WO2021249161A1 - 射频消融电源以及射频消融系统 - Google Patents

射频消融电源以及射频消融系统 Download PDF

Info

Publication number
WO2021249161A1
WO2021249161A1 PCT/CN2021/095222 CN2021095222W WO2021249161A1 WO 2021249161 A1 WO2021249161 A1 WO 2021249161A1 CN 2021095222 W CN2021095222 W CN 2021095222W WO 2021249161 A1 WO2021249161 A1 WO 2021249161A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
radio frequency
power supply
module
control unit
Prior art date
Application number
PCT/CN2021/095222
Other languages
English (en)
French (fr)
Inventor
王雄志
刘道洋
胡善锋
丘信炯
张庭超
Original Assignee
杭州诺诚医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010539947.5A external-priority patent/CN113824309A/zh
Priority claimed from CN202021093804.8U external-priority patent/CN212518792U/zh
Application filed by 杭州诺诚医疗器械有限公司 filed Critical 杭州诺诚医疗器械有限公司
Publication of WO2021249161A1 publication Critical patent/WO2021249161A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration

Definitions

  • This application relates to the technical field of medical devices, and in particular to a radio frequency ablation power supply and a radio frequency ablation system.
  • Radiofrequency ablation is to send the ablation electrode to the diseased part, and use the ablation electrode to produce an electric heating effect in the diseased tissue, so that the diseased cell is dried and necrotic, so as to achieve the purpose of treatment.
  • the electrode needle when radiofrequency ablation technology is used to treat hypertrophic cardiomyopathy, the electrode needle is electrically connected to the radiofrequency ablation power source. Under ultrasound guidance, the electrode needle is punctured through the ribs and apex to the hypertrophy of the heart's ventricular septum to initiate radiofrequency ablation. After the power is supplied, the electrodes continue to ablate the hypertrophic myocardium until the diseased myocardial cells are dehydrated and necrotic, so that the hypertrophic myocardium atrophys and becomes thinner, and the left ventricular outflow tract is widened.
  • radio frequency ablation power supplies usually use a controller to control the entire ablation process.
  • the controller not only controls the frequency and waveform of the output radio frequency signal, but also performs other controls, such as radio frequency output switch control, radio frequency power Adjustment control, user input parameter detection and processing, radio frequency parameter detection and processing, logic control of the radio frequency ablation process, output interface display, etc., so that there may be a delay in the processing of the radio frequency signal waveform, which affects the generation of the radio frequency signal waveform, or even causes the radio frequency signal Waveform distortion.
  • Abnormal radio frequency signal waveforms may cause instability of radio frequency power and radio frequency current output, thereby affecting the effect of radio frequency ablation.
  • the present application provides a radio frequency ablation power supply and a radio frequency ablation system, which can accurately and stably control the output of radio frequency control signals to ensure the stability of the waveform of the radio frequency signal output by the radio frequency ablation power supply, thereby enabling the radio frequency
  • the ablation power supply can output a stable and reliable radio frequency signal to ensure the safety of the ablation process and obtain the expected ablation treatment effect.
  • the present application provides a radio frequency ablation power supply.
  • the radio frequency ablation power supply includes a first control unit, a radio frequency energy generation circuit, and a second control unit.
  • the first control unit is used to output radio frequency control signals.
  • the radio frequency energy generation circuit includes a power supply module, a step-down module, and a voltage conversion module that are electrically connected in sequence.
  • the power module is used to provide a regulated direct current signal; the step-down module is used to step down the regulated direct current signal to output a low-voltage direct current signal; the voltage conversion module is also connected to the first A control unit is electrically connected, and the voltage conversion module is configured to receive the low-voltage direct current signal and the radio frequency control signal, and convert the low-voltage direct current signal into a radio frequency signal according to the radio frequency control signal.
  • the second control unit is electrically connected to the step-down module, and the second control unit is configured to send a voltage adjustment signal to the step-down module to control the voltage of the low-voltage direct current signal currently output by the step-down module The value is adjusted, so as to realize the power adjustment of the radio frequency signal.
  • the present application provides a radio frequency ablation system.
  • the radio frequency ablation system includes an ablation device and the aforementioned radio frequency ablation power supply.
  • the ablation device is electrically connected to the output end of the radio frequency ablation power supply, and the ablation device is configured to receive the radio frequency signal output by the radio frequency ablation power supply, and use the radio frequency energy of the radio frequency signal to perform radio frequency ablation of the part to be ablated.
  • the radio frequency ablation power supply of the present application controls the radio frequency signal by outputting the radio frequency control signal separately through the first control unit, and performs radio frequency output switch control, radio frequency power adjustment control, user input parameter detection and processing through the second control unit ,
  • the actual ablation parameter detection and processing, output interface display and other operations, that is, the output control of the radio frequency control signal is separated from other controls, so that the output of the radio frequency control signal can be controlled more accurately and stably to ensure
  • the stability of the radio frequency control signal prevents the output of the radio frequency control signal from being interfered to cause the waveform distortion of the radio frequency signal, thereby enabling the radio frequency ablation power supply to output a stable and reliable radio frequency signal to ensure the ablation process It is safe and can obtain the expected ablation treatment effect.
  • Fig. 1 is a schematic block diagram of a radio frequency ablation system provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a radio frequency ablation power supply provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of an ablation device provided by an embodiment of the application, and the ablation electrode needle and the insulating sleeve included in the ablation device are in an assembled state.
  • Fig. 4 is a schematic structural diagram of the ablation electrode needle and the insulating sleeve shown in Fig. 3 in an unassembled state.
  • Fig. 5 is a functional block diagram of a radio frequency ablation power supply provided by an embodiment of the application.
  • Fig. 6 is a functional module diagram of a power supply module provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of the circuit structure of the radio frequency energy generating circuit in the radio frequency ablation power supply provided by an embodiment of the application.
  • FIG. 8 is a functional block diagram of a radio frequency ablation power supply provided by another embodiment of the application.
  • FIG. 9 is a schematic diagram of a partial circuit structure of a voltage regulation circuit of a step-down module provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of an output state control circuit of a step-down module provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of a frequency and waveform control circuit of a radio frequency signal provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of the time sequence of various signals related to radio frequency signals in an embodiment of the application.
  • Radio frequency ablation system 1000 is Radio frequency ablation system 1000
  • the first control unit 40 controls the first control unit 40
  • a radio frequency ablation system 1000 provided by an embodiment of the present application includes a radio frequency ablation power supply 100 and an ablation device 200 electrically connected to an output end of the radio frequency ablation power supply 100.
  • the radio frequency ablation power supply 100 may include a housing 11 and a plurality of input and output interfaces 12 provided on the housing 11. The input and output interface 12 can be used to connect with the ablation device 200 and other equipment.
  • the radio frequency ablation power supply 100 is used as a radio frequency energy generation and control device for generating the radio frequency energy required for radio frequency ablation based on the set ablation parameters during the radio frequency ablation process, and according to the correlation of the detected part to be ablated Ablation parameters are used to control the output of the radio frequency energy.
  • the part to be ablated refers to a diseased part in a living body, such as a diseased tissue of the human heart or other diseased tissues.
  • the ablation device 200 at least includes an ablation needle assembly 210 and a plurality of connecting pipelines 220.
  • the multiple connecting pipelines 220 are used to connect the ablation needle assembly 210 with the radio frequency ablation power supply 100, a cooling circulation device (not shown), and the like.
  • the ablation needle assembly 210 When performing radiofrequency ablation, the ablation needle assembly 210 is inserted into the site to be ablated, and receives radiofrequency energy output by the radiofrequency ablation power supply 100, and releases the radiofrequency energy to the site to be ablated, Radiofrequency ablation is performed on the part to be ablated, so as to achieve the purpose of ablation and treatment of the diseased tissue.
  • the ablation needle assembly 210 penetrates the patient's heart through the intercostal and transapical route to perform radiofrequency ablation of the hypertrophic septal myocardium to treat the hypertrophic cardiomyopathy.
  • the ablation needle assembly 210 includes an ablation electrode needle 211, a hollow insulating sleeve 212, and an ablation handle 213 connected to the proximal end of the ablation electrode needle 211.
  • the insulating sleeve 212 is movably sleeved outside the ablation electrode needle 211 and is detachably connected to the ablation handle 213.
  • the distal end of the ablation electrode needle 211 extends out of the insulating sleeve 212. Since the insulating sleeve 212 is completely insulated, the part of the ablation electrode needle 211 extending out of the insulating sleeve 212 is used to perform an ablation operation.
  • the ablation electrode needle 211 when the ablation electrode needle 211 is electrically connected to the output terminal of the radio frequency ablation power supply 100, the ablation electrode needle 211 receives and transmits a high-frequency current so that the diseased tissue around the distal end of the ablation electrode needle 211 is charged.
  • the positive and negative ions undergo high-speed oscillating motion.
  • the high-speed oscillating ions generate a lot of heat due to friction, which increases the temperature in the diseased tissue, and finally causes the protein in the diseased cell to be denatured, the water inside and outside the cell is lost, and the diseased tissue appears coagulative necrosis.
  • Radiofrequency ablation can achieve the purpose of treatment.
  • the drive structure (not shown) in the ablation handle 213 can be used to drive the insulating sleeve 212 toward the distal end or Move near.
  • proximal and distal are customary terms in the medical field. Specifically, “distal” refers to the end far away from the operator during the surgical operation, and “proximal end” refers to the end close to the operator during the surgical operation.
  • FIG. 5 is a functional block diagram of a radio frequency ablation power supply provided by an embodiment of the application.
  • the radio frequency ablation power supply 100 includes a radio frequency energy generating circuit 30, a first control unit 40, and a second control unit 50.
  • the radio frequency energy generating circuit 30 is used to receive an input voltage provided by an external power source, and process the input voltage, such as step-down, frequency conversion, electrical isolation, etc., to finally output radio frequency energy.
  • the radio frequency energy generation circuit 30 includes a power supply module 31, a step-down module 32, and a voltage conversion module 33 that are electrically connected in sequence.
  • the power module 31 is used to provide a regulated direct current signal.
  • the power supply module 31 can receive an input voltage provided by an external power supply (not shown), and perform rectification and stabilization processing on the input voltage to output the regulated direct current signal.
  • the power module 31 includes a power input port 311, a power output port 312, and a rectifier module 313 electrically connected between the power input port 311 and the power output port 312.
  • the power input port 311 is used to electrically connect with an external AC power source (for example, 220 volt commercial power) to receive a high-voltage AC power signal input from the external power source.
  • the rectification module 313 is used to rectify and filter the input high-voltage alternating current signal, and output the regulated direct current signal through the power output port 312.
  • the regulated direct current signal is a high-voltage direct current signal, for example, a direct current signal of about 310 volts.
  • the step-down module 32 is electrically connected to the power output port 312, and is configured to receive the regulated direct current signal output by the power module 31, and perform step-down processing on the regulated direct current signal to output a low-voltage direct current signal .
  • the first control unit 40 is electrically connected to the voltage conversion module 33 for outputting a radio frequency control signal to the voltage conversion module 33.
  • the voltage conversion module 33 is configured to receive the low-voltage direct current signal and the radio frequency control signal, convert the low-voltage direct current signal into a radio frequency signal according to the radio frequency control signal, and output the radio frequency signal to a radio frequency output A module, such as the ablation device 200.
  • the voltage conversion module 33 and the first control unit 40 can complete the frequency conversion of the low-voltage direct current signal, that is, convert the direct current signal into a high-frequency alternating current signal (DC to AC).
  • the radio frequency signal is the high frequency alternating current signal, for example, a high frequency alternating current signal of 480 kHz.
  • the radio frequency energy generating circuit 30 can output a radio frequency signal of 480 kHz. It can be understood that the frequency value of the high-frequency alternating current signal is not limited to 480 kHz, and may also be other frequency values, which is not specifically limited here.
  • the ablation device 200 is used to receive the radio frequency signal and use the radio frequency energy of the radio frequency signal to perform radio frequency ablation on the part to be ablated.
  • the voltage conversion module 33 may also be arranged between the power supply module 31 and the step-down module 32, that is, the radio frequency energy generation circuit 30 includes electrical connections in sequence.
