WO2021249094A1 - 显示装置及其驱动方法、制备方法 - Google Patents

显示装置及其驱动方法、制备方法 Download PDF

Info

Publication number
WO2021249094A1
WO2021249094A1 PCT/CN2021/093330 CN2021093330W WO2021249094A1 WO 2021249094 A1 WO2021249094 A1 WO 2021249094A1 CN 2021093330 W CN2021093330 W CN 2021093330W WO 2021249094 A1 WO2021249094 A1 WO 2021249094A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polarizer
crystal cell
display device
layer
Prior art date
Application number
PCT/CN2021/093330
Other languages
English (en)
French (fr)
Inventor
刘燕妮
王辉
王胜广
喻慧娟
朱锦明
易新
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/761,986 priority Critical patent/US20230089004A1/en
Publication of WO2021249094A1 publication Critical patent/WO2021249094A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display device, a driving method thereof, and a preparation method thereof.
  • Reflective liquid crystal display products have great market potential due to their advantages of low power consumption, high aperture ratio, and no need for a backlight.
  • Reflective liquid crystal display products display pictures by reflecting ambient light or reflecting light emitted by a light source arranged outside the display product.
  • it is necessary to set a 1/2 wave plate and a 1/4 wave plate between the upper polarizer and the color film substrate.
  • the reflectivity of the 1/2 wave plate and the 1/4 wave plate varies with the low gray scale. The difference in voltage changes is large, resulting in low contrast of the display screen, and serious light leakage under low gray scales.
  • An implementation of the present disclosure provides a display device, wherein, the display device includes:
  • the first polarizer is located on the light incident side of the liquid crystal cell
  • the reflective polarization structure is located on the side of the liquid crystal cell away from the first polarizer; the reflective polarization structure is configured to absorb light whose polarization direction is parallel to the transmission axis direction of the first polarizer, and reflect the polarization direction Light perpendicular to the transmission axis direction of the first polarizer.
  • the reflective polarization structure includes:
  • a reflective optical brightness enhancement film the transmission axis of the reflective optical brightness enhancement film is parallel to the transmission axis of the first polarizer, and the reflection axis of the reflective optical brightness enhancement film is parallel to the first polarizer
  • the transmission axis is vertical;
  • the light-absorbing layer is located on the side of the reflective light-enhancing film away from the liquid crystal cell.
  • the reflective polarization structure includes:
  • the polarizer includes a plurality of stacked wave plates; the transmission axis of the polarizer is parallel to the transmission axis of the first polarizer, and the reflection axis of the polarizer is parallel to the transmission axis of the first polarizer vertical;
  • the light-absorbing layer is located on the side of the polarizer away from the liquid crystal cell.
  • the reflective polarization structure includes:
  • a second polarizer the transmission axis of the second polarizer is perpendicular to the transmission axis of the first polarizer
  • the reflective layer is located on the side of the second polarizer away from the liquid crystal cell.
  • it further includes:
  • the anti-reflection layer is located between the reflective polarization structure and the liquid crystal cell.
  • it further includes:
  • the protective layer is located on the side of the reflective polarization structure away from the liquid crystal cell.
  • it further includes:
  • the scattering layer is located between the first polarizer and the liquid crystal cell.
  • the liquid crystal cell includes:
  • the opposite substrate is located on the side of the liquid crystal layer facing the first polarizer; and includes: a first alignment layer adjacent to the liquid crystal layer, and the rubbing alignment direction of the first alignment layer is the same as that of the first polarizer.
  • the transmission axis of the film is parallel;
  • the array substrate is located on the side of the liquid crystal layer facing the reflective polarization structure; comprising: a second alignment layer adjacent to the liquid crystal layer, and the rubbing alignment direction of the second alignment layer is the same as that of the first polarizer
  • the through axis is vertical.
  • the liquid crystal cell includes:
  • the opposite substrate is located on the side of the liquid crystal layer facing the first polarizer; and includes: a first alignment layer adjacent to the liquid crystal layer, and the rubbing alignment direction of the first alignment layer is the same as that of the first polarizer.
  • the transmission axis of the film is parallel;
  • the array substrate is located on the side of the liquid crystal layer facing the reflective polarization structure; comprising: a second alignment layer adjacent to the liquid crystal layer, and the rubbing alignment direction of the second alignment layer is the same as that of the first polarizer
  • the through axis is parallel.
  • an embodiment of the present disclosure also provides a driving method of a display device, including:
  • the liquid crystal in the liquid crystal cell is controlled to be in the first state, so that the light passing through the first polarizer changes its polarization state after passing through the liquid crystal cell to be reflected by the reflective polarization structure, and the reflected light passes through all After the liquid crystal cell, the polarization state is changed again, and the light is emitted from the first polarizer to realize a bright state display;
  • the liquid crystal in the liquid crystal cell is controlled to be in the third state, so that the light passing through the first polarizer, after passing through the liquid crystal cell, changes in the polarization state of part of the light and is absorbed by the reflective polarization structure, and the remaining part The polarization state of the light remains unchanged and is reflected by the reflective polarization structure. After the reflected light passes through the liquid crystal cell, the polarization state changes again and exits from the first polarizer to achieve a transition between the bright state and the dark state.
  • Grayscale display is controlled to be in the third state, so that the light passing through the first polarizer, after passing through the liquid crystal cell, changes in the polarization state of part of the light and is absorbed by the reflective polarization structure, and the remaining part The polarization state of the light remains unchanged and is reflected by the reflective polarization structure. After the reflected light passes through the liquid crystal cell, the polarization state changes again and exits from the first polarizer to achieve a transition between the bright state and the dark state
  • the rubbing alignment direction of the first alignment layer is parallel to the transmission axis of the first polarizer, and the rubbing alignment direction of the second alignment layer is the same as that of the first polarizer.
  • the transmission axis of the polarizer is vertical to control the liquid crystal in the liquid crystal cell to be in the first state, which specifically includes:
  • Controlling the liquid crystal in the liquid crystal cell to be in the second state specifically includes:
  • Controlling the liquid crystal in the liquid crystal cell to be in the third state specifically includes:
  • a preset voltage corresponding to the gray scale value is applied to the liquid crystal cell, and the liquid crystal in the liquid crystal cell is controlled to be deflected to a third state.
  • the rubbing alignment direction of the first alignment layer is parallel to the transmission axis of the first polarizer, and the rubbing alignment direction of the second alignment layer is the same as that of the first polarizer.
  • the transmission axis of the polarizer is parallel to control the liquid crystal in the liquid crystal cell to be in the first state, which specifically includes:
  • Controlling the liquid crystal in the liquid crystal cell to be in the second state specifically includes:
  • Controlling the liquid crystal in the liquid crystal cell to be in the third state specifically includes:
  • a preset voltage corresponding to the gray scale value is applied to the liquid crystal cell, and the liquid crystal in the liquid crystal cell is controlled to be deflected to a third state.
  • an embodiment of the present disclosure also provides a method for manufacturing a display device, including:
  • a reflective polarization structure is formed on the side of the liquid crystal cell away from the first polarizer.
  • forming a reflective polarization structure on the side of the liquid crystal cell facing away from the first polarizer specifically includes:
  • a light-absorbing layer is formed on the entire surface of the reflective light-enhancing film on the side facing away from the liquid crystal cell.
  • forming a reflective polarization structure on the side of the liquid crystal cell facing away from the first polarizer specifically includes:
  • a light-absorbing layer is formed on the entire surface of the polarizer facing away from the liquid crystal cell.
