磁体(137),或者进向轨道(107)和退向轨道(106),或者蛇形轨道(126)。
或者,所述驱动机构为转子机构,其中:所述转子机构包括:与动力输入轴连接的主动轮(1006);两端分别通过轴承箱(34)安装在机架(7)上的转子轴(156);安装在转子轴(156)上的转子盘(1008)、被动轮(1003)、被动链轮(1002)和飞轮(198);通过固定座(154)安装在转子盘(1008)上的主动永磁体(146);安装在主动轮(1006)和被动轮(1003)上的传动带(1007);或者,所述转子机构包括电磁铁机构、动力传递机构;所述电磁铁机构包括:安装在机架(7)上的多组电磁铁(1017);安装在机架上的电控柜(97);安装在电控柜内的自动控制器(1016);自动控制器(1016)的一端通过导线(1015)与电控柜(97)相连,其另一端通过导线(1015)与多组电磁铁(1017)相连;所述动力传递机构包括:多组被动永磁体(147)分别通过固定座(154)安装在多组推杆机构上,用于与对应电磁铁配用。其中,自动控制器(1016)通过导线按预先设定顺序控制每组电磁铁(1017)的开关;当其中一组或多组电磁铁(1017)通电时,与之对应的被动永磁体(147)在同极斥力的作用下朝着远离电磁铁的方向运动,以推动对应推杆机构的推杆(13)做直线运动;当上一组或多组电磁铁(1017)断电后,下一组或多组电磁铁(1017)随即通电,与之对应的被动永磁体(147)在同极斥力的作用下,推动对应推杆机构的推杆做直线运动;通过接力循环运行方式周而复始的推动多组推杆机构的推杆(13)做直线运动,以带动动力输出机构工作;或者,所述转子机构包括:与动力输入轴连接的主动轮(1006);两端分别通过轴承箱(34)安装在机架(7)上的转子轴(156);安装在转子轴(156)上的凸轮(1021)、被动轮(1003)、被动链轮(1002)和飞轮(198);安装在主动轮(1006)和被动轮(1003)上的传动带(1007)。
或者,所述驱动机构为转子机构,所述转子机构包括:安装在机架(163)上的基座(174);安装在基座(174)上且位于其两侧的墙板(164);安装在两侧墙板(164)上的永磁体(169);安装在机架上的磁悬浮转子(165);分别安装在磁悬浮转子(165)上的进向主动永磁体134和退向主动永磁体(137),或者进向轨道107和退向轨道106,或者蛇形轨道126;安装在磁悬浮转子(165)下部的被动悬浮永磁体(175),置于主动永磁体(173)的上方,以利用同极相斥的磁性力使磁悬浮转子(165)始终处于悬浮状态;与永磁体(169)对应置放的动子线圈(176),安装在磁悬浮转子(165)上,并置于两侧永磁体(169)之间;其中,在动子线圈(176)和永磁体(169)的相互作用下产生推力,使磁悬浮转子(165)转动,并同时带动进向主动永磁体(134)和退向主动永磁体(137),或者进向轨道107和退向轨道106,或者蛇形轨道126做圆周运动;其中,所述磁悬浮转子还可以由永磁电机替代。
优选的,所述第一连接机构包括:设置在驱动机构平面推力轴承(21)的两个工作面的钢球(53),与两个轨道的轨道面相接触,或者设置在轨道体(17)上的直轴轨道(61)与直线推力轴承(60)相连;安装在机架(7)上的且位于连杆中心线延长线两侧的直线轴承(14);
安装在直线轴承(14)中的推杆(13);其一端与推杆(13)相连的联接件(16),其另一端与平面推力轴承(21)或滚轮(73)或滑块(74)或直线推力轴承(60)或浮动永磁体(80)相连。
相应的,所述第二连接机构为通过推杆与摆杆传递动力的机构,包括:安装在机架(7)上的支臂(66);通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59);其一端通过轴(63)与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;其一端通过销轴(22)与动力输出机构相连的连板(57),其另一端通过轴(63)与摆杆阻力臂(59)相连。
或者,所述第二连接机构为通过推杆传递动力的机构,包括:将推杆(13)与直线发电机(12)相连的接头(6);或者,所述第二连接机构为通过推杆和摇杆传递动力的机构,包括:连接推杆(13)的接头(6);与接头铰接的摇杆;与摇杆通过曲柄轴(3)连接的曲柄(28),曲柄与动力输出机构连接;其中,与平面推力轴承(21)相接触的进向轨道(69)和退向轨道(70)或直轴轨道(61)的延长线与动子机构的动子(56)中心线具有一定的夹角;其中,所述驱动机构将动力传递给安置于进向轨道(69)和退向轨道(70)之间的平面推动轴承(21),使对应钢球(53)与进向轨道(69)和退向轨道(70)两个轨道面循环交替接触,当推杆(13)处于进向运动时,与进向轨道(69)接触面接触的钢球(53)受力滚动,当推杆(13)处于退向运动时,与退向轨道(70)接触面接触的钢球受力滚动,或者安置于进向轨道(69)和退向轨道(70)之间的滚轮(73)在进向轨道和退向轨道面上循环交替滚动,或者安置于进向轨道(69)和退向轨道(70)之间的滑块(74)在进向轨道和退向轨道面上循环交替滑动,或者直线推力轴承(60)与直轴轨道(61)受力滚动,动子通过滚动摩擦的方式或滑动摩擦的方式将动力传递给推杆,或者安置于进向主动永磁体(75)和退向主动永磁体(77)之间的浮动永磁体(80),动子通过磁体间相互作用力将动力传递给推杆;当动子机构的动子往复运动时,轨道体随动子同步往复运动,平面推力轴承(21)或滚轮(73)或滑块(74)或直线推力轴承(60)或浮动永磁体(80)随轨道或进向主动永磁体(75)和退向主动永磁体(77)的往复运动并相互作用不停地改变推杆轴向位置,带动推杆做往复运动,通过第二连接机构带动动力输出机构工作。
或者,所述第二连接机构为通过推杆、摆杆、摇杆推杆和摇杆传递动力的机构,包括:安装在机架(7)上的支臂(66);通过轴承和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59);其一端与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;其一端通过销轴(22)与摇杆推杆(62)相连的连板,其另一端通过轴(63)与摆杆阻力臂(59)相连;安装在直线轴承(14)中的摇杆推杆(62);其一端通过销轴(22)与摇杆推杆(62)相连的摇杆(5),其另一端通过曲柄轴(3)与曲柄(28)相连;曲柄(28)与动力输出机构相连;或者,所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构。其另一端通过曲柄轴(3)与曲柄(28)相连;曲柄(28)与动力输出机构相连;其中,与平面推力轴承(21)相接触的进向轨道(69)和退向轨道(70)或与直线推力轴承(60)相接触的直轴轨道(61)的延长线与动子机构的动子(56)中心线具有一定的夹角;其中,所述驱动机构通过动子推杆(72)将动力传递给安置于进向轨道(69)和退向轨道(70)之间的平面推动轴承(21),使对应钢球(53)与进向轨道(69)和退向轨道(70)两个轨道面循环交替接触,当推杆(13)处于进向运动时,与进向轨道(69)接触面接触的钢球(53)受力滚动,当推杆(13)处于退向运动时,与退向轨道(70)接触面接触的钢球受力滚动,或者安置于进向轨道(69)和退向轨道(70)之间的滚轮(73)在进向轨道和退向轨道面上循环交替滚动,或者安置于进向轨道(69)和退向轨道(70)之间的滑块(74)在进向轨道和退向轨道面上循环交替滑动,或者直线推力轴承(60)与直轴轨道(61)受力滚动,动子通过滚动摩擦的方式或滑动摩擦的方式将动力传递给推杆,或者安置于进向主动永磁体(75)和退向主动永磁体(77)之间的浮动永磁体(80),动子通过磁体间相互作用力将动力传递给推杆,当动子机构的动子往复运动时,轨道体随动子同步往复运动,平面推力轴承(21)或滚轮(73)或滑块(74)或直线推力轴承(60)或浮动永磁体(80)随轨道和进向主动永磁体(75)和退向主动永磁体(77)的往复运动并相互作用不停地改变推杆轴向位置,带动第二连接机构做往复运动,以带动动力输出机构工作。
或者,所述第一连接机构包括:设置在推臂(83)上的平面推力轴承(21)的两个工作面的钢球(53),并置于推杆(13)轨道体上的进向轨道和退向轨道之间,钢球(53)与两个轨道面交替接触;或设置在推臂上的直线推力轴承(60),与推杆的轨道体(17)上的直轴轨道(61)相连;或设置在推臂(83)上的滚轮(73)或滑块(74),置于推杆(13)的轨道体上的进向轨道和退向轨道之间并与两个轨道面交替接触;或 设置在推臂(83)上的浮动永磁体(80),置于推杆的轨道体上的进向被动永磁体(76)和退向被动永磁体(78)之间;安装在机架(7)上且位于连杆中心线延长线两侧的直线轴承(14);分别安装在直线轴承(14)中的推杆(13)和摇杆推杆(62),轨道体(17)安装在推杆(13)上;所述第二连接机构为通过推杆、摆杆、摇杆推杆和摇杆传递动力的机构,包括:安装在机架(7)上的支臂(66);
通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59);其一端与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;其一端通过销轴(22)与摇杆推杆(62)相连的连板(57),其另一端通过轴(63)与摆杆阻力臂(59)相连;其一端通过销轴(22)与摇杆推杆(62)相连的摇杆(5),其另一端通过曲柄轴(3)与曲柄(28)相连;曲柄(28)与动力输出机构相连;或者,所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构;其中,轨道体(17)的进向轨道(69)和退向轨道(70)或直轴轨道(61)的延长线与动子机构上的动子推杆(72)或导轨(43)或长梁(64)的中心线具有夹角;其中,所述驱动机构将动力传递给安置于平面推力轴承两侧的进向轨道(69)和退向轨道(70),使钢球(53)与进向轨道(69)和退向轨道(70)两个轨道面循环交替接触,当推臂(83)处于进向运动时,与进向轨道(69)接触面的钢球(53)受力滚动,当推臂(83)处于退向运动时,与退向轨道(70)接触面的钢球受力滚动,动子通过滚动摩擦的方式将动力传递给推杆,当动子机构的动子往复运动时,平面推力轴承,或滚轮,或滑块,或直线推力轴承,或浮动永磁体随动子同步往复运动,进向轨道和轨道,或直轴轨道,或进向被动永磁体(76)和退向被动永磁体(78)随平面推力轴承,或滚轮,或滑块,直线推力轴承,或浮动永磁体的往复运动和相互作用下不停地改变推杆轴向位置,并带动第二连接机构做往复运动,以带动动力输出机构工作。
或者,所述第一连接机构包括:安装在机架(7)上且位于连杆中心线延长线两侧的直线永磁轴承(71);安装在直线永磁轴承(71)中的磁轴推杆(91),被动N极永磁体(85)或被动S极永磁体安装在磁轴推杆(91)上;所述第二连接机构为通过推杆或摇杆传递动力的结构,包括:连接磁轴推杆(91)与动力输出机构的接头(6),或连接磁轴推杆(91)与动力输出机构的摇杆(5);或者,所述第二连接机构为通过推杆和摆杆传递动力的机构,包括:
连接磁轴推杆(91)与动力输出机构的连板(57)、摆杆(68);或者,所述第二连接机构为通过磁轴推杆(91,以上或以下简称推杆)、摆杆、摇杆推杆和摇杆传递动力的机构,其包括:连接磁轴推杆与动力输出机构的摆杆(68)、摇杆推杆(62)和摇杆;分别安装在直线轴承(14)中的推杆(13)和摇杆推杆(62);或者,所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构,其中,安装在动子机构上的永磁体为双极,包括一个N极主动永磁体(88)和一个S极主动永磁体(86),磁轴推杆(91)上的被动永磁体为单极,包括一个N极被动永磁体(85)或一个S极被动永磁体,当动子机构上的N极主动永磁体和S极主动永磁体随动子往复运动时,N极主动永磁体与推杆上的N极被动永磁体相对应时,在同极斥力的作用下磁轴推杆进向移动,S极主动永磁体与推杆上的N极被动永磁体对应时,在异极吸力的作用下磁轴推杆退向移动,磁轴推杆的往复运动通过第二连接机构带动动力输出机构工作。
或者,所述第一连接机构包括:安装在机架(102)上的直线轴承(103);安装在直线轴承(103)中的推杆(13);所述第二连接机构为通过推杆和摆杆传递动力的结构,包括:安装在机架(102)上的支臂(66);通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59),摆杆动力臂(58)通过连板(57)和轴(63)与推杆(13)相连;其一端通过轴(63)与摆杆阻力臂(59)相连的连扳(57),另一端通过销轴(22)与动力输出机构相连;或者,所述第二连接机构为通过推杆、摆杆、摇杆推杆和摇杆传递动力的机构,其包括:安装在直线轴承(14)中的摇杆推杆(62),一端通过轴(63)和连板与摆杆阻力臂(59)相连,另一端与摇杆(5)相连;摇杆(5)通过曲柄轴(3)、曲柄(28)和动力输出机构相连;或者,所述第二连接机构为通过推杆或摇杆传递动力的机构;或者,所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构;其中,安装在轨道体(109)上的进向轨道(107)和退向轨道(106)随转子电机(118)旋转,当进向轨道(107)与进向平面推力轴承(105)相接触时,进向平面推力轴承(105)的钢球(53)在进向轨道(107)的斜面上滚动,并带动推杆(13)进向运动,当退向轨道(106)与退向平面推力轴承(108)相接触时,退向平面推力轴承的钢球(53)在退向轨道(106)的斜面上滚动,并带动推杆退向运动,推杆带动第二连接机构一进一退运动带动动力输出机构工作。
或者,所述第一连接机构包括:安装在机架(102)上的直线轴承(103);安装在直线轴承(103)中的推杆(13),滚轮(73)通过联接件(16)与推杆(13)相连,并置于转子机构的蛇形轨道(126)中。
相应的,所述第二连接机构为通过推杆与摆杆传递动力的机构,包括:安装在推杆(13)上的端板(125); 安装在机架(102)上的支臂(66);其一端与端板(125)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),其摆杆阻力臂(59)通过轴(63)、连板(57)和销轴(22)与动力输出机构相连;或者,所述第二连接机构为通过推杆传递动力的机构,包括:安装在推杆(13)上的端板(125),端板(125)通过接头(6)与动力输出机构相连;或者,所述第二连接机构为通过推杆和摇杆传递动力的机构,包括:安装在推杆(13)上的端板(125),端板(125)通过摇杆(5)与动力输出机构相连;其中,当蛇形轨道(126)随同动力输入轴和轨道体(109)旋转时,置于蛇形轨道(126)中的滚轮(73)带动第二连接机构往复运动,并带动动力输出机构工作。
或者,所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构,包括:安装在推杆(13)上的端板(125);安装在机架(102)上的支臂(66);其一端与端板(125)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),其摆杆阻力臂(59)通过轴(63)与摇杆(5)相连;摇杆(5)通过曲柄轴(3)、曲柄(28)、与动力输出机构相连;或者,所述第二连接机构为通过摇杆传递动力的机构,包括:一端与推杆连接的摇杆(5),另一端通过曲柄轴(3)、曲柄(28)与动力输出机构相连;其中,当蛇形轨道(126)随同动力输入轴和轨道体(109)旋转时,置于蛇形轨道中的滚轮带动第二连接机构往复运动,并带动动力输出机构工作。
