WO2017101322A1 - 一种射频发生器及利用该射频器产生射频能量的方法 - Google Patents

一种射频发生器及利用该射频器产生射频能量的方法 Download PDF

Info

Publication number
WO2017101322A1
WO2017101322A1 PCT/CN2016/088531 CN2016088531W WO2017101322A1 WO 2017101322 A1 WO2017101322 A1 WO 2017101322A1 CN 2016088531 W CN2016088531 W CN 2016088531W WO 2017101322 A1 WO2017101322 A1 WO 2017101322A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power
output
actual
impedance
Prior art date
Application number
PCT/CN2016/088531
Other languages
English (en)
French (fr)
Inventor
马富
经翔
董刚
杜锡林
黄学全
梅浙川
张伟
Original Assignee
绵阳立德电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 绵阳立德电子股份有限公司 filed Critical 绵阳立德电子股份有限公司
Publication of WO2017101322A1 publication Critical patent/WO2017101322A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B18/1233Generators therefor with circuits for assuring patient safety
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00648Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00767Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00827Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00892Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1266Generators therefor with DC current output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/351Pulse width modulation being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/541Transformer coupled at the output of an amplifier

Definitions

  • the present invention relates to an RF generator and a method of generating RF energy using the RF.
  • the medical RF generator is the hardware core component of the high frequency surgical equipment. Also known as medical high frequency generator. High-frequency surgical equipment, widely used for ablation, coagulation, and cutting of target tissues. At present, high-frequency surgical equipment has become an indispensable medical electronic device for surgical or minimally invasive tumor treatment.
  • high-frequency generators of various types and brands of high-frequency surgical equipment on the market can be divided into two categories: one is a device represented by a high-frequency electrosurgical knife.
  • the other type is a device represented by a radio frequency ablation system.
  • a device represented by a high-frequency electrosurgical unit does not have a power amplifier unit, and uses a high-frequency power oscillator to directly convert an input power source into a structure of a desired frequency and power.
  • high frequency power oscillators there are three main forms of high frequency power oscillators: spark oscillators, tube oscillators, and solid state oscillators.
  • the basic structure of the high frequency electric knife is shown in Figure 1. Since there is no high frequency power amplifier unit, the output power is adjusted by the oscillation gap time.
  • the characteristics of the high-frequency electric knife are: (1) The output voltage is high, and the maximum open-circuit peak-to-peak voltage value Vp-p can reach several thousand volts.
  • the range of load impedance that can be adapted is large, and the expected output power can be obtained from 30 ⁇ to 1500 ⁇ .
  • the set power of the high-frequency knife is shown in Figure 5-1.
  • the application department is extensive, and almost all departments can be used for cutting and coagulation of its corresponding target tissues.
  • the output waveform of the high-frequency electrosurgical knife under different power settings and the load is 100 ⁇ is shown in Figure 7-1, Figure 7-2 and Figure 7-3.
  • the impedance of the lesion tissue is mainly concentrated in the low-resistance area.
  • the tissue around the electrode will be carbonized in a very short period of time, and the energy cannot continue to be injected into the lesion. Achieving the desired range of ablation, accompanied by severe electrical sparks, has a potentially high risk.
  • a device represented by a radio frequency ablation system that utilizes a power amplifier unit to convert an input power source into a desired frequency and power structure.
  • the basic structure of the radiofrequency ablation instrument is shown in Figure 2.
  • the characteristics of the existing radiofrequency ablation devices are: (1) In order to reduce the stimulation of muscles and nerves, and to reduce or avoid the degree of carbonization of the adjacent tissues of the treatment electrodes, it is necessary to output continuous high-frequency amplitude waves in a constant power manner. Therefore, the power adjustment method of the high-frequency electrosurgical knife is not suitable for the radio frequency device used for ablation or treatment.
  • the power amplifier unit is an analog amplifier, that is, the power amplifier tube is like a variable resistor.
  • the output voltage is low, and the maximum open peak-to-peak voltage value V PP is generally below 800V. Since the radiofrequency ablation system mainly works in a low-resistance region, the output voltage cannot be too high. If the voltage is too high, the purpose of ablation or treatment of the lesion cannot be achieved.
  • the load impedance range of the constant power region is small and concentrated in the low resistance region. Take the liver radiofrequency ablation device as an example, its constant power load range is 10 ⁇ -150 ⁇ . To increase the upper limit of the load range of constant power, the DC input voltage of the power amplifier unit must be increased. When operating in the low impedance region, the power amplifier tube of the analog power amplifier unit needs to withstand higher tube voltage drop. The consumption is increased and the reliability is further reduced.
  • the load impedance range of the constant power region of the RF product used in different departments varies greatly.
  • the set power versus load curve for liver radiofrequency ablation is shown in Figure 5-2.
  • the load of the high-frequency electric knife can obtain the expected output power from 30 ⁇ -1500 ⁇ .
  • the application department is extensive, and almost all departments can be used for cutting and coagulation of its corresponding target tissue, but it is not suitable and suitable.
  • the constant power load range of the RF ablation device is narrow, and it mainly works in a specific impedance region such as low resistance. It is especially suitable for ablation or treatment of its corresponding target tissue, but it cannot cut the target tissue.
  • the present invention provides an RF generator including an input voltage unit, an intelligent power supply unit, a voltage collection unit, a power amplification unit, an output unit, and a load unit connected in sequence; between the voltage collection unit and the intelligent power supply unit A processor unit is connected; a current collecting unit is disposed between the power amplifier unit and the processor unit; wherein, the input voltage unit is configured to provide a DC voltage for the smart power unit; and the intelligent power unit is configured to provide a variable for the power amplifier unit DC voltage; voltage acquisition unit for collecting the actual output voltage of the intelligent power supply unit; current acquisition unit for collecting the actual output current of the intelligent power supply unit; processor unit for collecting the actual output voltage and actual output The current is obtained from the actual output power of the intelligent power supply unit and the actual impedance of the load unit and the actual power obtained.
  • the actual output power of the intelligent power supply unit and the actual impedance of the load unit are respectively compared with the preset values, and the smart power supply is adjusted according to the comparison result.
  • Unit output voltage The output power is such that the actual output power of the intelligent power supply unit is consistent with the preset power, so that the load unit obtains the expected RF energy; and the signal transmission and driving unit is connected to the driving end of the power amplifier unit for generating the high frequency driving signal. Drive the power amplifier unit to work.
  • the output voltage value, the output current value, and the output power value of the smart power supply unit are not fixed, but can be freely adjusted according to different external needs.
  • the smart power supply unit is a switching power converter, and includes a first capacitor C21, a first transistor Q21, a second inductor L22, and a third capacitor C23 connected in parallel in sequence; a positive terminal of the first capacitor C21 and the first transistor A first inductor L21 is connected in series between the drains of the Q21, and the same end of the first inductor L21 is connected to the positive terminal of the first capacitor C21; the gate of the first transistor Q21 is connected to the PWM end of the processor unit; A second capacitor C22 and a diode D21 are connected in series between the different end of the inductor L22 and the third capacitor C23, and the cathode of the diode D21 is connected to the positive terminal of the third capacitor C23, and the positive terminal of the second capacitor C22 is connected.
  • the second name of the two inductors L22 is connected.
  • the voltage collecting unit includes a first resistor R31 and a second resistor R32 connected in series and then connected in parallel at the two ends of the third capacitor C23, and the connection node of the first resistor R31 and the second resistor R32 is connected to the voltage collecting port of the processor unit. .
  • the current collecting unit includes a third resistor R41 connected to the power amplifier unit, and the third resistor R41 and the connection node of the power amplifier unit are connected to the current collecting port of the processor unit.
  • the output unit includes a high frequency isolation transformer, an auxiliary electrode, and a treatment electrode monitoring and control unit.
  • the radio frequency generator further includes an input control unit coupled to the processor unit for inputting a control command.
  • a method for generating radio frequency energy using the above RF generator includes the following steps:
  • S1 providing a DC power supply to the power amplifier through the intelligent power supply unit, collecting the actual output voltage and the actual output current of the intelligent power supply unit, and obtaining the actual output power and the real-time equivalent impedance of the intelligent power supply unit according to the collected information, and Calculate the actual impedance of the load cell and the actual power obtained;