  • forming a reflective polarization structure on the side of the liquid crystal cell facing away from the first polarizer specifically includes:
  • a second polarizer on the entire side of the liquid crystal cell facing away from the first polarizer
  • a reflective layer is formed on the entire surface of the second polarizer facing away from the liquid crystal cell.
  • it further includes:
  • a protective layer is formed on the side of the reflective polarization structure away from the liquid crystal cell.
  • it further includes:
  • An anti-reflection layer is formed between the reflective polarization structure and the liquid crystal.
  • FIG. 1 is a schematic structural diagram of a display device provided by an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of another display device provided by an embodiment of the disclosure.
  • FIG. 3 is a schematic structural diagram of a reflective light-enhancing film in a display device provided by an embodiment of the disclosure
  • FIG. 4 is a schematic structural diagram of another display device provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of a polarizer in a display device provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram of yet another display device provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another display device provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of yet another display device provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of yet another display device provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of yet another display device provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of yet another display device provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of yet another display device provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of yet another display device provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of yet another display device provided by an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of yet another display device provided by an embodiment of the disclosure.
  • FIG. 16 is a graph of the voltage-reflectivity simulation results of the display device a and the display device b provided by an embodiment of the disclosure
  • FIG. 17 is a voltage-reflectivity simulation result of a display device a provided by an embodiment of the disclosure at different viewing angles;
  • FIG. 18 is a voltage-reflectivity simulation result of a display device b at different viewing angles according to an embodiment of the disclosure.
  • FIG. 19 is a diagram showing the simulation results of viewing angle attenuation of the display device a and the display device b according to an embodiment of the disclosure.
  • FIG. 20 is a schematic diagram of a driving method of a display device according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic diagram of a manufacturing method of a display device provided by an embodiment of the disclosure.
  • An embodiment of the present disclosure provides a display device, as shown in FIG. 1, including:
  • the first polarizer 2 is located on the light incident side of the liquid crystal cell 1;
  • the reflective polarization structure 3 is located on the side of the liquid crystal cell 1 facing away from the first polarizer 2; the reflective polarization structure 3 is configured to absorb light whose polarization direction is parallel to the transmission axis direction of the first polarizer 2, and reflect the polarization direction to The first polarizer 2 transmits light in a direction perpendicular to the axis.
  • the display device provided in the embodiment of the present application is a liquid crystal display device, which can be applied to reflective liquid crystal display products.
  • a reflective polarization structure is provided on the side of the liquid crystal cell away from the first polarizer.
  • the reflective polarization structure can absorb light whose polarization direction is parallel to the transmission axis direction of the first polarizer and can reflect light.
  • the polarization direction is perpendicular to the direction of the transmission axis of the first polarizer, so that by changing the state of the liquid crystal in the liquid crystal cell, the phase difference of the light can be changed, so that the light is absorbed or reflected by the reflective polarization structure, and there is no need to connect the liquid crystal cell with the first polarizer.
  • Setting a 1/2 wave plate and a 1/4 wave plate between the plates to change the phase difference can realize the reflective display function, which can improve the contrast of the display screen, avoid low grayscale light leakage, improve the display effect, and enhance the user experience.
  • the reflective polarization structure can be set in the following manner.
  • the reflective polarization structure 3 includes:
  • the reflective light enhancement film 4, the transmission axis of the reflective light enhancement film 4 is parallel to the transmission axis of the first polarizer 2, and the reflection axis of the reflective light enhancement film 4 and the transmission axis of the first polarizer 2 Axis vertical
  • the light-absorbing layer 5 is located on the side of the reflective light-enhancing film 4 away from the liquid crystal cell 1.
  • the reflective optical brightness enhancement film may be, for example, a multi-layer reflective polarizer (Advanced Polarizer Film, APF), or may be a reflective polarization enhancement film (Dual Brightness Enhance Film, DBEF).
  • APF Advanced Polarizer Film
  • DBEF Reflective Brightness Enhance Film
  • the reflective light-enhancing film 4 includes a polymer A film layer and a polymer B film layer stacked alternately.
  • the refractive index of the polymer A film layer and the polymer B film layer are different.
  • the reflective optical brightness enhancement film formed by alternately stacking three polymer A film layers and polymer B film layers is used as an example for illustration, in order to clearly illustrate the reflective optical brightness enhancement film
  • the structure does not limit the number of polymer A film layers and polymer B film layers.
  • the number of polymer A film layers and polymer B film layers can be set according to actual needs, for example, it can be 100 microns ( The thickness of ⁇ m) is extruded into a reflective light-enhancing film including hundreds of polymer A film layers and polymer B film layers alternately arranged.
  • the reflective polarization structure 3 includes:
  • the polarizer 6, as shown in FIG. 5, includes a plurality of stacked wave plates 16; the transmission axis of the polarizer 6 is parallel to the transmission axis of the first polarizer 2, and the reflection axis of the polarizer 6 is parallel to the first polarizer 2
  • the transmission axis is vertical;
  • the light-absorbing layer 5 is located on the side of the polarizer 6 away from the liquid crystal cell 1.
  • the wave plate can be a thin glass sheet, that is, a plurality of thin glass sheets are laminated to form a polarizer, as shown in FIG.
  • Reflection and refraction ultimately make the transmitted light mainly P light and the reflected light mainly S light. Realize the separation of light in different polarization directions.
  • the polarization direction of the linearly polarized light after passing through the liquid crystal cell is parallel to the reflection axis of the polarizer, the light is reflected by the polarizer.
  • the polarization direction of the linearly polarized light after passing through the liquid crystal cell is parallel to the transmission axis of the polarizer, the light It reaches the light-absorbing layer through the polarizer and is absorbed.
  • FIG. 5 only uses a polarizer formed by stacking three wave plates 16 as an example to illustrate the structure of the polarizer clearly, and does not limit the number of wave plates 16. In practical applications, The number of wave plates can be set according to actual needs.
  • the material of the light-absorbing layer in the first and second modes may include, for example, a black body material.
  • the reflective polarization structure 3 includes:
  • the second polarizer 7, the transmission axis of the second polarizer 7 is perpendicular to the transmission axis of the first polarizer 2;
  • the reflective layer 8 is located on the side of the second polarizer 7 away from the liquid crystal cell 1.
  • the polarization direction of the linearly polarized light passing through the liquid crystal cell is perpendicular to the transmission axis of the second polarizer, the light is absorbed by the second polarizer, and the polarization direction of the linearly polarized light passing through the liquid crystal cell is the same as that of the second polarizer.
  • the transmission axis of the film is parallel, the light passes through the second polarizer and reaches the reflective layer to be reflected.
  • the reflective layer may include a specular reflective material, for example.
  • the above-mentioned display device provided by the embodiment of the present disclosure further includes:
  • the anti-reflection layer 9 is located between the reflective polarization structure 3 and the liquid crystal cell 1.
  • the anti-reflection layer can be formed by laminating single or multilayer optical films each with different refractive indexes.
  • the refractive index of the anti-reflection layer is low, which can reduce the specular reflection at the interface of the light entrance side of the reflective polarization structure. , Improve light utilization.
  • the thickness of the anti-reflection layer may be in the range of tens of nanometers to hundreds of nanometers, for example.
  • the material of the anti-reflection layer includes a transparent material with a low refractive index.
  • the transparent material can be an inorganic material, such as silicon dioxide, magnesium fluoride, calcium fluoride, etc., of course, the transparent material can also be an organic material. For example, silicone resin, amorphous fluororesin, etc.
  • the above-mentioned display device provided by the embodiment of the present disclosure further includes:
  • the protective layer 10 is located on the side of the reflective polarization structure 3 away from the liquid crystal cell 1.