  • the power supply module 31, the voltage conversion module 33, and the step-down module 32 In this way, the radio frequency energy generating circuit 30 first performs frequency conversion on the regulated direct current signal, and then performs a voltage reduction process.
  • the second control unit 50 is electrically connected to the step-down module 32, and the second control unit 50 is configured to send a voltage adjustment signal to the step-down module 32 to control the current output of the step-down module 32
  • the voltage value of the low-voltage direct current signal is adjusted, so as to realize the power adjustment of the radio frequency signal.
  • the second control unit 50 can also be used to switch the radio frequency output state of the radio frequency energy generating circuit 30, detect and process user input parameters, and detect and process actual ablation parameters.
  • display and control the output interface please refer to the specific introduction below for specific technical details.
  • the first control unit 40 and the second control unit 50 are two independent electronic devices.
  • the voltage conversion module 33 converts the DC signal into an AC signal, and the frequency of the AC signal is the same as the frequency of the radio frequency control signal. It can be understood that the stability of the radio frequency control signal will directly affect the stability of the frequency and waveform of the radio frequency signal. That is, the instability of the radio frequency control signal will cause the waveform of the radio frequency signal to be distorted.
  • the radio frequency ablation power supply 100 of the present application uses the first control unit 40 to separately output the radio frequency control signal to control the radio frequency signal, and the second control unit 50 to perform radio frequency output switch control, radio frequency power adjustment control, and user input Parameter detection and processing, actual ablation parameter detection and processing, output interface display and other operations, that is, the output control of the radio frequency control signal is separated from other controls, so that the output of the radio frequency control signal can be more accurate and stable Control to ensure the stability of the radio frequency control signal, avoid the output of the radio frequency control signal from being interfered and cause the waveform distortion of the radio frequency signal, thereby enabling the radio frequency ablation power supply 100 to output a stable and reliable radio frequency signal, To ensure the safety of the ablation process and obtain the expected ablation treatment effect.
  • the circuit structure of the radio frequency energy generating circuit 30 will be specifically introduced below.
  • the power output port 312 may correspond to the connector J1 in the circuit structure, and may correspond to the radio frequency ablation power supply shown in FIG. 2 in terms of appearance and structure.
  • the step-down module 32 may correspond to a DC-DC transformer M1 with electrical isolation performance.
  • the DC-DC transformer M1 is used to convert the high-voltage direct current signal output by the power output port 312 into a low-voltage direct current signal, and at the same time to electrically isolate the converted low-voltage direct current signal from the external power source, so as to reduce the generation of leakage current .
  • the rectifier module 313 can receive 220 volt commercial power, and after rectifying and filtering the 220 volt commercial power, output a high-voltage direct current signal of about 310 volts.
  • the DC-DC transformer M1 can step down the high voltage direct current signal of about 310 volts to a low voltage direct current signal of 0 to 48 volts.
  • the working principle of the voltage conversion and electrical isolation of the DC-DC transformer M1 is a known technology in the art, and will not be specifically introduced here.
  • the voltage values of the high-voltage direct current signal and the low-voltage direct current signal may also be other values, which are not specifically limited here.
  • the radio frequency energy generating circuit 30 may further include a filter module 34 electrically connected between the DC-DC transformer M1 and the voltage conversion module 33, so The filter module 34 is used to filter the low-voltage direct current signal output by the DC-DC transformer M1, so as to further eliminate the influence of external power and internal noise on the low-voltage direct current signal, so that all the input into the voltage conversion module 33 The low-voltage direct current signal is more stable.
  • the filter module 34 is an LC filter circuit, which includes an inductor L1 and a capacitor C11.
  • the voltage conversion module 33 includes a transformer module 331 and a switch module 332.
  • the transformation module 331 is electrically connected to the output terminal of the step-down module 32 through the filter module 34
  • the switch module 332 is electrically connected to the first control unit 40 and the transformation module 331. between.
  • the transformation module 331 may correspond to a push-pull transformer T1 with electrical isolation performance.
  • the push-pull transformer T1 includes two primary windings TM1-TM2 and TM2-TM3, and a secondary winding TM4-TM5, one of the primary windings TM1-TM2 includes two connecting terminals TM1, TM2, and the other primary winding TM2- TM3 includes two connection terminals TM2 and TM3, that is, the two primary windings TM1-TM2 and TM2-TM3 share the same connection terminal TM2.
  • the connection terminal TM2 is electrically connected to the output terminal of the step-down module 32 through the filter module 34, and is used to receive the low-voltage direct current signal filtered by the filter module 34.
  • the switch module 332 includes MOS switches Q1 and Q2, wherein the control ends of the MOS switches Q1 and Q2 are respectively electrically connected to the first control unit 40 to receive the radio frequency control signal output by the first control unit 40 .
  • the connection terminal TM1 of the push-pull transformer T1 is connected to the ground terminal SGND through the MOS switch Q1, and is connected to the ground terminal SGND through the capacitor C13.
  • the connection terminal TM3 of the push-pull transformer T1 is connected to the ground terminal SGND through the MOS switch Q2, and is connected to the ground terminal SGND through the capacitor C14.
  • the loop where the primary winding TM1-TM2 and the capacitor C13 are located forms a first LC oscillating circuit
  • the loop where the primary winding TM2-TM3 and the capacitor C14 are located forms a second LC oscillating circuit.
  • the first control unit 40 controls the on-off frequencies of the MOS switches Q1 and Q2 through the radio frequency control signal, so that the first LC oscillating circuit and the second LC oscillating circuit are in the corresponding MOS switch off period Sine wave signals are generated respectively, and the voltage values of the DC voltage signals at the two connection ends TM1 and TM3 of the push-pull transformer T1 continuously change, so that the secondary windings TM4-TM5 of the push-pull transformer T1 induce correspondingly An AC radio frequency signal is output, and finally the radio frequency signal can be output through an output interface, such as connector J2.
  • connection terminal TM1 Take the voltage change at the connection terminal TM1 as an example: in the initial state, the voltage at the connection terminal TM1 is 0, the low-voltage DC signal is transmitted to the connection terminal TM2, and when the MOS switch Q1 is turned off The first LC oscillating circuit generates a sine wave signal during the off period of the MOS switch Q1. Therefore, the DC voltage signal at the connection terminal TM1 is a sine wave signal whose voltage value changes continuously.
  • the push-pull transformer T1 The secondary windings TM4-TM5 of TM4 induce sine wave signals accordingly; when the MOS switch Q1 is turned on, the connection terminal TM1 is electrically connected to the ground terminal SGND through the MOS switch Q1 that is turned on.
  • the voltage value at the connection terminal TM1 becomes 0, and the secondary winding TM4-TM5 of the push-pull transformer T1 corresponds to the primary winding TM1-TM2 and does not generate an induction signal.
  • the principle of the voltage change at the connection terminal TM3 is the same as the principle of the voltage change at the connection terminal TM1, that is, in the initial state, the voltage at the connection terminal TM3 is 0, when the MOS When the switch Q2 is off, the second LC oscillation circuit generates a sine wave signal during the off period of the MOS switch Q2, the DC voltage signal at the connection terminal TM3 is a sine wave signal whose voltage value changes continuously, and the push-pull
  • the secondary winding TM4-TM5 of the transformer T1 accordingly induces a sine wave signal; when the MOS switch Q2 is turned on, the connecting terminal TM3 is electrically connected to the ground terminal SGND through the turned on MOS switch Q2, Therefore, the voltage value at the connection terminal TM3 becomes 0, and the secondary winding
  • the low-voltage direct current signal is received through the connecting terminal TM2 of the push-pull transformer T1, and the radio frequency signal is induced through the secondary winding TM4-TM5 of the push-pull transformer T1, so that the The effect of electrical isolation between the radio frequency signal and the low-voltage direct current signal is to reduce the generation of leakage current.
  • the connector J2 may correspond to one of the multiple input and output interfaces 12 provided on the housing 11 of the radio frequency ablation power supply 100 shown in FIG. 2 in terms of appearance and structure.
  • the radio frequency ablation power supply 100 of the present application uses a DC-DC transformer M1 in the radio frequency energy generation circuit 30 to step down and electrically isolate the input voltage, and uses a push-pull transformer T1 to output the DC-DC transformer M1
  • the low-voltage direct current signal is converted into a radio frequency signal and electrically isolated to generate the radio frequency signal, so that before the radio frequency signal is generated, the DC-DC transformer M1 and the push-pull transformer T1 are used to increase the creepage distance and reduce Leakage current is generated to achieve double electrical isolation of the input voltage in the radio frequency energy generation circuit 30, thereby improving the electric shock protection level of the radio frequency ablation power supply 100, so that the radio frequency ablation power supply 100 has a better isolation effect .
  • the radio frequency ablation power supply 100 of the present application adopts double electrical isolation, which is more suitable for the ablation treatment of heart diseases such as hypertrophic cardiomyopathy, and can ensure the therapeutic effect and safety of radiofrequency ablation.
  • the relevant control performed by the second control unit 50 will be specifically introduced below.
  • the radio frequency ablation power supply 100 further includes an ablation parameter detection module 51 and a control component 52 that are electrically connected to the second control unit 50 respectively.
  • the ablation parameter detection module 51 is configured to detect the relevant electrical parameters of the part to be ablated in real time during the radiofrequency ablation process, and feed back the detected electrical parameters to the second control unit 50.
  • the control component 52 is configured to receive user input operations to generate a corresponding input signal, and send the input signal to the second control unit 50.
  • the second control unit 50 is configured to generate the voltage adjustment signal according to the electrical parameters fed back by the ablation parameter detection module 51 and/or the input signal sent by the control component 52, and send the voltage adjustment signal
  • the step-down module 32 is provided to control the step-down module 32 to adjust the voltage value of the low-voltage direct current signal currently output in real time. In this way, the second control unit 50 can perform operations such as user input parameter detection and processing, actual ablation parameter detection and processing, and radio frequency power adjustment control.
  • the electrical parameters include, but are not limited to, the ablation temperature and impedance of the ablation site, and the ablation voltage and ablation current applied to the ablation site.
  • the ablation parameter detection module 51 may include, but is not limited to, a temperature detection module, an impedance detection module, a voltage detection module, and a current detection module.
  • the temperature detection module may be a temperature sensor, such as a thermocouple or a thermistor, which is used to detect the ablation temperature of the part to be ablated in real time during the radiofrequency ablation process.
  • the impedance detection module is used to detect the impedance of the ablation site.
  • the voltage detection module and the current detection module may be electrically connected to the radio frequency energy generating circuit 30, for example, to the output terminal of the voltage conversion module 33.
  • the voltage detection module is used to detect the ablation voltage output by the radio frequency energy generating circuit 30, and the current detection module is used to detect the ablation current output by the radio frequency energy generating circuit 30.
  • the second control unit 50 may also calculate the real-time ablation power according to the received ablation voltage and ablation current.
  • the ablation parameter detection module 51 is logically classified as a part of the radio frequency ablation power supply 100, at least a part of the ablation parameter detection module 51 may be provided on the ablation device 200.
  • the temperature detection module and the impedance detection module may be provided on the ablation electrode needle 211 of the ablation device 200.
  • the radio frequency ablation power supply 100 may further include a display unit 53 electrically connected to the second control unit 50, and the second control unit 50 is also used to control
  • the display unit 53 displays the electrical parameters related to radiofrequency ablation, the ablation power, etc., to display the real-time ablation state.
  • the second control unit 50 can perform operations such as output interface display. In this way, doctors and other medical personnel can understand the status of the radio frequency ablation operation by observing the various electrical parameters displayed on the display unit 53, and adjust the output of the radio frequency energy generating circuit 30 in time through the control component 52, so that The ablation electrode needle 211 performs radiofrequency ablation on the diseased tissue at a preset temperature based on the set power value.
  • control component 52 may include a physical mechanical knob 521, a mechanical button 522, or a touch button, etc., provided on the housing 11 of the radio frequency ablation power supply 100 for medical personnel to operate.
  • the display unit 53 may also be a touch screen, and medical personnel may also perform related operations by touching the display unit 53.
  • the doctor can set the upper and lower limits of the ablation impedance, the upper limit of the ablation temperature, and the ablation time according to the size of the area to be ablated; during the operation, the doctor can use the display unit of the radio frequency ablation power source 100 53 to adjust the data displayed (for example, by touching the display unit 53, or operating the physical mechanical knob 521 or mechanical button 522 provided on the housing 11) the radio frequency output by the radio frequency ablation power supply 100