或者,所述第一连接机构包括:安装在机架(102)上的直线轴承(103);安装在直线轴承(103)中的推杆(13);安装在推杆(13)上的固定座(138);分别安装在固定座(138)上的进向被动永磁体(135)和退向被动永磁体(139);所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构,其包括:安装在推杆(13)上的端板(125);安装在机架(102)上的支臂(66);通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59),且摆杆阻力臂(59)通过轴(63)与摇杆(5)相连;其一端与端板(125)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;摇杆(5)通过曲柄轴(3)、曲柄(28)、与动力输出机构相连;或者,所述第二连接机构为通过推杆和摆杆传递动力的机构,其包括:一端与推杆连接的摇杆(5),另一端通过曲柄轴(3)、曲柄(28)与动力输出机构相连;其中,进向被动永磁体(135)和退向被动永磁体(139)置于轨道体(109)上的进向主动永磁体(134)和退向主动永磁体(137)之间;其中,当进向主被永磁体和退向主动永磁体随同动力输入轴和轨道体旋转时,进向主动永磁体与进向被动永磁体相对应时,在同极斥力的作用下,进向被动永磁体带动推杆进向运动,退向主动永磁体与退向被动永磁体相对应时,在同极斥力的作用下,退向被动永磁体带动推杆退向运动,往复运动的推杆带动第二连接机构推动动力输出机构工作。
或者,所述第一连接机构包括:安装在机架(102)上的直线轴承(103);安装在直线轴承(103)中的推杆(13);安装在转子电机(118)上的固定盘(148);通过固定座(145)安装在固定盘(148)上的主动永磁体(146);通过固定座(154)安装在推杆(13)上的被动永磁体(147);所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构,其包括:安装在推杆(13)上的端板(125);安装在机架(102)上的支臂(66);其一端与端板(125)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;通过轴承和摆杆轴(65)安装在支臂(66)上的摆杆(68),其摆杆阻力臂(59)通过轴(63)与摇杆(5)相连;摇杆(5)通过曲柄轴(3)、曲柄(28)、与动力输出机构相连;或者,所述第二连接机构为通过推杆和摇杆传递动力的机构,其包括:一端与推杆连接的摇杆(5),另一端通过曲柄轴(3)、曲柄(28)与动力输出机构相连;其中,安装在固定盘(148)上的主动永磁体(146)为双极,包括N极主动永磁体(152)和S极主动永磁体(153),安装在推杆(13)上的被动永磁体(147)为单极,包括N极被动永磁体或者S极被动永磁体,当主动永磁体(146)随动力输入轴旋转时,当N极主动体永磁体(152)与推杆上的N极被动永磁体(147)相对应时,在同极斥力的作用下,推杆进向移动,当S极主动永磁体(153)与推杆上的N极被动永磁体对应时,在异极吸力的作用下,推杆向退向移动,往复运动的推杆带动第二连接机构推动动力输出机构工作。
或者,所述第一连接机构包括:安装在机架(7)上的直线轴承(14);安装在直线轴承(14)中的推杆(13);通过固定座(154)与推杆相连的被动永磁体(147);所述第二连接机构为通过推杆、摆杆、摇杆推杆和摇杆传递动力的机构,包括:安装在机架(7)上的支臂(66);通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68);其一端与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;其一端通过销轴(22)与摇杆推杆(62)相连的连板,其另一端通过轴(63)与摆杆阻力臂(59)相连;安装在直线轴承(14)中的摇杆推杆(62);其一端通过销轴(22)与摇杆推杆(62)相连的摇杆(5),其另一端通过曲柄轴(3)与曲柄(28)相连;曲柄(28)与动力输出机构;或者,所述第二连接机构为通 过推杆、摆杆和摇杆传递动力的机构;其中,安装在转子(162)上的永磁体为双极,包括N极主动永磁体(152)和S极主动永磁体(153)安装推杆上的被动永磁体(147)为单极,包括N极被动永磁体或S极被动永磁体,电机驱动转子(162),转子上的主动永磁体随转子旋转时,当N极主动永磁体(152)与推杆上的N被动永磁体相对应时,在同极斥力的作用下,推杆进向移动,当S极主动永磁体(153)与推杆上的N极被动永磁体(147)对应时,在异极吸力的作用下,推杆退向移动,往复运动的推杆通过第二连接机构带动动力输出机构工作。
或者,所述第一连接机构包括:安装在机架(163)上的直线轴承(14);安装在直线轴承(14)中的推杆(13);安装在推杆(13)上的浮动永磁体(141),置于磁悬浮转子(165)的围板(179)上的进向主动永磁体(134)和退向主动永磁体(137)之间,浮动永磁体(141)包括固定座(138)、安装于固定座一侧的进向被动永磁体(135)和另一侧的退向被动永磁体(139);或者安装在推杆(13)上的滚轮(73),置于进向轨道(107)和退向轨道(106)之间或蛇形轨道(126)之中;或者安装在推杆(13)上的进向平面推力轴承(105)和退向平面推力轴承(108)),置于进向轨道(107)和退向轨道(106)之间;所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构,包括:安装在机架(163)上的支臂(66);通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68);其一端与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;摇杆(5)一端通过轴(63)与摆杆阻力臂(59)相连,另一端通过曲柄轴(3)、曲柄(28)和动力输出机构连接;其中,当进向主动永磁体和退向主动永磁体随同磁悬浮转子(165)旋转时,进向主动永磁体与进向被动永磁体相对应时,在同极斥力的作用下,进向被动永磁体带动推杆进向运动,退向主动永磁体与退向被动永磁体相对应时,在同极斥力的作用下,退向被动永磁体带动推杆退向运动,往复运动的推杆通过第二连接机构带动动力输出机构工作;或者,蛇形轨道随磁悬浮转子(165)旋转,在滚轮与蛇形轨道的相互作用下滚轮带动推杆往复运动,往复运动的推杆通过第二连接机构带动动力输出机构工作;或者,进向轨道(107)和退向轨道(106)随转子(165)旋转,在滚轮与进向轨道和退向轨道的相互作用下带动推杆往复运动,往复运动的推杆通过第二连接机构带动动力输出机构工作;或者,进向轨道(107)和退向轨道(106)随转子(165)旋转,当进向轨道(107)与进向平面推力轴承(105)相接触时,进向平面推力轴承(105)的钢球(53)在进向轨道(107)的斜面上滚动,并带动推杆(13)进向运动,当退向轨道(106)与退向平面推力轴承(108)相接触时,退向平面推力轴承的钢球(53)在退向轨道(106)的斜面上滚动,并带动推杆退向运动,往复运动的推杆通过第二连接机构带动动力输出机构工作。
或者,所述第一连接机构包括:通过直线轴承(103)安装在机架(194)上的推杆(13);安装在推杆(13)上的浮动永磁体(141),置于转子(195)上的进向主动永磁体(134)和退向主动永磁体(137)之间;所述浮动永磁体(141)包括:固定座(138);安装于固定座一侧的进向被动永磁体(135)和另一侧的退向被动永磁体(139),或者安装在推杆(13)上的滚轮(73),置于转子(195)的蛇形轨道之中,或者安装在推杆(13)上的滚轮(73),置于转子(195)的进向轨道(107)和退向轨道(106)之间;或者进向平面推力轴承(105)和退向平面推力轴承(108),置于转子(195)的进向轨道(107)和退向轨道(106)之间;所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构,包括:安装在机架(194)上的支臂(66);通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68);其一端与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;摇杆(5)的一端通过轴(63)与摆杆阻力臂(59)相连,另一端通过曲柄轴(3)、曲柄(28)和动力输出机构相连;
其中,动力输入轴带动转子(195)或转子(202)转动,当进向主动永磁体和退向主动永磁体随同转子(195)或转子(202)旋转时,进向主动永磁体与进向被动永磁体相对应时,在同极斥力的作用下,进向被动永磁体带动推杆进向运动,退向主动永磁体与退向被动永磁体相对应时,在同极斥力的作用下,退向被动永磁体带动推杆退向运动,往复运动的推杆通过第二连接机构带动动力输出机构工作;或者,安装在转子(195)或转子(202)上的蛇形轨道随转子(195)或转子(202)旋转,在滚轮与蛇形轨道的相互作用下滚轮带动推杆往复运动,往复运动的推杆通过第二连接机构带动动力输出机构工作;或者,安装在转子(195)或转子(202)上的进向轨道(107)和退向轨道(106)随转子(195)或转子(202)旋转,在滚轮与进向轨道和退向轨道的相互作用下带动推杆往复运动,往复运动的推杆通过第二连接机构带动动力输出机构工作;或者,安装在转子(195)或转子(202)上的进向轨道(107)和退向轨道(106)随转子(195)或转子(202)旋转,当进向轨道(107)与进向平面推力轴承(105)相接触时,进向平面推力轴承(105)的钢球(53)在进向轨道(107)的斜面上滚动,并带动推杆(13)进向运动,当退向轨道(106)与退向平面推力轴承(108)相接触时,退向平面推力轴承的钢球(53)在退向轨道(106)的斜面上滚动,并带动推杆退向运动,往复运动的推杆通过第二连接 机构带动动力输出机构工作。
或者,所述第一连接机构包括:设置在平面推力轴承(21)的两个工作面的钢球(53),与两个轨道的轨道面相接触,或滚轮(73)与进向轨道(69)和退向轨道(70)的轨道面相接触,对称安装在机架(7)上的且位于连杆中心线延长线两侧的直线轴承(14);安装在直线轴承(14)中的推杆(13),并对称置放在动子机构的动子(6)的两侧,其一端与推杆(13)相连的联接件(16),其另一端与平面推力轴承(21)或滚轮(73)或滑块(74)相连;所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构,包括:安装在机架(7)上的支臂(66);
通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59);其一端通过轴(63)与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;摇杆(5)一端通过轴(63)与摆杆阻力臂(59)相连,其另一端通过曲柄轴(3)、曲柄(28)与动力输出机构相连;其中,与平面推力轴承(21)或滚轮(73)相接触的进向轨道(69)和退向轨道(70)与导轨(43)的中心线具有一定的夹角;其中,所述驱动机构通过导轨(43)将动力传递给安置于进向轨道(69)和退向轨道(70)之间的平面推动轴承(21)或滚轮(73),使对应钢球(53)或滚轮(73)与进向轨道(69)和第退向道(70)两个轨道面循环交替接触,当推杆(13)处于进向运动时,与进向轨道(69)接触面接触的钢球(53)受力滚动,当推杆(13)处于退向运动时,与退向轨道(70)接触面接触的钢球受力滚动,或者安置于进向轨道(69)和退向轨道(70)之间的滚轮(73)在进向轨道和退向轨道面上循环交替滚动,或者安置于进向轨道(69)和退向轨道(70)之间的滑块(74)在进向轨道和退向轨道面上循环交替滑动,动子通过滚动摩擦的方式或滑动摩擦的方式将动力传递给推杆,当动子机构的动子往复运动时,轨道体上的轨道随动子同步往复运动,平面推力轴承(21)或滚轮(73)或滑块(74)随轨道往复运动并相互作用不停地改变推杆轴向位置,带动第二连接机构做往复运动,带动动力输出机构工作;其中,改变推杆轴向位置是指轨道中心线与动子(56)的导轨(43)中心线之间设有一定的夹角,也就是说轨道相对于动子的中心线呈倾斜角度置放的,轨道面延长线上的每一个点相对于动子的中心线的直线距离是不等的,而推杆的轴心线相对于动子的中心线(即导轨中心线)呈垂直角状态,或推杆的轴心线相对于进向轨道和退向轨道面的延长线呈垂直角状态,在轨道与推杆上的平面推力轴承或滚轮或滑块的相互作用下不停地改变推杆的轴向位置,即将动子的直线往复运动转变成推杆相对于动子的垂直往复运动。
或者,所述第一连接机构包括:安装在机架(7)上的且位于转子轴(156)中心线两侧的直线轴承(14);推杆(13)的一端通过固定座(154)安装有被动永磁体(147),其另一端通过连板(57)、轴(63)与摆杆动力臂(58)相连,并置放在直线轴承(14)中;安装在推杆(13)上的每个被动永磁体(147)与转子盘(1008)上的每个主动永磁体(146)对应置放,并留有一定的气隙;或者,所述第一连接机构包括:安装在机架(7)上的直线轴承(14),安装在直线轴承(14)中的推杆(13),推杆的一端通过固定座(154)安装有被动永磁体(147),被动永磁体(147)置放在电磁铁的对应侧;或者,所述第一连接机构包括:安装在机架(7)上的直线轴承(14),安装在直线轴承(14)中的推杆(13),推杆的一端通过连接件(16)安装有滚轮(73),滚轮(73)与凸轮(1021)对应置放。
相应的,所述第二连接机构为通过推杆、摆杆和连杆传递动力的机构,包括:安装在机架(7)上的支臂(66);通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59);通过轴承箱(34)安装在机架(7)上的曲轴(1009);安装在曲轴(1009)上的飞轮(198)和主动链轮(1004);通过联轴器(24)与曲轴(1009)相连的动力输出机构;安装在主动链轮(1004)和被动链轮(1002)上的正时链(1005)连杆(5a)的一端通过轴(63)与摆杆阻力臂(59)相连,其另一端通过连杆轴颈(1001)、曲柄(1012)与曲轴(1009)相连;或者,安装在机架(7)上的支臂(66);通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59);通过轴承箱(34)安装在机架(7)上的曲轴(1009);通过联轴器(24)与曲轴(1009)相连的动力输出机构;连杆(5a)的一端通过轴(63)与摆杆阻力臂(59)相连,其另一端通过连杆轴颈(1001)、曲柄(1012)与曲轴(1009)相连;动力输入轴通过主动轮1006、被动轮1003和传动带1007带动转子轴156和凸轮1021旋转,在凸轮与滚轮73的作用下,安装在推杆上的滚轮73推动推杆做直线运动,并通过摆杆68、连杆5a、连杆轴颈1001和曲柄1012将力传给曲轴1009,曲轴将直线运动转变为旋转运动并驱动发电机运转产生电力,或向外输出动力;或者,动力输入轴通过主动轮1006、被动轮1003和传动带1007带动转子轴156和转子盘1008旋转,在转子盘1008上的主动永磁体146与推杆上被动永磁体147的作用下,安装在推杆上的被动永磁体147在同极斥力的作用下推动推杆做直线运动,并通过摆杆68、连杆5a、连杆轴颈1001和曲柄1012 将力传给曲轴1009,曲轴将直线运动转变为旋转运动并驱动发电机运转产生电力,或向外输出动力;或者,置放在机架上的电磁铁与对应侧推杆上的被动永磁体147的相互作用下推动推杆做直线运动,并通过摆杆68、连杆5a、连杆轴颈1001和曲柄1012将力传给曲轴1009,曲轴将直线运动转变为旋转运动并驱动发电机运转产生电力,或向外输出动力。
此外,本发明还提供一种发电设备,包括如上所述动力输出机构包括发电机的动力传动装置。
其中,所述的推杆机构对称置放在所述动子机构的动子(6)或所述转子机构的转子或磁悬浮转子的两侧,且两侧推杆的力矩大小相等,方向相反,可相互抵消推杆往复运动时产生的力矩,降低机器在运行中的振动。
与现有技术相比,本发明的动力传动装置及具有该装置的发电设备具有如下优点:
1)本发明的动力传动装置及具有该装置的发电设备结构简单、使用方便、一次投入可以长期使用,并且性能可靠。
2)本发明的动力传动装置及具有该装置的发电设备利用滚动摩擦,或滑动摩擦,或磁力传输动力,驱动发电机发电,发电成本低,并且清洁、安全、无废气和废物,对环境无污染。
3)本发明的动力传动装置及具有该装置的发电设备利用摩擦力和磁力进行发电,不受客观条件限制,适用范围广。
下面结合附图对本发明进行详细说明。
附图说明
图1为本发明的发电设备直线轴承式动子和推杆+直线发动机,以及推杆+摇杆+发电机配合的结构示意图;
图2为图1的俯视图;
图3为图1、图2的A-A剖示图;