  • a protective layer is formed on the side of the reflective polarization structure facing away from the array substrate, so as to protect the reflective polarization structure and prevent the external environment from corroding the reflective polarization structure.
  • the material of the protective layer may include an insulating material, for example.
  • the above-mentioned display device provided by the embodiment of the present disclosure further includes:
  • the scattering layer 17 is located between the first polarizer 2 and the first alignment layer 13.
  • a scattering layer is provided between the first polarizer and the first alignment layer, so that the viewing angle of the display panel can be increased.
  • the scattering layer may include a scattering film or a haze film, for example.
  • the above-mentioned display device provided by the embodiment of the present disclosure further includes:
  • the opposite substrate 12 is located on the side of the liquid crystal layer 11 facing the first polarizer 2; it includes a first alignment layer 13 adjacent to the liquid crystal layer 11. Parallel to the axis;
  • the array substrate 14 is located on the side of the liquid crystal layer 11 facing the reflective polarization structure 3; it includes a second alignment layer 15 adjacent to the liquid crystal layer 11, the rubbing alignment direction of the second alignment layer 15 and the transmission axis of the first polarizer 2 vertical.
  • the liquid crystal cell may be a twisted nematic (TN) liquid crystal cell.
  • the liquid crystal cell in the display device provided by the embodiment of the present disclosure is a TN liquid crystal cell as an example
  • the working principle of the display device provided by the embodiment of the present disclosure will be illustrated.
  • the angle of the transmission axis of the first polarizer and the alignment angle of the first alignment layer are 0°, and the alignment angle of the second alignment layer is 90°,
  • the angle of the transmission axis of the reflective optical brightness enhancement film or polarizer is 0°, and the angle of the reflection axis of the reflective optical brightness enhancement film or polarizer is 90°.
  • the liquid crystal When no voltage is applied to the liquid crystal cell, the liquid crystal assumes a 90° twisted alignment under the action of the alignment film, and natural light passes through the first polarizer to become linearly polarized light with a polarization direction of 0°.
  • the 0° linearly polarized light After the 0° linearly polarized light passes through the liquid crystal cell It becomes 90° linearly polarized light, and the polarization direction of 90° linearly polarized light is parallel to the reflection axis of the reflective optical brightness enhancement film or polarizer, so the 90° linearly polarized light reaches the reflective optical brightness enhancement film or polarizer After being reflected, the reflected light becomes 0° linearly polarized light after passing through the liquid crystal cell and exits from the first polarizer. At this time, the display panel is displayed in a bright state, that is, 255 gray scale display is realized.
  • the liquid crystal When the dark state working voltage is applied to the liquid crystal cell, the liquid crystal is arranged vertically, and the natural light passes through the first polarizer to become linearly polarized light with a polarization direction of 0°, and the linearly polarized light of 0° is still linearly polarized at 0° after passing through the liquid crystal cell.
  • the polarization direction of 0° linearly polarized light is parallel to the transmission axis of the reflective light-enhancing film or polarizer, so 0° linearly polarized light can pass through the reflective light-enhancing film or polarizer, and then be absorbed by the light-absorbing layer Absorb, realize dark state display, that is, realize 0 gray scale display.
  • the voltage corresponding to the gray scale to be displayed is applied to the liquid crystal cell, and the natural light passes through the upper polarizer and the liquid crystal and becomes elliptically polarized light, and reaches the reflective light increaser.
  • part is reflected by the reflective optical brightness enhancement film or polarizer, and part is transmitted by the reflective optical brightness enhancement film or polarizer and then absorbed by the light absorbing layer, showing the grayscale state corresponding to the applied voltage .
  • the angle of the transmission axis of the first polarizer and the alignment angle of the first alignment layer are 0°, and the angle of the transmission axis of the second polarizer and the second alignment
  • the alignment angle of the layers is 90°.
  • the liquid crystal When no voltage is applied to the liquid crystal cell, the liquid crystal assumes a 90° twisted alignment under the action of the alignment film, and natural light passes through the first polarizer to become linearly polarized light with a polarization direction of 0°. After the 0° linearly polarized light passes through the liquid crystal cell It becomes 90° linearly polarized light. The polarization direction of 90° linearly polarized light is parallel to the transmission axis of the second polarizer. The 90° linearly polarized light can pass through the second polarizer and then be reflected by the reflective layer. After passing through the liquid crystal cell, the light becomes 0° linearly polarized light and exits from the first polarizer. At this time, the display panel is displayed in a bright state, that is, a 255 gray scale display is realized.
  • the liquid crystal When the dark state working voltage is applied to the liquid crystal cell, the liquid crystal is arranged vertically, and the natural light passes through the first polarizer to become linearly polarized light with a polarization direction of 0°, and the linearly polarized light of 0° is still linearly polarized at 0° after passing through the liquid crystal cell.
  • the polarization direction of the 0° linearly polarized light is perpendicular to the transmission axis of the second polarizer, and the 0° linearly polarized light is absorbed after reaching the second polarizer to achieve a dark state display, that is, a 0 grayscale display.
  • the liquid crystal cell may also be an in-plane switching (IPS) liquid crystal cell, a vertical alignment (Vertical Alignment, VA) liquid crystal cell, or a high-level super-dimensional liquid crystal cell.
  • IPS in-plane switching
  • VA vertical Alignment
  • ADS Advanced Super Dimension Switch
  • the opposite substrate 12 is located on the side of the liquid crystal layer 11 facing the first polarizer 2; it includes a first alignment layer 13 adjacent to the liquid crystal layer 11. Parallel to the axis;
  • the array substrate 14 is located on the side of the liquid crystal layer 11 facing the reflective polarization structure 3; it includes a second alignment layer 15 adjacent to the liquid crystal layer 11, the rubbing alignment direction of the second alignment layer 15 and the transmission axis of the first polarizer 2 parallel.
  • the angle of the transmission axis of the first polarizer and the alignment angle of the first alignment layer are 0°, and the transmission of the reflective optical brightness enhancement film or polarizer is 0°.
  • the over-axis angle and the alignment angle of the second alignment layer are 0°, and the reflection axis angle of the reflective light-enhancing film or polarizer is 90°.
  • the liquid crystal rotates, and the natural light becomes linearly polarized light with a polarization direction of 0° through the first polarizer, and the linearly polarized light at 0° becomes 90° linearly polarized light after passing through the liquid crystal cell.
  • the polarization direction of 90° linearly polarized light is parallel to the reflection axis of the reflective optical brightness enhancement film or polarizer, so the 90° linearly polarized light reaches the reflective optical brightness enhancement film or polarizer and is reflected, and the reflected light After passing through the liquid crystal cell, it becomes 0° linearly polarized light and exits from the first polarizer.
  • the display panel is displayed in a bright state, that is, 255 gray scale display is realized.
  • the voltage that responds to the gray scale that needs to be displayed is applied to the liquid crystal cell, and natural light passes through the upper polarizer and the liquid crystal and becomes elliptically polarized light, and reaches the reflective light increaser.
  • part is reflected by the reflective optical brightness enhancement film or polarizer, and part is transmitted by the reflective optical brightness enhancement film or polarizer and then absorbed by the light absorbing layer, showing the grayscale state corresponding to the applied voltage .
  • the angle of the transmission axis of the first polarizer and the alignment angle of the first alignment layer are 0°
  • the alignment angle of the second alignment layer is 0°
  • the second polarization The angle of the transmission axis of the sheet is 90°.
  • the array substrate may further include, for example, a glass substrate, and a thin film transistor pixel circuit formed on the glass substrate.
  • the thin film transistor pixel circuit includes, for example, gate lines, data lines, thin film transistors, and pixel electrodes. Wait.