  • the power value of the signal makes the temperature of the ablation site within the preset temperature range, and the ablation electrode needle 211 performs radiofrequency ablation of the diseased tissue at the preset temperature based on the set power value; when the preset ablation time or the preset temperature is reached;
  • the second control unit 50 can cut off the output voltage of the step-down module 32 to make the ablation device 200 stop ablation.
  • the voltage adjustment signal output by the second control unit 50 is a digital signal
  • the radio frequency ablation power supply 100 further includes an electrical connection between the second control unit 50 and the second control unit 50.
  • DAC module 54 between step-down modules 32.
  • the DAC module 54 is used to convert the voltage adjustment signal output by the second control unit 50 from a digital signal to an analog signal, and then transmit the analog signal to the step-down module 32 to adjust the step-down The voltage value of the low-voltage direct current signal output by the voltage module 32, thereby realizing the adjustment of the radio frequency output power of the radio frequency ablation power supply 100.
  • the second control unit 50 is used as a main controller, which may be a microprocessor.
  • the DAC module 54 can correspond to the DAC chip U10, and the second control unit 50 can output the digital signal SPI to the DAC chip U10 through the three interfaces POWER_CS, POWER_SCK, and POWER_SDI of the connector J3.
  • the DAC chip U10 can output a corresponding analog signal according to the received digital signal SPI.
  • the analog signal comes out of pin 8 of the DAC chip U10, it enters the DC-DC transformer M1, that is, the step-down module 32 through the follower U11, thereby realizing the second control unit 50 Adjustment of the voltage value of the low-voltage direct current signal output by the DC-DC transformer M1.
  • the second control unit 50 can also control the output state of the DAC chip U10.
  • the second control unit 50 can output the first switch signal SW_DAC to the enable pin 5 of the DAC chip U10 to control the output state of the DAC chip U10.
  • the output state may include two states of output and off.
  • the second control unit 50 can also be used to output a second switch signal to control the output state of the DC-DC transformer M1, so as to realize the switch control of the radio frequency output of the radio frequency ablation power supply 100 .
  • the output state may include two states of output and off.
  • the second control unit 50 may output a second switch signal SW_PC_M1, and transmit the second switch signal SW_PC_M1 to pin 2 of the DC-DC transformer M1 through an AND gate U9 and an optocoupler U71 , In order to realize the control of the output state of the DC-DC transformer M1.
  • the second switch signal SW_PC_M1 when the second switch signal SW_PC_M1 is at a low level, the DC-DC transformer M1 is in a signal output state.
  • the second switch signal SW_PC_M1 is at a high level, the DC-DC transformer M1 is in a state where there is no signal output, that is, in an off state.
  • the frequency and waveform control of the radio frequency signal executed by the first control unit 40 will be specifically introduced below.
  • the first control unit 40 can correspond to the single-chip microcomputer U4 in terms of circuit structure.
  • the radio frequency control signal is a dual complementary PWM signal, including a first PWM signal PWM 1 and a second PWM signal PWM 2.
  • the single-chip microcomputer U4 outputs the first PWM signal PWM1 through the first output port 21, and outputs the second PWM signal PWM2 through the second output port 22.
  • the control terminal of the MOS switch Q1 is electrically connected to the first output port 21 of the single-chip microcomputer U4 to receive the first PWM signal PWM1.
  • the control terminal of the MOS switch Q2 is electrically connected to the second output port 22 of the single-chip microcomputer U4 to receive the second PWM signal PWM2.
  • the single-chip microcomputer U4 controls the MOS switches Q1 and Q2 to be turned off alternately by outputting the dual complementary PWM signals, so that the first LC oscillating circuit and the second LC oscillating circuit are respectively turned off during the corresponding MOS switch off periods.
  • a sine wave half-wave signal is generated, and the connecting ends TM1 and TM3 of the two primary windings of the push-pull transformer T1 alternately form a sine wave half-wave signal, so that the secondary winding TM4-TM5 of the push-pull transformer T1 Correspondingly, a sine wave half-wave signal is induced.
  • the same-named ends of the two primary windings TM1-TM2 and TM2-TM3 are different. Therefore, the secondary winding TM4-TM5 of the push-pull transformer T1 is connected to the MOS switch Q1. During the alternate cut-off period with Q2, the two primary windings TM1-TM2 and TM2-TM3 respectively induce two sine wave half-wave signals in opposite directions, thereby outputting a complete sine wave signal, that is, the radio frequency signal is Sine wave signal.
  • the first LC oscillation circuit generates a sine wave half-wave signal, and accordingly, the secondary winding TM4-TM5 of the push-pull transformer T1 induces a sine wave half-wave signal; it is understandable
  • the MOS switch Q2 is turned on, and the second LC oscillating circuit does not generate a sine wave signal.
  • the second LC oscillation circuit generates a sine wave half-wave signal.
  • the secondary winding TM4-TM5 of the push-pull transformer T1 induces another sine wave half-wave signal in the opposite direction.
  • the MOS switch Q1 is turned on, and the first LC oscillation circuit does not generate a sine wave signal. In this way, in one cycle, the secondary winding TM4-TM5 of the push-pull transformer T1 induces a complete sine wave signal.
  • the frequency of the radio frequency control signal is the same as the frequency of the first LC oscillating circuit and the second LC oscillating circuit
  • the frequency of the sine wave signal is the same as the frequency of the first LC oscillating circuit and the second LC oscillating circuit. same. If the radio frequency control signal is unstable, the waveform of the sine wave signal will be distorted.
  • This application uses the single chip microcomputer U4 to separately output the radio frequency control signal, so that the output of the radio frequency control signal can be prevented from being affected by other control signals and control processes that the main controller needs to process, so as to ensure the radio frequency control signal. Stability, thereby avoiding the waveform distortion of the radio frequency signal.
  • the radio frequency ablation power supply 100 further includes a logic control circuit 41 electrically connected between the first control unit 40 and the switch module 332.
  • the second control unit 50 is also electrically connected to the logic control circuit 41, and outputs the second switch signal SW_PC_M1 to control the output state of the logic control circuit 41 to control the transmission state of the dual complementary PWM signal, thereby
  • the switch control of the radio frequency output of the radio frequency ablation power supply 100 is realized.
  • the logic control circuit 41 includes AND gates U6 and U7.
  • the first input terminal B of the AND gate U6 is electrically connected to the first output port 21 of the single-chip microcomputer U4 to receive the first PWM signal PWM 1, and the output terminal of the AND gate U6 drives the chip through a MOS switch U5 is electrically connected to the control terminal of the MOS switch Q1.
  • the first input terminal B of the AND gate U7 is electrically connected to the second output port 22 of the single-chip microcomputer U4 to receive the second PWM signal PWM 2, and the output terminal of the AND gate U7 drives the chip through a MOS switch U5 is electrically connected to the control terminal of the MOS switch Q2.
  • the logic control circuit 41 may also include a NAND gate U8. Both input terminals A and B of the NAND gate U8 are electrically connected to the second control unit 50 to receive the second switch signal SW_PC_M1. The output terminal of the NAND gate U8 is electrically connected to the second input terminals A of the AND gates U6 and U7, respectively.
  • the frequency and waveform control of the radio frequency signal will be further introduced in conjunction with the timing diagram of various signals related to the radio frequency signal.
  • S1 is a timing diagram of the second switch signal SW_PC_M1 output by the second control unit 50.
  • S2 is a timing diagram of the output signal of the NAND gate U8, that is, the input signal received by the second input terminals A of the AND gates U6 and U7.
  • S3 is a timing diagram of the output signal of the AND gate U6.
  • S4 is a timing diagram of the output signal of the AND gate U7.
  • S5 is a schematic diagram of the waveform of the DC voltage signal at the connection terminal TM1 of the push-pull transformer T1.
  • S6 is a schematic diagram of the waveform of the DC voltage signal at the connection terminal TM3 of the push-pull transformer T1.
  • S7 is a schematic diagram of the waveform of the radio frequency signal induced by the secondary winding TM4-TM5 of the push-pull transformer T1.
  • the single-chip microcomputer U4 outputs the dual complementary PWM signals to the AND gates U6 and U7 through the first output port 21 and the second output port 22, respectively.
  • the first input terminal B That is, the single-chip microcomputer U4 outputs the first PWM signal PWM 1 to the first input terminal B of the AND gate U6 through the first output port 21, and outputs the second PWM signal through the second output port 22 PWM 2 to the first input terminal B of the AND gate U7.
  • the frequency of the dual complementary PWM signal may be, for example, 480kHz, and the voltage value may be, for example, 3.3V, which is not specifically limited here.
  • the two input terminals A and B of the NAND gate U8 both receive a low level signal, and therefore, the NAND gate U8 outputs a high level signal.
  • the second input terminals A of the AND gates U6 and U7 both receive the high-level signal output by the NAND gate U8.
  • the AND gate U6 performs an AND operation on the high level signal and the first PWM signal PWM 1
  • the AND gate U7 performs an AND operation on the high level signal and the second PWM signal PWM 2 Operation, so that the output signal of the AND gate U6 corresponds to the first PWM signal PWM 1 received by its first input B, and the output signal of the AND gate U7 corresponds to the second PWM signal received by the first input B
  • the PWM signal corresponds to the PWM 2 signal.
  • the AND gates U6 and U7 can output a second dual complementary PWM signal to the MOS switch driver chip U5.
  • the voltage value of the second dual complementary PWM signal may be, for example, 5V, which is not specifically limited here.
  • the MOS switch driver chip U5 After the MOS switch driver chip U5 receives the second dual-channel complementary PWM signal, it can correspondingly output a third dual-channel complementary PWM signal to drive the MOS switches Q1 and Q2 to alternately turn off, so that the second dual-channel complementary PWM signal is turned off.
  • An LC oscillating circuit and the second LC oscillating circuit respectively generate sine wave half-wave signals during the corresponding MOS switch off period, and the DC voltage signals at the connecting ends TM1 and TM3 of the two primary windings of the push-pull transformer T1 form It is a sine wave half-wave signal, so that the secondary winding TM4-TM5 of the push-pull transformer T1 corresponds to the two primary windings TM1-TM2 and TM2-TM3 respectively inducing two sine wave half-waves in opposite directions Signal to output a complete sine wave signal.
  • the frequency and waveform of the radio frequency signal can be adjusted by adjusting the frequency of the dual complementary PWM signal output by the single-chip U4.
  • the voltage value of the third dual complementary PWM signal may be, for example, 12V, which is not specifically limited here.
  • the two input terminals A and B of the NAND gate U8 both receive a high level signal, and therefore, the NAND gate U8 outputs a low level signal.
  • the second input terminals A of the AND gates U6 and U7 both receive the low-level signal output by the NAND gate U8. It is understandable that at this time, regardless of whether the single-chip microcomputer U4 continues to output the dual complementary PWM signals, the AND gates U6 and U7 output low-level signals, that is, the logic control circuit 41 has no signal output. Therefore, the MOS switches Q1 and Q2 cannot be driven to turn off, and therefore, the push-pull transformer T1 also has no signal output.
  • the second control unit 50 can simultaneously control the output state of the DC-DC transformer M1 and the output state of the first control unit 40 by outputting the second switch signal SW_PC_M1.
  • the transmission state of the dual complementary PWM signal can thus switch the radio frequency output state of the radio frequency energy generating circuit 30, that is, the radio frequency output state of the radio frequency ablation power supply 100.
  • logic control circuit 41 and the DC-DC transformer M1 need to be in a signal output state at the same time to make the push-pull transformer T1 in a signal output state.
  • the DC-DC transformer M1 is provided in the radio frequency energy generating circuit 30, that is, the main power loop, if the logic control circuit 41 is not provided, the main power loop will output high power at the moment of startup. Bring discomfort or even danger to living organisms, such as the human body.
  • the logic control circuit 41 by setting the logic control circuit 41 and simultaneously turning on the output of the logic control circuit 41 and the DC-DC transformer M1, it can ensure that the radio frequency output power slowly changes from low power to high power, so as to avoid the main power.
  • the circuit outputs high power at the moment of startup, which brings discomfort or danger to the human body.
  • the radio frequency ablation power supply 100 may further include a light board (not shown) electrically connected to the second control unit 50, and the second control unit 50 may also be used for When the ablation parameter or ablation power is abnormal, the light panel is controlled to emit light to indicate the abnormality.
  • the radio frequency ablation power supply 100 may further include a buzzer (not shown) electrically connected to the second control unit 50, and the second control unit 50 may also be used for setting the ablation parameters or ablation parameters. When there is an abnormality in the power, etc., the buzzer is controlled to emit a sound to indicate the abnormality.
  • the ablation electrode needle 211 may be provided with a cooling channel, and the cooling channel is used to transport a gaseous or liquid cooling medium (such as cooling water) to cool the high-temperature part, so as to control the local temperature during the ablation operation.
  • the cooling channel can communicate with one of the connecting pipes 220 on the ablation device 200.
  • the radio frequency ablation system 1000 may further include a peristaltic pump (not shown), and the cooling medium is delivered by the peristaltic pump to the cooling channel in the ablation electrode needle 211 through the connecting pipeline 220, and The cooling channel circulates to achieve the cooling effect.
  • a peristaltic pump not shown
  • the cooling medium is delivered by the peristaltic pump to the cooling channel in the ablation electrode needle 211 through the connecting pipeline 220, and The cooling channel circulates to achieve the cooling effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Power Engineering (AREA)
  • Surgical Instruments (AREA)