图4为图1、图2的B-B剖示图;
图5为本发明的发电设备长梁动子和推杆+摆杆+直线发动机,以及推杆+摆杆+摇杆+发电机配合的结构示意图;
图6为图5的俯视图;
图7为图6的A—A剖示图;
图8为本发明动子推杆安装在直线轴承中的动子和推杆+摆杆+摇杆+发电机配合的结构示意图;
图9为图8的A-A剖示图;
图10为本发明的发电设备推杆上的动力传递部件可采用平面推力轴承、或滚轮、或滑块、或永磁体,以及单侧动子的结构示意图;
图11为本发明的发电设备平面推力轴承、或滚轮、或滑块、直线推力轴承或永磁体安装在动子上,轨道体安装在推杆上的结构示意图;
图12为本发明的发电设备直线永磁轴承与磁轴推杆式推杆机构和直线永磁轴承与直线磁轴式动子机构,以及磁力传动机构结构示意图;
图13为本发明的发电设备动力连接线、变流器和电控系统连接示意图;
图14为本发明的发电设备轨道体安装在转子上的转子机构示意图;
图15为图14的剖示图;
图16为图15、图14的轨道体平面直线展开示意图;
图17为本发明的发电设备蛇形轨道转子机构和推杆+端板+摆杆+直线发电机配合的结构示意图;
图18为本发明的发电设备蛇形轨道转子机构和推杆+端板+摇杆+发电机或动力输出轮结构示意图;
图19为本发明的发电设备蛇形轨道转子机构和推杆+端板+摆杆+摇杆推杆+摇杆+发电机配合的结构示意图;
图20为本发明的发电设备永磁体通过轨道体安装在转子上的磁力传动结构示意图;
图21为图20的磁力传动装置平面直线展开示图;
图22为本发明的发电设备永磁体安装在转子侧面的磁力传动机构结构示意图;
图23为图22的剖示图;
图24为本发明的发电设备可利用各种外部动力驱动转子机构结构示意图;
图25为本发明的发电设备长轴式转子磁力传动机构结构示意图;
图26为图25的剖示图;
图27为本发明的发电设备磁悬浮式转子和磁力传动机构结构示意图;
图28为图27的剖示图;
图29为本发明的发电设备立式转子和磁力传动机构结构示意图
图30为图29的剖示图;
图31为本发明的发电设备转盘安装在电机上的磁力传动机构结构示意图;
图32为本发明的发电设备直线导轨动子和推杆+摆杆+摇杆+发电机配合的结构示意图;
图32A为图32的俯视图;
图33为本发明采用永磁体转子与永磁体+推杆+摆杆+连杆+曲轴+发电机配合的结构示意图;
图34为图33的俯视图;
图35为图34的A—A剖示图;
图36为本发明采用电磁铁与永磁体+推杆+摆杆+连杆+曲轴+发电机配合的结构示意图;
图36A为图36的俯视图;
图37为本发明采用凸轮式转子+滚轮+推杆+摆杆+连杆+曲轴+发电机结构示意图;
图38为图37的俯视图;
图39为38的A-A剖视图。
附图标记说明:1-发电机;2-发电机轴;3-曲柄轴;4-配重块;5-摇杆;5a-连杆;6-接头;7-机架;8-联接件;9-连杆;10-飞轮;12-直线发电机;13-推杆;14-直线轴承;15-机架端板;16-联接件;17-轨道体;17c-轨道座;18-导杆;19-档垫;20-压簧;21-平面推力轴承;22-销轴;24-联轴器;25-动力装置;26-销轴;27-连板;28-曲柄;34-轴承箱;35-螺栓;36-推杆运动示意;38-动子运动示意;39-凸轮轴;43-导轨;44-直线轴承;45-凸轮;46-凸轮套;47-轴承;53-钢球;54-开口销;56-动子;57-连板;58-摆杆动力臂;59-摆杆阻力臂;60-直线推力轴承;61-直轴轨道;62-摇杆推杆;63-轴;64-长梁;65-摆杆轴;66-支臂;67-发电机轴;68-摆杆;69-进向轨道;70-退向轨道;71-直线永磁轴承;72-动子推杆;73-滚轮;74-滑块;75-进向主动永磁体;76-进向被动永磁体;77-退向主动永磁体;78-退向被动永磁体;79-浮动座体;80-浮动永磁体;82-推臂座;83-推臂;85-N极被动永磁体;86-S极主动永磁体;87-永磁体座;88-N极主动永磁体;89-直线磁轴;90-永磁体;91-磁轴推杆;92-电缆线;93-变流器;94-总缆线;95-连接线;96-外部电源线;97-电控柜;98-电力输出线;99-电机电源线;100-接线盒;102-机架;103-直线轴承;105-进向平面推力轴承;106-退向轨道;107-进向轨道;108-退向平面推力轴承;109-轨道体;112-内墙板;113-支撑管;114-外墙板;115-轴套;116-轴;117-固定盘;118-旋转体;119-压簧;123-轨道体旋转方向示意;125-端板;126-蛇形轨道;127-滚轮轴;128-转子;131-动力输出轮;134-进向主动永磁体;135-进向被动永磁体;136-永磁体座;137-退向主动永磁体;138-固定座;139-退向被动永磁体;141-浮动永磁体;142-永磁体最小间隙示意;145-固定座;146-主动永磁体;147-被动永磁体;148-固定盘;152-N极主动永磁体;153-S极主动永磁体;154-固定座;155-联接耳;156-转子轴;157-转子;159-转子轴;161-加强座板;162-转子;163-机架;164-墙板;165-磁悬浮转子;169-永磁体;172-支撑座;173-主动永磁体;174-基座;175-被动悬浮永磁体;176-动子线圈;178-轴承;179-围板;182-凸起腹板;183-支臂架;184-支撑筒内壁;185-支撑筒外壁;186-转子腹板;187-转子壁;191-下腹板;192-上腹板;193-转子轴;194-机架;195-转子;197-架体固定法兰;198-飞轮;199-底座;200-电机;201-隔板;202-转子;203-转盘;1001-连杆轴颈;1002-被动链轮;1003-被动轮;1004-主动链轮;1005-正时链;1006-主动轮;1007-传动带;1008-转子盘;1009-曲轴;1011-平衡块;1012-曲柄;1013-垫块;1015-导线;1016-自动控制器;1017-电磁铁;1021-凸轮。
具体实施方式
本发明的核心技术是利用滚动摩擦或滑动摩擦和/或磁力传递动力来做功产生动力,或电力,即,将动力输入轴的输入动力传递给动力输出机构,使动力输出机构的一个或多个发电机1或直线发电机12发电,或使动力输出机构的一个或多个动力输出轮(如图18中所示的动力输出轮131)旋转或通过动力输出轮带动其它机构运转。
为此,本发明提供的用于动力输出机构的动力传动装置,所述动力输出机构包括发电机或动力输出轮,其中,动力传动装置包括:安装在机架上的动力输入轴;安装在机架上用于传递驱动力的驱动机构;安装在机架上且与驱动机构连接的推杆机构;其中,驱动机构为动子机构或转子机构,与动力输入轴连接,其通过 平面推力轴承或直线推力轴承或滚轮与轨道配合,或者通过滑块与轨道配合,或者通过电磁铁与永磁体配合,或者通过永磁体与永磁体配合,将动力传递给推杆机构,推杆机构与所述动力输出机构连接;其中,推杆机构包括:与驱动机构连接的第一连接机构、与第一连接机构和动力输出机构连接的第二连接机构。
当本发明的动力输出机构包括发电机时,动力输入轴与利用机械能、风能、水力能、波浪能等能量的任一种动力装置的动力输出转轴连接,或者,与该动力装置通过传动机构连接;而当动力输出机构包括动力输出轮时,动力输入轴与利用电能、机械能、风能、水力能、波浪能等能量的任一种动力装置的动力输出转轴连接,或者,与该动力装置通过传动机构转动连接。通过动力输入轴,将来自动力装置的驱动力传递给驱动机构,并通过驱动机构传递给推杆机构,从而通过推杆机构将动力传递给发电机或动力输出轮。
其中,本发明的驱动机构可为包括旋转驱动机构、直线连动机构、动力传递机构的动子机构(如图1-图13,图32、图32A所示),也可为转子机构(如图14-图31、图33-36A、图37、图38、图39所示)。
当采用动子机构时,动子机构的旋转驱动机构包括:与动力输入轴相连的凸轮轴39(应用时,凸轮轴39也可与动力输入轴采用一根轴),其通过轴承箱安装在机架上;设置在凸轮轴39上的一个凸轮45(如图10、图11所示)或一对凸轮45(如图1-图9所示)或多对凸轮45(图中未示出),所述一个或一对或多对凸轮45中的任一个通过轴承安装在对应一个凸轮套46上,通过凸轮套46将旋转动力传递给与凸轮套46一一对应连接的直线连动机构。也就是说,凸轮轴39上可设置一个或多个凸轮45,每个凸轮45外具有一个凸轮套46,每个凸轮套46将旋转动力传递给一个直线连动机构。需要说明的是,当设置多个凸轮45时,多个凸轮45沿凸轮轴39的轴向间隔设置,且如图1-图9所示的成对使用。
动子机构的直线连动机构与对应的凸轮套连接,即,数量与凸轮套数量一致,当凸轮套成对使用时(即凸轮成对使用时),直线连动机构也成对使用,成对使用的直线连动机构对称设置于凸轮中心轴线的两侧。每个直线连动机构均包括与对应侧凸轮套46固定连接的连杆9、与连杆9连接的联接件8、安置于机架对应侧的机架端板15中的导杆18及用于将来自于凸轮轴39、连杆9的动力传递给动力传递机构的部件。
其中,将来自于凸轮轴39、连杆9的动力传递给动力传递机构的部件可以包括:导轨43、安装在导轨43的多个轨道体17(如图1中示出2个轨道体)及将相邻轨道体17连接的连板27。或者,该部件可以包括:动子推杆72、安装在机架7上且对称位于凸轮轴39中心线一侧的直线轴承14,动子推杆72安装在对应侧的直线轴承14中,且动子推杆的一端置于该侧的机架端板15中,在动子推杆72上安装多个轨道体17(如图8中示出2个轨道体17)。或者,该部件可为动子推杆72或直线轴承44或长梁64、通过多个推臂座82分别安装在动子推杆72或直线轴承44或长梁64上的多个推臂83(如图11中示出位于凸轮轴单侧的6个推臂83)。或者,该部件可包括:直线磁轴89;安装在机架7上且位于凸轮轴同侧的一对直线永磁轴承71,位于直线磁轴89两端;设置在直线磁轴89上且安装于对应直线永磁轴承71中的永磁体90;安装在直线磁轴89上的多个永磁体座87(图12中示出2个)。
其中,在上述每个轨道体17或每个推臂83上分别对称设置一对轨道,一对轨道的每个轨道包括两个侧面,一个侧面为进向轨道69,另一侧面为退向轨道70,或者,一对轨道也可为直轴轨道61。一对轨道分别位于动子推杆72或导轨43或长梁64两侧,且进向轨道69和退向轨道70或直轴轨道61的延长线与动子推杆72或导轨43或长梁64的中心线具有大于0度的夹角。
相应的,动力传递机构包括:设置在轨道体上的进向轨道69和退向轨道70或直轴轨道61;安置在轨道体17的进向轨道69和退向轨道70之间的平面推力轴承21或滚轮73或滑块74;或置于轨道体17的直轴轨道61上的直线推力轴承60;或安置在轨道体17的进向主动永磁体75和退向主动永磁体77之间的浮动永磁体80。或者,动力传递机构包括:设置在推臂83上的平面推力轴承21或滚轮73或滑块74或直线推力轴承60或浮动永磁体80;安装在推杆13的进向轨道69和退向轨道70之间的平面推力轴承21或滚轮73或滑块74;或者安装在推杆13的直轴轨道61上的直线推力轴承60;或者安装在推杆13的轨道体17上的进向被动永磁体76和退向被动永磁体78之间的浮动永磁体80;浮动永磁体(80)包括:浮动体座79;安装于浮动座体一侧的进向主动永磁体75和另一侧的退向主动永磁体77。或者,动力传递机构包括:通过永磁体座87安装在直线磁轴89上的S极主动永磁体86和N极主动永磁体88;安装在推杆机构上的N极被动永磁体或S极被动永磁体;其中,当动力装置25带动凸轮轴39旋转时,在凸轮45、凸轮套46和连杆9的作用下,将凸轮套46的圆周运动变为连杆的直线往复运动。或者,动力传递机构包括:设置在轨道体17上的进向轨道69和退向轨道70;安置在轨道体17的进向轨道69和退向轨道70之间的平面推力轴承21或滚轮73或滑块74。其中,动子机构可以包括置放在凸轮轴中心线的一侧(如图10、图11所示)的动子,也可以包括置放在凸轮轴中心线两侧的一对对子(如图1-图9等所示),优选地,动子56成对使用,对称置放在凸轮轴中心线的 两侧,两侧的动子56的力矩大小相等、方向相反,可相互抵消动子相对机架往复运动时产生的力矩,可大大降低机器在运行中的振动。
当驱动机构采用转子机构时,转子机构可以采用如下结构,包括:与动力输入轴连接的转盘203;设置在转盘203上的进向主动永磁体134和退向主动永磁体137,或进向轨道(107)和退向轨道(106),或蛇形轨道(126);其中,转盘203及其上的进向主动永磁体134和退向主动永磁体137,或进向轨道(107)和退向轨道(106),或蛇形轨道(126)形成转子(202);或者,转子机构包括:与动力输入轴连接的;分别安装在轨道体109上的退向轨道106和进向轨道107或蛇形轨道126或进向主动永磁体134和退向主动永磁体137;其中,轨道体109及其上的退向轨道106和进向轨道107或蛇形轨道126或进向主动永磁体134和退向主动永磁体137形成转子;或者,转子机构包括:与动力输入轴连接的固定盘148;通过固定座145分别安装在固定盘148上的N极主动永磁体152和S极主动永磁体153;其中,固定盘148及其上的N极主动永磁体152和S极主动永磁体153形成转子;或者,转子机构包括:与动力输入轴连接的转子轴156;通过转子轴156安装在机架102上的转子157;安装在转子157上的轨道体109;安装在轨道体109上的进向轨道107和退向轨道106,或蛇形轨道126,或进向主动永磁体134和退向主动永磁体137,或安装在转子157上的N极主动永磁体152和S极主动永磁体153;或者,转子机构包括:与动力输入轴连接的转子轴159,通过轴承箱34安装在机架7上;安装在转子轴159上的转子162;设置在转子上的N极主动永磁体152和S极主动永磁体153;或者,转子机构包括:与动力输入轴连接的转子轴193;通过转子轴193安装在机架194上的转子195;安装在转子195上的进向主动永磁体134和退向主动永磁体137,或者进向轨道107和退向轨道106,或者蛇形轨道126。或者,转子机构包括:与动力输入轴连接的主动轮1006;两端分别通过轴承箱34安装在机架7上的转子轴156;安装在转子轴156上的转子盘1008、被动轮1003、被动链轮1002和飞轮198;通过固定座154安装在转子盘1008上的主动永磁体146;安装在主动轮1006和被动轮1003上的传动带1007;或者,转子机构包括电磁铁机构、动力传递机构;电磁铁机构包括:安装在机架7上的多组电磁铁1017;安装在机架上的电控柜97;安装在电控柜内的自动控制器1016;自动控制器1016的一端通过导线1015与电控柜97相连,其另一端通过导线1015与多组电磁铁1017相连;动力传递机构包括:多组被动永磁体147,分别安装在多组推杆机构上,用于与对应电磁铁配用;其中,自动控制器1016通过导线按预先设定顺序控制每组电磁铁1017的开关;当其中一组或多组电磁铁1017通电时,与之对应的被动永磁体147在同极斥力的作用下朝着远离电磁铁的方向运动,以推动对应推杆机构的推杆13做直线运动;当上一组或多组电磁铁1017断电后,下一组或多组电磁铁1017随即通电,与之对应的被动永磁体147在同极斥力的作用下,推动对应推杆机构的推杆做直线运动;通过接力循环运行方式周而复始的推动多组推杆机构的推杆13做直线运动,以带动动力输出机构工作。或者,转子机构包括:安装在机架163上的基座174;安装在基座174上且位于其两侧的墙板164;安装在两侧墙板164上的永磁体169;安装在机架上的磁悬浮转子165;分别安装在磁悬浮转子165上的进向主动永磁体134和退向主动永磁体137,或者进向轨道107和退向轨道106,或者蛇形轨道126;安装在磁悬浮转子165下部的被动悬浮永磁体175,置于主动永磁体173的上方,以利用同极相斥的磁性力使磁悬浮转子165始终处于悬浮状态;与永磁体169对应置放的动子线圈176,安装在磁悬浮转子165上,并置于两侧永磁体169之间;其中,在动子线圈176和永磁体169的相互作用下产生推力,使磁悬浮转子165转动,并同时带动进向主动永磁体134和退向主动永磁体137,或者进向轨道107和退向轨道106,或者蛇形轨道126做圆周运动;其中,磁悬浮转子还可以由永磁电机替代。
其中,推杆机构包括与驱动机构连接的第一连接机构、与第一连接机构和动力输出机构连接的第二连接机构,第一连接机构与驱动机构的动力传递机构、动力输出机构之间可以通过平面推力轴承21或滚轮73或滑块74或被动永磁体147+推杆13+摆杆68+摇杆5+曲柄28的结构进行动力传递,或者通过平面推力轴承21或滚轮73或滑块74或被动永磁体147+推杆13+摆杆68+连杆5a+曲轴1009的结构进行动力传递,或者采用平面推力轴承21或滚轮73或滑块74或被动永磁体147+推杆13+摆杆68的结构进行动力传递,或者,采用平面推力轴承21或滚轮73或滑块74或被动永磁体147+推杆13+摇杆5+曲柄28的结构进行动力传递,或者,采用平面推力轴承21或滚轮73或滑块74或被动永磁体147+推杆13的结构进行动力传递。