  • step S1 specifically includes the following steps:
  • S11 providing a DC power supply to the power amplifier through the intelligent power supply unit, and collecting the actual output voltage and the actual output current of the intelligent power supply unit to obtain the actual output voltage and the actual output current of the intelligent power supply unit;
  • S14 Calculate the actual impedance of the load unit from the actual impedance of the intelligent power supply unit according to the proportional relationship between the primary and secondary windings of the high frequency isolation transformer in the output unit.
  • step S2 is as follows:
  • S2 comparing the actual output power of the intelligent power supply unit with the preset power, when the actual output power of the intelligent power supply unit is greater than the preset power, reducing the duty ratio; when the actual output power of the intelligent power supply unit is less than the preset power Increase the duty cycle; keep the actual output power of the intelligent power supply unit consistent with the preset power.
  • step S3 is as follows:
  • the present application combines the advantages of a high-frequency electrosurgical unit and a radiofrequency ablation device to act on the cutting and coagulation of the target tissue, and also on the ablation or treatment of the target tissue.
  • the hardware circuit of the present application has a wide load range of constant output power.
  • Vp-p the maximum open peak-to-peak voltage value
  • the spark is small
  • the degree of carbonization is light
  • the potential risk is small
  • the human tissue and nerve are not stimulated.
  • Low frequency modulated wave When the application is used for ablation or treatment of a target tissue, the clinical requirements of different departments can be met by simply embedding the corresponding software.
  • This novel RF generator has low loss, low failure rate and high reliability during the energy conversion process.
  • Data acquisition methods and energy control methods are simple, direct, and reliable. It is versatile and can be produced and manufactured as standard parts. Different medical RF manufacturers can produce and manufacture their own products by changing a small amount of peripheral circuits or software to meet the clinical needs of different customers and different departments.
  • Figure 1 is a schematic diagram of a high frequency electric knife
  • FIG. 2 is a schematic diagram of a conventional radio frequency ablation device
  • Figure 3 is a schematic diagram of an embodiment of the present invention.
  • Figure 4 is a schematic diagram of another embodiment of the present invention.
  • Figure 5-1 is a graph of output power as a function of load for a high-frequency electric knife at different power settings
  • Figure 5-2 is a graph showing the output power as a function of load in a conventional RF ablation device under different power settings
  • Figure 5-3 is a graph showing the output power as a function of load under different power settings according to the present invention.
  • Figure 6-1 is a graph of the DC input voltage value of the high-frequency power oscillator unit as a function of load at different power settings for a high-frequency electrosurgical unit;
  • Figure 6-2 is a graph showing the DC input voltage value of the power amplifier unit as a function of load at different power settings of the existing RF ablation device;
  • 6-3 is a graph showing a DC input voltage value of a power amplifier unit as a function of load under different power settings according to the present invention.
  • Figure 7-1 is a waveform diagram of the output voltage of a high-frequency electric knife with a load of 100 ⁇ at 100% power setting;
  • Figure 7-2 is a waveform diagram of the output voltage of a high-frequency electric knife with a load of 100 ⁇ at 50% power setting;
  • Figure 7-3 is a waveform diagram of the output voltage of a high-frequency electric knife with a load of 100 ⁇ at a 10% power setting;
  • Figure 8-1 is a waveform diagram of the output voltage of a conventional RF ablation device with a load of 100 ⁇ at 100% power setting;
  • Figure 8-2 is a waveform diagram of the output voltage of a conventional RF ablation device with a load of 100 ⁇ at a 50% power setting;
  • Figure 8-3 is a waveform diagram of the output voltage of a conventional RF ablation device with a load of 100 ⁇ at a 10% power setting;
  • 9-1 is a waveform diagram of an output voltage when the load is 100 ⁇ at a 100% power setting according to the present invention.
  • 9-2 is a waveform diagram of an output voltage when the load is 100 ⁇ at a 50% power setting according to the present invention.
  • 9-3 is a waveform diagram of an output voltage when the load is 100 ⁇ at a 10% power setting according to the present invention.
  • 10-1 is a graph showing the output power as a function of load at different power settings in combination with a thyroid ablation software module of the present invention
  • 10-2 is a graph of output power versus load at different power settings in conjunction with a cardiac ablation software module of the present invention
  • Figure 10-3 is a graph of output power variation with load under different power settings in combination with a liver ablation software module of the present invention
  • Figure 10-4 is a graph showing the output power as a function of load under different power settings in combination with the gastrointestinal ablation software module of the present invention
  • Figure 10-5 is a graph showing the output power as a function of load at different power settings in conjunction with the cutting and coagulation software module of the present invention.
  • the RF generator shown in FIG. 3 and FIG. 4 includes an input voltage unit 10, an intelligent power supply unit 20, a voltage collecting unit 30, a power amplifier unit 80, an output unit 90, a load unit 100, a current collecting unit 40, and a processor unit. 50, signal transmitting and driving unit 60 and input control unit 70. Each unit is described in detail below:
  • the input voltage unit 10 includes a unit related to electromagnetic compatibility and a rectifying unit for supplying a DC voltage to the smart power unit 20;
  • the output unit 90 includes a high frequency isolation transformer, an auxiliary electrode and a treatment electrode monitoring and control unit; and a power amplifier unit.
  • 80 is an H-type full bridge drive circuit.
  • the intelligent power supply unit 20 coupled to the output of the input voltage unit 10, employs a switching power converter topology for providing a variable DC voltage to the power amplifier unit 80.
  • the intelligent power supply is a switching power converter that is regulated by pulse width PWM.
  • the formula can be a constant current, a constant voltage, or a constant power mode.
  • the next-stage circuit is a DC power supply for the power amplifier unit 80. In the specific implementation of the present invention, constant power is used. output method.
  • the specific structure of the intelligent power supply unit 20 includes a first capacitor C21, a first transistor Q21, a second inductor L22, and a third capacitor C23 connected in parallel in sequence; between the positive terminal of the first capacitor C21 and the drain of the first transistor Q21
  • the first inductor L21 is connected in series, and the same end of the first inductor L21 is connected to the positive terminal of the first capacitor C21; the gate of the first transistor Q21 is connected to the PWM end of the processor unit 50; the synonym of the second inductor L22
  • a second capacitor C22 and a diode D21 are connected in series between the terminal and the third capacitor C23, and a cathode of the diode D21 is connected to a positive terminal of the third capacitor C23, and a positive terminal of the second capacitor C22 is different from the second inductor L22. Name connection.
  • the voltage collecting unit 30 includes a first resistor R31 and a second resistor R32 connected in series and then in parallel across the third capacitor C23.
  • the connection node of the first resistor R31 and the second resistor R32 is connected to the voltage collecting port of the processor unit 50. .
  • the voltage acquisition unit 30 is configured to feed back the actual output voltage value of the smart power unit 20 to the V port of the processor unit 50.
  • the current collecting unit 40 includes a third resistor R41 connected to the power amplifier unit 80, and a connection node of the third resistor R41 and the power amplifier unit 80 is connected to the current collecting port of the processor unit 50.
  • the current collecting unit 40 is configured to feed back the actual output current value of the smart power unit 20 to the I port of the processor unit 50.
  • the processor unit 50 controls the signal transmission and the activation or deactivation of the driving unit 60 through the STA port, collects the actual power of the intelligent power supply unit 20 through the V and I ports, obtains various commands through the order port, and controls the intelligent power supply unit 20 through the PWM port. Actual output power.
  • the output power, output voltage, and output current of the intelligent power supply can be directly controlled by the PWM generated by the external CPU. It can also be equipped with a CPU, and the output power, voltage, and current can be adjusted by receiving an instruction from an external CPU. In the specific implementation of the present invention, PWM direct control generated by an external CPU is employed. In addition, the output power, output voltage, and output current of the smart power supply can also be adjusted by the frequency PFM.
  • the signal transmitting and driving unit 60 is connected to the driving end of the power amplifier unit 80 for generating a high frequency driving signal to drive the power amplifier unit 80 to operate.
  • the input control unit 70 can input various commands during the working process, including setting power, starting or turning off the RF output, working mode and the like.