Abstract

本申请提供一种射频消融电源及射频消融系统。射频消融电源包括第一控制单元、第二控制单元和射频能量产生电路。射频能量产生电路包括依次电连接的电源模块、降压模块以及电压转换模块。电源模块提供稳压直流电信号。降压模块对稳压直流电信号进行降压处理,输出低压直流电信号。电压转换模块与第一控制单元电连接,以接收该低压直流电信号和第一控制单元输出的射频控制信号,并根据射频控制信号将该低压直流电信号转换成射频信号。第二控制单元给降压模块发送电压调节信号,以控制降压模块对当前输出的低压直流电信号的电压值进行调节。该射频消融电源能够单独对射频控制信号的输出进行精确、稳定的控制,从而可确保该射频信号稳定可靠。

Description

射频消融电源以及射频消融系统
本申请要求于2020年6月12日提交至中国国家知识产权局、申请号为202010539947.5和202021093804.8,发明名称为“射频消融电源以及射频消融系统”的中国专利申请的优先权,上述专利申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械技术领域,尤其涉及一种射频消融电源以及射频消融系统。
背景技术
目前,射频消融技术作为医疗领域的新兴技术,已经在肿瘤疾病、神经疾病、心脏疾病等的治疗中得到了应用。射频消融是将消融电极送至病变部位,并利用该消融电极在病变组织内产生电热效应,使病变细胞干燥坏死,从而达到治疗目的。
例如,射频消融技术应用于治疗肥厚型心肌病时,电极针与射频消融电源电性连接,在超声引导下,电极针经肋骨间经心尖穿刺至心脏室间隔内的心肌肥厚处,启动射频消融电源后,电极针对肥厚的心肌进行持续消融,直至病变的心肌细胞脱水坏死,从而使得肥厚心肌坏死萎缩、变薄,左室流出道增宽。
为了确保消融治疗过程的安全以及能够获得预期的治疗效果,射频能量的各种输出参数的控制显得尤为重要。现有的一些射频消融电源通常通过控制器来对整个消融过程进行控制,该控制器既要对输出的射频信号的频率和波形进行控制,还要进行其它控制,例如射频输出开关控制、射频功率调节控制、用户输入参数检测及处理、射频参数检测及处理、射频消融过程的逻辑控制、输出界面显示等,从而可能出现对射频信号波形处理的延迟而影响射频信号波形的生成,甚至导致射频信号波形失真。异常的射频信号波形可能会导致射频功率、射频电流输出等的不稳定,从而影响到射频消融的效果。
发明内容
本申请提供一种射频消融电源以及射频消融系统,能够对射频控制信号的输出进行精确、稳定的控制,以确保所述射频消融电源输出的射频信号的波形的稳定性,从而可使所述射频消融电源能够输出稳定可靠的射频信号,以确保消融过程的安全以及能够获得预期的消融治疗效果。
第一方面,本申请提供一种射频消融电源,所述射频消融电源包括第一控制单元、射频能量产生电路、以及第二控制单元。所述第一控制单元用于输出射频控制信号。所述射频能量产生电路包括依次电连接的电源模块、降压模块以及电压转换模块。其中,所述电源模块用于提供一稳压直流电信号;所述降压模块用于对所述稳压直流电信号进行降压处理,以输出低压直流电信号;所述电压转换模块还与所述第一控制单元电连接,所述电压转换模块用于接收所述低压直流电信号和所述射频控制信号,并根据所述射频控制信号将所述低压直流电信号转换成射频信号。所述第二控制单元与所述降压模块电连接,所述第二控制单元用于给所述降压模块发送电压调节信号,以控制所述降压模块对当前输出的低压直流电信号的电压值进行调节,从而实现对所述射频信号的功率调节。
第二方面,本申请提供一种射频消融系统,所述射频消融系统包括消融装置以及上述的射频消融电源。所述消融装置与所述射频消融电源的输出端电连接,所述消融装置用于 接收所述射频消融电源输出的射频信号,并利用所述射频信号的射频能量对待消融部位进行射频消融。
本申请的所述射频消融电源通过第一控制单元单独输出所述射频控制信号来对射频信号进行控制,通过第二控制单元来执行射频输出开关控制、射频功率调节控制、用户输入参数检测及处理、实际消融参数检测及处理、输出界面显示等操作,即,将所述射频控制信号的输出控制与其他控制分开,从而可对所述射频控制信号的输出进行更加精确、稳定的控制,以确保所述射频控制信号的稳定性,避免所述射频控制信号的输出受到干扰而导致所述射频信号的波形失真,进而可以使所述射频消融电源能够输出稳定可靠的射频信号,以确保消融过程的安全以及能够获得预期的消融治疗效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种射频消融系统的示意框图。
图2为本申请实施例提供的一种射频消融电源的立体结构示意图。
图3为本申请实施例提供的一种消融装置的结构示意图,所述消融装置包括的消融电极针与绝缘套管处于装配状态。
图4为图3所示的消融电极针与绝缘套管处于未装配状态的结构示意图。
图5为本申请一实施例提供的射频消融电源的功能模块图。
图6为本申请实施例提供的电源模块的功能模块图。
图7为本申请实施例提供的射频消融电源中射频能量产生电路的电路结构示意图。
图8为本申请另一实施例提供的射频消融电源的功能模块图。
图9为本申请实施例提供的降压模块的电压调节电路的部分电路结构示意图。
图10为本申请实施例提供的降压模块的输出状态控制电路的结构示意图。
图11为本申请实施例提供的射频信号的频率和波形控制电路的结构示意图。
图12为本申请实施例中与射频信号相关的各种信号的时序示意图。
主要元件符号说明
射频消融系统          1000
射频消融电源          100
外壳                  11
输入输出接口          12
消融装置              200
消融针组件            210
消融电极针            211
绝缘套管              212
消融手柄              213
连接管路              220
射频能量产生电路      30
电源模块              31
电源输入端口          311
电源输出端口          312
整流模块              313
降压模块              32
电压转换模块          33
变压模块              331
开关模块              332
滤波模块              34
第一控制单元          40
逻辑控制电路          41
第二控制单元          50
消融参数检测模块      51
控制组件              52
机械旋钮              521
机械按键              522
显示单元              53
DAC模块               54
连接器                J1、J2、J3
DC-DC变压器           M1
变压器                T1
连接端                TM1、TM2、TM3、TM4、TM5
MOS开关               Q1、Q2
电感                  L1
电容器                C11、C13、C14
单片机                U4
第一输出端口          21
第二输出端口          22
MOS开关驱动芯片       U5
DAC芯片               U10
跟随器                U11
光耦                  U71
与门                  U6、U7、U9
与非门                U8
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。其中,附图仅用于示例性说明,表示的仅是示意图,不能理解为对本申请的限制。
除非另有定义,本申请所使用的所有的技术和科学术语与本领域技术人员通常理解的含义相同。本申请在说明书中所使用的术语只是为了描述具体实施例的目的,不是旨在限制本申请。
请参阅图1,本申请实施例提供的一种射频消融系统1000包括射频消融电源100以及与所述射频消融电源100的输出端电连接的消融装置200。其中,如图2所示,所述射频消融电源100可包括外壳11以及设于所述外壳11上的多个输入输出接口12。所述输入输出接口12可用于与所述消融装置200等设备进行连接。所述射频消融电源100作为一种射频能量产生及控制装置来使用,用于在射频消融过程中基于设定的消融参数产生射频消融所需要的射频能量,以及根据检测到的待消融部位的相关消融参数来控制所述射频能量的输出。其中,所述待消融部位是指生物体内的病变部位,例如人体的心脏的病变组织或者其他病变组织。
具体地,请参阅图3,所述消融装置200至少包括消融针组件210以及多条连接管路220。其中,所述多条连接管路220用于将所述消融针组件210与所述射频消融电源100和冷却循环装置(图未示)等进行连接。
在进行射频消融时,所述消融针组件210插入至所述待消融部位中,并接收所述射频消融电源100输出的射频能量,以及将所述射频能量释放到所述待消融部位,以对所述待消融部位进行射频消融,从而达到消融治疗病变组织的目的。以肥厚型心肌病为例,所述消融针组件210通过经肋骨间经心尖途径,刺入患者心脏,对肥厚的室间隔心肌进行射频消融操作,以治疗肥厚型心肌病。
请参阅图4,在一种实施方式中,所述消融针组件210包括消融电极针211、中空的绝缘套管212、以及与所述消融电极针211近端连接的消融手柄213。所述绝缘套管212活动套设于所述消融电极针211外并与所述消融手柄213可拆卸连接。所述消融电极针211的远端伸出所述绝缘套管212,由于绝缘套管212全部绝缘,消融电极针211伸出绝缘套管212的部分用于执行消融操作。具体地,当所述消融电极针211电性连接所述射频消融电源100的输出端时,所述消融电极针211接收并传递高频电流使得消融电极针211远端周围的病变组织中带电荷的正负离子发生高速振荡运动,高速振荡的离子因摩擦产生大量的热量,使病变组织内温度升高,最终使得病变细胞内的蛋白质变性,细胞内外水分丧失,病变组织出现凝固性坏死,从而实现射频消融,达到治疗的目的。当需要改变消融电极针211远端伸出绝缘套管212的长度,以调节有效消融长度时,可以通过所述消融手柄213中的驱动结构(图未示)带动绝缘套管212朝远端或近端移动。可以理解的是,此处限定术语“近端”及“远端”为医疗领域的惯用术语。具体而言,“远端”表示手术操作过程中远离操作人员的一端,“近端”表示手术操作过程中靠近操作人员的一端。
请参阅图5,图5为本申请一实施例提供的射频消融电源的功能模块图。在本实施方式中,所述射频消融电源100包括射频能量产生电路30、第一控制单元40、以及第二控制单元50。其中,所述射频能量产生电路30用于接收外部电源提供的输入电压,并对所述输入电压进行处理,例如降压、频率转换、电隔离等,以最终输出射频能量。
在本实施方式中,所述射频能量产生电路30包括依次电连接的电源模块31、降压模块 32以及电压转换模块33。其中,所述电源模块31用于提供一稳压直流电信号。具体地,所述电源模块31可接收外部电源(图未示)提供的输入电压,并对所述输入电压进行整流稳压处理,以输出所述稳压直流电信号。
在本实施方式中,如图6所示,所述电源模块31包括电源输入端口311、电源输出端口312和电性连接于所述电源输入端口311与电源输出端口312之间的整流模块313。其中,所述电源输入端口311用于与外部的AC电源(例如220伏的市电)电连接,以接收外部电源输入的高压交流电信号。所述整流模块313用于对输入的所述高压交流电信号进行整流滤波,并通过所述电源输出端口312输出所述稳压直流电信号。其中,所述稳压直流电信号为高压直流电信号,例如可为310伏左右的直流电信号。
所述降压模块32与所述电源输出端口312电连接,用于接收所述电源模块31输出的所述稳压直流电信号,并对所述稳压直流电信号进行降压处理后输出低压直流电信号。