其中,推杆机构将动力传递给动力输出机构时,推杆机构的最末级传动部件均与动力输出机构的动力输入转轴连接。而推杆机构的数量与驱动机构中动力传递机构的数量适配。
本发明动子机构中的各机构、转子机构及推杆机构中的各机构均具有不同的结构,且各结构可根据情况相互配用,使本发明的动力传动装置及发电设备可具有不同的结构,下面结合部分实施例对本发明动力传动装置及发电设备的部分结构进行详细说明,但需理解,本发明的结构并不局限于下述各实施例的结构。
需要说明的是,本发明各实施方式中功能相同或相通的结构或部件在图中用相同的标记进行标示,应当理解,相同标记的部件不局限其安装位置。
实施例1
如图1—图4所示,为本发明动力传动装置及发电设备实施例1的结构图;由图可知,本实施例包括:机架;安装在机架上的驱动机构,与动力输入轴连接;安装在机架上且与驱动机构连接的推杆机构;安装在机架上且与推杆机构连接的动力输出机构,其包括发电机;其中,本实施例的动力输入轴为动力装置25的动力输出转轴,该动力装置为利用机械能、风能、水力能、波浪能等能量的任一种动力的能源的装置,驱动机构为动子机构,动子机构通过滚动摩擦方法将动力传递给推杆机构,使推杆机构推动所述发电机运转产生电力。
其中,本实施例通过滚动摩擦方法将动子机构的动力传递给推杆机构,是采用平面推力轴承与轨道相互作用的方法。
具体的,本实施例的动子机构包括:动力输入轴,为动力装置25的动力输出转轴;通过轴承箱34安装在机架7上的凸轮轴39,与动力输入轴通过联轴器24连接,凸轮轴39沿机架7的第一方向延伸(即图1所示机架的宽度方向延伸);凸轮轴39上设有一对凸轮45;每个凸轮上安装一个凸轮套46,即,凸轮套的一端通过轴承47分别安装在对应凸轮45上,凸轮套的另一端通过一根连杆9和联接件8与连板27一端相连;导轨43安装在机架7上,并沿机架的第二方向延伸(第二方向即为图1所示机架的长度方向,与第一方向垂直),导轨43可为一根,也可以对称安置在机架两侧的两根导轨(如图1-图4所示);在每根导轨43上安置多个轨道体17(图中显示两个),每个轨道体上设有进向轨道69和退向轨道70,并通过直线轴承44安装在导轨43上;相邻的两个轨道体17和轨道体17之间通过一根连板27彼此相连,使每个轨道体和每个直线轴承44成为一体的动子56,可在导轨43上往复运动;连杆9通过联接件8和连板27与轨道体17相连;一对导杆18分别安置于位于机架两侧的机架端板15中,且导杆的一端通过联接件8与连板27相连;每根导杆18上串联安装有压簧20和档垫19,且一对导杆18上的压簧20和档垫19分别置放在机架端板15的对应处。
其中,本实施例的推杆机构包括:安置在轨道体17上的进向轨道69和退向轨道70之间的平面推力轴承21或滚轮73或滑块74;直线轴承14安装在机架7上,并对称置放在导轨43中心线的两侧;推杆13安装在直线轴承14中;推杆的一端通过联接件16与平面推力轴承21或滚轮73或滑块74相连,其另一端通过接头6与直线发电机12相连;或推杆13通过接头6、摇杆5、曲柄轴3、曲柄28和发电机轴2与发电机1相连;
当动力装置25工作时,动力装置25带动凸轮轴39、凸轮45和凸轮套46转动,在凸轮45、凸轮套46和连杆9的作用下,将圆周运动变为直线运动,连板27、直线轴承44和轨道体17随凸轮45、凸轮套和连杆往复运动,平面推动轴承21置于进向轨道69和退向轨道70之间,钢球53与两个轨道面接触,当推杆13处于进向运动时,与第一轨道69接触面的钢球53受力滚动,当推杆13处于退向运动时,与退向轨道70接触面的钢球受力滚动,与平面推力轴承21相接触的进向轨道69和退向轨道70面的延长线与动子机构的动子56沿机架的长度方向中心线具有一定的夹角,也就是说进向轨道和退向轨道相对于动子是倾斜置放的,轨道体随动子往复运动,轨道体上的进向轨道69和退向轨道70与平面推力轴承21的相互作用下,使推杆不停地改变轴向位置,往复运动的推杆带动直线发电机12运转产生电力,或往复运动的推杆+摇杆+曲柄带动发电机1发电,或向外输出动力。
其中,改变推杆轴向位置是指因推杆中心线与动子56沿机架的长度方向中心线具有一定的夹角所引起的,当进向轨道69和退向轨道70随动子往复运动时,进向轨道和退向轨道相当于一对相向而行的楔子循环交替往复作用在平面推力轴承21的两个工作面的钢球53上,不停地改变平面推力轴承位于推杆中心线的位置,带动推杆往复运动,在传递动力的同时,又改变动力运动方向。
也就是说,改变推杆轴向位置是指因轨道(进向轨道69和退向轨道70,以上或下可简称轨道)面的延长线与动子56沿机架的长度方向的中心线之间设有一定的夹角,即,轨道相对于动子的中心线呈倾斜角度置放的,轨道面延长线上的每一个点相对于动子沿机架的长度方向的中心线的直线距离是不等的,而推杆的轴心线相对于动子的中心线呈垂直角状态,在轨道与推杆上的平面推力轴承或滚轮或滑块的相互作用下不停地改变推杆的轴向位置,即将动子的直线往复运动转变成推杆相对于动子的垂直往复运动。其中,以下实施例凡涉及到改变推杆轴向位置的原理均与本实施例相同,将不再重述。
实施例2
如图5、图6、图7所示,本发明实施例2的结构图;其中,动子机构包括:动力输入轴,为动力装置25的动力输出转轴;通过轴承箱34安装在机架7上的凸轮轴39,与动力输入轴通过联轴器24连接;凸轮轴39上设有凸轮45;;凸轮套46的一端通过轴承47安装在凸轮45上,其另一端通过连杆9和联接件8与长梁64相连;直线轴承44安装在机架7上;轨道体17上设有进向轨道69和退向轨道70,并通过长梁安装在直线轴承44上,长梁64安装在直线轴承44上;成为一个往复运动的动子56,并在直线轴承44上往复运动;导杆18置于机架端板15中,其一端通过联接件8与长梁相连;压簧20和档垫19串在导杆18上,并对称置放在机架端板15的两侧。
其中,推杆机构包括:直线轴承14分别安装在机架7上;推杆13安装在直线轴承14中;支臂66安装在机架7上;摆杆68通过轴承178和摆杆轴65安装在支臂66上;连板57的一端通过销轴22与推杆13相连,其另一端通过轴承178和轴63与摆杆动力臂58相连;连板的一端通过销轴22与摇杆推杆62相连,其另一端通过轴63与摆杆阻力臂59相连;摇杆推杆62安装在直线轴承14中;摇杆5的一端通过销轴22与摇杆推杆62相连,其另一端通过曲柄轴3与曲柄28相连;曲柄28安装发电机轴2上并与发动机1相连;或连板57的一端通过销轴22与推杆13相连,其另一端通过轴承178和轴63与摆杆动力臂58相连;连板57的一端通过轴63与摆杆阻力臂59相连;其另一端通过销轴22与直线发动机12相连,联接件16的一端与推杆13相连,其另一端与平面推力轴承21相连;平面推力轴承21的两个工作面都设有钢球53;推杆机构有多种形式具体实施时可任选。
动力装置25带动凸轮轴39、凸轮45和凸轮套46转动,在凸轮45、凸轮套46和连杆9的作用下,将圆周运动变为直线运动,长梁64和轨道体17随凸轮45、凸轮套和连杆往复运动,平面推力轴承21置于进向轨道69和退向轨道70之间,钢球53分别与两个轨道面循环交替接触,当推杆13处于进向运动时,与进向轨道69接触面的钢球53受力滚动,当推杆13处于退向运动时,与退向轨道70接触面的钢球受力滚动,并通过滚动摩擦将来自于动子的动力传递给推杆,与平面推力轴承21相接触的进向轨道69和退向轨道70的延长线与动子56的长梁64沿机架的长度方向的中心线具有一定的夹角,也就是说进向轨道和退向轨道相对于动子是倾斜置放的,当动子机构的动子往复运动时,轨道体上的进向轨道和退向轨道随动子同步往复运动,平面推力轴承21随轨道的往复运动不停地改变推杆轴向位置,带动推杆、摆杆和摇杆做往复运动,推动发电机1运转产生电力(或带动推杆+摆杆做往复运动推动直线发电机12运转),或对外输出动力。
实施例3
如图8、图9所示,本发明实施例3的结构图;其中,动子机构包括:动力输入轴,为动力装置25的动力输出转轴;通过轴承箱34安装在机架7上的凸轮轴39,与动力输入轴通过联轴器24连接;凸轮轴39上设有凸轮45;凸轮套46的一端通过轴承47安装在凸轮45上,其另一端通过连杆9和联接件与动子推杆72相连;直线轴承14安装在机架7上;动子推杆72安装在直线轴承14中;轨道体17上设有进向轨道69和退向轨道70,或直轴轨道61,并安装在动子推杆72上;动子推杆的一端置于机架端板15中;压簧20和档垫19串在动子推杆72上,并对称置放在机架端板15的两侧;其中,推杆机构包括:连接件16的一端与推杆13相连,其另一端与平面推力轴承21,或与直线推力轴承60相连;其中,本实施例的推杆机构的其他部件与连接方式和传动方式与图1、图5相同,在此不再累述。
动力装置25带动凸轮轴39、凸轮45和凸轮套46转动,在凸轮45、凸轮套46和连杆9的作用下,将圆周运动变为直线运动,动子推杆72和轨道体17随凸轮45、凸轮套和连杆往复运动,平面推力轴承21置于进向轨道69和退向轨道70之间,钢球53分别与两个轨道面循环交替接触,当推杆13处于进向运动时,与进向轨道69接触面的钢球53受力滚动,当推杆13处于退向运动时,与退向轨道70接触面的钢球受力滚动,并通过滚动摩擦,将来自于动子的动力传输给推杆,或动子推杆72和轨道体17随凸轮45、凸轮套和连杆往复运动,安装在轨道体17的直轴轨道61上的直线推力轴承60受力滚动,并通过滚动摩擦,将来自于动子的动力传递给推杆,与平面推力轴承21相接触的进向轨道69和退向轨道70,或与直线推力轴承60相接触的直轴轨道61的延长线与动子56的动子推杆72沿机架的长度方向的中心线具有一定的夹角,也就是说进向轨道和退向轨道相对于动子是倾斜置放的,当动子机构的动子往复运动时,轨道体上的进向轨道和退向轨道,或直轴轨道61随动子同步往复运动,平面推力轴承21,或直线推力轴承60随轨道的往复运动不停地改变推杆轴向位置,带动推杆、摆杆和摇杆做往复运动,推动发电机运转产生电力,或推动动力输出轮131对外输出动力。
实施例4
如图11所示,本发明的发电机实施例4的结构图;其中,推杆机构包括;直线轴承14分别安装在机架 7上;推杆13安装在直线轴14中;支臂66安装在机架7上;摆杆68通过轴承178和摆杆轴65安装在支臂66上;连板57的一端通过轴63与推杆13相连,其另一端通过轴63与摆杆动力臂58相连;摇杆5的一端通过轴63与摆杆阻力臂59相连,其另一端通过曲柄轴3、曲柄28、发电机轴2与发动机1相连;轨道体17上设有进向轨道69和退向轨道70,或进向被动永磁体76和退向被动永磁体78,并安装在推杆13上;安装在推杆上的轨道体17的进向轨道69和退向滚道70,或进向被动永磁体76和退向被动永磁体78的延长线与动子的动子推杆72的中心线具有一定夹角。
其中,动子机构包括:平面推力轴承21、或滚轮73、或滑块74、或浮动永磁体80安装在推臂83上;推臂83通过推臂座82安装在动子推杆72上;安装在机架7上的动力装置25;凸轮轴39上设有凸轮45;凸轮轴39通过轴承箱34安装在机架7上;动力装置25通过联轴器24与凸轮轴39相连;凸轮套46的一端通过轴承47安装在凸轮45上,其另一端通过连杆9和联接件与动子推杆72相连;直线轴承14安装在机架7上;动子推杆72安装在直线轴承14中;当动子推杆往复运动时,安装在推臂83上的平面推力轴承21、或滚轮73、或滑块74、或浮动永磁体80随动子推杆72一同往复运动,并与轨道体17上的进向轨道69和退向轨道70、或永磁体相互作用下,带动推杆、摆杆和摇杆做往复运动,同步推动发电机1运转产生电力,或推动动力输出轮131对外输出动力。
其中,需要进一步说明的是,浮动座体79的一侧安装有进向主动永磁体75,其另一侧安装有退向主动永磁体77,并组成浮动永磁体80,轨道体17上设有进向被动永磁体76和退向被动永磁体78,浮动永磁体80置于进向被动永磁体76和退向被动永磁体78之间,浮动永磁体通过支臂83和支臂座82安装在动子推杆72上,动子推杆通过推臂座82和推臂83带动浮动永磁体往复运动,浮动永磁体上的进向主动永磁体和退向主动永磁体与轨道体上的进向被动永磁体和退向被动永磁体的相互作用下,带动推杆往复运动,并对外输出动力。
实施例5
如图10、图11所示,本发明实施例5的结构图;其中,用于动力传递的平面推力轴承21还可以采用滚轮73、或滑块74、或直线推力轴承60、或永磁体做为动力传递部件,本实施例为单组动子,动子位于凸轮一侧。
以上实施例中的平面推力轴承21是利用其钢珠53与进向轨道69和退向轨道70相互产生的滚动摩擦来传输动力的。
以上实施例中的直线推力轴承60是利用其钢珠53与直轴轨道61相互产生的滚动摩擦来传输动力的。
以上或以下实施例中的滚轮73是利用与进向轨道69和退向轨道70,或与蛇形轨道126、或与进向轨道107和退向轨道106相互产生的滚动摩擦来传输动力的。
以上或以下实施例中的滑块74是利用与进向轨道69和退向轨道70,或蛇形轨道126,或进向轨道107和退向轨道106相互产生的滑动摩擦来传输动力的。
以下实施例中的进向平面推力轴承105和退向平面推力轴承108是利用其钢珠53与进向轨道107和退向轨道106相互产生的滚动摩擦来传输动力的。
实施例6
如图12所示,本发明实施例6的结构图;其中,动子机构包括:动力输入轴,为动力装置25的动力输出转轴;通过轴承箱34安装在机架7上的凸轮轴39,与动力输入轴通过联轴器24连接;凸轮轴39上设有凸轮45;凸轮套46的一端通过轴承47分别安装在凸轮45上,其另一端通过连杆9和联接件8与直线磁轴89相连,直线磁轴89安装在直线永磁轴承71中,S极主动永磁体86和N极主动永磁体88通过永磁体座87安装在直线磁轴89上;直线磁轴89的一端置于机架端板15中;压簧20和档垫19串在直线磁轴89上,并对称置放在机架端板15的两侧。
推杆机构包括:直线永磁轴承71安装在机架7上,并对称置放在动子直线磁轴89中心线的两侧;磁轴推杆91安装在直线永磁轴承71中,压簧20和挡垫19串在磁轴推杆91上,并分别置于直线永磁轴承71的两侧;磁轴推杆91通过接头6与直线发电12相连,或磁轴推杆91通过连板57、轴63与摆杆动力臂58相连,摆杆阻力臂59通过连板57、销轴22与直线发电机12相连,或磁轴推杆91通过摇杆5与发电机1相连。或磁轴推杆91通过摆杆68、摇杆与发电机1相连;被动N极永磁体85安装在磁轴推杆91上;安装在动子的直线磁轴89上的永磁体为双极,即一个N极主动永磁体88和一个S极主动永磁体86,磁轴推杆91上的被动永磁体为单极,即一个N极被动永磁体85,但也可以设置一个S极被动永磁体,当动子机构上的N极主动永磁体和S极主动永磁体随动子的直线磁轴89往复运动时,N极主动永磁体与推杆上的N极被动永磁体相 对应时,在同极斥力的作用下磁轴推杆91进向移动,S极主动永磁体与磁轴推杆上的N极被动永磁体对应时,在异极吸力的作用下磁轴推杆退向移动,往复运动的推杆(或往复运动的推杆+摆杆)推动直线发电机12工作产生电力,或者,往复运动的推杆+摆杆+摇杆推动发电机1运转产生电力。
实施例7
如图13所示,本发明输供电及电控系统结构图,电缆线92的一端与发电机相连,其另一端通过总缆线94与变流器93相连,变流器93通过连接线95与电控柜97相连,电力输出线98与电控柜97相连,电控柜通过电源线99和接线盒100与动力装置25上的用电单元相连,外部电源线96与电控柜97相连,发电机通过电缆线92和总缆线94将发出的电通过变流器93进行变流,并将变流后的电通过电控柜97向外输出电力,外部电源线96通过电控柜97和电机电源线99向用电单元提供启动电源,当动力装置和发电机整个系统正常运转后,可通过电控柜切断外部电源线96供电,将变流器93变流后的电通过电控柜和电源线向用电单元馈电。
实施例8
如图14、图15、图16所示,本发明实施例8的结构图;其中,动力输入轴与旋转体118连接,旋转体118通过轴116安装在机架102上;退向轨道106和进向轨道107分别安装在轨道体109上;轨道体109安装在旋转体118上,轨道体109以及退向轨道106和进向轨道107与旋转体118组合构成转子128;
其中,机架102包括:支撑管113通过联接耳155和螺栓35安装在内墙板112和外墙板114上;