  • the working process of the invention is divided into two parts: a standby state and a normal working state:
  • the state of each unit after the processor unit 50 receives the command to stop the output, the pulse width control port PWM of the processor unit 50 is always in the low state, and the first transistor Q21 in the smart power unit 20 Until the off state, the output voltage V 20 of the smart power unit 20 will be zero.
  • the STA port of the processor unit 50 turns off the signal transmission and driving unit 60, and the two sets of high frequency driving signals (DRV61, DRV64) and (DRV62, DRV63) of the signal transmitting and driving unit 60 have no output, and are in the H-type full bridge driving unit.
  • the four sets of switch tubes (Q81, Q84) and (Q82, Q83) are in the off state.
  • the current and voltage acquisition data are all zero.
  • the output unit 90 has no energy input and the load unit 100 has no energy injection.
  • the output voltage V 20 of the intelligent power supply unit 20 is no longer a zero value.
  • T ON is the Q21 on time and T OFF is the Q21 off time.
  • the STA port of the processor unit 50 operates the start signal transmission and the drive unit 60.
  • the H-type full bridge drive unit is in operation under the driving of the signal transmission and drive unit 60. The detailed working process is not mentioned here.
  • the output unit 90 has high frequency energy input and is transmitted to the load unit 100.
  • the voltage collecting unit 30 feeds back the actual output voltage value of the smart power unit 20 back to the V port of the processor unit 50.
  • the current collecting unit 40 feeds back the actual output current value of the smart power unit 20 back to the I port of the processor unit 50.
  • the processor unit 50 compares the actual output power P 20 according to the set power provided by the keyboard input unit, and adjusts the duty ratio D so that the actual output power P 20 is equal to the set power.
  • a processor unit 50, 20 according to the real value of the impedance R, interpretation unit 100 exceeds the expected load impedance threshold, comprising upper threshold and a lower threshold, the threshold if more than one, then the duty ratio D becomes zero or Minimum, automatically stop the RF output or reduce the output. If it is within the normal range, if there is no stop command, continue the RF output.
  • the high-frequency electrosurgical equipment does not have a constant output power load range, and the output power fluctuates with changes in the load, and is only suitable for cutting and coagulation of the target tissue.
  • the existing radio frequency ablation device has a load interval with constant output power, but the area is narrow. Taking Figure 5-2 as an example, under the full power setting, the constant power load range is 25 ⁇ -200 ⁇ , which can meet the radiofrequency ablation of liver tumors. To be used for ablation therapy of other target tissues other than the liver, the corresponding hardware circuit must be redesigned to meet the constant power load range that is appropriate for it.
  • the constant power load interval of the hardware of the present invention is wide. Taking Figure 5-3 as an example, even at full power setting, the constant power load range is in the range of 10 ⁇ -800 ⁇ . If the half power is set, the constant power load range is 10 ⁇ -1500 ⁇ .
  • the corresponding software module can be used for radiofrequency ablation of target tissues such as liver, heart, thyroid, and gastrointestinal tract. It can also be used for cutting and coagulation of a target tissue. It has a wide range of adaptability and is extremely versatile.
  • the value of the DC input voltage V of the power amplifier unit of the high-frequency electrosurgical unit is constant, and the DC input voltage V is constant regardless of whether the set power changes or the load changes, or both change simultaneously. constant.
  • the value of the DC input voltage V of the power amplifier unit of the existing radio frequency ablation device is also constant, whether the setting power changes or the load changes, or both change at the same time, the DC input voltage V Constant.
  • the value of the DC input voltage V of the power amplifier unit 80 of the present invention can be automatically adjusted. When the set power changes or the load changes, or both changes simultaneously, the DC input voltage V is automatically adjusted. To the voltage value that matches the two. It can be seen that the invention has a substantial difference in working principle from the high-frequency electric knife and the existing radio frequency ablation device.
  • AVO represents the output voltage waveform of the high-frequency electric knife at 100% power setting
  • BVo Indicates the output voltage waveform of the high-frequency knife at 50% power setting
  • CVo indicates the output voltage waveform of the high-frequency knife at 10% power setting.
  • the high-frequency electric knife uses the time width of the oscillation gap of the power oscillator to adjust the output power.
  • the wider the time width of the gap the smaller the output power and the clearance.
  • the narrower the time width the smaller the output power.
  • the instantaneous peak-to-peak voltage experienced by the load is relatively constant, and the peak-to-peak voltage is high.
  • the output waveform is an intermittent high-frequency wave, which is substantially different from the existing RF ablation device and the output waveform of the present invention.
  • AVO represents the output voltage waveform of the RF ablation device at 100% power setting
  • BVo represents the output of the RF ablation device at 50% power setting
  • the voltage waveform, CVo represents the output voltage waveform of the RF ablation device at 10% power setting.
  • Both the existing RF ablation device and the output waveform of the present invention are continuous high frequency waves, but the processes or methods implemented by the two are fundamentally different.
  • the power amplifier tube of the existing RF ablation device is like a variable resistor Ron connected in series with the load.
  • the power value required for the load is adjusted by adjusting the on-resistance of the power amplifier tube.
  • the energy received by the power amplifier tube P ON I ON 2 *R ON , where I ON is the current value flowing through the power amplifier tube. This energy is consumed by the power amplifier tube being directly converted into heat energy. Since the power amplifier tube itself has a large loss and a rapid temperature rise, it is necessary to take necessary heat dissipation measures, including a radiator, a heat dissipation fan, etc., and the reliability of the whole machine is poor.
  • BVo represents the output voltage waveform of the present invention at 50% power setting.
  • CVo represents the output voltage waveform of the present invention at a 10% power setting.
  • the DC input voltage V 20 of the power amplifier unit 80 of the present invention can be automatically adjusted, when the set power changes or the load changes, or both changes simultaneously, the DC input voltage V 20 is automatically adjusted to Matching voltage values.
  • the present invention the high-frequency electric knife and the existing radio frequency ablation device are compared on the hardware circuit, and the topological structure, working principle and working process have essential differences.
  • the advantages of the present invention are obvious: (1) The reliability of the whole machine is high. In the embodiment of the present invention, all energy conversion units adopt a switching mode and are mature and simple topologies. The H-type full bridge drive unit and the intelligent power supply unit 20 are included. All of the power amplifier tubes are in the working state of the switch, and the conversion efficiency is high, the loss is small, and no special heat dissipation measures such as a fan are required. The size of the whole machine can be reduced, and the waterproof rating of each component can be above IP67. (2) The output power control of the hardware is simple, timely and accurate.
  • the actual output power can be output as expected at a constant value.
  • the data collection method of actual output voltage and current is simple, direct and reliable. No special current and voltage acquisition coils are required, nor nonlinear isolation components such as optocouplers are required.
  • the versatility of the hardware is powerful, and it can be used for the ablation, cutting and coagulation of the corresponding target tissue only by combining the corresponding software modules. See Figure 10-1 to Figure 10-5, which in turn combines the corresponding software for the present invention.
  • APo shows the curve of output power with load under 100% power setting
  • BPo shows the curve of output power with load under 50% power setting
  • CPo means that at 10% power setting, output power The curve of the load change.
  • the hardware circuit is slightly modified and can be used in other fields than the present invention.
  • the present invention becomes a power-adjustable high-power ultrasonic generator or ultrasonic treatment device.
  • the present invention becomes a high-performance inverter power source with adjustable output power or voltage and current.
  • the present invention becomes a high power audio amplifier with adjustable output power. Therefore, the use of the present invention in other fields is not limited.
  • a method for generating radio frequency energy using the above radio frequency generator includes the following steps:
  • S11 providing a DC power supply to the power amplifier through the intelligent power supply unit, and collecting the actual output voltage and the actual output current of the intelligent power supply unit to obtain the actual output voltage and the actual output current of the intelligent power supply unit;
  • S14 Calculate the actual impedance of the load unit from the actual impedance of the intelligent power supply unit according to the proportional relationship between the primary and secondary windings of the high frequency isolation transformer in the output unit.
  • step S3 is as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Power Engineering (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Surgical Instruments (AREA)