所述第一控制单元40与所述电压转换模块33电连接,用于给所述电压转换模块33输出一射频控制信号。所述电压转换模块33用于接收所述低压直流电信号和所述射频控制信号,并根据所述射频控制信号将所述低压直流电信号转换成射频信号,并将所述射频信号输出至一射频输出模块,例如所述消融装置200。
如此,通过所述电压转换模块33和所述第一控制单元40可完成对所述低压直流电信号的频率转换,即,将直流电信号转换为高频交流电信号(DC转AC)。其中,所述射频信号即为所述高频交流电信号,例如,480kHz的高频交流电信号。如此,所述射频能量产生电路30能够输出480kHz的射频信号。可以理解的是,所述高频交流电信号的频率值不限于是480kHz,还可以是其他频率值,在此不做具体限定。
所述消融装置200用于接收所述射频信号并利用所述射频信号的射频能量对所述待消融部位进行射频消融。
可以理解的是,在其他实施方式中,所述电压转换模块33也可以设置在所述电源模块31和所述降压模块32之间,即,所述射频能量产生电路30包括依次电连接的电源模块31、电压转换模块33、以及降压模块32。如此,所述射频能量产生电路30先对所述稳压直流电信号进行频率转换,再进行降压处理。
所述第二控制单元50与所述降压模块32电连接,所述第二控制单元50用于给所述降压模块32发送电压调节信号,以控制所述降压模块32对当前输出的低压直流电信号的电压值进行调节,从而实现对所述射频信号的功率调节。
在本实施方式中,所述第二控制单元50还可用于对所述射频能量产生电路30的射频输出状态进行开关控制、对用户输入参数进行检测及处理、对实际消融参数进行检测及处理、以及对输出界面进行显示控制等,具体技术细节请参阅下文的具体介绍。
在本实施方式中,第一控制单元40和所述第二控制单元50为相互独立的两个电子器件。
在电压转换过程中,所述电压转换模块33将直流信号转换为交流信号,所述交流信号的频率与所述射频控制信号的频率相同。可以理解的是,所述射频控制信号的稳定性会直接影响到所述射频信号的频率和波形的稳定性。即,所述射频控制信号的不稳定,会导致所述射频信号的波形失真。
本申请的所述射频消融电源100通过第一控制单元40来单独输出所述射频控制信号来对射频信号进行控制,通过第二控制单元50来执行射频输出开关控制、射频功率调节控制、 用户输入参数检测及处理、实际消融参数检测及处理、输出界面显示等操作,即,将所述射频控制信号的输出控制与其他控制分开,从而能够对所述射频控制信号的输出进行更加精确、稳定的控制,以确保所述射频控制信号的稳定性,避免所述射频控制信号的输出受到干扰而导致所述射频信号的波形失真,进而可以使所述射频消融电源100能够输出稳定可靠的射频信号,以确保消融过程的安全以及能够获得预期的消融治疗效果。
以下对所述射频能量产生电路30的电路结构做具体介绍。
在一种实施方式中,例如图7所示,所述电源输出端口312在电路结构上可对应为连接器J1,在外观结构上可对应为图2中所示的设于所述射频消融电源100的外壳11上的多个输入输出接口12中的其中一个接口。所述降压模块32可对应为具有电隔离性能的DC-DC变压器M1。
其中,所述DC-DC变压器M1用于将所述电源输出端口312输出的高压直流电信号转换为低压直流电信号,同时使得转换后的低压直流电信号与外部电源进行电隔离,以减少漏电流的产生。例如,所述整流模块313可接收220伏的市电,并对该220伏的市电进行整流滤波后,输出310伏左右的高压直流电信号。所述DC-DC变压器M1可将该310伏左右的高压直流电信号降压至0~48伏的低压直流电信号。可以理解的是,所述DC-DC变压器M1的电压转换及电隔离的工作原理为本领域的已知技术,在此不作具体介绍。所述高压直流电信号以及所述低压直流电信号的电压值也可以为其他值,在此不做具体限定。
如图7所示,在所述一种实施方式中,所述射频能量产生电路30还可包括电连接于所述DC-DC变压器M1与所述电压转换模块33之间的滤波模块34,所述滤波模块34用于对所述DC-DC变压器M1输出的低压直流电信号进行滤波处理,以进一步消除外部电源和内部噪音对所述低压直流电信号的影响,使进入所述电压转换模块33的所述低压直流电信号更稳定。在所述一种实施方式中,所述滤波模块34为LC滤波电路,包括电感L1以及电容器C11。
请同时参阅图5和图7,所述电压转换模块33包括变压模块331和开关模块332。其中,所述变压模块331通过所述滤波模块34与所述降压模块32的输出端电连接,所述开关模块332电连接于所述第一控制单元40和所述变压模块331之间。
在本实施方式中,所述变压模块331可对应为具有电隔离性能的推挽变压器T1。所述推挽变压器T1包括两个初级绕组TM1-TM2和TM2-TM3、和一个次级绕组TM4-TM5,其中一个初级绕组TM1-TM2包括两个连接端TM1、TM2,另一个初级绕组TM2-TM3包括两个连接端TM2、TM3,即,所述两个初级绕组TM1-TM2和TM2-TM3共用同一个连接端TM2。所述连接端TM2通过所述滤波模块34与所述降压模块32的输出端电连接,用于接收经过所述滤波模块34进行滤波的低压直流电信号。
所述开关模块332包括MOS开关Q1和Q2,其中,所述MOS开关Q1和Q2的控制端分别与所述第一控制单元40电连接,以接收所述第一控制单元40输出的射频控制信号。所述推挽变压器T1的连接端TM1通过所述MOS开关Q1连接到接地端SGND,以及通过电容器C13连接到接地端SGND。所述推挽变压器T1的连接端TM3通过所述MOS开关Q2连接到接地端SGND,以及通过电容器C14连接到接地端SGND。所述初级绕组TM1-TM2与所述电容器C13所在的回路形成第一LC振荡电路,所述初级绕组TM2-TM3与所述电容器C14所在的回路形成第二LC振荡电路。所述第一控制单元40通过所述射频控制信号分别控制所述MOS开关Q1和Q2的通断频率,使所述第一LC振荡电路和所述第二LC振荡电路在相应的MOS开 关截止期间分别产生正弦波信号,所述推挽变压器T1的两个连接端TM1和TM3处的直流电压信号的电压值发生连续变化,从而使所述推挽变压器T1的次级绕组TM4-TM5相应地感应出交流射频信号,最后可通过一输出接口,例如连接器J2输出所述射频信号。
以所述连接端TM1处的电压变化为例:在初始状态下,所述连接端TM1处的电压为0,所述低压直流信号传输到所述连接端TM2,当所述MOS开关Q1截止时,所述第一LC振荡电路在所述MOS开关Q1截止期间产生正弦波信号,因此,所述连接端TM1处的直流电压信号为电压值发生连续变化的正弦波信号,所述推挽变压器T1的次级绕组TM4-TM5相应地感应出正弦波信号;当所述MOS开关Q1导通时,所述连接端TM1通过导通的所述MOS开关Q1电连接到所述接地端SGND,因此,所述连接端TM1处的电压值变为0,所述推挽变压器T1的次级绕组TM4-TM5对应于初级绕组TM1-TM2不产生感应信号。可以理解的是,所述连接端TM3处的电压变化原理与所述连接端TM1处的电压变化原理相同,即,在初始状态下,所述连接端TM3处的电压为0,当所述MOS开关Q2截止时,所述第二LC振荡电路在所述MOS开关Q2截止期间产生正弦波信号,所述连接端TM3处的直流电压信号为电压值发生连续变化的正弦波信号,所述推挽变压器T1的次级绕组TM4-TM5相应地感应出正弦波信号;当所述MOS开关Q2导通时,所述连接端TM3通过导通的所述MOS开关Q2电连接到所述接地端SGND,因此,所述连接端TM3处的电压值变为0,所述推挽变压器T1的次级绕组TM4-TM5对应于初级绕组TM2-TM3不产生感应信号。
可以理解的是,通过所述推挽变压器T1的连接端TM2接收所述低压直流电信号,并通过所述推挽变压器T1的次级绕组TM4-TM5感应出所述射频信号,可达到将所述射频信号与所述低压直流电信号进行电隔离的效果,以减少漏电流的产生。其中,所述连接器J2在外观结构上可对应于图2中所示的设于所述射频消融电源100的外壳11上的多个输入输出接口12中的其中一个接口。
本申请的所述射频消融电源100在所述射频能量产生电路30中使用DC-DC变压器M1来对输入电压进行降压处理以及电隔离,并使用推挽变压器T1来将DC-DC变压器M1输出的低压直流电信号转换成射频信号以及电隔离,以生成所述射频信号,从而在生成所述射频信号之前,通过所述DC-DC变压器M1和所述推挽变压器T1来增加爬电距离和减少漏电流的产生,以实现对所述射频能量产生电路30中的输入电压的双重电隔离,从而提高所述射频消融电源100的防电击等级,使所述射频消融电源100具有较好的隔离效果。
由于心脏容许的漏电流值远小于其它组织器官的容许的漏电流值,射频消融应用于心脏疾病的治疗时,相较肿瘤等的消融应满足更高的安全级别,相应对防电击的要求也越高,本申请的射频消融电源100采用了双重电隔离,更适合应用于心脏疾病如肥厚型心肌病的消融治疗,能够保证射频消融的治疗效果和安全性。
以下对所述第二控制单元50执行的相关控制做具体介绍。
请再次参阅图5,在本实施方式中,所述射频消融电源100还包括与所述第二控制单元50分别电连接的消融参数检测模块51和控制组件52。所述消融参数检测模块51用于在射频消融过程中实时地检测所述待消融部位的相关电参数,并将检测到的电参数反馈给所述第二控制单元50。所述控制组件52用于接收用户的输入操作来生成相应的输入信号,并将所述输入信号发送给所述第二控制单元50。所述第二控制单元50用于根据所述消融参数检测模块51反馈的电参数和/或所述控制组件52发送的输入信号,来生成所述电压调节信号,并将所述电压调节信号发送给所述降压模块32,以控制所述降压模块32对当前输出的低压直 流电信号的电压值进行实时的调节。如此,所述第二控制单元50能够执行用户输入参数检测及处理、实际消融参数检测及处理、以及射频功率调节控制等操作。
可以理解的是,通过实时地检测所述待消融部位的相关电参数,并根据检测到的电参数对当前输出的低压直流电信号进行实时调整,可达到实时地调整所述射频能量产生电路30输出的射频信号的功率的目的,以确保所述射频信号能够产生持续、稳定的热效应,以获得预期的消融治疗效果。
具体地,所述电参数包括但不限于消融部位的消融温度和阻抗、以及施加到所述消融部位的消融电压和消融电流。相应地,所述消融参数检测模块51可包括但不限于温度检测模块、阻抗检测模块、电压检测模块、电流检测模块。其中,所述温度检测模块可为温度传感器,例如热电偶或热敏电阻等,用于在射频消融过程中实时地检测所述待消融部位的消融温度。所述阻抗检测模块用于检测所述消融部位的阻抗。所述电压检测模块以及所述电流检测模块可电连接于所述射频能量产生电路30,例如电连接于所述电压转换模块33的输出端。所述电压检测模块用于检测所述射频能量产生电路30输出的消融电压,所述电流检测模块用于检测所述射频能量产生电路30输出的消融电流。可以理解的是,所述第二控制单元50还可根据接收到的消融电压和消融电流计算实时的消融功率。
可以理解的是,所述消融参数检测模块51虽然在逻辑划分上归为所述射频消融电源100的一部分,但所述消融参数检测模块51的至少一部分可设于所述消融装置200上。例如,所述温度检测模块和所述阻抗检测模块可设于所述消融装置200的消融电极针211上。
在本实施方式中,如图2和图5所示,所述射频消融电源100还可包括与所述第二控制单元50电连接的显示单元53,所述第二控制单元50还用于控制所述显示单元53显示与射频消融相关的电参数以及所述消融功率等,以显示实时的消融状态。也就是说,所述第二控制单元50能够执行输出界面显示等操作。如此,医师等医护人员可通过观察所述显示单元53所显示的各种电参数来了解射频消融手术的情况,以及通过所述控制组件52来及时调节所述射频能量产生电路30的输出,使所述消融电极针211基于设定的功率值以预设温度对病变组织进行射频消融。
如图2所示,所述控制组件52可包括设于所述射频消融电源100的外壳11上的实体机械旋钮521、机械按键522、或触摸按键等,以供医护人员进行操作。可选的,所述显示单元53也可为触摸显示屏,医护人员也可以通过触摸所述显示单元53来进行相关操作。例如,术前,医师可根据待消融部位区域的大小设定消融阻抗的上下限范围、消融温度的上限值、消融时间等参数;术中,医师可根据所述射频消融电源100的显示单元53所显示的数据,来调节(例如,可通过触控所述显示单元53,或操作设置于所述外壳11上的实体机械旋钮521或机械按键522等)所述射频消融电源100输出的射频信号的功率值,使所述消融部位的温度在预设温度范围内,并使消融电极针211基于设置的功率值以预设温度对病变组织进行射频消融;当达到预定的消融时间、或预定消融效果时,所述第二控制单元50可切断所述降压模块32的输出电压,使所述消融装置200停止消融。