其中,推杆机构包括:直线轴承103安装在机架102上;推杆13安装在直线轴承103中;支臂66安装在机架102上;摆杆68通过轴承178和摆杆轴65安装在支臂66上;推杆13通过销轴22、连板57、轴承178和轴63与摆杆动力臂58相连;摆杆阻力臂59通过轴63、连板57和销轴22与摇杆推杆62相连;摇杆推杆62安装在直线轴承14中;摇杆5的一端通过销轴22与摇杆推杆62相连;其另一端通过曲柄轴3、曲柄28和发电机轴2与发电机1相连;进向平面推力轴承105和退向平面推力轴承108上设有钢球53,并通过联接件16分别安装在推杆13上;推杆机构有多种形式具体实施时可任选。
安装在轨道体109上的进向轨道107和退向轨道106随旋转体118旋转,当进向轨道107与进向平面推力轴承105相接触时,进向平面推力轴承105的钢球53在进向轨道107的斜面上滚动,并带动推杆13进向运动,当退向轨道106与退向平面推力轴承108相接触时,退向平面推力轴承的钢球53在退向轨道106的斜面上滚动,并带动推杆退向运动,推杆(或推杆与摆杆)一进一退往复运动带动直线发电机12工作,或推杆带动摆杆和摇杆推动发电机1运转,或推杆带动摆杆、摇杆推杆和摇杆推动发电机运转。
实施例9
如图17所示,本发明实施例9的结构图;其中,转子机构包括:动力输入轴与旋转体118连接;旋转体118通过轴116安装在机架102上;轨道体109上设有蛇形轨道126,并安装在旋转体118上。
其中,推杆机构包括:直线轴承103安装在机架102上;推杆13安装在直线轴承103中;端板125安装在推杆13上;支臂66安装在机架102上;连板57的一端通过销轴22与端板125相连,其另一端通过轴承178和轴63与摆杆动力臂58相连;摆杆68通过轴承178和摆杆轴65安装在支臂66上,其摆杆阻力臂59通过轴63、连板57和销轴22与直线发电机12相连;或者,端板125通过接头6与直线发电机12相连;滚轮73通过滚轮轴127和联接件16与推杆13相连,并置于动子机构的蛇形轨道126中;当蛇形轨道126随同旋转体118和轨道体109旋转时,安装在蛇形轨道126中的滚轮73带动推杆和端板往复运动,或带动推杆、端板和摆杆往复运动,并带动直线发电机12运转。
实施例10
如图18所示,本发明实施例10的结构图;其中,转子机构与图17相同,在此不再累述。
其中,推杆机构包括:直线轴承103安装在机架102上;推杆13安装在直线轴承103中;端板125安装在推杆13上;摇杆5通过接头6与端板125相连,其另一端通过曲柄轴3、曲柄28和发电机轴2与发电机1相连;滚轮73通过滚轮轴127和联接件16与推杆13相连,并置于蛇形轨道126中;当蛇形轨道126随同旋转体118和轨道体109旋转时,安装在蛇形轨道126中的滚轮73与蛇形轨道相互作用下带动推杆、端板和摇杆往复运动,并带动发电机1工作,或摇杆推动动力输出轮131对外输出动力。
实施例11
如图19所示,本发明的动力传动机构及发电设备实施例11的结构图;其中,转子机构包括:动力输入轴与旋转体118连接;旋转体11通过轴116安装在机架102上;轨道体109上设有蛇形轨道126,并安装在旋转体118上。
其中,推杆机构包括:直线轴承103安装在机架102上;推杆13安装在直线轴承103中;端板125安装在推杆13上;支臂66安装在机架102上;连板57的一端通过销轴22与端板125相连,其另一端通过轴承178和轴63与摆杆动力臂58相连;摆杆68通过轴承178和摆杆轴65安装在支臂66上,摇杆的一端通过轴63与摆杆阻力臂59,其另一端通曲柄轴3、曲柄28、发电机轴2与发电机1相连;或者,摇杆5通过曲柄轴3、曲柄28与动力输出轮131相连;滚轮73通过滚轮轴127和联接件16与推杆13相连,并置于动子机构的蛇形轨道126中;当蛇形轨道126随同旋转体118和轨道体109旋转时,安装在蛇形轨道中的滚轮带动推杆、端板、摆杆和摇杆往复运动,并带动发电机1工作,或者带动动力输出轮131运转,并对外输出动力。
实施例12
如图20、图21所示,本发明的动力传动机构及发电设备实施例12的结构图;其中,转子机构包括:旋转体118通过轴116安装在机架102上;轨道体109上分别设有进向主动永磁体134和退向主动永磁体137(也可以安装进向轨道107和退向轨道106,还可以安装蛇形轨道126)并安装在旋转体118上,组成转子128。
其中,推杆机构包括:直线轴承103安装在机架102上;推杆13安装在直线轴承103中;端板125安装在推杆13上;支臂66安装在机架102上;连板57的一端与端板125相连,其另一端通过轴承178和轴63与摆杆动力臂58相连;摆杆68通过轴承178和摆杆轴65安装在支臂66上,其摆杆阻力臂59通过轴63、连板57和销轴22与摇杆推杆62相连;摇杆推杆62安装在直线轴承14中;摇杆的一端通过销轴22与摇杆推杆62相连,其另一端通过曲柄轴3、曲柄28、发电机轴2与发电机1相连;或者,摇杆5通过曲柄轴3、曲柄28与动力输出轮131相连;进向被动永磁体135和退向被动永磁体139分别安装在固定座138的两侧;组成浮动永磁体141,固定座138安装在推杆13上;进向被动永磁体135和退向被动永磁体139置于轨道体109上的进向主动永磁体134和退向主动永磁体137之间,当进向主动永磁体和退向主动永磁体随同转子和轨道体旋转时,进向主动永磁体与进向被动永磁体相对应时,在同极斥力的作用下,进向被动永磁体带动推杆进向运动,退向主动永磁体与退向被动永磁体相对应时,在同极斥力的作用下,退向被动永磁体带动推杆退向运动,往复运动的推杆(或往复运动的推杆与摆杆)推动直线电动机12工作产生电力,或者,往复运动的推杆连同摆杆(和摇杆推杆)以及摇杆推动发电机1旋转产生电力。或者,往复运动的推杆对外输出动力。
需要进一步说明的是,或者,蛇形轨道随转子128旋转,在滚轮与蛇形轨道的相互作用下滚轮带动推杆往复运动,往复运动的推杆通过推杆机构推动发电机运转产生电力,或向外输出动力。
或者,进向轨道107和退向轨道106随转子128旋转,在滚轮与进向轨道和退向轨道的相互作用下带动推杆往复运动,往复运动的推杆通过推杆机构推动发电机运转产生电力,或向外输出动力。
或者,进向轨道107和退向轨道106随转子128旋转,当进向轨道107与进向平面推力轴承105相接触时,进向平面推力轴承105的钢球53在进向轨道107的斜面上滚动,并带动推杆13进向运动,当退向轨道106与退向平面推力轴承108相接触时,退向平面推力轴承的钢球53在退向轨道106的斜面上滚动,并带动推杆退向运动,往复运动的推杆通过推杆机构推动发电机运转产生电力,或向外输出动力。
实施例13
如图22、图23所示,本发明的动力传动机构及发电设备实施例13的结构图;其中,转子机构包括:动力输入轴与旋转体118连接;旋转体118安装在机架102上;N极主动永磁体152和S极主动永磁体153通过固定座145分别安装在固定盘148上;固定盘148安装在旋转体118上。
其中,推杆机构包括:直线轴承103安装在机架102上;推杆13安装在直线轴承103中;端板125安装在推杆13上;支臂66安装在机架102上;连板57的一端与端板125相连,其另一端通过轴承178和轴63与摆杆动力臂58相连;摆杆68通过轴承178和摆杆轴65安装在支臂66上,其摆杆阻力臂59通过轴63、连板57和销轴22与摇杆推杆62相连;摇杆推杆62安装在直线轴承14中;摇杆的一端通过销轴22与摇杆推杆62相连,其另一端通曲柄轴3、曲柄28、发电机轴2与发电机1相连;或者,摇杆5通过曲柄轴3、曲柄28与动力输出轮131相连;被动永磁体147通过固定座154安装在推杆13上;安装在固定盘148上的主动永磁体146为双极,即N极主动永磁体152和S极主动永磁体153,安装在推杆13上的被动永磁体147为单极,即N极,但也可以设置为S极,当主动永磁体146随旋转体118旋转时,当N极主动体永磁体152与推杆上的N极被动永磁体147相对应时,在同极斥力的作用下,推杆进向移动,当S极主动永磁体153与推杆上的N极被动永磁体对应时,在异极吸力的作用下,推杆向退向移动,往复运动的推杆带动摆杆、摆杆推 杆和摇杆推动发电机1旋转产生电力,或推动动力输出轮对外输出动力。
实施例14
如图24所示,本发明的动力传动机构及发电设备实施例14的结构图;其中,转子机构包括:转子157通过转子轴156、固定盘117和轴套115安装在机架102上;动力装置25通过联轴器24与转子轴156相连;转子157上安装有轨道体109;轨道体109上即可以安装进向轨道107和退向轨道106,也可以安装蛇形轨道126,也还可以安装进向主动永磁体134和退向主动永磁体137,也还可以安装N极主动永磁体152和S极主动永磁体153。
其中,本实施例的推杆机构与图14、图15、图16、图17、图18、图19、图20、图22、图25实施例相同,在此不再累述。
实施例15
如图25、图26所示,本发明的动力传动机构及发电设备实施例15的结构图;其中,转子机构包括:转子162上设有N极主动永磁体152和S极主动永磁体153,并安装在转子轴159上;转子轴159通过轴承箱34安装在机架7上;动力装置25安装在机架上,动力输出转轴通过联轴器24与转子轴相连。
推杆装置包括:直线轴承14安装在机架7上;推杆13安装在直线轴承14中;被动永磁体147通过固定座154与推杆相连;其中,本实施例的推杆机构的其他部件与图1、图5、图12实施例相同,在此不再累述,推杆机构有多种形式具体实施时可任选;安装在转子162上的永磁体为双极,即N极主动永磁体152和S极主动永磁体153,安装推杆上的被动永磁体147为单极(N极),但也可以设置S极被动永磁体,动力装置驱动转子162,转子上的主动永磁体随转子旋转时,当N极主动永磁体152与推杆上的N被动永磁体相对应时,在同极斥力的作用下,推杆进向移动,当S极主动永磁体153与推杆上的N极被动永磁体147对应时,在异极吸力的作用下,推杆退向移动,往复运动的推杆向外输出动力。
实施例16
如图27、图28所示,本发明的动力传动机构及发电设备实施例16的结构图;其中,转子机构包括:永磁体169安装在两侧的墙板164上;墙板164两侧的永磁体169与动子线圈176对应置放;墙板164安装在基座174上;基座174安装在机架163上;进向主动永磁体134和退向主动永磁体137(或进向轨道107和退向轨道106,或蛇形轨道126)分别安装在磁悬浮转子165的上部;被动悬浮永磁体175安装在磁悬浮转子165的下部,并置于主动永磁体173的上方,利用同极相斥磁性特点使磁悬浮转子165始终处于悬浮状态;动子线圈176安装在磁悬浮转子165上,并置于两侧永磁体169之间,在动子线圈176和永磁体169的相互作用下产生推力,使磁悬浮转子165转动,并同时带动进向主动永磁体134和退向主动永磁体137做圆周运动。另外,还可以采用永磁电机替代磁悬浮转子。
其中,推杆机构包括:直线轴承14安装在机架163上;推杆13安装在直线轴承14中;固定座138的一侧安装有进向被动永磁体135,其另一侧安装有退向被动永磁体139,共同组成浮动永磁体141,浮动永磁体安装在推杆13上,并置于磁悬浮转子165上的进向主动永磁体134和退向主动永磁体137之间;其中,本实施例的推杆机构的其他部件和连接方式与图1、图5、图10实施例相同,在此不再累述。
当进向主动永磁体和退向主动永磁体随同磁悬浮转子旋转时,进向主动永磁体与进向被动永磁体相对应时,在同极斥力的作用下,进向被动永磁体带动推杆进向运动,退向主动永磁体与退向被动永磁体相对应时,在同极斥力的作用下,退向被动永磁体带动推杆退向运动,往复运动的推杆通过推杆机构推动发电机运转产生电力,或向外输出动力。
需要进一步说明的是,或者,蛇形轨道随磁悬浮转子165旋转,在滚轮与蛇形轨道的相互作用下滚轮带动推杆往复运动,往复运动的推杆通过推杆机构推动发电机运转产生电力,或向外输出动力。
或者,进向轨道107和退向轨道106随磁悬浮转子165旋转,在滚轮与进向轨道和退向轨道的相互作用下带动推杆往复运动,往复运动的推杆通过推杆机构推动发电机运转产生电力,或向外输出动力。
或者,进向轨道107和退向轨道106随磁悬浮转子165旋转,当进向轨道107与进向平面推力轴承105相接触时,进向平面推力轴承105的钢球53在进向轨道107的斜面上滚动,并带动推杆13进向运动,当退向轨道106与退向平面推力轴承108相接触时,退向平面推力轴承的钢球53在退向轨道106的斜面上滚动,并带动推杆退向运动,推杆(或推杆与摆杆)一进一退往复运动带动直线发电机12工作,或推杆带动摆杆和摇杆推动发电机1运转,或推杆带动摆杆、摇杆推杆和摇杆推动发电机运转,或向外输出动力。
实施例17
如图29、图30所示,本发明的动力传动机构及发电设备实施例17的结构图;其中,转子机构包括: 转子腹板186上安装有进向主动永磁体134和退向主动永磁体137(也可以安装进向轨道107和退向轨道106,还可以安装蛇形轨道126)并安装在转子195上;转子195通过转子轴193安装在机架194上;动力装置25安装在机架194上,动力输出转轴与转子轴193相连;其中,机架194包括:支臂架183安装在支撑筒内壁184和支撑筒外壁185上;支撑筒内壁184和支撑筒外壁185安装在底座199上。
其中,推杆机构包括:推杆13通过直线轴承103安装在机架194上;固定座138的一侧安装有进向被动永磁体135,其另一侧安装有退向被动永磁体139,共同组成浮动永磁体141;浮动永磁体141安装在推杆13上,并置于转子的进向主动永磁体134和退向主动永磁体137之间。
其中,本实施例的推杆机构的其他部件与图1、图5、图10、图11、图28所涉及实施例相同,在此不再累述。
当进向主动永磁体和退向主动永磁体随同转子旋转时,进向主动永磁体与进向被动永磁体相对应时,在同极斥力的作用下,进向被动永磁体带动推杆进向运动,退向主动永磁体与退向被动永磁体相对应时,在同极斥力的作用下,退向被动永磁体带动推杆退向运动,往复运动的推杆通过推杆机构推动发电机运转产生电力,或向外输出动力。
需要进一步说明的是,或者,蛇形轨道随转子195旋转,在推杆上的滚轮与蛇形轨道的相互作用下滚轮带动推杆往复运动,往复运动的推杆通过推杆机构推动发电机运转产生电力,或向外输出动力。
或者,进向轨道和退向轨道随转子195旋转,在推杆上的滚轮与进向轨道和退向轨道的相互作用下带动推杆往复运动,往复运动的推杆通过推杆机构推动发电机运转产生电力,或向外输出动力。
或者,进向轨道107和退向轨道106随转子195旋转,当进向轨道107与推杆上的进向平面推力轴承105相接触时,进向平面推力轴承105的钢球53在进向轨道107的斜面上滚动,并带动推杆13进向运动,当退向轨道106与推杆上的退向平面推力轴承108相接触时,退向平面推力轴承的钢球53在退向轨道106的斜面上滚动,并带动推杆退向运动,推杆(或推杆与摆杆)一进一退往复运动带动直线发电机12工作,或推杆带动摆杆和摇杆推动发电机1运转,或推杆带动摆杆、摇杆推杆和摇杆推动发电机运转,或向外输出动力。
实施例18
如图31所示,本发明的动力传动机构及发电设备实施例18的结构图;其中,转子机构包括:转盘203上设有进向主动永磁体134和退向主动永磁体137(也可以安装进向轨道107和退向轨道106,还可以安装蛇形轨道)并安装在与动力装置的动力输出转轴连接的电机200上;电机200安装在机架194上,其中,机架194包括:支臂架183安装在支撑筒内壁184和支撑筒外壁185上,隔板201与支撑筒内壁相连;支撑筒内壁184和支撑筒外壁185安装在底座199上;
其中,本实施例的推杆机构与图29、图30实施例相同,在此不再累述。
转盘上的进向主动永磁体134和退向主动永磁体137(或进向轨道107和退向轨道106,或蛇形轨道126)随同电机旋转,当进向主动永磁体与进向被动永磁体相对应时,在同极斥力的作用下,进向被动永磁体带动推杆进向运动,退向主动永磁体与退向被动永磁体相对应时,在同极斥力的作用下,退向被动永磁体带动推杆退向运动,往复运动的推杆通过推杆机构推动发电机运转产生电力,或向外输出动力。
需要进一步说明的是,或者,蛇形轨道随电机200旋转,在滚轮与蛇形轨道的相互作用下滚轮带动推杆往复运动,往复运动的推杆通过推杆机构推动发电机运转产生电力,或向外输出动力。
或者,进向轨道和退向轨道随电机200旋转,在滚轮与进向轨道和退向轨道的相互作用下带动推杆往复运动,往复运动的推杆通过推杆机构推动发电机运转产生电力,或向外输出动力。