Abstract

一种射频发生器,包括输入电压单元(10)、智能电源单元(20)、电压采集单元(30)、功率放大器单元(80)、输出单元(90)、负载单元(100)、电流采集单元(40)、处理器单元(50),信号发送与驱动单元(60)和输入控制单元(70)。该射频发生器结合高频电刀和射频消融设备的优点,既可以作用于目标组织的切割和凝血,又可以作用于目标组织的消融或治疗,通用性强,可以作为标准零部件来生产、制造。不同的医用射频厂商,只需通过改变少量的外围电路或软件,即可生产、制造出属于自己的产品,以满足不同客户、不同科室的临床需求。

Description

一种射频发生器及利用该射频器产生射频能量的方法 技术领域
本发明涉及一种射频发生器及利用该射频器产生射频能量的方法。
背景技术
医用射频发生器,是高频类手术设备的硬件核心部件。又称其为医用高频发生器。高频类手术设备,广泛用于对目标组织的消融、凝血、切割。目前,高频类手术设备,已经成为外科手术或微创肿瘤治疗不可或缺的医用电子设备。
目前市面上的各类、各品牌的高频类手术设备,其高频发生器可分为两大类:一类是以高频电刀为代表的设备。另一类是以射频消融系统为代表的设备。
以高频电刀为代表的设备,没有功率放大器单元,利用高频功率振荡器直接将输入电源转换为所需频率和功率的结构。其中,高频功率振荡器主要有三种形式:火花式振荡器、电子管式振荡器、固体振荡器。高频电刀的基本结构如图1所示。由于没有高频功率放大器单元,是通过振荡间隙时间来调整输出功率大小的。高频电刀的特点是:(1)输出电压高,最大开路峰峰电压值Vp-p可达数千伏。(2)能适应的负载阻抗范围大,负载从30Ω-1500Ω皆能获得预期的输出功率。高频电刀的设定功率随负载变化曲线如图5-1所示。(3)应用科室广泛,几乎所有科室都可以用于对其相应的目标组织的切割和凝血。(4)但并不适合与对目标组织的消融和治疗,包括心脏消融、肝脏肿瘤消融、甲状腺消融和治疗等。其原因在于:(1)输出电压一直处于很高的状态且其电压值是相对固定的,输出功率的大小仅与其间隙时间大小有关。高频电刀在不同功率设置下,负载为100Ω时的输出波形如图7-1、图7-2和图7-3所示。无论是心脏消融还是肝脏肿瘤消融,其病灶组织的阻抗主要集中在低阻区域,上述那么高的电压注入病灶时,极短的时间内就会令电极周围组织碳化,能量无法继续注入病灶,不能达到预期的消融范围,且伴有剧烈的电火花,潜在的风险巨大。(2)为了调整输出功率大小,除主载频率(200KHz-1000KHz)外,还包括频率为f=1/(TON+TOFF)的低频调制波,该频率大都选在10KHz-30KHz范围,这个频段的电流对人体肌肉和神经有一定的刺激作用。
以射频消融系统为代表的设备,利用功率放大器单元将输入电源转换为所需频率和功率的结构。高频功率放大器单元主要有四种形式:A类、B类、AB类、C类。射频消融仪的基本结构如图2所示。现有射频消融设备的特点是:(1)为减少对肌肉和神经的刺激,以及减少或避免对治疗电极临近组织的碳化程度,必须以恒功率方式输出连续高频等幅度波。因此,高频电刀的功率调整方式并不适合于用于消融或治疗的射频设备。(2)功率放大器单元为模拟放大器,即功率放大管犹如一个可变电阻,高频驱动信号幅度越大,功率放大管打开得更多,导通电阻越小,流过的输出电流越大,则负载获得的功率越大;高频驱动信号幅度越小,功率放大管打开得更小,导通电阻越大,流过的输出电流越小,则负载获得的功率越小。由于功放管自身损耗较大,需要采用较大的散热器、散热风机等散热措施。(3)输出电压低,最大开路峰峰电压值VP-P一般在800V以下。由于射频消融系统主要工作在低阻区域,输出电压不能太高,若电压过高,达不到对病灶的消融或治疗的目的。(4)恒功率区域的负载阻抗范围小,且集中在低阻区域。以肝脏射频消融设备为例,其恒功率的负载范围为10Ω-150Ω。若要增加恒定功率的负载范围的上限值,则必须增加功率放大器单元的直流输入电压,则当工作在低阻抗区域时,模拟功率放大器单元的功放管需要承受更高的管压降,功耗增加,可靠性进一步降低。(5)用于不同科室的射频产品的恒功率区域的负载阻抗范围差别巨大。肝脏射频消融的设定功率随负载变化曲线如图5-2所示。(6)特别适合对其相应的目标组织的消融或 治疗。(7)由于最大输出电压较低,阻抗上升后,输出功率急剧下降,在高阻抗区的负载所能获得的功率很少,无法对目标组织进行切割作用。
综上所述,高频电刀的负载从30Ω-1500Ω皆能获得预期的输出功率,应用科室广泛,几乎所有科室都可以用于对其相应的目标组织的切割和凝血,但不适合与对目标组织的消融和治疗。而射频消融设备的恒功率的负载区间较窄,主要工作在低阻等特定的阻抗区域,特别适合对其相应的目标组织的消融或治疗,但又无法对目标组织进行切割作用。
发明内容
本发明的目的是提供一种射频发生器及利用该射频器产生射频能量的方法,其既可以作用于目标组织的切割和凝血,又可以作用于目标组织的消融或治疗。
为解决上述技术问题,本发明提供一种射频发生器,包括依次连接的输入电压单元、智能电源单元、电压采集单元、功率放大单元、输出单元和负载单元;电压采集单元与智能电源单元之间连接有处理器单元;功率放大器单元与处理器单元之间设有电流采集单元;其中,输入电压单元,用于为智能电源单元提供直流电压;智能电源单元,用于为功率放大器单元提供可变的直流电压;电压采集单元,用于采集智能电源单元的实际输出电压;电流采集单元,用于采集智能电源单元的实际输出电流;处理器单元,用于根据采集到的实际输出电压和实际输出电流得出智能电源单元的实际输出功率和负载单元的实际阻抗和获得的实际功率,将智能电源单元的实际输出功率和负载单元的实际阻抗与预设值分别进行,并根据比较结果调节智能电源单元的输出电压或输出功率,使智能电源单元的实际输出功率与预设功率保持一致,使负载单元获得预期的射频能量;以及信号发送与驱动单元,与功率放大器单元的驱动端连接,用于产生高频驱动信号驱动功率放大器单元工作。
进一步地,智能电源单元的输出电压值、输出电流值和输出功率值不是固定的,而是根据外部的不同需要,可以自由调节的。
进一步地,智能电源单元为开关电源变换器,其包括依次并联连接的第一电容C21、第一晶体管Q21、第二电感L22、第三电容C23;第一电容C21的正极性端与第一晶体管Q21的漏极之间串联有第一电感L21,且第一电感L21的同名端与第一电容C21的正极性端连接;第一晶体管Q21的栅极与处理器单元的PWM端连接;第二电感L22的异名端与第三电容C23之间依次串联有第二电容C22和二极管D21,且二极管D21的阴极与第三电容C23的正极性端连接,第二电容C22的正极性端与第二电感L22的异名端连接。
进一步地,电压采集单元包括串联后并联连接在第三电容C23的两端的第一电阻R31和第二电阻R32,第一电阻R31和第二电阻R32的连接节点连接至处理器单元的电压采集端口。
进一步地,电流采集单元包括与功率放大器单元连接的第三电阻R41,第三电阻R41与功率放大器单元的连接节点连接至处理器单元的电流采集端口。
进一步地,输出单元包括高频隔离变压器、辅助电极和治疗电极监测、控制单元。
进一步地,射频发生器还包括与处理器单元连接的用于输入控制命令的输入控制单元。
一种利用上述射频发生器产生射频能量的方法,包括以下步骤:
S1:通过智能电源单元为功率放大器提供直流电源,并对智能电源单元的实际输出电压和实际输出电流进行采集,根据采集到的信息得出智能电源单元的实际输出功率和实时等效阻抗,以及计算出负载单元的实际阻抗和获得的实际功率;
S2:将智能电源单元的实际输出功率与预设功率进行比较,根据比较结果调节智能电源单元的占空比,使智能电源单元的输出功率恒定于预设功率;
S3:比较负载单元的实际阻抗与预设阻抗的阈值大小,根据比较结果,自动控制射频能量继续输出或停止输出。
进一步地,步骤S1具体包括以下步骤:
S11:通过智能电源单元为功率放大器提供直流电源,并对智能电源单元的实际输出电压和实际输出电流进行采集,得到智能电源单元的实际输出电压和实际输出电流;
S12:根据P20=V*I计算得出智能电源单元的实际输出功率;根据R20=V/I计算得出智能电源单元的实际阻抗;
S13:根据负载单元获得的实际功率PO=P20—(功率放大器损耗+输出单元损耗),而功率放大器和输出单元的损耗是可知的,且很小,由智能电源单元的实际输出功率计算得出负载单元获得的实际功率。
S14:根据输出单元中的高频隔离变压器的初级、次级绕组比例关系,由智能电源单元的实际阻抗计算得出负载单元的实际阻抗。
进一步地,步骤S2具体操作如下:
S2:将智能电源单元的实际输出功率与预设功率进行比较,当智能电源单元的实际输出功率大于预设功率时,减小占空比;当智能电源单元的实际输出功率小于预设功率时,增大占空比;使智能电源单元的实际输出功率保持与预设功率一致。