请参阅图8,在一实施方式中,所述第二控制单元50输出的所述电压调节信号为数字信号,所述射频消融电源100还包括电连接于所述第二控制单元50和所述降压模块32之间的DAC模块54。所述DAC模块54用于将所述第二控制单元50输出的所述电压调节信号从数字信号转换为模拟信号,再将所述模拟信号传输给所述降压模块32,以调节所述降压模块32输出的低压直流电信号的电压值,从而实现对所述射频消融电源100的射频输出功率的 调节。
具体地,所述第二控制单元50作为主控制器来使用,其可为微处理器。请参阅图9,所述DAC模块54可对应为DAC芯片U10,所述第二控制单元50可通过连接器J3的三个接口POWER_CS、POWER_SCK、POWER_SDI向所述DAC芯片U10输出数字信号SPI。所述DAC芯片U10可根据接收到的所述数字信号SPI输出相应的模拟信号。其中,所述模拟信号从所述DAC芯片U10的引脚8出来后,经过跟随器U11进入所述DC-DC变压器M1,即所述降压模块32中,从而实现所述第二控制单元50对所述DC-DC变压器M1输出的低压直流电信号的电压值的调节。
在所述实施方式中,所述第二控制单元50还可控制所述DAC芯片U10的输出状态。例如图9所示,所述第二控制单元50可输出第一开关信号SW_DAC到所述DAC芯片U10的使能引脚5,以实现对所述DAC芯片U10的输出状态的控制。其中,所述输出状态可包括输出和关断两种状态。
在所述实施方式中,所述第二控制单元50还可用于输出第二开关信号来控制所述DC-DC变压器M1的输出状态,从而实现对所述射频消融电源100的射频输出的开关控制。其中,所述输出状态可包括输出和关断两种状态。例如图10所示,所述第二控制单元50可输出第二开关信号SW_PC_M1,并通过与门U9和光耦U71将所述第二开关信号SW_PC_M1传输至所述DC-DC变压器M1的引脚2,以实现对所述DC-DC变压器M1的输出状态的控制。在本实施方式中,当所述第二开关信号SW_PC_M1为低电平时,所述DC-DC变压器M1处于有信号输出的状态。反之,当所述第二开关信号SW_PC_M1为高电平时,所述DC-DC变压器M1处于无信号输出的状态,即关断状态。
以下对所述第一控制单元40执行的射频信号的频率和波形控制做具体介绍。
请参阅图11,所述第一控制单元40在电路结构上可对应为单片机U4。所述射频控制信号为双路互补PWM信号,包括第一路PWM信号PWM 1和第二路PWM信号PWM 2。所述单片机U4通过第一输出端口21输出所述第一路PWM信号PWM 1,通过第二输出端口22输出所述第二路PWM信号PWM 2。
所述MOS开关Q1的控制端与所述单片机U4的第一输出端口21电连接,以接收所述第一路PWM信号PWM 1。所述MOS开关Q2的控制端与所述单片机U4的第二输出端口22电连接,以接收所述第二路PWM信号PWM 2。
所述单片机U4通过输出所述双路互补PWM信号来分别控制所述MOS开关Q1和Q2交替截止,使所述第一LC振荡电路和所述第二LC振荡电路在相应的MOS开关截止期间分别产生正弦波半波信号,所述推挽变压器T1的两个初级绕组的连接端TM1和TM3处随之交替形成正弦波半波信号,从而使所述推挽变压器T1的次级绕组TM4-TM5相应地感应出正弦波半波信号。
值得注意的是,在本实施方式中,两个所述初级绕组TM1-TM2和TM2-TM3的同名端不同,如此,所述推挽变压器T1的次级绕组TM4-TM5在所述MOS开关Q1和Q2交替截止期间,对应于两个所述初级绕组TM1-TM2和TM2-TM3分别感应出方向相反的两个正弦波半波信号,从而输出完整的正弦波信号,即,所述射频信号为正弦波信号。
例如,在MOS开关Q1截止期间,所述第一LC振荡电路产生正弦波半波信号,相应地,所述推挽变压器T1的次级绕组TM4-TM5感应出一个正弦波半波信号;可以理解的是,在此期间,MOS开关Q2导通,所述第二LC振荡电路不产生正弦波信号。而在MOS开关Q2截止 期间,所述第二LC振荡电路产生正弦波半波信号,相应地,所述推挽变压器T1的次级绕组TM4-TM5感应出另一个方向相反的正弦波半波信号;可以理解的是,在此期间,MOS开关Q1导通,所述第一LC振荡电路不产生正弦波信号。如此,在一个周期内,所述推挽变压器T1的次级绕组TM4-TM5感应出一个完整的正弦波信号。
其中,所述射频控制信号的频率与所述第一LC振荡电路和第二LC振荡电路的频率相同,所述正弦波信号的频率与所述第一LC振荡电路和第二LC振荡电路的频率相同。若所述射频控制信号不稳定,则会导致所述正弦波信号的波形失真。本申请通过所述单片机U4来单独输出所述射频控制信号,从而可防止所述射频控制信号的输出受到主控制器需要处理的其他控制信号及控制进程的影响,以确保所述射频控制信号的稳定性,进而可避免所述射频信号的波形失真。
请同时参阅图8和图11,在本实施方式中,所述射频消融电源100还包括电连接于所述第一控制单元40和所述开关模块332之间的逻辑控制电路41,所述第二控制单元50还与所述逻辑控制电路41电连接,并输出所述第二开关信号SW_PC_M1来控制所述逻辑控制电路41的输出状态,以控制所述双路互补PWM信号的传输状态,从而实现对所述射频消融电源100的射频输出的开关控制。
具体地,所述逻辑控制电路41包括与门U6和U7。所述与门U6的第一输入端B与所述单片机U4的第一输出端口21电连接,以接收所述第一路PWM信号PWM 1,所述与门U6的输出端通过MOS开关驱动芯片U5与所述MOS开关Q1的控制端电连接。所述与门U7的第一输入端B与所述单片机U4的第二输出端口22电连接,以接收所述第二路PWM信号PWM 2,所述与门U7的输出端通过MOS开关驱动芯片U5与所述MOS开关Q2的控制端电连接。
所述逻辑控制电路41还可包括与非门U8。所述与非门U8的两个输入端A、B均与所述第二控制单元50电连接以接收所述第二开关信号SW_PC_M1。所述与非门U8的输出端与所述与门U6和U7的第二输入端A分别电连接。
以下结合与所述射频信号相关的各种信号的时序示意图来对所述射频信号的频率和波形控制做进一步的介绍。
如图12所示,S1为所述第二控制单元50输出的所述第二开关信号SW_PC_M1的时序示意图。S2为所述与非门U8的输出信号,即所述与门U6和U7的第二输入端A接收到的输入信号的时序示意图。S3为所述与门U6的输出信号的时序示意图。S4为所述与门U7的输出信号的时序示意图。S5为所述推挽变压器T1的连接端TM1处的直流电压信号的波形示意图。S6为所述推挽变压器T1的连接端TM3处的直流电压信号的波形示意图。S7为所述推挽变压器T1的次级绕组TM4-TM5感应出的射频信号的波形示意图。
请同时参阅图11-图12,在射频消融过程中,所述单片机U4通过第一输出端口21和第二输出端口22将所述双路互补PWM信号分别输出至所述与门U6、U7的第一输入端B。即,所述单片机U4通过第一输出端口21输出所述第一路PWM信号PWM 1至所述与门U6的第一输入端B,以及通过第二输出端口22输出所述第二路PWM信号PWM 2至所述与门U7的第一输入端B。其中,所述双路互补PWM信号的频率例如可为480kHz,电压值例如可为3.3V,在此不做具体限定。
当所述第二开关信号SW_PC_M1为低电平时,所述与非门U8的两个输入端A和B均接收到低电平信号,因此,所述与非门U8输出高电平信号。此时,所述与门U6、U7的第二输入端A均接收到所述与非门U8输出的高电平信号。
所述与门U6对所述高电平信号和所述第一路PWM信号PWM 1进行与运算,所述与门U7对所述高电平信号和所述第二路PWM信号PWM 2进行与运算,从而使得所述与门U6的输出信号与其第一输入端B接收到的第一路PWM信号PWM 1对应,所述与门U7的输出信号与其第一输入端B接收到的第二路PWM信号PWM 2信号对应。如此,所述与门U6、U7可输出第二双路互补PWM信号至所述MOS开关驱动芯片U5。其中,所述第二双路互补PWM信号的电压值例如可为5V,在此不做具体限定。
所述MOS开关驱动芯片U5在接收到所述第二双路互补PWM信号后,可对应地输出第三双路互补PWM信号来分别驱动所述MOS开关Q1、Q2交替截止,以使所述第一LC振荡电路和所述第二LC振荡电路在相应的MOS开关截止期间分别产生正弦波半波信号,所述推挽变压器T1的两个初级绕组的连接端TM1和TM3处的直流电压信号形成为正弦波半波信号,从而使所述推挽变压器T1的次级绕组TM4-TM5对应于两个所述初级绕组TM1-TM2和TM2-TM3分别感应出方向相反的两个正弦波的半波信号,以输出完整的正弦波信号。可见,所述射频信号的频率和波形可通过调节所述单片机U4输出的双路互补PWM信号的频率来调节。其中,所述第三双路互补PWM信号的电压值例如可为12V,在此不做具体限定。
当所述第二开关信号SW_PC_M1为高电平时,所述与非门U8的两个输入端A和B均接收到高电平信号,因此,所述与非门U8输出低电平信号。此时,所述与门U6、U7的第二输入端A均接收到所述与非门U8输出的低电平信号。可以理解的是,此时不管所述单片机U4是否继续输出所述双路互补PWM信号,所述与门U6、U7都是输出低电平信号,即,所述逻辑控制电路41没有信号输出,从而无法驱动所述MOS开关Q1、Q2截止,因此,所述推挽变压器T1也没有信号输出。
可见,在本申请中,当所述第二开关信号SW_PC_M1为低电平时,所述逻辑控制电路41和所述DC-DC变压器M1均处于有信号输出的状态,使得所述推挽变压器T1也有信号输出。反之,当所述第二开关信号SW_PC_M1为高电平时,所述逻辑控制电路41和所述DC-DC变压器M1均处于无信号输出的状态,使得所述推挽变压器T1也没有信号输出。也就是说,在本申请中,所述第二控制单元50能够通过输出所述第二开关信号SW_PC_M1来同时控制所述DC-DC变压器M1的输出状态和所述第一控制单元40输出的所述双路互补PWM信号的传输状态,从而可对所述射频能量产生电路30的射频输出状态,即,所述射频消融电源100的射频输出状态进行开关控制。
可以理解的是,所述逻辑控制电路41和所述DC-DC变压器M1需要同时处于有信号输出的状态才能使所述推挽变压器T1处于有信号输出的状态。
可以理解的是,由于所述DC-DC变压器M1设置于射频能量产生电路30,即主功率回路中,若不设置所述逻辑控制电路41,所述主功率回路会在启动的瞬间输出大功率给生物体,例如人体带来不适甚至危险。本申请通过设置所述逻辑控制电路41,并同时开启所述逻辑控制电路41和所述DC-DC变压器M1的输出,可确保射频输出功率从小功率缓慢变成大功率,以避免所述主功率回路在启动的瞬间输出大功率而给人体带来不适或危险。
可以理解的是,在一些实施方式中,所述射频消融电源100还可包括与所述第二控制单元50电连接的灯板(图未示),所述第二控制单元50还可用于在所述消融参数或消融功率等出现异常时,控制所述灯板发光以提示异常。可选地,所述射频消融电源100还可包括与所述第二控制单元50电连接的蜂鸣器(图未示),所述第二控制单元50还可用于在所述消融参数或消融功率等出现异常时,控制所述蜂鸣器发出声音以提示异常。
可以理解的是,由于所述消融电极针211接触组织的部分会传递射频能量导致组织产生高温,使得组织凝固性坏死而达到治疗目的,但局部温度过高会影响不需要进行消融操作的正常组织,因此,所述消融电极针211内可设有冷却通道,所述冷却通道用于输送气态或液态的冷却介质(如冷却水)对高温部位进行降温,以控制消融操作时的局部温度。其中,所述冷却通道可与所述消融装置200上的其中一条连接管路220连通。
相应地,所述射频消融系统1000还可包括蠕动泵(图未示),冷却介质被所述蠕动泵经所述连接管路220输送到所述消融电极针211内的冷却通道中,并在所述冷却通道中循环流动,以达到冷却的效果。
以上所述为本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (17)