  • the counter substrate may also include, for example, color resists, black matrixes, spacers, and the like.
  • the common electrode can be provided in the array substrate or in the opposite substrate.
  • the design of conventional reflective liquid crystal cells is usually to form a reflective layer pattern in the sub-pixel area of the array substrate.
  • a set of masks (Mask) needs to be added.
  • the reflective layer needs to leave a certain distance from the grid lines and data lines of the array substrate.
  • the scan signal or data signal is in alignment. The bit fluctuation is likely to affect the pixel electrode directly in contact with the reflective layer and cause crosstalk-type display failure.
  • the reflective polarization structure is arranged on the side of the array substrate away from the liquid crystal layer, that is, the reflective polarization structure is arranged outside the liquid crystal cell, so that there is no need to pattern the reflective polarization structure, which can simplify the display.
  • the manufacturing process of the device does not need to consider the alignment accuracy of the reflective polarization structure, reducing the difficulty of the display device manufacturing process, and the reflective polarization structure will not contact the pixel electrode in the array substrate outside the liquid crystal cell. In practical applications, the scanning signal And the data signal will not affect the pixel electrode due to the reflective polarization structure.
  • the reflective polarization structure is fabricated outside the liquid crystal cell, and the internal design structure of the liquid crystal cell can adopt a conventional transmissive liquid crystal display cell design method.
  • the reflective polarization structure is set on the side of the array substrate away from the liquid crystal layer. Therefore, after the liquid crystal cell sample is made, the cell gap of the liquid crystal cell can be measured, and the appropriate liquid crystal can be determined after the characterization The design specifications of the height and the height of the spacer, and then apply the same design parameters to the manufacture of reflective display devices.
  • the above-mentioned display device provided by the embodiment of the present disclosure can be applied to any product or component with display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device a includes a reflective light-enhancing film and a light-absorbing layer, that is, a display device a is a display device provided by an embodiment of the present disclosure, and related parameters of the display device a are shown in Table 1.
  • the second alignment layer friction alignment angle 90° Reflective light-enhancing film transmission axis angle 90°
  • the display device b is a traditional reflective display device provided by the prior art.
  • the opposite substrate side of the display device b includes an upper polarizer, a 1/2 wave plate and a quarter wave plate, and the liquid crystal is provided on the side facing away from the opposite substrate.
  • the relevant parameters of the reflective layer and the display device b are shown in Table 2.
  • the first polarizer transmission axis angle 80° 1/2 wave plate transmission axis angle 62.5° 1/2 wave plate compensation value 270 nm 1/4 wave plate transmission axis angle 0° 1/4 wave plate compensation value 160 nm LCD cell thickness 2.7 microns
  • the first alignment layer friction alignment angle 55° LCD initial alignment angle 60°
  • Techwiz optical software can be used to simulate the display panel a and the display panel b, and the simulated light wavelength is the result of the full wavelength range of 380 nanometers (nm) to 780 nm.
  • the simulation results are as follows:
  • the contrast of the display device a is 573.0, and the contrast of the display device b is 52.5.
  • embodiments of the present disclosure also provide a driving method of the above-mentioned display device, as shown in FIG. 20, including:
  • the driving method of the display device realizes the change of the phase difference of light by changing the state of the liquid crystal in the liquid crystal cell, so that the light is absorbed or reflected by the reflective polarizing structure, and there is no need to arrange between the liquid crystal cell and the first polarizer.
  • the 1/2 wave plate and the 1/4 wave plate can realize the change of the phase difference, which can realize the reflective display function, which can improve the contrast of the display screen, avoid low grayscale light leakage, improve the display effect, and enhance the user experience.
  • the rubbing alignment direction of the first alignment layer is parallel to the transmission axis of the first polarizer, and the second The rubbing alignment direction of the alignment layer is perpendicular to the transmission axis of the first polarizer.
  • controlling the liquid crystal in the liquid crystal cell to be in the first state includes:
  • controlling the liquid crystal in the liquid crystal cell to be in the second state includes:
  • controlling the liquid crystal in the liquid crystal cell to be in the third state includes:
  • the liquid crystal cell is loaded with a preset voltage corresponding to the gray scale value, and the liquid crystal in the liquid crystal cell is controlled to be deflected to the third state.
  • the display device includes one of the following: ADS liquid crystal cell, IPS liquid crystal cell, VA liquid crystal cell, the rubbing alignment direction of the first alignment layer is parallel to the transmission axis of the first polarizer, and the rubbing of the second alignment layer The alignment direction is parallel to the transmission axis of the first polarizer.
  • controlling the liquid crystal in the liquid crystal cell to be in the first state includes:
  • controlling the liquid crystal in the liquid crystal cell to be in the second state includes:
  • controlling the liquid crystal in the liquid crystal cell to be in the third state includes:
  • the liquid crystal cell is loaded with a preset voltage corresponding to the gray scale value, and the liquid crystal in the liquid crystal cell is controlled to be deflected to the third state.
  • embodiments of the present disclosure also provide a method for manufacturing the above-mentioned display device, as shown in FIG. 21, including:
  • a reflective polarization structure is formed on the side of the liquid crystal cell facing away from the first polarizer, so that it is not necessary to arrange a 1/2 wave plate and a 1/4 wave plate on the side of the liquid crystal cell facing the first polarizer.
  • the wave plate is used to change the phase difference, which can improve the contrast of the display screen, avoid light leakage at low gray levels, improve the display effect, and enhance the user experience.
  • the reflective polarization structure is arranged outside the liquid crystal cell, so that there is no need to perform a patterning process on the reflective polarization structure, which can simplify the manufacturing process of the display device.
  • the reflective polarization structure since the reflective polarization structure is arranged outside the liquid crystal cell, the thickness of the liquid crystal cell can be measured after the liquid crystal cell sample is made.
  • step S202 forms a reflective polarization structure on the side of the liquid crystal cell away from the first polarizer, which specifically includes:
  • step S202 forms a reflective polarization structure on the side of the liquid crystal cell away from the first polarizer, which specifically includes:
  • step S202 forms a reflective polarization structure on the side of the liquid crystal cell away from the first polarizer, which specifically includes:
  • the material of the reflective layer can be, for example, metal, and a metal material can be vapor-deposited on the side of the second polarizer away from the liquid crystal cell as the reflective layer by an evaporation process.
  • the manufacturing method of the above-mentioned display device provided by the embodiment of the present disclosure further includes:
  • a protective layer is formed on the side of the reflective polarization structure away from the liquid crystal cell.
  • an evaporation process can be used to evaporate an insulating material on the side of the reflective polarization structure away from the liquid crystal cell to form a protective layer.
  • the manufacturing method of the above-mentioned display device provided by the embodiment of the present disclosure further includes:
  • An anti-reflection layer is formed between the reflective polarization structure and the liquid crystal.
  • the preparation of the anti-reflection layer may adopt a vacuum film forming method such as vapor deposition or sputtering, or a wet film forming method such as dip coating or spin coating.
  • the manufacturing method of the above-mentioned display device provided by the embodiment of the present disclosure further includes:
  • a scattering layer is formed between the liquid crystal cell and the first polarizer.
  • step S101 provides a liquid crystal cell, which specifically includes:
  • the array substrate and the counter substrate are aligned by the cell matching process, and liquid crystal is filled between the array substrate and the counter substrate.
  • providing the counter substrate includes the steps of forming a first alignment layer and rubbing and aligning the first alignment layer
  • providing the array substrate includes the steps of forming a second alignment layer and rubbing and aligning the second alignment layer
  • the rubbing alignment direction of the first alignment layer is parallel to the transmission axis of the first polarizer, and the rubbing alignment direction of the second alignment layer is perpendicular to the transmission axis of the first polarizer.