进一步地,步骤S3具体操作如下:
S3:比较负载单元的实际阻抗与预设阻抗的阈值大小,当负载单元的实际阻抗大于等于预设阻抗的下限阈值且小于等于预设阻抗的上限阈值时,继续射频输出;当负载单元的实际阻抗小于预设阻抗的下限阈值时,则智能电源的占空比变为零,停止射频输出;当负载单元的实际阻抗大于预设阻抗的上限阈值时,则智能电源的占空比变为零或最小,停止射频输出或降低射频输出。
本发明的有益效果为:本申请结合高频电刀和射频消融设备的优点,既可以作用于目标组织的切割和凝血,又可以作用于目标组织的消融或治疗。本申请的硬件电路具有很宽的恒定输出功率的负载区间。本申请用于目标组织的切割和凝血时,其最大开路峰峰电压值Vp-p仅有数百伏,火花少,碳化程度轻,潜在的风险小,且不含对人体组织和神经有刺激的低频调制波。本申请用于对目标组织的消融或治疗时,只需嵌入相应的软件,就可满足不同科室的临床需求。这种新颖的射频发生器,在能量转换过程中,自身损耗小,故障率低,可靠性高。数据采集方式和能量控制方式都很简单、直接、可靠。通用性强,可以作为标准零部件来生产、制造。不同的医用射频厂商,只需通过改变少量的外围电路或软件,即可生产、制造出属于自己的产品,以满足不同客户、不同科室的临床需求。
附图说明
图1为高频电刀的原理图;
图2为现有射频消融设备的原理图;
图3为本发明一个实施例的原理图;
图4为本发明另一实施例的原理图;
图5-1为高频电刀在不同功率设定下,输出功率随负载变化的曲线图;
图5-2为现有射频消融设备在不同功率设定下,输出功率随负载变化的曲线图;
图5-3为本发明在不同功率设定下,输出功率随负载变化的曲线图;
图6-1为高频电刀在不同功率设定下,高频功率振荡器单元的直流输入电压值随负载变化的曲线图;
图6-2为现有射频消融设备在不同功率设定下,功率放大器单元的直流输入电压值随负载变化的曲线图;
图6-3为本发明在不同功率设定下,功率放大器单元的直流输入电压值随负载变化的曲线图;
图7-1为高频电刀在100%功率设定下,负载为100Ω时的输出电压波形图;
图7-2为高频电刀在50%功率设定下,负载为100Ω时的输出电压波形图;
图7-3为高频电刀在10%功率设定下,负载为100Ω时的输出电压波形图;
图8-1为现有射频消融设备在100%功率设定下,负载为100Ω时的输出电压波形图;
图8-2为现有射频消融设备在50%功率设定下,负载为100Ω时的输出电压波形图;
图8-3为现有射频消融设备在10%功率设定下,负载为100Ω时的输出电压波形图;
图9-1为本发明在100%功率设定下,负载为100Ω时的输出电压波形图;
图9-2为本发明在50%功率设定下,负载为100Ω时的输出电压波形图;
图9-3为本发明在10%功率设定下,负载为100Ω时的输出电压波形图;
图10-1为本发明结合甲状腺消融软件模块,在不同功率设置下输出功率随负载变化的曲线图;
图10-2为本发明结合心脏消融软件模块,在不同功率设置下输出功率随负载变化的曲线图;
图10-3为本发明结合肝脏消融软件模块,在不同功率设置下输出功率随负载变化的曲线图;
图10-4为本发明结合胃肠道消融软件模块,在不同功率设置下输出功率随负载变化的曲线图;
图10-5为本发明结合切割、凝血软件模块,在不同功率设置下输出功率随负载变化的曲线图。
其中10、输入电压单元;20、智能电源单元;30、电压采集单元;40、电流采集单元;50、处理器单元;60、信号发送与驱动单元;70、输入控制单元;80、功率放大器单元;90、输出单元;100、负载单元。
具体实施方式
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
如图3和图4所示的射频发生器,包括输入电压单元10、智能电源单元20、电压采集单元30、功率放大器单元80、输出单元90、负载单元100、电流采集单元40、处理器单元50,信号发送与驱动单元60和输入控制单元70。下面分别对各个单元进行详细描述:
其中,输入电压单元10包括与电磁兼容有关的单元以及整流单元,用于为智能电源单元20提供直流电压;输出单元90包括高频隔离变压器、辅助电极和治疗电极监测、控制单元;功率放大器单元80为H型全桥驱动电路。
智能电源单元20,与输入电压单元10的输出端连接,其采用了开关电源变换器拓扑结构,用于为功率放大器单元80提供可变的直流电压。智能型电源是一个通过脉宽PWM调节的开关电源变换器,输出方 式可以是恒电流、恒电压、恒功率方式,无论是上述何种输出方式,皆为下一级电路,即为功率放大器单元80提供直流电源,本发明的具体实施中,采用的是恒功率输出方式。
智能电源单元20的具体结构包括依次并联连接的第一电容C21、第一晶体管Q21、第二电感L22、第三电容C23;第一电容C21的正极性端与第一晶体管Q21的漏极之间串联有第一电感L21,且第一电感L21的同名端与第一电容C21的正极性端连接;第一晶体管Q21的栅极与处理器单元50的PWM端连接;第二电感L22的异名端与第三电容C23之间依次串联有第二电容C22和二极管D21,且二极管D21的阴极与第三电容C23的正极性端连接,第二电容C22的正极性端与第二电感L22的异名端连接。
电压采集单元30,包括串联后并联连接在第三电容C23的两端的第一电阻R31和第二电阻R32,第一电阻R31和第二电阻R32的连接节点连接至处理器单元50的电压采集端口。电压采集单元30用于将智能电源单元20的实际输出电压值反馈至处理器单元50的V端口。
电流采集单元40,包括与功率放大器单元80连接的第三电阻R41,第三电阻R41与功率放大器单元80的连接节点连接至处理器单元50的电流采集端口。电流采集单元40用于将智能电源单元20的实际输出电流值反馈至处理器单元50的I端口。
处理器单元50,通过STA端口控制信号发送与驱动单元60的启动或关闭,通过V、I端口采集智能电源单元20的实际功率,通过order端口获得各种命令,通过PWM端口控制智能电源单元20的实际输出功率。智能型电源的输出功率、输出电压、输出电流可以通过外部的CPU产生的PWM直接控制,也可以自带CPU,通过接收外部的CPU的指令来完成输出功率、电压、电流的调整。本发明的具体实施中,采用通过外部的CPU产生的PWM直接控制。此外,智能型电源的输出功率、输出电压、输出电流还可以通过频率PFM调节。
信号发送与驱动单元60,与功率放大器单元80的驱动端连接,用于产生高频驱动信号驱动功率放大器单元80工作。
输入控制单元70,本申请中的输入控制单元70采用的键盘输入单元,在工作过程中可输入各种命令,包括设置功率、启动或关闭射频输出、工作模式等命令。
本发明工作过程分为待机状态和正常工作状态两大部分:
待机状态时,各单元所处的状态:处理器单元50接收到停止输出的命令后,处理器单元50的脉宽控制端口PWM一直处于低电平状态,智能电源单元20中的第一晶体管Q21一直处于截至状态,则智能电源单元20的输出电压V20将为零。处理器单元50的STA端口关闭信号发送与驱动单元60,信号发送与驱动单元60的两组高频驱动信号(DRV61、DRV64)和(DRV62、DRV63)无输出,H型全桥驱动单元中的四组开关管(Q81、Q84)和(Q82、Q83)皆处于截至状态。电流、电压采集数据皆为零。输出单元90无能量输入,负载单元100无能量注入。
正常工作状态时,各单元所处的状态:(1)处理器单元50接收到启动输出的命令后,处理器单元50的脉宽控制端口PWM将产生频率为F=1/(TON+TOFF)的脉宽控制信号,驱动智能电源单元20中的开关管Q21工作。智能电源单元20的输出电压V20不再为零值。其中,TON为Q21导通时间,TOFF为Q21截至时间。(2)此时处理器单元50的STA端口将启动信号发送与驱动单元60工作。(3)H型全桥驱动单元在信号发送与驱动单元60的驱动下处于工作状态。其详细的工作过程,在这里不用赘述。(4)输出单元90有高频能量输入,并传送到负载单元100上。(5)电压采集单元30,将智能电源单元20的实际输出电压值反馈回 处理器单元50的V端口。电流采集单元40,将智能电源单元20的实际输出电流值反馈回处理器单元50的I端口。(6)处理器单元50,按P20=V*I计算出智能电源单元20的实际输出功率,按R20=V/I计算出其阻抗等实时输出数据。由于功率放大器单元80和输出单元90中的能量损耗很小,且其中的损耗大小是可预知的,计算出P20后就可以得到负载上的实际输出功率。由于输出单元90中的高频隔离变压器的初、次级绕组比例关系是已知的,所以计算出R20后,负载的实际阻抗值也可知了。(7)处理器单元50,根据键盘输入单元所提供的设置功率,与实际输出功率P20进行比较,调整占空比D,使实际输出功率P20与设置功率相等。具体过程如下,当实际输出功率P20大于设置功率时,减小占空比D,当实际输出功率P20小于设置功率时,增大占空比D,使输出功率P20恒定于设置功率值。其中,占空比D=TON/(TON+TOFF)。(8)处理器单元50,根据实时阻抗R20数值,判读负载单元100是否超出预期的阻抗阈值,包括上限阈值和下限阈值,若超过其中阈值之一,则将占空比D变为零或最小,自动停止射频输出或降低输出,若在正常范围内,若无停止命令,则继续射频输出。