  1. 一种射频消融电源,其特征在于,包括:
    第一控制单元,用于输出射频控制信号;
    射频能量产生电路,包括依次电连接的电源模块、降压模块以及电压转换模块,其中,所述电源模块用于提供一稳压直流电信号;所述降压模块用于对所述稳压直流电信号进行降压处理,以输出低压直流电信号;所述电压转换模块还与所述第一控制单元电连接,所述电压转换模块用于接收所述低压直流电信号和所述射频控制信号,并根据所述射频控制信号将所述低压直流电信号转换成射频信号;以及
    第二控制单元,与所述降压模块电连接,所述第二控制单元用于给所述降压模块发送电压调节信号,以控制所述降压模块对当前输出的低压直流电信号的电压值进行调节,从而实现对所述射频信号的功率调节。
  2. 如权利要求1所述的射频消融电源,其特征在于,所述射频消融电源还包括电连接于所述第一控制单元和所述电压转换模块之间的逻辑控制电路;
    所述第二控制单元还与所述逻辑控制电路电连接,并输出开关信号来控制所述逻辑控制电路的输出状态,以控制所述射频控制信号的传输状态,从而对所述射频消融电源的射频输出进行开关控制。
  3. 如权利要求2所述的射频消融电源,其特征在于,所述电压转换模块包括变压模块及开关模块;
    所述变压模块包括第一初级绕组、第二初级绕组和一个次级绕组;所述第一初级绕组包括第一连接端和第二连接端,第二初级绕组包括所述第二连接端和第三连接端;所述第二连接端与所述降压模块的输出端电连接,用于接收所述低压直流电信号;所述开关模块包括第一MOS开关和第二MOS开关;所述第一MOS开关和第二MOS开关的控制端分别与所述第一控制单元电连接,以接收所述第一控制单元输出的射频控制信号;所述变压模块的第一连接端通过所述第一MOS开关连接到接地端,以及通过第一电容器连接到接地端;所述变压模块的第三连接端通过所述第二MOS开关连接到接地端,以及通过第二电容器连接到接地端;
    所述第一初级绕组与所述第一电容器所在的回路形成第一LC振荡电路,所述第二初级绕组与所述第二电容器所在的回路形成第二LC振荡电路;
    所述第一控制单元通过所述射频控制信号分别控制所述第一MOS开关和第二MOS开关的通断频率,使所述第一LC振荡电路在所述第一MOS开关截止期间产生正弦波信号,所述第二LC振荡电路在所述第二MOS开关截止期间产生正弦波信号,从而使所述变压模块的次级绕组相应地感应出交流射频信号。
  4. 如权利要求3所述的射频消融电源,其特征在于,所述射频控制信号为双路互补PWM信号,包括第一路PWM信号和第二路PWM信号,所述第一控制单元通过第一输出端口输出所述第一路PWM信号,通过第二输出端口输出所述第二路PWM信号;
    所述第一MOS开关的控制端与所述第一控制单元的第一输出端口电连接,以接收所述第一路PWM信号;所述第二MOS开关的控制端与所述第一控制单元的第二输出端口电连接,以接收所述第二路PWM信号;
    所述第一控制单元通过输出所述双路互补PWM信号来分别控制所述第一MOS开关和所述第二MOS开关交替截止,使所述第一LC振荡电路在所述第一MOS开关截止期间产生 正弦波半波信号,所述第二LC振荡电路在第二MOS开关截止期间产生正弦波半波信号,从而使所述变压模块的次级绕组分别相应地感应出正弦波半波信号。
  5. 如权利要求4所述的射频消融电源,其特征在于,所述第一初级绕组和所述第二初级绕组的同名端不同,所述变压模块的次级绕组在所述第一MOS开关和第二MOS开关交替截止期间,对应于所述第一初级绕组和第二初级绕组分别感应出方向相反的两个正弦波半波,从而输出完整的正弦波信号,所述射频信号为所述正弦波信号。
  6. 如权利要求5所述的射频消融电源,其特征在于,所述逻辑控制电路包括:
    第一与门,所述第一与门的第一输入端与所述第一控制单元的第一输出端口电连接,以接收所述第一路PWM信号,所述第一与门的输出端通过MOS开关驱动芯片与所述第一MOS开关的控制端电连接;
    第二与门,所述第二与门的第一输入端与所述第一控制单元的第二输出端口电连接,以接收所述第二路PWM信号,所述第二与门的输出端通过所述MOS开关驱动芯片与所述第二MOS开关的控制端电连接;以及
    与非门,所述与非门的两个输入端均与所述第二控制单元电连接以接收所述开关信号,所述与非门的输出端与所述第一与门和第二与门的第二输入端分别电连接;
    其中,当所述开关信号为低电平时,所述逻辑控制电路处于有信号输出的状态。
  7. 如权利要求4所述的射频消融电源,其特征在于,所述第一控制单元为单片机。
  8. 如权利要求3所述的射频消融电源,其特征在于,所述变压模块为推挽变压器。
  9. 如权利要求1所述的射频消融电源,其特征在于,所述射频消融电源还包括与所述第二控制单元电连接的消融参数检测模块,所述消融参数检测模块用于在射频消融过程中实时地检测待消融部位的相关电参数,并将检测到的电参数反馈给所述第二控制单元;
    所述第二控制单元用于根据所述消融参数检测模块反馈的电参数,来生成所述电压调节信号。
  10. 如权利要求1所述的射频消融电源,其特征在于,所述射频消融电源还包括与所述第二控制单元电连接的控制组件,所述控制组件用于接收用户的输入操作来生成相应的输入信号,并将所述输入信号发送给所述第二控制单元;
    所述第二控制单元用于根据所述控制组件发送的输入信号,来生成所述电压调节信号。
  11. 如权利要求9或10所述的射频消融电源,其特征在于,所述降压模块为DC-DC变压器;
    所述第二控制单元为微处理器,所述第二控制单元输出的所述电压调节信号为数字信号;
    所述射频消融电源还包括电连接于所述第二控制单元和所述降压模块之间的DAC模块,所述DAC模块用于将所述第二控制单元输出的所述电压调节信号转换为模拟信号,再将所述模拟信号传输给所述降压模块,以调节所述降压模块输出的所述低压直流电信号的电压值。
  12. 如权利要求1或2所述的射频消融电源,其特征在于,所述第二控制单元还用于输出开关信号来控制所述降压模块的输出状态,以对所述射频消融电源的射频输出进行开关控制;其中,当所述开关信号为低电平时,所述降压模块处于有信号输出的状态。
  13. 如权利要求1或10所述的射频消融电源,其特征在于,所述射频消融电源还包括与 所述第二控制单元电连接的显示单元,所述第二控制单元还用于控制所述显示单元显示与射频消融相关的电参数。
  14. 如权利要求1所述的射频消融电源,其特征在于,所述电源模块包括:
    电源输入端口,用于与外部电源电连接,以接收所述外部电源输入的高压交流电信号;
    电源输出端口;以及
    整流模块,电性连接于所述电源输入端口与电源输出端口之间,所述整流模块用于对所述高压交流电信号进行整流滤波,并通过所述电源输出端输出所述稳压直流电信号。
  15. 如权利要求1所述的射频消融电源,其特征在于,所述射频消融电源还包括电连接于所述降压模块与所述电压转换模块之间的滤波模块,所述滤波模块用于对所述降压模块输出的低压直流电信号进行滤波处理。
  16. 一种射频消融系统,其特征在于,包括消融装置以及如权利要求1至15任意一项所述的射频消融电源,所述消融装置与所述射频消融电源的输出端电连接,所述消融装置用于接收所述射频消融电源输出的射频信号,并利用所述射频信号的射频能量对待消融部位进行射频消融。
  17. 如权利要求16所述的射频消融系统,其特征在于,所述消融装置包括与所述射频消融电源的输出端电连接的消融针组件,所述消融针组件包括消融电极针及活动套设于所述消融电极针外的绝缘套管。
PCT/CN2021/095222 2020-06-12 2021-05-21 射频消融电源以及射频消融系统 WO2021249161A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010539947.5 2020-06-12
CN202010539947.5A CN113824309A (zh) 2020-06-12 2020-06-12 射频消融电源以及射频消融系统
CN202021093804.8U CN212518792U (zh) 2020-06-12 2020-06-12 射频消融电源以及射频消融系统
CN202021093804.8 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021249161A1 true WO2021249161A1 (zh) 2021-12-16