  • the rubbing alignment direction of the first alignment layer is parallel to the transmission axis of the first polarizer, and the rubbing alignment direction of the second alignment layer is the same as that of the first polarizer.
  • the transmission axis of the film is parallel.
  • the display device since the display device is provided with a reflective polarizing structure on the side of the liquid crystal cell away from the first polarizer, the reflective polarizing structure can absorb the polarization direction and the first polarizer.
  • the light whose transmission axis direction is parallel can reflect the light whose polarization direction is perpendicular to the transmission axis direction of the first polarizer, so that the light phase difference can be changed by changing the state of the liquid crystal in the liquid crystal cell, so that the light is absorbed by the reflective polarization structure Or reflection, no need to set 1/2 wave plate and 1/4 wave plate between the liquid crystal cell and the first polarizer to change the phase difference, then the reflective display function can be realized, which can improve the contrast of the display screen and avoid low gray levels Light leakage improves the display effect and enhances the user experience.

Abstract

一种显示装置及其驱动方法、制备方法。显示装置包括:液晶盒(1);第一偏光片(2),位于液晶盒(1)的入光侧;反射偏振结构(3),位于液晶盒(1)背离第一偏光片(2)的一侧;反射偏振结构(3)被配置为:吸收偏振方向与第一偏光片(2)的透过轴方向平行的光,反射偏振方向与第一偏光片(2)的透过轴方向垂直的光。

Description

显示装置及其驱动方法、制备方法
相关申请的交叉引用
本申请要求在2020年06月11日提交中国专利局、申请号为202010530166.X、申请名称为“显示装置及其驱动方法、制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤指一种显示装置及其驱动方法、制备方法。
背景技术
反射式液晶显示产品由于具有低功耗、高开口率、无需背光源等优势,具有较大的市场潜力。
反射式液晶显示产品通过反射环境光或者反射设置于显示产品之外的光源发出的光来显示画面。为实现反射显示,需要在上偏光片和彩膜基板之间设置1/2波片和1/4波片,但是,1/2波片和1/4波片在低灰阶下反射率随电压的变化差异较大,造成显示画面对比度低,低灰阶下还会出现严重的漏光。
发明内容
本公开实施提供的一种显示装置,其中,其中,所述显示装置包括:
液晶盒;
第一偏光片,位于所述液晶盒的入光侧;
反射偏振结构,位于所述液晶盒背离所述第一偏光片一侧;所述反射偏振结构被配置为:吸收偏振方向与所述第一偏光片的透过轴方向平行的光,反射偏振方向与所述第一偏光片的透过轴方向垂直的光。
可选地,在本公开实施例中,所述反射偏振结构包括:
反射式光增亮膜,所述反射式光增亮膜的透过轴与所述第一偏光片的透 过轴平行,所述反射式光增亮膜的反射轴与所述第一偏光片的透过轴垂直;
吸光层,位于所述反射式光增亮膜背离所述液晶盒一侧。
可选地,在本公开实施例中,所述反射偏振结构包括:
偏振器,包括多个堆叠的波片;所述偏振器的透过轴与所述第一偏光片的透过轴平行,所述偏振器的反射轴与所述第一偏光片的透过轴垂直;
吸光层,位于所述偏振器背离液晶盒一侧。
可选地,在本公开实施例中,所述反射偏振结构包括:
第二偏光片,所述第二偏光片的透过轴与所述第一偏光片的透过轴垂直;
反射层,位于所述第二偏光片背离所述液晶盒一侧。
可选地,在本公开实施例中,还包括:
减反射层,位于所述反射偏振结构与所述液晶盒之间。
可选地,在本公开实施例中,还包括:
保护层,位于所述反射偏振结构背离所述液晶盒一侧。
可选地,在本公开实施例中,还包括:
散射层,位于所述第一偏光片和所述液晶盒之间。
可选地,在本公开实施例中,所述液晶盒包括:
液晶层;
对向基板,位于所述液晶层面向所述第一偏光片一侧;包括:与所述液晶层相邻的第一配向层,所述第一配向层的摩擦配向方向与所述第一偏光片的透过轴平行;
阵列基板,位于所述液晶层面向所述反射偏振结构一侧;包括:与所述液晶层相邻的第二配向层,所述第二配向层的摩擦配向方向与所述第一偏光片的透过轴垂直。
可选地,在本公开实施例中,所述液晶盒包括:
液晶层;
对向基板,位于所述液晶层面向所述第一偏光片一侧;包括:与所述液晶层相邻的第一配向层,所述第一配向层的摩擦配向方向与所述第一偏光片 的透过轴平行;
阵列基板,位于所述液晶层面向所述反射偏振结构一侧;包括:与所述液晶层相邻的第二配向层,所述第二配向层的摩擦配向方向与所述第一偏光片的透过轴平行。
相应的,本公开实施例还提供了一种显示装置的驱动方法,包括:
控制所述液晶盒中的液晶的处于第一状态,以使透过所述第一偏光片的光,经过所述液晶盒后偏振状态改变,以被所述反射偏振结构反射,反射光经过所述液晶盒后偏振状态再次改变,并从所述第一偏光片出射,实现亮态显示;
控制所述液晶盒中的液晶的处于第二状态,以使透过所述第一偏光片的光,经过所述液晶盒后偏振状态改变,被所述反射偏振结构吸收,实现暗态显示;
控制所述液晶盒中的液晶的处于第三状态,以使透过所述第一偏光片的光,经过所述液晶盒后,部分光的偏振状态改变被所述反射偏振结构吸收,其余部分光的偏振状态不变被所述反射偏振结构反射,反射光经过所述液晶盒后偏振状态再次改变,并从所述第一偏光片出射,实现所述亮态和所述暗态之间的灰阶显示。