下面根据实验结果对高频电刀、现有射频消融设备和本申请进行对比分析:
如图5-1、图5-2和图5-3所示,其中APo表示在100%功率设定下,输出功率随负载变化的曲线,BPo表示在50%功率设定下,输出功率随负载变化的曲线,CPo表示在10%功率设定下,输出功率随负载变化的曲线。由图可知:
一、高频电刀类设备不具备恒定输出功率的负载区间,输出功率是伴随负载的变化而波动的,仅适合于对目标组织的切割和凝血作用。二、现有的射频消融设备,具有恒定输出功率的负载区间,但该区域较窄。以图5-2为例,在全功率设定下,其恒功率的负载区间为25Ω-200Ω,可满足肝脏肿瘤的射频消融。若要用于肝脏以外的其他目标组织的消融治疗,则必须重新设计相应的硬件电路,以满足与之相适应的恒定功率的负载区间。譬如心脏消融,其典型区域为70Ω-150Ω,甲状腺消融,其典型区域为100Ω-500Ω,胃肠道消融,其典型区域为150Ω-400Ω。三、本发明硬件的恒功率的负载区间很宽。以图5-3为例,即便在全功率设定下,其恒功率的负载区间也在10Ω-800Ω范围,若在半功率设定下,其恒功率的负载区间为10Ω-1500Ω。给予相应的软件模块,就可用于肝脏、心脏、甲状腺、胃肠道等目标组织的射频消融治疗。也可用于对个目标组织的切割和凝血。适应范围广泛,通用性极强。
如图6-1、图6-2和图6-3所示,其中AV表示在100%功率设定下,高功率振荡单元或功率放大器单元80的直流输入电压值随负载变化的曲线,BV表示在50%功率设定下,高功率振荡单元或功率放大器单元80的直流输入电压值随负载变化的曲线,CV表示在10%功率设定下,高功率振荡单元或功率放大器单元80直流输入电压值随负载变化的曲线。由图可知:
由图6-1可知,高频电刀的功率放大器单元的直流输入电压V的值是恒定的,无论是设置功率发生变化还是负载发生变化,或二者同时发生变化,直流输入电压V都恒定不变。由图6-2可知,现有射频消融设备的功率放大器单元的直流输入电压V的值也是恒定的,无论是设置功率发生变化还是负载发生变化,或二者同时发生变化,直流输入电压V都恒定不变。由图6-3可知,本发明的功率放大器单元80的直流输入电压V的值可以自动调整的,当设置功率发生变化或负载发生变化,或二者同时发生变化时,直流输入电压V自动调整到与二者相匹配的电压值。由此可见,本发明与高频电刀、现有射频消融设备,在工作原理上有着本质的区别。
如图7-1、图7-2和图7-3所示,其中AVo表示在100%功率设定下高频电刀的输出电压波形,BVo 表示在50%功率设定下高频电刀的输出电压波形,CVo表示在10%功率设定下高频电刀的输出电压波形。由图可见:
由于功率振荡器的直流输入电压恒定不变,高频电刀是利用功率振荡器的振荡间隙的时间宽度来调整输出功率的大小的,间隙的时间宽度越宽,其输出功率越小,间隙的时间宽度越窄,输出功率越小。无论输出功率、负载如何变化,负载所承受的瞬时峰峰电压是相对稳定不变的,且该峰峰电压值很高。其输出波形为断续的高频波,与现有射频消融设备和本发明的输出波形有着本质的区别。
如图8-1、图8-2和图8-3所示,其中AVo表示在100%功率设定下射频消融设备的输出电压波形,BVo表示在50%功率设定下射频消融设备的输出电压波形,CVo表示在10%功率设定下射频消融设备的输出电压波形。由图可见:
现有射频消融设备和本发明的输出波形皆为连续的高频波,但二者实现的过程或方法却有本质的差别。由于功率放大器单元的直流输入电压恒定不变,现有射频消融设备的功率放大管犹如一个与负载相串联的可变电阻Ron。当输出功率、负载发生变化时,通过调整功放管的导通电阻的大小来调节到负载所需的功率值。功放管所承受的能量PON=ION 2*RON,其中ION为流过功放管的电流值。该能量被功放管直接转换成热能而消耗掉了。由于功放管自身损耗较大、温升快,需要采取必要的散热措施,包括散热器、散热风机等,整机的可靠性较差。
如图9-1、图9-2和图9-3所示,其中AVo表示在100%功率设定下本发明的输出电压波形,BVo表示在50%功率设定下本发明的输出电压波形,CVo表示在10%功率设定下本发明的输出电压波形。由图可见:
由于本发明的功率放大器单元80的直流输入电压V20的值可以自动调整的,当设置功率发生变化或负载发生变化,或二者同时发生变化时,直流输入电压V20自动调整到与二者相匹配的电压值。功率放大器单元80的功放管一直工作在开关状态,当功放管导通时,RON≈0,功放管所承受的能量PON=ION 2*RON≈0。实际电路中,功放管的损耗主要来至于其导通和断开瞬间的开关损耗,该值很小。对于本领域的技术人员应该是了解的,在这里就不赘述。
综上,本发明、高频电刀和现有射频消融设备,在硬件电路上相比较,其拓扑结构、工作原理、工作过程都有着本质的区别。本发明的优点是显而易见的:(1)整机可靠性高。在本发明的实施事例中,所有能量转换单元都采用了开关模式,且都是成熟、简单的拓扑结构。包括H型全桥驱动单元以及智能电源单元20。其中所有功放管都处于开关工作状态,其转换效率高,自身损耗小,无需风扇等专门的散热措施。整机的体积可以缩小,各部件的防水等级可以做到IP67以上。(2)硬件的输出功率控制简单、及时、精确。只需调整控制智能电源单元20的占空比D,就可以使实际输出功率按预期值恒定输出。(3)实际输出电压、电流的数据采集方式简单、直接、可靠。不需要专门的电流、电压采集线圈,也不需要光耦等非线性的隔离元器件。(4)硬件的额定负载范围宽广。理论上,智能电源单元20的输出功率P20与负载无关,仅与其占空比D,电感量LP,脉宽频率F20和输入电压V10有关。即P20=(D*V10)2/(2*LP*F20),人体中各组织的阻抗值皆在本发明的额定负载范围内。(5)硬件的通用性强大,只需结合相应的软件模块,就可用于相应的目标组织的消融、切割、凝血,参见图10-1至图10-5,依次为本发明结合相应的软件模块,分别用于甲状腺消融、心脏消融、肝脏消融、胃肠道消融,以及对目标组织的切割、凝血,在不同功率设定下,输出功率随负载变化曲线图。其中APo表示在100%功率设定下,输出功率随负载变化的曲线,BPo表示在50%功率设定下,输出功率随负载变化的曲线,CPo表示在10%功率设定下,输出功率随负载变化的 曲线。
此外,在不超出本发明范围的前提下,可以用于本发明的各种其它用途、目的。硬件电路稍加改动,可以用于本发明以外的其他领域。譬如,将信号发送与驱动单元60改为超声波频段,将超声波换能器作为负载,则本发明就变成了功率可调的大功率超声波发生器或超声波治疗设备。将信号发送与驱动单元60改为工频波频段,则本发明就变成了一个输出功率、或电压、电流可调的高性能逆变电源。将信号发送与驱动单元60改为音频波频段,则本发明就变成了一个输出功率可调的大功率音频放大器。因此,本发明在其他领域的用途并不被限制。
一种利用上述射频发生器产生射频能量的方法,包括具体以下步骤:
S11:通过智能电源单元为功率放大器提供直流电源,并对智能电源单元的实际输出电压和实际输出电流进行采集,得到智能电源单元的实际输出电压和实际输出电流;
S12:根据P20=V*I计算得出智能电源单元的实际输出功率;根据R20=V/I计算得出智能电源单元的实际阻抗;
S13:根据负载单元获得的实际功率PO=P20—(功率放大器损耗+输出单元损耗),而功率放大器和输出单元的损耗是可知的,且很小,由智能电源单元的实际输出功率计算得出负载单元获得的实际功率。
S14:根据输出单元中的高频隔离变压器的初级、次级绕组比例关系,由智能电源单元的实际阻抗计算得出负载单元的实际阻抗。
S2:将智能电源单元20的实际输出功率与预设功率进行比较,当智能电源单元20的实际输出功率大于预设功率时,减小占空比;当智能电源单元20的实际输出功率小于预设功率时,增大占空比;使智能电源单元20的实际输出功率保持与预设功率一致。
进一步地,步骤S3具体操作如下:
S3:比较负载单元的实际阻抗与预设阻抗的阈值大小,当负载单元的实际阻抗大于等于预设阻抗的下限阈值且小于等于预设阻抗的上限阈值时,继续射频输出;当负载单元的实际阻抗小于预设阻抗的下限阈值时,则智能电源的占空比变为零,停止射频输出;当负载单元的实际阻抗大于预设阻抗的上限阈值时,则智能电源的占空比变为零或最小,停止射频输出或降低射频输出。