或者,进向轨道107和退向轨道106随电机200旋转,当进向轨道107与进向平面推力轴承105相接触时,进向平面推力轴承105的钢球53在进向轨道107的斜面上滚动,并带动推杆13进向运动,当退向轨道106与退向平面推力轴承108相接触时,退向平面推力轴承的钢球53在退向轨道106的斜面上滚动,并带动推杆退向运动,推杆(或推杆与摆杆)一进一退往复运动带动直线发电机12工作,或推杆带动摆杆和摇杆推动发电机1运转,或推杆带动摆杆、摇杆推杆和摇杆推动发电机运转,或向外输出动力。
实施例19
如图32、32A所示,为本发明动力传动装置实施例19的结构图。其中,动子机构包括:动力装置25;凸轮轴39上设有凸轮45和飞轮10;凸轮轴39通过轴承箱34安装在机架7上;动力装置25通过联轴器24与凸轮轴39相连;凸轮套46的一端通过轴承47安装在凸轮45上,其另一端通过连杆9销轴26和联接件8与轨道体17相连;直线轴承44安装在机架7上,并沿机架的长度方向延伸(即与凸轮轴39轴心线方向垂 直),进向轨道69和退向轨道70分别通过螺栓35、轨道座17c安装在轨道体17上;轨道体17安装在导轨43上,导轨43安装在直线轴承44上,导轨43与滚道体17上的轨道形成一个往复运动的动子56,并在直线轴承44中往复运动;
其中,推杆机构包括:直线轴承14分别安装在机架7上,并对称置放在导轨43中心线的两侧;推杆13安装在直线轴承14中;安置在轨道体17上的进向轨道69和退向轨道70之间的平面推力轴承21或滚轮73或滑块74;支臂66安装在机架7上;摆杆68通过轴承178和摆杆轴65安装在支臂66上;推杆的一端通过联接件16与平面推力轴承21或滚轮73或滑块74相连,其另一端通过连板57和轴63与摆杆动力臂58相连;摇杆5的一端通过轴63与摆杆阻力臂59相连,其另一端通过曲柄轴3、曲柄28、发电机轴2与发动机1相连;推杆机构有多种形式具体实施时可任选。
动力装置25带动凸轮轴39、凸轮45和凸轮套46转动,在凸轮45、凸轮套46和连杆9的作用下,将圆周运动变为直线运动,导轨和轨道体17上的轨道随凸轮45、凸轮套和连杆往复运动,平面推力轴承21置于进向轨道69和退向滚道70之间,钢球53分别与两个轨道面循环交替接触,当推杆13处于进向运动时,与进向轨道69接触面的钢球53受力滚动,当推杆13处于退向运动时,与退向轨道70接触面的钢球受力滚动,并通过滚动摩擦将来自于动子的动力传递给推杆,与平面推力轴承21相接触的进向轨道69和退向轨道70工作面的延长线与动子56的导轨沿机架的长度方向的中心线具有一定的夹角,也就是说进向轨道和以下轨道相对于动子是倾斜置放的,当动子机构的动子往复运动时,轨道体上的进向轨道和退向轨道随动子同步往复运动,平面推力轴承21或滚轮或滑块随轨道的往复运动并在其相互作用下不停地改变推杆轴向位置,带动推杆、摆杆和摇杆做往复运动,推动发电机1运转产生电力(或带动推杆+摆杆做往复运动推动直线发电机12运转),或对外输出动力。
实施例20
如图33、图34、图35所示,为本发明动力传动装置实施例20的结构图;其中,转子机构包括:安装在与动力装置25的动力输出转轴上的主动轮1006;通过轴承箱34安装在机架7上的转子轴156;安装在转子轴156上的转子盘1008、被动轮1003、被动链轮1002和飞轮198;主动永磁体146通过固定座154安装在转子盘1008上;安装在主动轮1006和被动轮1003上的传动带1007;
其中,推杆机构包括:安装在机架7上的直线轴承14,并置放在转子轴156中心线的两侧;安装在机架7上的支臂66;摆杆68通过轴承178、摆杆轴65与支臂66相连;推杆13的一端通过固定座154安装有被动永磁体147,其另一端通过连板57、轴63与摆杆动力臂58相连,并置放在直线轴承14中;通过轴承箱34安装在机架7上的曲轴1009;安装在曲轴1009上的飞轮198和主动链轮1004;通过联轴器24与曲轴1009相连的动力装置25;连杆5a的一端通过轴63与摆杆阻力臂59相连,其另一端通过连杆轴颈1001、曲柄1012与曲轴1009相连;安装在主动链轮1004和被动链轮1002上的正时链1005;
动力装置25通过传动带1007带动转子盘1008上的主动永磁体146旋转,当主动永磁体146与推杆13上的被动永磁体147相对应时,在同极斥力的作用下,被动永磁体147推动推杆运动,推杆又通过摆杆68和连杆5a推动曲轴1009做旋转运动并带动发电机运转产生电力,或向外输出动力。
实施例21
如图36、图36A所示,为本发明动力传动装置实施例21的结构图;其中,电磁铁机构包括;电磁铁1017安装在机架7上;安装在机架上的电控柜97;安装在电控柜内的自动控制器1016;自动控制器1016的一端通过导线1015与电控柜97相连,其另一端通过导线1015分别与每组电磁铁1017相连;
所述动力传递机构包括:安装在机架7上的直线轴承14,并置放在电磁铁的对应侧;安装在机架7上的支臂66;摆杆68通过轴承178、摆杆轴65与支臂66相连;推杆13的一端通过固定座154安装有被动永磁体147,其另一端通过连板57、轴63与摆杆动力臂58相连,并置放在直线轴承14中;被动永磁体147分别与每组电磁铁1017对应置放;通过轴承箱34安装在机架7上的曲轴1009;安装在曲轴1009上的飞轮198;通过联轴器24与曲轴1009相连的发电机1;连杆5a的一端通过轴63与摆杆阻力臂59相连,其另一端通过连杆轴颈1001、曲柄1012与曲轴1009相连;
自动控制器1016通过导线按预先设定顺序控制每组电磁铁1017的开关;当其中一组(或多组)电磁铁1017通电时,与之对应的被动永磁体147在同极斥力的作用下推动推杆13做直线运动,当上一组(或多组)电磁铁1017断电后,下一组(或多组)电磁铁1017随即通电,与之对应的被动永磁体147在同极斥力的作用下,推动推杆做直线运动,这种接力式循环运行方式周而复始的推动推杆13做直线运动,再通过摆杆68和连杆5a将力传给曲轴1009,曲轴将直线运动转变为旋转运动并带动发电机运转产生电力,或向外输出动 力。
实施例22
如图37、图38、图39所示,为本发明动力传动装置实施例22的结构图;其中,转子机构包括:与动力装置25的动力输出转轴连接的主动轮1006;通过轴承箱34安装在机架7上的转子轴156;安装在转子轴156上的凸轮1021、被动轮1003、被动链轮1002和飞轮198;安装在主动轮1006和被动轮1003上的传动带1007;
其中,推杆机构包括:安装在机架7上的直线轴承14,并置放在转子轴156中心线的两侧;安装在机架7上的支臂66;摆杆68通过摆杆轴65和轴承178与支臂66相连;推杆13的一端通过连接件16安装有滚轮73,其另一端通过连板57、轴63与摆杆动力臂58相连,并置放在直线轴承14中;连杆5a的一端通过轴63与摆杆阻力臂59相连,其另一端通过连杆轴颈1001、曲柄1012与曲轴1009相连;通过轴承箱34安装在机架7上的曲轴1009;安装在曲轴1009上的飞轮198和主动链轮1004;发电机通过联轴器24与曲轴1009相连;安装在主动链轮1004和被动链轮1002上的正时链1005;
动力输入轴通过主动轮1006、被动轮1003和传动带1007带动转子轴156和凸轮1021旋转,在凸轮与滚轮73的作用下,安装在推杆上的滚轮73推动推杆做直线运动,并通过摆杆68、连杆5a、连杆轴颈1001和曲柄1012将力传给曲轴1009,曲轴将直线运动转变为旋转运动并驱动发电机运转产生电力,或向外输出动力。
需要说明的是,以上实施例中所述的动子56包括:直线轴承44和连板27以及轨道体17;长梁64和直线轴承44以及轨道体17;动子推杆72和直线磁轴89以及轨道体17:直线轴承44和导轨43以及轨道体17。
以上实施例中所述的动子56可以设为一组或多组。
以上实施例中所述的转子包括:转子128、转子157、转子162、195、202和磁悬浮转子165。
以上实施例中动子56对称置放在凸轮轴中心线的两侧,两侧动子56的力矩大小相等、方向相反,可相互抵消动子往复运动时产生的力矩,可大大降低机器在运行中的振动。
以上实施例中推杆机构对称置放在动子56、转子128、157、162、195、202和磁悬浮转子165的两侧,两侧推杆的力矩大小相等,方向相反,可相互抵消推杆往复运动时产生的力矩,可降低机器运行中的振动。
以上实施例中的压簧20、119的作用是,当动子,或推杆向一端运动时,压缩压簧缓冲动子的冲击惯量,并吸收动子的动能,当动子,或推杆向反方向折回时,压簧释放已吸收的动子动能,助推和加速动子,或推杆反方向运动,这样的循环往复,充分起到缓解冲击振动,减少噪声和大幅节能作用,压簧还可以采用空气弹簧等缓冲蓄能部件替代,压簧119还可以安装在直线发电机12定子的两端与动子保持合理的间隙来实现上述目的。
以上实施例中的飞轮198通过发电机轴2安装在以上所有实施例的发电机1上,以上实施例中的飞轮10安装在以上所有实施例的凸轮轴39上,飞轮以本身的转动惯量将在做功行程中输入于曲轴,或凸轮的一部分功储存起来,用以在其他行程克服阻力,带动曲柄连杆机构越过上,下止点,保证曲轴和旋转角速度和输出转矩尽可能均匀,并使发动机,或动子克服短时间的超越,稳定转速,储存能量。
以上各实施例中的进向轨道107、69和退向轨道106、70或蛇形轨道12可简称为轨道。
尽管上文对本发明作了详细说明,但本发明不限于此,本技术领域的技术人员可以根据本发明的原理进行修改,因此,凡按照本发明的原理进行的各种修改都应当理解为落入本发明的保护范围。

Claims (30)

  1. 一种用于动力输出机构的动力传动装置,所述动力输出机构包括发电机,其特征在于,所述动力传动装置包括:
    安装在机架上的动力输入轴;
    安装在机架上用于传递驱动力的驱动机构;
    安装在机架上且与驱动机构连接的推杆机构;
    其中,所述驱动机构为动子机构或转子机构,与所述动力输入轴连接,其通过平面推力轴承或直线推力轴承或滚轮与轨道配合,或者通过滑块与轨道配合,或者通过电磁铁与永磁体配合,或者通过永磁体与永磁体配合,将驱动力传递给所述推杆机构与所述动力输出机构;
    其中,所述推杆机构包括:与所述驱动机构连接的第一连接机构、与所述第一连接机构和所述动力输出机构连接的第二连接机构。
  2. 一种用于动力输出机构的动力传动装置,所述动力输出机构包括动力输出轮,其特征在于,所述动力传动装置包括:
    安装在机架上的动力输入轴;
    安装在机架上用于传递驱动力的驱动机构;
    安装在机架上且与驱动机构连接的推杆机构;
    其中,所述驱动机构为动子机构或转子机构,与所述动力输入轴连接,其通过平面推力轴承或直线推力轴承或滚轮与轨道配合,或者通过滑块与轨道配合,或者通过电磁铁与永磁体配合,或者通过永磁体与永磁体配合,将驱动力传递给所述推杆机构与所述动力输出机构;
    其中,所述推杆机构包括:与所述驱动机构连接的第一连接机构、与所述第一连接机构和所述动力输出机构连接的第二连接机构。
  3. 根据权利要求1或2所述的动力传动装置,其特征在于,所述动子机构包括旋转驱动机构、直线连动机构、动力传递机构,其中,所述旋转驱动机构包括:
    与所述动力输入轴相连的凸轮轴(39),其通过轴承箱(34)安装在机架(7)上;
    设置在凸轮轴(39)上的一个或一对或多对凸轮(45),所述一个或一对或多对凸轮(45)中的任一个通过轴承(47)安装在对应一个凸轮套(46)上,通过凸轮套将旋转动力传递给与凸轮套一一对应连接的直线连动机构;
    所述直线连动机构包括:
    连杆(9)、联接件(8)、连板(27)、往复运动部件(44、64、72、89或者43)、导杆(18);所述连杆(9)连接在凸轮套(46)上,所述联接件(8)将所述连杆(9)与往复运动部件(44、64、72、89或者43)连接起来,以将来自凸轮轴(39)的动力传递到动力传递机构;
    所述导杆(18)一端安置于机架一侧的机架端板(15)中,其另一端通过所述联接件(8)与同侧的所述往复运动部件(44、64、72、89或者43)相连;
    所述动力传递机构包括:
    轨道体(17),其上设置进向轨道(69)和退向轨道(70)或直轴轨道(61);所述往复运动部件(44、64、72、89或者43)连接在轨道体上。
  4. 根据权利要求3所述的动力传动装置,其特征在于:
    所述直线连动机构还包括安装在机架(7)上且延伸方向与所述凸轮轴(39)延伸方向垂直放置的导轨(43),所述连板连接在所述两侧导轨(43)上的相邻两个轨道体之间;
    所述动力传递机构还包括:安置在所述进向轨道(69)和所述退向轨道(70)之间的平面推力轴承(21)或滚轮(73)或滑块(74),或置于轨道体(17)的直轴轨道(61)上的直线推力轴承(60)。
  5. 根据权利要求3所述的动力传动装置,其特征在于:
    所述往复运动部件为动子推杆(72),所述直线连动机构还包括:安装在机架(7)上且位于凸轮轴(39)中心线一侧或两侧的直线轴承(14),动子推杆(72)安装在对应侧的直线轴承(14)中,且动子推杆的一端置于该侧的机架端板(15)中;
    所述动力传递机构还包括:安置在轨道体(17)的进向轨道(69)和退向轨道(70)之间的平面推力 轴承(21)或滚轮(73)或滑块(74),或安装在直轴轨道(61)上的直线推力轴承(60),或安置在轨道体(17)的进向主动永磁体(75)和退向主动永磁体(77)之间的浮动永磁体(80)。
  6. 根据权利要求3所述的动力传动装置,其特征在于:所述往复运动部件为直线轴承(44)或长梁(64),所述直线连动机构还包括:
    通过推臂座(82)安装在往复运动部件上的推臂(83),推臂(83)和平面推力轴承(21)或滚轮(73);
    或滑块(74)或直线推力轴承(60)或浮动永磁体(80)及对应推臂座(82)和动子推杆(72)或直线轴承(44)或长梁(64)或导轨(43)形成相对机架往复运动的动子(56);
    所述动力传递机构还包括:
    设置在推臂(83)上的平面推力轴承(21)或滚轮(73)或滑块(74)或直线推力轴承(60)或浮动永磁体(80);
    安装在推杆(13)的进向轨道(69)和退向轨道(70)之间的平面推力轴承(21)或滚轮(73)或滑块(74),或者安装在推杆(13)的直轴轨道(61)上的直线推力轴承(60),或者安装在推杆(13)的轨道体(17)上的进向被动永磁体(76)和退向被动永磁体(78)之间的浮动永磁体(80);浮动永磁体(80)包括:浮动体座(79);安装于浮动座体一侧的进向主动永磁体(75)和另一侧的退向主动永磁体(77)。
  7. 根据权利要求1或2所述的动力传动装置,其特征在于,所述动子机构包括旋转驱动机构、直线连动机构、动力传递机构,其中:
    所述旋转驱动机构包括:
    与所述动力输入轴相连的凸轮轴(39),其通过轴承箱(34)安装在机架(7)上;
    设置在凸轮轴(39)上的一个或一对或多对凸轮(45),所述一个或一对或多对凸轮(45)中的任一个通过轴承(47)安装在对应一个凸轮套(46)上,通过凸轮套将旋转动力传递给与凸轮套一一对应连接的直线连动机构;
    所述直线连动机构包括:
    一端安置于机架的机架端板(15)中、其另一端与对应凸轮套(46)通过连杆(9)和联接件(8)连接的直线磁轴(89),安装在机架(7)上的直线永磁轴承(71),设置在直线磁轴(89)两侧且安装于直线永磁轴承(71)中的永磁体(90);安装在直线磁轴(89)上的永磁体座(87),永磁体座(87)和直线磁轴(89)形成相对机架往复运动的动子(56);串联安置在直线磁轴(89)一端的压簧(20)和档垫(19);
    所述动力传递机构包括:
    通过永磁体座(87)安装在直线磁轴(89)上的S极主动永磁体(86)和N极主动永磁体(88);安装在推杆机构上的N极被动永磁体或S极被动永磁体,与直线磁轴(89)上的S极主动永磁体(86)以及N极主动永磁体(88)配用。
  8. 根据权利要求1或2所述的动力传动装置,其特征在于,所述动子机构包括旋转驱动机构、直线连动机构、动力传递机构,其中:
    所述旋转驱动机构包括:
    与所述动力输入轴相连的凸轮轴(39),其通过轴承箱(34)安装在机架(7)上;
    设置在凸轮轴(39)上的一个或一对或多对凸轮(45),所述一个或一对或多对凸轮(45)中的任一个通过轴承(47)安装在对应一个凸轮套(46)上,通过凸轮套将旋转动力传递给与凸轮套一一对应连接的直线连动机构;
    所述直线连动机构包括:
    安装在机架(7)上且位于凸轮轴(39)中心线一侧或两侧的直线轴承(44),导轨(43)安装在对应侧的直线轴承(44)中;