可选地,在本公开实施例中,所述第一配向层的摩擦配向方向与所述第一偏光片的透过轴平行,且所述第二配向层的摩擦配向方向与所述第一偏光片的透过轴垂直,控制所述液晶盒中的液晶的处于第一状态,具体包括:
对所述液晶盒不加载电压,控制所述液晶盒中的液晶处于初始配向状态;
控制所述液晶盒中的液晶的处于第二状态,具体包括:
对所述液晶盒加载亮态电压,控制所述液晶盒中的液晶偏转至第二状态;
控制所述液晶盒中的液晶的处于第三状态,具体包括:
对所述液晶盒加载与灰阶值对应的预设电压,控制所述液晶盒中的液晶偏转至第三状态。
可选地,在本公开实施例中,所述第一配向层的摩擦配向方向与所述第 一偏光片的透过轴平行,且所述第二配向层的摩擦配向方向与所述第一偏光片的透过轴平行,控制所述液晶盒中的液晶的处于第一状态,具体包括:
对所述液晶盒加载暗态电压,控制所述液晶盒中的液晶偏转至第一状态;
控制所述液晶盒中的液晶的处于第二状态,具体包括:
对所述液晶盒不加载电压,控制所述液晶盒中的液晶偏转之初始配向状态;
控制所述液晶盒中的液晶的处于第三状态,具体包括:
对所述液晶盒加载与灰阶值对应的预设电压,控制所述液晶盒中的液晶偏转至第三状态。
相应地,本公开实施例还提供了一种显示装置的制备方法,包括:
提供液晶盒;
在液晶入光侧形成第一偏光片;
在所述液晶盒背离所述第一偏光片的一侧形成反射偏振结构。
可选地,在本公开实施例中,在所述液晶盒背离所述第一偏光片的一侧形成反射偏振结构,具体包括:
在所述液晶盒背离所述第一偏光片的一侧整面形成反射式光增亮膜;
在所述反射式光增亮膜背离所述液晶盒一侧整面形成吸光层。
可选地,在本公开实施例中,在所述液晶盒背离所述第一偏光片的一侧形成反射偏振结构,具体包括:
在所述液晶盒背离所述第一偏光片的一侧整面形成偏振器;
在所述偏振器背离所述液晶盒一侧整面形成吸光层。
可选地,在本公开实施例中,在所述液晶盒背离所述第一偏光片的一侧形成反射偏振结构,具体包括:
在所述液晶盒背离所述第一偏光片的一侧整面第二偏光片;
在所述第二偏光片背离所述液晶盒一侧整面形成反射层。
可选地,在本公开实施例中,还包括:
在所述反射偏振结构背离所述液晶盒的一侧形成保护层。
可选地,在本公开实施例中,还包括:
在所述反射偏振结构与所述液晶之间形成减反射层。
附图说明
图1为本公开实施例提供的一种显示装置的结构示意图;
图2为本公开实施例提供的另一种显示装置的结构示意图;
图3为本公开实施例提供的一种显示装置中反射式光增亮膜的结构示意图;
图4为本公开实施例提供的又一种显示装置的结构示意图;
图5为本公开实施例提供的一种显示装置中偏振器的结构示意图;
图6为本公开实施例提供的又一种显示装置的结构示意图;
图7为本公开实施例提供的又一种显示装置的结构示意图;
图8为本公开实施例提供的又一种显示装置的结构示意图;
图9为本公开实施例提供的又一种显示装置的结构示意图;
图10为本公开实施例提供的又一种显示装置的结构示意图;
图11为本公开实施例提供的又一种显示装置的结构示意图;
图12为本公开实施例提供的又一种显示装置的结构示意图;
图13为本公开实施例提供的又一种显示装置的结构示意图;
图14为本公开实施例提供的又一种显示装置的结构示意图;
图15为本公开实施例提供的又一种显示装置的结构示意图;
图16为本公开实施例提供的显示装置a和显示装置b的电压-反射率模拟结果图;
图17为本公开实施例提供的显示装置a不同视角的电压-反射率模拟结果;
图18为本公开实施例提供的显示装置b不同视角的电压-反射率模拟结果;
图19为本公开实施例提供的显示装置a和显示装置b的视角衰减模拟结果图;
图20为本公开实施例提供的一种显示装置的驱动方法的示意图;
图21为本公开实施例提供的一种显示装置的制备方法的示意图。
具体实施方式
下面结合附图,对本公开实施例提供的显示面板、其制作方法及显示装置的具体实施方式进行详细地说明。附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本公开内容。
本公开实施例提供了一种显示装置,如图1所示,包括:
液晶盒1;
第一偏光片2,位于液晶盒1的入光侧;
反射偏振结构3,位于液晶盒1背离所述第一偏光片2一侧;反射偏振结构3被配置为:吸收偏振方向与第一偏光片2的透过轴方向平行的光,反射偏振方向与第一偏光片2的透过轴方向垂直的光。
在实际应用中,本申请实施例提供的显示装置为液晶显示装置,可以应用于反射式液晶显示产品。
本公开实施例提供的显示装置,在液晶盒背离第一偏光片的一侧设置有反射偏振结构,该反射偏振结构可以吸收偏振方向与第一偏光片的透过轴方向平行的光,可以反射偏振方向与第一偏光片的透过轴方向垂直的光,从而通过改变液晶盒中液晶的状态,实现光线位相差改变,使得光线被反射偏振结构吸收或反射,无需在液晶盒与第一偏振片之间设置1/2波片和1/4波片来实现相位差的改变,便可以实现反射显示功能,可以提高显示画面对比度,避免低灰阶漏光,提高显示效果,提升用户体验。
在具体实施时,可以采用以下方式设置反射偏振结构。
方式一:如图2所示,本公开实施例提供的上述显示装置中,反射偏振结构3包括:
反射式光增亮膜4,反射式光增亮膜4的透过轴与第一偏光片2的透过轴平行,反射式光增亮膜4的反射轴与第一偏光片2的透过轴垂直;
吸光层5,位于反射式光增亮膜4背离液晶盒1一侧。
在具体实施时,反射式光增亮膜例如可以是多膜层反射式偏光片(Advanced Polarizer Film,APF),也可以是反射式偏光增亮膜(Dual Brightness Enhance Film,DBEF)。
在具体实施时,如图3所示,本公开实施例提供的上述显示装置中,反射式光增亮膜4包括交替堆叠的高分子A膜层和高分子B膜层。高分子A膜层和高分子B膜层的折射率不相同,当一束非偏振光入射时,一个方向线偏振光被全部反射回来,另外一个方向线偏振光穿行。这样,当经过液晶盒后的线偏振光的偏振方向与反射式光增亮膜反射轴平行时,光线被反射式光增亮膜反射,当经过液晶盒后的线偏振光的偏振方向与反射式光增亮膜透过轴平行时,光线通过反射式光增亮膜到达吸光层被吸收。
应该说明的是,图3中仅以三层高分子A膜层和高分子B膜层交替堆叠形成的反射式光增亮膜为例进行示意,是为了清楚的示意反射式光增亮膜的结构,并不对高分子A膜层和高分子B膜层的数量进行限定,在实际应用中,可以根据实际需要设置高分子A膜层和高分子B膜层的数量,例如可以在100微米(μm)的厚度内通过挤压成型制成包括数百层高分子A膜层和高分子B膜层交替排列的反射式光增亮膜。
方式二:如图4所示,本公开实施例提供的上述显示装置中,反射偏振结构3包括:
偏振器6,如图5所示,包括多个堆叠的波片16;偏振器6的透过轴与第一偏光片2的透过轴平行,偏振器6的反射轴与第一偏光片2的透过轴垂直;
吸光层5,位于偏振器6背离液晶盒1一侧。
应该说明的是,波片例如可以是薄玻璃片,即若干层薄玻璃片叠合而成偏振器,如图5所示,当自然光入射到波片堆时,经过波片16上下表面的不断反射和折射,最终使透过光主要为P光,反射的光主要为S光。实现对不同偏振方向光的分离。这样,当经过液晶盒后的线偏振光的偏振方向与偏振器反射轴平行时,光线被偏振器反射,当经过液晶盒后的线偏振光的偏振方 向与偏振器透过轴平行时,光线通过偏振器到达吸光层被吸收。