Claims (11)

  1. 一种射频发生器,其特征在于,包括依次连接的输入电压单元、智能电源单元、电压采集单元、功率放大器单元、输出单元和负载单元;所述电压采集单元与所述智能电源单元之间连接有处理器单元;所述功率放大器单元与所述处理器单元之间设有电流采集单元;其中,
    输入电压单元,用于为智能电源单元提供直流电压;
    智能电源单元,用于为功率放大器单元提供可变的直流电压;
    电压采集单元,用于采集所述智能电源单元的实际输出电压;
    电流采集单元,用于采集所述智能电源单元的实际输出电流;
    处理器单元,用于根据采集到的所述实际输出电压和实际输出电流得出智能电源单元的实际输出功率和实际阻抗,并计算出负载单元的实际阻抗和获得的实际功率,将智能电源单元的实际输出功率和负载单元的实际阻抗与预设值分别进行,并根据比较结果调节所述智能电源单元的输出电压或输出功率,使所述智能电源单元的实际输出功率与预设功率保持一致,以使负载单元获得预期的射频能量;以及
    信号发送与驱动单元,与所述功率放大器单元的驱动端连接,用于产生高频驱动信号驱动功率放大器单元工作。
  2. 根据权利要求1所述的射频发生器,其特征在于,所述智能电源单元的输出电压值、输出电流值和输出功率值不是固定的,而是根据外部的不同需要,可以自由调节的。
  3. 根据权利要求2所述的射频发生器,其特征在于,所述智能电源单元为开关电源变换器,其包括依次并联连接的第一电容C21、第一晶体管Q21、第二电感L22、第三电容C23;所述第一电容C21的正极性端与所述第一晶体管Q21的漏极之间串联有第一电感L21,且所述第一电感L21的同名端与所述第一电容C21的正极性端连接;所述第一晶体管Q21的栅极与所述处理器单元的PWM端连接;所述第二电感L22的异名端与所述第三电容C23之间依次串联有第二电容C22和二极管D21,且所述二极管D21的阴极与所述第三电容C23的正极性端连接,所述第二电容C22的正极性端与所述第二电感L22的异名端连接。
  4. 根据权利要求3所述的射频发生器,其特征在于,所述电压采集单元包括串联后并联连接在所述第三电容C23的两端的第一电阻R31和第二电阻R32,所述第一电阻R31和第二电阻R32的连接节点连接至所述处理器单元的电压采集端口。
  5. 根据权利要求3所述的射频发生器,其特征在于,所述电流采集单元包括与所述功率放大器单元连接的第三电阻R41,所述第三电阻R41与所述功率放大器单元的连接节点连接至所述处理器单元的电流采集端口。
  6. 根据权利要求1所述的射频发生器,其特征在于,所述输出单元包括高频隔离变压器、辅助电极和治疗电极监测、控制单元。
  7. 根据权利要求1所述的射频发生器,其特征在于,所述射频发生器还包括与所述处理器单元连接的用于输入控制命令的输入控制单元。
  8. 一种利用权利要求1-7任一所述的射频发生器产生射频能量的方法,其特征在于,包括以下步骤:
    S1:通过智能电源单元为功率放大器提供直流电源,并对智能电源单元的实际输出电压和实际输出 电流进行采集,根据采集到的信息得出智能电源单元的实际输出功率和实时等效阻抗,以及计算出负载单元的实际阻抗和获得的实际功率;
    S2:将所述智能电源单元的实际输出功率与预设功率进行比较,根据比较结果调节智能电源单元的占空比,使智能电源单元的输出功率恒定于预设功率;
    S3:比较负载单元的实际阻抗与预设阻抗的阈值大小,根据比较结果,自动控制射频能量继续输出或停止输出。
  9. 根据权利要求8所述的射频能量的产生方法,其特征在于,所述步骤S1具体包括以下步骤:
    S11:通过智能电源单元为功率放大器提供直流电源,并对智能电源单元的实际输出电压和实际输出电流进行采集,得到智能电源单元的实际输出电压和实际输出电流;
    S12:根据P20=V*I计算得出智能电源单元的实际输出功率;根据R20=V/I计算得出智能电源单元的实际阻抗;
    S13:根据负载单元获得的实际功率PO=P20—(功率放大器损耗+输出单元损耗),而功率放大器和输出单元的损耗是可知的,且很小,由智能电源单元的实际输出功率计算得出负载单元获得的实际功率。
    S14:根据输出单元中的高频隔离变压器的初级、次级绕组比例关系,由智能电源单元的实际阻抗计算得出负载单元的实际阻抗。
  10. 根据权利要求8所述的射频能量的产生方法,其特征在于,所述步骤S2具体操作如下:
    S2:将所述智能电源单元的实际输出功率与预设功率进行比较,当智能电源单元的实际输出功率大于所述预设功率时,减小占空比;当智能电源单元的实际输出功率小于所述预设功率时,增大占空比;使智能电源单元的实际输出功率保持与预设功率一致。
  11. 根据权利要求8所述的射频能量的产生方法,其特征在于,所述步骤S3具体操作如下:
    S3:比较负载单元的实际阻抗与预设阻抗的阈值大小,当负载单元的实际阻抗大于等于预设阻抗的下限阈值且小于等于预设阻抗的上限阈值时,继续射频输出;当负载单元的实际阻抗小于预设阻抗的下限阈值时,则智能电源的占空比变为零,停止射频输出;当负载单元的实际阻抗大于预设阻抗的上限阈值时,则智能电源的占空比变为零或最小,停止射频输出或降低射频输出。
PCT/CN2016/088531 2015-10-29 2016-07-05 一种射频发生器及利用该射频器产生射频能量的方法 WO2017101322A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510718332 2015-10-29
CN201510930219.6A CN105496549A (zh) 2015-10-29 2015-12-15 一种射频发生器及利用该射频器产生射频能量的方法
CN201510930219.6 2015-12-15