    安装在导轨(43)上且与对应凸轮套(46)另一端通过连杆(9)和联接件(8)相连接的轨道体(17),轨道体和导轨(43)形成相对于机架往复运动的动子(56);
    所述动力传递机构包括:
    设置在轨道体(17)上的进向轨道(69)和退向轨道(70);
    安置在轨道体(17)的进向轨道(69)和退向轨道(70)之间的平面推力轴承(21)或滚轮(73)或滑块(74)。
  9. 根据权利要求1或2所述的动力传动装置,其特征在于,所述驱动机构为转子机构,其中:
    所述转子机构包括:与动力输入轴连接的转盘(203);设置在转盘(203)上的进向主动永磁体(134)和退向主动永磁体(137),或进向轨道(107)和退向轨道(106),或蛇形轨道(126);其中,转盘(203)及其上的进向主动永磁体(134)和退向主动永磁体(137),或进向轨道(107)和退向轨道(106),或蛇形轨道(126)形成转子(202);
    或者,所述转子机构包括:与动力输入轴连接的轨道体(109);分别安装在轨道体(109)上的退向轨道(106)和进向轨道(107)或蛇形轨道(126)或进向主动永磁体(134)和退向主动永磁体(137);其中,轨道体(109)及其上的退向轨道(106)和进向轨道(107)或蛇形轨道(126)或进向主动永磁体(134)和退向主动永磁体(137)形成转子;
    或者,所述转子机构包括:与动力输入轴连接的固定盘(148);通过固定座(145)分别安装在固定盘(148)上的N极主动永磁体(152)和S极主动永磁体(153);其中,固定盘(148)及其上的N极主动永磁体(152)和S极主动永磁体(153)形成转子;
    或者,所述转子机构包括:与动力输入轴连接的转子轴(156);通过转子轴(156)安装在机架(102)上的转子(157);安装在转子(157)上的轨道体(109);安装在轨道体(109)上的进向轨道(107)和退向轨道(106),或蛇形轨道(126),或进向主动永磁体(134)和退向主动永磁体(137),或安装在转子(157)上的N极主动永磁体(152)和S极主动永磁体(153);
    或者,所述转子机构包括:与动力输入轴连接的转子轴(159),通过轴承箱(34)安装在机架(7)上;安装在转子轴(159)上的转子(162);设置在转子上的N极主动永磁体(152)和S极主动永磁体(153);
    或者,所述转子机构包括:与动力输入轴连接的转子轴(193);通过转子轴(193)安装在机架(194)上的转子(195);安装在转子(195)上的进向主动永磁体(134)和退向主动永磁体(137),或者进向轨道(107)和退向轨道(106),或者蛇形轨道(126)。
  10. 根据权利要求1或2所述的动力传动装置,其特征在于,所述驱动机构为转子机构,其中:
    所述转子机构包括:与动力输入轴连接的主动轮(1006);两端分别通过轴承箱(34)安装在机架(7)上的转子轴(156);安装在转子轴(156)上的转子盘(1008)、被动轮(1003)、被动链轮(1002)和飞轮(198);通过固定座(154)安装在转子盘(1008)上的主动永磁体(146);安装在主动轮(1006)和被动轮(1003)上的传动带(1007);
    或者,所述转子机构包括电磁铁机构、动力传递机构;
    所述电磁铁机构包括:安装在机架(7)上的多组电磁铁(1017);安装在机架上的电控柜(97);安装在电控柜内的自动控制器(1016);自动控制器(1016)的一端通过导线(1015)与电控柜(97)相连,其另一端通过导线(1015)与多组电磁铁(1017)相连;
    所述动力传递机构包括:多组被动永磁体(147),分别通过固定座(154)安装在多组推杆机构上,用于与对应电磁铁配用;
    或者,所述转子机构包括:与动力输入轴连接的主动轮(1006);两端分别通过轴承箱(34)安装在机架(7)上的转子轴(156);安装在转子轴(156)上的凸轮(1021)、被动轮(1003)、被动链轮(1002)和飞轮(198);安装在主动轮(1006)和被动轮(1003)上的传动带(1007)。
  11. 根据权利要求1或2所述的动力传动装置,其特征在于,所述驱动机构为转子机构,所述转子机构包括:安装在机架(163)上的基座(174);安装在基座(174)上且位于其两侧的墙板(164);安装在两侧墙板(164)上的永磁体(169);安装在机架上的磁悬浮转子(165);分别安装在磁悬浮转子(165)上的进向主动永磁体134和退向主动永磁体(137),或者进向轨道107和退向轨道106,或者蛇形轨道126;安装在磁悬浮转子(165)下部的被动悬浮永磁体(175),置于主动永磁体(173)的上方,以利用同极相斥的磁性力使磁悬浮转子(165)始终处于悬浮状态;与永磁体(169)对应置放的动子线圈(176),安装在磁悬浮转子(165)上,并置于两侧永磁体(169)之间。
  12. 根据权利要求1或2所述的动力传动装置,其特征在于,所述第一连接机构包括:
    设置在驱动机构平面推力轴承(21)的两个工作面的钢球(53),与两个轨道的轨道面相接触,或者设置在轨道体(17)上的直轴轨道(61)与直线推力轴承(60)相连;
    安装在机架(7)上的且位于连杆中心线延长线两侧的直线轴承(14);
    安装在直线轴承(14)中的推杆(13);
    其一端与推杆(13)相连的联接件(16),其另一端与平面推力轴承(21)或滚轮(73)或滑块(74)或直线推力轴承(60)或浮动永磁体(80)相连。
  13. 根据权利要求12所述的动力传动装置,其特征在于:所述第二连接机构为通过推杆与摆杆传递动力的机构,包括:
    安装在机架(7)上的支臂(66);通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59);其一端通过轴(63)与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;其一端通过销轴(22)与动力输出机构相连的连板(57),其另一端通过轴(63)与摆杆阻力臂(59)相连。
  14. 根据权利要求12所述的动力传动装置,其特征在于,所述第二连接机构为通过推杆传递动力的机构,包括:将推杆(13)与直线发电机(12)相连的接头(6);
    或者,所述第二连接机构为通过推杆和摇杆传递动力的机构,包括:连接推杆(13)的接头(6);与接头铰接的摇杆;与摇杆通过曲柄轴(3)连接的曲柄(28),曲柄与动力输出机构连接。
  15. 根据机利要求12所述的动力传动装置,其特征在于,所述第二连接机构为通过推杆、摆杆、摇杆推杆和摇杆传递动力的机构,包括:
    安装在机架(7)上的支臂(66);
    通过轴承和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59);
    其一端与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;
    其一端通过销轴(22)与摇杆推杆(62)相连的连板,其另一端通过轴(63)与摆杆阻力臂(59)相连;
    安装在直线轴承(14)中的摇杆推杆(62);
    其一端通过销轴(22)与摇杆推杆(62)相连的摇杆(5),其另一端通过曲柄轴(3)与曲柄(28)相连;曲柄(28)与动力输出机构相连;
    或者,所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构。
  16. 根据权利要求1或2所述的动力传动装置,其特征在于,所述第一连接机构包括:
    设置在推臂(83)上的平面推力轴承(21)的两个工作面的钢球(53),并置于推杆(13)轨道体上的进向轨道和退向轨道之间,钢球(53)与两个轨道面交替接触;或设置在推臂上的直线推力轴承(60),与推杆的轨道体(17)上的直轴轨道(61)相连;或设置在推臂(83)上的滚轮(73)或滑块(74),置于推杆(13)的轨道体上的进向轨道和退向轨道之间并与两个轨道面交替接触;或设置在推臂(83)上的浮动永磁体(80),置于推杆的轨道体上的进向被动永磁体(76)和退向被动永磁体(78)之间;安装在机架(7)上且位于连杆中心线延长线两侧的直线轴承(14);
    分别安装在直线轴承(14)中的推杆(13)和摇杆推杆(62),轨道体(17)安装在推杆(13)上;
    所述第二连接机构为通过推杆、摆杆、摇杆推杆和摇杆传递动力的机构,包括:
    安装在机架(7)上的支臂(66);
    通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59);
    其一端与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;
    其一端通过销轴(22)与摇杆推杆(62)相连的连板(57),其另一端通过轴(63)与摆杆阻力臂(59)相连;
    其一端通过销轴(22)与摇杆推杆(62)相连的摇杆(5),其另一端通过曲柄轴(3)与曲柄(28)相连;
    曲柄(28)与动力输出机构相连;
    或者,所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构。
  17. 根据权利要求1或2所述的动力传动装置,其特征在于,所述第一连接机构包括:
    安装在机架(7)上且位于连杆中心线延长线两侧的直线永磁轴承(71);
    安装在直线永磁轴承(71)中的磁轴推杆(91),被动N极永磁体(85)或被动S极永磁体安装在磁 轴推杆(91)上;
    所述第二连接机构为通过推杆或摇杆传递动力的结构,包括:
    连接磁轴推杆(91)与动力输出机构的接头(6),或连接磁轴推杆(91)与动力输出机构的摇杆(5);
    或者,所述第二连接机构为通过推杆和摆杆传递动力的机构,包括:
    连接磁轴推杆(91)与动力输出机构的连板(57)、摆杆(68);
    或者,所述第二连接机构为通过推杆、摆杆、摇杆推杆和摇杆传递动力的机构,其包括:
    连接磁轴推杆与动力输出机构的摆杆(68)、摇杆推杆(62)和摇杆;
    分别安装在直线轴承(14)中的推杆(13)和摇杆推杆(62);
    或者,所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构。
  18. 根据权利要求1或2所述的动力传动装置,其特征在于,所述第一连接机构包括:
    安装在机架(102)上的直线轴承(103);
    安装在直线轴承(103)中的推杆(13);
    所述第二连接机构为通过推杆和摆杆传递动力的结构,包括:
    安装在机架(102)上的支臂(66);
    通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59),摆杆动力臂(58)通过连板(57)和轴(63)与推杆(13)相连;其一端通过轴(63)与摆杆阻力臂(59)相连的连扳(57),另一端通过销轴(22)与动力输出机构相连;
    或者,所述第二连接机构为通过推杆、摆杆、摇杆推杆和摇杆传递动力的机构,其包括:
    安装在直线轴承(14)中的摇杆推杆(62),一端通过轴(63)和连板与摆杆阻力臂(59)相连,另一端与摇杆(5)相连;摇杆(5)通过曲柄轴(3)、曲柄(28)和动力输出机构相连;
    或者,所述第二连接机构为通过推杆或摇杆传递动力的机构;
    或者,所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构。
  19. 根据权利要求1或2所述的动力传动装置,其特征在于,所述第一连接机构包括:
    安装在机架(102)上的直线轴承(103);
    安装在直线轴承(103)中的推杆(13),滚轮(73)通过联接件(16)与推杆(13)相连,并置于转子机构的蛇形轨道(126)中。
  20. 根据权利要求19所述的动力传动装置,其特征在于,所述第二连接机构为通过推杆与摆杆传递动力的机构,包括:安装在推杆(13)上的端板(125);
    安装在机架(102)上的支臂(66);
    其一端与端板(125)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;
    通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),其摆杆阻力臂(59)通过轴(63)、连板(57)和销轴(22)与动力输出机构相连;
    或者,所述第二连接机构为通过推杆传递动力的机构,包括:
    安装在推杆(13)上的端板(125),端板(125)通过接头(6)与动力输出机构相连;
    或者,所述第二连接机构为通过推杆和摇杆传递动力的机构,包括:
    安装在推杆(13)上的端板(125),端板(125)通过摇杆(5)与动力输出机构相连。
  21. 根据权利要求19所述的动力传动装置,其特征在于,所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构,包括:
    安装在推杆(13)上的端板(125);
    安装在机架(102)上的支臂(66);
    其一端与端板(125)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;
    通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),其摆杆阻力臂(59)通过轴(63)与摇杆(5)相连;
    摇杆(5)通过曲柄轴(3)、曲柄(28)、与动力输出机构相连;
    或者,所述第二连接机构为通过摇杆传递动力的机构,包括:
    一端与推杆连接的摇杆(5),另一端通过曲柄轴(3)、曲柄(28)与动力输出机构相连。
  22. 根据权利要求1或2所述的动力传动装置,其特征在于,所述第一连接机构包括:
    安装在机架(102)上的直线轴承(103);
    安装在直线轴承(103)中的推杆(13);
    安装在推杆(13)上的固定座(138);
    分别安装在固定座(138)上的进向被动永磁体(135)和退向被动永磁体(139);
    所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构,其包括:
    安装在推杆(13)上的端板(125);
    安装在机架(102)上的支臂(66);
    通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59),且摆杆阻力臂(59)通过轴(63)与摇杆(5)相连;
    其一端与端板(125)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;
    摇杆(5)通过曲柄轴(3)、曲柄(28)、与动力输出机构相连;
    或者,所述第二连接机构为通过推杆和摆杆传递动力的机构,其包括:
    一端与推杆连接的摇杆(5),另一端通过曲柄轴(3)、曲柄(28)与动力输出机构相连。
  23. 根据权利要求1或2所述的动力传动装置,其特征在于,所述第一连接机构包括:
    安装在机架(102)上的直线轴承(103);
    安装在直线轴承(103)中的推杆(13);
    安装在转子电机(118)上的固定盘(148);
    通过固定座(145)安装在固定盘(148)上的主动永磁体(146);
    通过固定座(154)安装在推杆(13)上的被动永磁体(147);
    所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构,其包括:
    安装在推杆(13)上的端板(125);
    安装在机架(102)上的支臂(66);
    其一端与端板(125)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;
    通过轴承和摆杆轴(65)安装在支臂(66)上的摆杆(68),其摆杆阻力臂(59)通过轴(63)与摇杆(5)相连;
    摇杆(5)通过曲柄轴(3)、曲柄(28)与动力输出机构相连;