应该说明的是,图5中仅以三个波片16堆叠形成的偏振器为例进行示意,是为了清楚的示意偏振器的结构,并不对波片16的数量进行限定,在实际应用中,可以根据实际需要设置波片的数量。
在具体实施时,方式一和方式二中的吸光层的材料例如可以包括黑体材料。
方式三:如图6所示,本公开实施例提供的上述显示装置中,反射偏振结构3包括:
第二偏光片7,第二偏光片7的透过轴与第一偏光片2的透过轴垂直;
反射层8,位于第二偏光片7背离液晶盒1一侧。
这样,当经过液晶盒后的线偏振光的偏振方向与第二偏光片的透过轴垂直时,光线被第二偏光片吸收,当经过液晶盒后的线偏振光的偏振方向与第二偏光片的透过轴平行时,光线通过第二偏光片到达反射层被反射。
可选地,反射层例如可以包括镜面反射材料。
在具体实施时,如图7、图8、图9所示,本公开实施例提供的上述显示装置中,还包括:
减反射层9,位于反射偏振结构3与液晶盒1之间。
在具体实施时,可以通过将各自具有不同折射率的单层或多层光学膜层叠来形成减反射层,减反射层的折射率低,从而可以减少反射偏振结构入光侧界面处的镜面反射,提高光利用率。
在具体实施时,减反射层的厚度例如可以在几十纳米至几百纳米范围。
可选地,减反射层的材料包括具有低折射率的透明材料,该透明材料可以是无机材料,例如二氧化硅、氟化镁、氟化钙等,当然该透明材料也可以是有机材料,例如有机硅树脂、无定形氟树脂等。
在具体实施时,如图10、图11、图12所示,本公开实施例提供的上述显示装置中,还包括:
保护层10,位于反射偏振结构3背离液晶盒1一侧。
本公开实施例提供的显示面板中,在反射偏振结构背离阵列基板的一侧形成保护层,从而可以保护反射偏振结构,防止外界环境腐蚀反射偏振结构。
在具体实施时,保护层的材料例如可以包括绝缘材料。
在具体实施时,如图13、图14、图15所示,本公开实施例提供的上述显示装置中,还包括:
散射层17,位于第一偏光片2和第一配向层13之间。
本公开实施例提供的显示装置中,在第一偏光片和第一配向层之间设置散射层,从而可以增大显示面板的视角。
在具体实施时,散射层例如可以包括散射膜或雾度膜。
在具体实施时,如图1、图2、图4、图6~图15所示,本公开实施例提供的上述显示装置中,还包括:
液晶层11;
对向基板12,位于液晶层11面向第一偏光片2一侧;包括:与液晶层11相邻的第一配向层13,第一配向层13的摩擦配向方向与第一偏光片2的透过轴平行;
阵列基板14,位于液晶层11面向反射偏振结构3一侧;包括:与液晶层11相邻的第二配向层15,第二配向层15的摩擦配向方向与第一偏光片2的透过轴垂直。
即本公开实施例提供的上述显示装置中,液晶盒可以是扭曲向列型(Twisted Nematic,TN)液晶盒。
接下来,以本公开实施例还提供显示装置中液晶盒为TN液晶盒为例,对本公开实施例提供的显示装置的工作原理进行举例说明。
在具体实施时,对于方式一和方式二提供的反射偏振结构,第一偏光片的透过轴的角度以及第一配向层的配向角度为0°,第二配向层的配向角度为90°,反射式光增亮膜或偏振器的透过轴的角度为0°,反射式光增亮膜或偏振器的反射轴角度为90°。
当对液晶盒不加载电压时,液晶在配向膜的作用下呈90°扭曲配向,自然 光通过第一偏振片变为偏振方向为0°的线偏振光,0°的线偏振光经过液晶盒后变为90°的线偏振光,90°的线偏振光的偏振方向与反射式光增亮膜或偏振器的反射轴平行,因此90°的线偏振光到达反射式光增亮膜或偏振器后被反射,反射后的光线经过液晶盒后变为0°的线偏振光,从第一偏光片出射,此时显示面板显示为亮态,即实现255灰阶显示。
当对液晶盒加载暗态工作电压时,液晶垂直排列,自然光通过第一偏振片变为偏振方向为0°的线偏振光,0°的线偏振光经过液晶盒后仍为0°的线偏振光,0°的线偏振光的偏振方向与反射式光增亮膜或偏振器的透过轴平行,因此0°的线偏振光可以通过反射式光增亮膜或偏振器,之后被吸光层吸收,实现暗态显示,即实现0灰阶显示。
对于0灰阶~255灰阶之间的灰阶,对液晶盒加载与需要显示的灰阶相应的电压,自然光通过上第一偏光片和液晶和后变为椭圆偏振光,到达反射式光增亮膜或偏振器后,一部分被反射式光增亮膜或偏振器反射,一部分被反射式光增亮膜或偏振器透射后再被吸光层吸收掉,显示为与加载电压对应的灰阶状态。
在具体实施时,对于方式三提供的反射偏振结构,第一偏光片的透过轴的角度以及第一配向层的配向角度为0°,第二偏光片的透过轴的角度以及第二配向层的配向角度为90°。
当对液晶盒不加载电压时,液晶在配向膜的作用下呈90°扭曲配向,自然光通过第一偏振片变为偏振方向为0°的线偏振光,0°的线偏振光经过液晶盒后变为90°的线偏振光,90°的线偏振光的偏振方向与第二偏光片的透过轴平行,90°的线偏振光可以通过第二偏光片,之后被反射层反射,反射后的光线经过液晶盒后变为0°的线偏振光,从第一偏光片出射,此时显示面板显示为亮态,即实现255灰阶显示。
当对液晶盒加载暗态工作电压时,液晶垂直排列,自然光通过第一偏振片变为偏振方向为0°的线偏振光,0°的线偏振光经过液晶盒后仍为0°的线偏振光,0°的线偏振光的偏振方向与第二偏光片的透过轴垂直,0°的线偏振光到 达第二偏光片后被吸收,实现暗态显示,即实现0灰阶显示。
对于0灰阶~255灰阶之间的灰阶,对液晶盒加载与需要显示的灰阶相应的电压,自然光通过第一偏光片和液晶盒后变为椭圆偏振光,到达第二偏光片后,一部分被第二偏光片吸收,一部分被第二偏光片透射后再被反射层反射,显示为与加载电压对应的灰阶状态。
在具体实施时,本公开实施例提供的显示装置中,液晶盒也可以是面内转换型(In-Plane Switching,IPS)液晶盒、垂直配向型(Vertical Alignment,VA)液晶盒、高级超维场转换型(Advanced Super Dimension Switch,ADS)液晶盒。如图1、图2、图4、图6~图15所示,液晶盒包括:
液晶层11;
对向基板12,位于液晶层11面向第一偏光片2一侧;包括:与液晶层11相邻的第一配向层13,第一配向层13的摩擦配向方向与第一偏光片2的透过轴平行;
阵列基板14,位于液晶层11面向反射偏振结构3一侧;包括:与液晶层11相邻的第二配向层15,第二配向层15的摩擦配向方向与第一偏光片2的透过轴平行。
接下来,以本公开实施例提供的显示装置中的液晶盒为下列一种为例:ADS液晶盒、IPS液晶盒、VA液晶盒,对本公开实施例提供的显示装置的工作原理进行举例说明。
在具体实施时,对于方式一和方式二提供的反射偏振结构,第一偏光片的透过轴的角度以及第一配向层的配向角度为0°,反射式光增亮膜或偏振器的透过轴的角度以及第二配向层的配向角度为0°,反射式光增亮膜或偏振器的反射轴角度为90°。
当对液晶盒不加载电压时,自然光通过第一偏振片变为偏振方向为0°的线偏振光,0°的线偏振光经过液晶盒后仍为0°的线偏振光,0°的线偏振光可以通过反射式光增亮膜或偏振器,之后被吸光层吸收,实现暗态显示,即实现0灰阶显示。
当对液晶盒加载亮态工作电压时,液晶旋转,自然光通过第一偏振片变为偏振方向为0°的线偏振光,0°的线偏振光经过液晶盒后变为90°的线偏振光,90°的线偏振光的偏振方向与反射式光增亮膜或偏振器的反射轴平行,因此90°的线偏振光到达反射式光增亮膜或偏振器后被反射,反射后的光线经过液晶盒后变为0°的线偏振光,从第一偏光片出射,此时显示面板显示为亮态,即实现255灰阶显示。