Family

ID=78845165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095222 WO2021249161A1 (zh) 2020-06-12 2021-05-21 射频消融电源以及射频消融系统

Country Status (1)

Country Link
WO (1) WO2021249161A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115765488A (zh) * 2022-12-16 2023-03-07 杭州锐健医疗科技有限公司 射频消融电源电路及其控制方法
CN116196091A (zh) * 2023-04-28 2023-06-02 武汉半边天医疗技术发展有限公司 一种射频超声装置及系统
CN117281607A (zh) * 2023-11-23 2023-12-26 邦士医疗科技股份有限公司 一种低温等离子射频手术系统
CN117439031A (zh) * 2023-12-21 2024-01-23 深圳市瀚强科技股份有限公司 射频电源保护电路及无线通信设备
CN117883174A (zh) * 2023-12-14 2024-04-16 邦士医疗科技股份有限公司 一种双能量输出系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4104314B2 (ja) * 2001-10-04 2008-06-18 オリンパス株式会社 外科手術用処置具
CN105496549A (zh) * 2015-10-29 2016-04-20 绵阳立德电子股份有限公司 一种射频发生器及利用该射频器产生射频能量的方法
CN106137381A (zh) * 2015-03-31 2016-11-23 四川锦江电子科技有限公司 射频消融仪、射频消融仪的控制方法和装置
CN111214289A (zh) * 2019-12-24 2020-06-02 杭州诺诚医疗器械有限公司 射频能量发生装置以及射频消融系统
CN212518792U (zh) * 2020-06-12 2021-02-09 杭州诺诚医疗器械有限公司 射频消融电源以及射频消融系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4104314B2 (ja) * 2001-10-04 2008-06-18 オリンパス株式会社 外科手術用処置具
CN106137381A (zh) * 2015-03-31 2016-11-23 四川锦江电子科技有限公司 射频消融仪、射频消融仪的控制方法和装置
CN105496549A (zh) * 2015-10-29 2016-04-20 绵阳立德电子股份有限公司 一种射频发生器及利用该射频器产生射频能量的方法
CN111214289A (zh) * 2019-12-24 2020-06-02 杭州诺诚医疗器械有限公司 射频能量发生装置以及射频消融系统
CN212518792U (zh) * 2020-06-12 2021-02-09 杭州诺诚医疗器械有限公司 射频消融电源以及射频消融系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115765488A (zh) * 2022-12-16 2023-03-07 杭州锐健医疗科技有限公司 射频消融电源电路及其控制方法
CN116196091A (zh) * 2023-04-28 2023-06-02 武汉半边天医疗技术发展有限公司 一种射频超声装置及系统
CN116196091B (zh) * 2023-04-28 2023-09-19 武汉半边天医疗技术发展有限公司 一种射频超声装置及系统
CN117281607A (zh) * 2023-11-23 2023-12-26 邦士医疗科技股份有限公司 一种低温等离子射频手术系统
CN117281607B (zh) * 2023-11-23 2024-03-15 邦士医疗科技股份有限公司 一种低温等离子射频手术系统
CN117883174A (zh) * 2023-12-14 2024-04-16 邦士医疗科技股份有限公司 一种双能量输出系统
CN117439031A (zh) * 2023-12-21 2024-01-23 深圳市瀚强科技股份有限公司 射频电源保护电路及无线通信设备
CN117439031B (zh) * 2023-12-21 2024-04-09 深圳市瀚强科技股份有限公司 射频电源保护电路及无线通信设备

Similar Documents

Publication Publication Date Title
WO2021249161A1 (zh) 射频消融电源以及射频消融系统
US11864814B2 (en) System and method for harmonic control of dual-output generators
US11529183B2 (en) Power and bi directional data interface assembly and surgical system including the same
WO2017101322A1 (zh) 一种射频发生器及利用该射频器产生射频能量的方法
RU2304934C2 (ru) Электронный коагулирующий скальпель
EP2499983B1 (en) Isolated current sensor
US20110224663A1 (en) Control circuitry for a tissue ablation system
US20150025523A1 (en) Electrosurgical generator with continuously and arbitrarily variable crest factor
US10869712B2 (en) System and method for high frequency leakage reduction through selective harmonic elimination in electrosurgical generators
US20110071518A1 (en) System and Method for Multi-Pole Phase-Shifted Radio Frequency Application
CN111214289A (zh) 射频能量发生装置以及射频消融系统
CN105213174A (zh) 一种微波针灸治疗仪
CN113824309A (zh) 射频消融电源以及射频消融系统
CN212518792U (zh) 射频消融电源以及射频消融系统
CN117137612A (zh) 一种具有神经探测功能的低温凝切手术设备
CN217310556U (zh) 具有多输出接口的等离子体手术系统
CN211934277U (zh) 射频能量发生装置以及射频消融系统
CN213310245U (zh) 一种微创高频电刀设备
CN115844496A (zh) 超声消融系统
CN209548078U (zh) 一种新型皮肤科电离子治疗仪触笔头结构
CN102430212B (zh) 一种超声疼痛治疗装置
JPH11299801A (ja) 手術システム
CN117045342A (zh) 一种调频低温等离子手术刀控制系统及其设备
US20240041511A1 (en) Energy generator with multifunctional energy receptacle
US20230041494A1 (en) System and method for powering handheld instruments from a surgical generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822296

Country of ref document: EP

Kind code of ref document: A1