    或者,所述第二连接机构为通过推杆和摇杆传递动力的机构,其包括:
    一端与推杆连接的摇杆(5),另一端通过曲柄轴(3)、曲柄(28)与动力输出机构相连。
  24. 根据权利要求1或2所述的动力传动装置,其特征在于,所述第一连接机构包括:
    安装在机架(7)上的直线轴承(14);
    安装在直线轴承(14)中的推杆(13);通过固定座(154)与推杆相连的被动永磁体(147);
    所述第二连接机构为通过推杆、摆杆、摇杆推杆和摇杆传递动力的机构,包括:
    安装在机架(7)上的支臂(66);
    通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68);
    其一端与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;
    其一端通过销轴(22)与摇杆推杆(62)相连的连板,其另一端通过轴(63)与摆杆阻力臂(59)相连;
    安装在直线轴承(14)中的摇杆推杆(62);
    其一端通过销轴(22)与摇杆推杆(62)相连的摇杆(5),其另一端通过曲柄轴(3)与曲柄(28)相连;
    曲柄(28)与动力输出机构连接;
    或者,所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构。
  25. 根据权利要求1或2所述的动力传动装置,其特征在于,所述第一连接机构包括:
    安装在机架(163)上的直线轴承(14);
    安装在直线轴承(14)中的推杆(13);
    安装在推杆(13)上的浮动永磁体(141),置于磁悬浮转子(165)的围板(179)上的进向主动永磁体(134)和退向主动永磁体(137)之间,浮动永磁体(141)包括固定座(138)、安装于固定座一侧的进向被动永磁体(135)和另一侧的退向被动永磁体(139);或者安装在推杆(13)上的滚轮(73),置于进向轨道(107)和退向轨道(106)之间或蛇形轨道(126)之中;或者安装在推杆(13)上的进向平面推力轴承(105)和退向平面推力轴承(108)),置于进向轨道(107)和退向轨道(106)之间;
    所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构,包括:
    安装在机架(163)上的支臂(66);
    通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68);
    其一端与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;
    摇杆(5)一端通过轴(63)与摆杆阻力臂(59)相连,另一端通过曲柄轴(3)、曲柄(28)和动力输出机构连接。
  26. 根据权利要求1或2所述的动力传动装置,其特征在于,所述第一连接机构包括:
    通过直线轴承(103)安装在机架(194)上的推杆(13);
    安装在推杆(13)上的浮动永磁体(141),置于转子(195)上的进向主动永磁体(134)和退向主动永磁体(137)之间;所述浮动永磁体(141)包括:固定座(138);安装于固定座一侧的进向被动永磁体(135)和另一侧的退向被动永磁体(139),或者安装在推杆(13)上的滚轮(73),置于转子(195)的蛇形轨道之中,或者安装在推杆(13)上的滚轮(73),置于转子(195)的进向轨道(107)和退向轨道(106)之间;或者进向平面推力轴承(105)和退向平面推力轴承(108),置于转子(195)的进向轨道(107)和退向轨道(106)之间;
    所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构,包括:
    安装在机架(194)上的支臂(66);
    通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68);
    其一端与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;
    摇杆(5)的一端通过轴(63)与摆杆阻力臂(59)相连,另一端通过曲柄轴(3)、曲柄(28)和动力输出机构相连。
  27. 根据权利要求1或2所述的动力传动装置,其特征在于,所述第一连接机构包括:
    设置在平面推力轴承(21)的两个工作面的钢球(53),与两个轨道的轨道面相接触,或滚轮(73)与进向轨道(69)和退向轨道(70)的轨道面相接触;
    对称安装在机架(7)上的且位于连杆中心线延长线两侧的直线轴承(14);
    安装在直线轴承(14)中的推杆(13),并对称置放在动子机构的动子(6)的两侧;
    其一端与推杆(13)相连的联接件(16),其另一端与平面推力轴承(21)或滚轮(73)或滑块(74)相连;
    所述第二连接机构为通过推杆、摆杆和摇杆传递动力的机构,包括:
    安装在机架(7)上的支臂(66);
    通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59);
    其一端通过轴(63)与推杆(13)相连的连板(57),其另一端通过轴(63)与摆杆动力臂(58)相连;
    摇杆(5)一端通过轴(63)与摆杆阻力臂(59)相连,其另一端通过曲柄轴(3)、曲柄(28)与动力输出机构相连。
  28. 根据权利要求1或2或10所述的动力传动装置,其特征在于:
    所述第一连接机构包括:安装在机架(7)上的且位于转子轴(156)中心线两侧的直线轴承(14);推杆(13)的一端通过固定座(154)安装有被动永磁体(147),其另一端通过连板(57)、轴(63)与摆杆动力臂(58)相连,并置放在直线轴承(14)中;安装在推杆(13)上的每个被动永磁体(147)与转子盘(1008)上的每个主动永磁体(146)对应置放,并留有一定的气隙;
    或者,所述第一连接机构包括:安装在机架(7)上的直线轴承(14),安装在直线轴承(14)中的 推杆(13),推杆的一端通过固定座(154)安装有被动永磁体(147),被动永磁体(147)置放在电磁铁的对应侧;
    或者,所述第一连接机构包括:安装在机架(7)上的直线轴承(14),安装在直线轴承(14)中的推杆(13),推杆的一端通过连接件(16)安装有滚轮(73),滚轮(73)与凸轮(1021)对应置放。
  29. 根据权利要求28所述的动力传动装置,其特征在于,所述第二连接机构为通过推杆、摆杆和连杆传递动力的机构,包括:
    安装在机架(7)上的支臂(66);
    通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59);
    通过轴承箱(34)安装在机架(7)上的曲轴(1009);
    安装在曲轴(1009)上的飞轮(198)和主动链轮(1004);
    通过联轴器(24)与曲轴(1009)相连的动力输出机构;
    安装在主动链轮(1004)和被动链轮(1002)上的正时链(1005);
    连杆(5a)的一端通过轴(63)与摆杆阻力臂(59)相连,其另一端通过连杆轴颈(1001)、曲柄(1012)与曲轴(1009)相连;
    或者,所述第二连接机构包括:
    安装在机架(7)上的支臂(66);
    通过轴承(178)和摆杆轴(65)安装在支臂(66)上的摆杆(68),具有摆杆动力臂(58)和摆杆阻力臂(59);
    通过轴承箱(34)安装在机架(7)上的曲轴(1009);
    通过联轴器(24)与曲轴(1009)相连的动力输出机构;
    连杆(5a)的一端通过轴(63)与摆杆阻力臂(59)相连,其另一端通过连杆轴颈(1001)、曲柄(1012)与曲轴(1009)相连。
  30. 一种发电设备,包括如权利要求1、3-29中任一项所述的动力传动装置。
PCT/CN2021/098631 2020-06-08 2021-06-07 用于动力输出机构的动力传动装置及发电设备 WO2021249343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010511882.3 2020-06-08
CN202010511882.3A CN111697762B (zh) 2020-06-08 2020-06-08 一种用于动力输出机构的动力传动装置以及包含该装置的发电机

Publications (1)

Publication Number Publication Date
WO2021249343A1 true WO2021249343A1 (zh) 2021-12-16

Family

ID=72479683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098631 WO2021249343A1 (zh) 2020-06-08 2021-06-07 用于动力输出机构的动力传动装置及发电设备

Country Status (2)

Country Link
CN (1) CN111697762B (zh)
WO (1) WO2021249343A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697762B (zh) * 2020-06-08 2021-09-10 孙首泉 一种用于动力输出机构的动力传动装置以及包含该装置的发电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062949A2 (en) * 2008-11-26 2010-06-03 Baird Jeffery D Electro-magnetic engine
CN102611281A (zh) * 2011-01-22 2012-07-25 杨路士 绿源发电机
CN105375821A (zh) * 2014-08-15 2016-03-02 张辉 一种磁动力机械装置
CN106224095A (zh) * 2016-09-21 2016-12-14 裘根富 可再生能水平对置活塞式线性发电机、发动机
CN108494224A (zh) * 2018-03-22 2018-09-04 李贤锭 杠杆曲轴组合磁动机
CN111697762A (zh) * 2020-06-08 2020-09-22 孙首泉 发电机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19604089C2 (de) * 1996-02-06 2000-07-13 Alfred Ziegenberg Magnetomechanischer Drehmomentwandler
US20080157534A1 (en) * 2006-12-28 2008-07-03 Wilson Sr Eddie K Zero pollution process and facility for generating electrical energy
US8866350B2 (en) * 2008-11-26 2014-10-21 Magtricity, Llc Electro-magnetic engine with pivoting piston head
US8058755B2 (en) * 2008-12-18 2011-11-15 Hoogerhyde Motor, Llc Reciprocating dual-action piston magnetic force motor and method
CN102064665A (zh) * 2010-12-24 2011-05-18 刘新乐 磁力复动机
KR20130036496A (ko) * 2011-10-04 2013-04-12 정영조 영구자석에 의한 회전력 발생장치
CN102359563B (zh) * 2011-10-13 2013-07-17 苏州华日金菱机械有限公司 一种单凸轮双向运动机构
AU2012101649B4 (en) * 2011-12-01 2013-07-18 E.M.I.P. Pty Ltd Method and Apparatus For Converting Between Electrical and Mechanical Energy
CN108683296A (zh) * 2018-08-03 2018-10-19 常国先 一种杠杆动力加力装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062949A2 (en) * 2008-11-26 2010-06-03 Baird Jeffery D Electro-magnetic engine
CN102611281A (zh) * 2011-01-22 2012-07-25 杨路士 绿源发电机
CN105375821A (zh) * 2014-08-15 2016-03-02 张辉 一种磁动力机械装置
CN106224095A (zh) * 2016-09-21 2016-12-14 裘根富 可再生能水平对置活塞式线性发电机、发动机
CN108494224A (zh) * 2018-03-22 2018-09-04 李贤锭 杠杆曲轴组合磁动机
CN111697762A (zh) * 2020-06-08 2020-09-22 孙首泉 发电机

Also Published As

Publication number Publication date
CN111697762B (zh) 2021-09-10
CN111697762A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
CN109391171A (zh) 一种风致振动压电电磁复合发电装置
US20060071561A1 (en) Electromagnetic power device
CN102204068A (zh) 电机
WO2021249343A1 (zh) 用于动力输出机构的动力传动装置及发电设备
AU2011375023B2 (en) Electrically powered reciprocating motor
KR101112772B1 (ko) 연속운동에 필요한 에너지 공급을 위한 영구자석의 순간척력을 이용한 충격량 발생장치 및 이를 이용한 동력발생장치
CN102588096B (zh) 往复直线运动与圆周运动转换发动机
CN114337352B (zh) 间歇性滑动摩擦自激励的同步纳米发电机
CN101576038B (zh) 一种用于直线发动机起动及功率输出的机构
KR102239379B1 (ko) 자력을 이용한 회전운동장치
US20080245182A1 (en) Power generation device
KR101574144B1 (ko) 영구자석의 인력과 척력 모두를 이용하는 구동장치용 구동력 증폭 장치
US6876095B2 (en) Generator apparatus
CN101178057B (zh) 重力发动机
CN110344993A (zh) 基于海浪波力能原理驱动的多缸海浪发电装置
JP2004137967A (ja) 回転発生方法と装置
CN117145685B (zh) 一种用于浮式风机平台的电磁调谐波浪能转换装置
US20240018947A1 (en) Gravitational potential energy converting device
CN201366959Y (zh) 一种电动轿车自发电装置
KR102301745B1 (ko) 자력을 이용한 회전운동장치
WO2022105002A1 (zh) 发电设备
KR102239378B1 (ko) 자력을 이용한 회전운동장치
KR102301747B1 (ko) 자력을 이용한 회전운동장치
WO2004091082A1 (fr) Machine magnetique
TWM613113U (zh) 發電設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821966

Country of ref document: EP

Kind code of ref document: A1