Publications (1)

Publication Number Publication Date
WO2017101322A1 true WO2017101322A1 (zh) 2017-06-22

Family

ID=55705121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088531 WO2017101322A1 (zh) 2015-10-29 2016-07-05 一种射频发生器及利用该射频器产生射频能量的方法

Country Status (3)

Country Link
US (1) US10105173B2 (zh)
CN (1) CN105496549A (zh)
WO (1) WO2017101322A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105496549A (zh) * 2015-10-29 2016-04-20 绵阳立德电子股份有限公司 一种射频发生器及利用该射频器产生射频能量的方法
US10516374B2 (en) * 2016-03-08 2019-12-24 Panasonic Intellectual Property Management Co., Ltd. Class-D amplifier and audio playback apparatus
CN108258929A (zh) * 2016-12-28 2018-07-06 南京森盛医疗设备有限公司 一种快速凝血切割装置的射频功放模块
JP6853145B2 (ja) * 2017-08-29 2021-03-31 日本ライフライン株式会社 アブレーションシステム
CN109412424B (zh) * 2018-12-21 2024-05-10 东文高压电源(天津)股份有限公司 一种幅度、频率可调的高压正弦波电源电路及实现方法
CN110897684A (zh) * 2019-07-01 2020-03-24 广州易和医疗技术开发有限公司 一种双环自健康管理的多输出微创手术系统
CN110674158B (zh) * 2019-10-15 2022-02-15 广东电网有限责任公司 一种低压用户自动更新所在台区方法及系统
US11903638B2 (en) * 2019-12-11 2024-02-20 Biosense Webster (Israel) Ltd. Regulating delivery of irreversible electroporation pulses according to transferred energy
CN112712884B (zh) * 2020-12-31 2021-09-28 杭州堃博生物科技有限公司 动态调整射频参数的方法、装置和射频主机
JP7427805B2 (ja) * 2020-03-13 2024-02-05 バイオコンパティブルズ ユーケー リミテッド アブレーション器具のためのランプアップ機能
WO2021249161A1 (zh) * 2020-06-12 2021-12-16 杭州诺诚医疗器械有限公司 射频消融电源以及射频消融系统
CN111865294B (zh) * 2020-07-30 2022-05-31 清华四川能源互联网研究院 功率匹配接口电路和功率匹配系统
EP4268745A1 (en) * 2020-12-25 2023-11-01 Asahi Intecc Co., Ltd. Plasma ablasion system and plasma guide wire
CN113054960A (zh) * 2021-03-29 2021-06-29 杭州维那泰克医疗科技有限责任公司 电信号输出设备、系统、输出方法及存储介质
CN113225031A (zh) * 2021-04-06 2021-08-06 杭州小呈向医疗科技有限公司 一种医疗射频输出功率的调节方法及系统
CN114098910B (zh) * 2021-10-28 2023-08-29 北京派尔特医疗科技股份有限公司 应用于超声刀的切割控制方法、装置及存储介质
CN114191708B (zh) * 2021-12-15 2023-12-05 广东花至美容科技有限公司 美容仪射频输出功率控制方法、存储介质及电子设备
CN114191707B (zh) * 2021-12-15 2022-12-23 广东花至美容科技有限公司 基于皮肤阻抗的美容仪射频功率控制方法及设备
CN116260321A (zh) * 2023-05-16 2023-06-13 杭州锐健医疗科技有限公司 一种mos管驱动电路、开关电源及消融设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202637105U (zh) * 2012-05-22 2013-01-02 上海理工大学 基于fpga的高频电刀发生器
CN103027748A (zh) * 2011-10-03 2013-04-10 伊西康内外科公司 用于超声和电外科装置的外科发生器
CN103126763A (zh) * 2011-11-28 2013-06-05 常州先进制造技术研究所 一种高频刀全闭环安全保护控制系统
CN103417292A (zh) * 2013-06-06 2013-12-04 上海理工大学 电外科模拟系统
US20130325380A1 (en) * 2012-05-31 2013-12-05 Tyco Healthcare Group Lp AC Active Load
CN103767787A (zh) * 2014-01-24 2014-05-07 上海魅丽纬叶医疗科技有限公司 用于神经消融的射频消融方法和射频消融系统
CN204169923U (zh) * 2013-10-16 2015-02-25 柯惠有限合伙公司 电外科发生器
CN105496549A (zh) * 2015-10-29 2016-04-20 绵阳立德电子股份有限公司 一种射频发生器及利用该射频器产生射频能量的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201759666U (zh) * 2010-04-28 2011-03-16 上海力申科学仪器有限公司 高频手术器自动调节输出功率和模式系统
GB2497275A (en) * 2011-11-25 2013-06-12 Enecsys Ltd Modular adjustable power factor renewable energy inverter system
TWI496409B (zh) * 2014-01-22 2015-08-11 Lite On Technology Corp 單相三線式電力控制系統及其電力控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103027748A (zh) * 2011-10-03 2013-04-10 伊西康内外科公司 用于超声和电外科装置的外科发生器
CN103126763A (zh) * 2011-11-28 2013-06-05 常州先进制造技术研究所 一种高频刀全闭环安全保护控制系统
CN202637105U (zh) * 2012-05-22 2013-01-02 上海理工大学 基于fpga的高频电刀发生器
US20130325380A1 (en) * 2012-05-31 2013-12-05 Tyco Healthcare Group Lp AC Active Load
CN103417292A (zh) * 2013-06-06 2013-12-04 上海理工大学 电外科模拟系统
CN204169923U (zh) * 2013-10-16 2015-02-25 柯惠有限合伙公司 电外科发生器
CN103767787A (zh) * 2014-01-24 2014-05-07 上海魅丽纬叶医疗科技有限公司 用于神经消融的射频消融方法和射频消融系统
CN105496549A (zh) * 2015-10-29 2016-04-20 绵阳立德电子股份有限公司 一种射频发生器及利用该射频器产生射频能量的方法

Also Published As

Publication number Publication date
US20170164995A1 (en) 2017-06-15
CN105496549A (zh) 2016-04-20
US10105173B2 (en) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2017101322A1 (zh) 一种射频发生器及利用该射频器产生射频能量的方法
US11864814B2 (en) System and method for harmonic control of dual-output generators
US10842563B2 (en) System and method for power control of electrosurgical resonant inverters
EP2826433B1 (en) Electrosurgical generator with continuously and arbitrarily variable crest factor
US9270202B2 (en) Constant power inverter with crest factor control
US6238387B1 (en) Electrosurgical generator
EP2826434B1 (en) Electrosurgical generators
US10869712B2 (en) System and method for high frequency leakage reduction through selective harmonic elimination in electrosurgical generators
CN218276654U (zh) 一种双隔离驱动功放电路
JP2001037774A (ja) 高周波焼灼装置
EP3257461B1 (en) Variable active snubber circuit to induce zero-voltage-switching in a current-fed power converter
CN216167810U (zh) 一种高频电刀发生器及高频电刀
US10537378B2 (en) Variable active clipper circuit to control crest factor in an AC power converter
CN113796946A (zh) 用于电外科手术的功率调节装置、主机及手术系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874385

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.04.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16874385

Country of ref document: EP

Kind code of ref document: A1