对于0灰阶~255灰阶之间的灰阶,对液晶盒加载与需要显示的灰阶响应的电压,自然光通过上第一偏光片和液晶和后变为椭圆偏振光,到达反射式光增亮膜或偏振器后,一部分被反射式光增亮膜或偏振器反射,一部分被反射式光增亮膜或偏振器透射后再被吸光层吸收掉,显示为与加载电压对应的灰阶状态。
在具体实施时,对于方式三提供的反射偏振结构,第一偏光片的透过轴的角度以及第一配向层的配向角度为0°,第二配向层的配向角度为0°,第二偏光片的透过轴的角度为90°。
当对液晶盒不加载电压时,自然光通过第一偏振片变为偏振方向为0°的线偏振光,0°的线偏振光经过液晶盒后仍为0°的线偏振光,0°的线偏振光的偏振方向与第二偏光片的透过轴垂直,0°的线偏振光被第二偏光片吸收,实现暗态显示,即实现0灰阶显示。
当对液晶盒加载亮态工作电压时,自然光通过第一偏振片变为偏振方向为0°的线偏振光,0°的线偏振光经过液晶盒后变为90°的线偏振光,90°的线偏振光的偏振方向与第二偏光片的透过轴平行,因此90°的线偏振可以透过第二偏光片,之后被反射层反射,反射后的光线经过液晶盒后变为0°的线偏振光,从第一偏光片出射,此时显示面板显示为亮态,即实现255灰阶显示。
对于0灰阶~255灰阶之间的灰阶,对液晶盒加载与需要显示的灰阶响应的电压,自然光通过上第一偏光片和液晶和后变为椭圆偏振光,到达第二偏光片后,一部分被第二偏光片吸收,一部分被第二偏光片透射后再被反射层反射,显示为与加载电压对应的灰阶状态。
本公开实施例提供的上述显示装置中,阵列基板例如还可以包括玻璃基板,以及在玻璃基板上形成的薄膜晶体管像素电路,薄膜晶体管像素电路例如包括:栅线、数据线、薄膜晶体管以及像素电极等。对向基板例如还可以包括彩色色阻、黑矩阵、隔垫物等。公共电极可以设置于阵列基板中也可以设置于对向基板中。
应该说明的是,目前,常规的反射式液晶盒的设计,通常是在阵列基板的子像素区内形成反射层的图案,这样,在制作阵列基板时,需要增加一套掩膜板(Mask)来进行反射层的图案化工序,同时考虑工艺和设备的精度,反射层需要与阵列基板的栅线和数据线留出一定距离,当存在反射层对位偏差时,扫描信号或数据信号在对位波动下容易影响与反射层直接接触的像素电极并产生串扰类显示不良。
本公开实施例提供的上述显示装置中,将反射偏振结构设置于阵列基板背离液晶层一侧,即反射偏振结构设置于液晶盒之外,从而无需对反射偏振结构进行图形化工艺,可以简化显示装置制备工艺流程,还无需考虑反射偏振结构的对位精度,降低显示装置制备工艺难度,并且,反射偏振结构在液晶盒之外不会与阵列基板中的像素电极接触,实际应用中,扫描信号以及数据信号不会因为反射偏振结构而对像素电极产生影响。此外,本公开实施例提供的上述显示装置中,反射偏振结构制作在液晶盒外,液晶盒内设计结构可以采用常规的透射式液晶显示盒的设计方式,在实际应用中,可以先制作完整的透射式液晶盒后再在阵列基板背离液晶层的一侧设置反射偏振结构,因此可以在制作液晶盒样品后,对液晶盒进行液晶盒厚度(Cell gap)的测量,通过表征后明确合适的液晶量和隔垫物的高度设计规格,然后将相同的设计参数应用于反射式显示装置的制作。
本公开实施例提供的上述显示装置可以应用于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
接下来,以液晶盒为TN液晶盒为例,对本公开实施例提供的显示装置,以及现有技术提供的显示装置进行模拟,显示装置a包括反射式光增亮膜以 及吸光层,即显示装置a为本公开实施例提供的显示装置,显示装置a的相关参数如表1所示。
表1
第一偏光片透过轴角度
液晶盒厚 4微米
第一配向层摩擦配向角度
液晶初始配向角度 90°
第二配向层摩擦配向角度 90°
反射式光增亮膜透过轴角度 90°
显示装置b为现有技术提供的传统反射式显示装置,显示装置b的对向基板一侧包括上偏光片、1/2波片以及1/4波片,液晶背离对向基板一侧设置有反射层,显示装置b的相关参数如表2所示。
表2
第一偏光片透过轴角度 80°
1/2波片透过轴角度 62.5°
1/2波片补偿值 270纳米
1/4波片透过轴角度
1/4波片补偿值 160纳米
液晶盒厚 2.7微米
第一配向层摩擦配向角度 55°
液晶初始配向角度 60°
第二配向层摩擦配向角度 115°
在具体实施时,可以采用Techwiz光学软件对显示面板a和显示面板b进行模拟,模拟光的波长为380纳米(nm)~780nm全波段的结果。模拟结果 如下:
(1)、显示装置a的对比度为573.0,显示装置b的对比度为52.5。
(2)、电压(Voltage)-反射率(RefIective)模拟结果如图16所示,显示装置a的反射率为26.6%,显示装置b的反射率为26.4,显示装置a与显示装置b的反射率相当,而显示装置a相比于显示装置b的对比度提升10倍以上。另外显示装置a的工作电压Vop电压也有降低,显示装置b的工作电压Vop在4.2伏(V)左右,显示装置a的工作电压Vop在3.5V左右,因此本公开实施例提供的显示装置功耗可大大降低。
(3)、显示装置a的不同视角的电压(Voltage)-反射率(RefIective)模拟结果如图17所示,显示装置b的不同视角的电压(Voltage)-反射率(RefIective)模拟结果如图18所示,根据现实结果可以得出显示装置a视角更大。
(4)、显示装置a和显示装置b的视角衰减模拟结果如图19所示,显示装置a随视角衰减明显,但是由于显示装置a的主视角基数值较高,所以任意视角对比度仍高于显示装置b。
基于同一发明构思,本公开实施例还提供了一种上述显示装置的驱动方法,如图20所示,包括:
S101、控制液晶盒中的液晶的处于第一状态,以使透过第一偏光片的光,经过液晶盒后偏振状态改变,以被反射偏振结构反射,反射光经过液晶盒后偏振状态再次改变,并从第一偏光片出射,实现亮态显示;
S102、控制液晶盒中的液晶的处于第二状态,以使透过第一偏光片的光,经过液晶盒后偏振状态改变,被反射偏振结构吸收,实现暗态显示;
S103、控制液晶盒中的液晶的处于第三状态,以使透过第一偏光片的光,经过液晶盒后,部分光的偏振状态改变被反射偏振结构吸收,其余部分光的偏振状态不变被反射偏振结构反射,反射光经过液晶盒后偏振状态再次改变,并从第一偏光片出射,实现亮态和暗态之间的灰阶显示。
本公开实施例提供的显示装置的驱动方法,通过对改变液晶盒中液晶的 状态,实现光线位相差改变,使得光线被反射偏振结构吸收或反射,无需在液晶盒与第一偏振片之间设置1/2波片和1/4波片来实现相位差的改变,便可以实现反射显示功能,可以提高显示画面对比度,避免低灰阶漏光,提高显示效果,提升用户体验。
在具体实施时,对于包括TN液晶盒的显示装置,本公开实施例提供的上述显示装置的驱动方法中,第一配向层的摩擦配向方向与第一偏光片的透过轴平行,且第二配向层的摩擦配向方向与第一偏光片的透过轴垂直,步骤S101中,控制液晶盒中的液晶的处于第一状态,具体包括:
对液晶盒不加载电压,控制液晶盒中的液晶处于初始配向状态;
步骤S102中,控制液晶盒中的液晶的处于第二状态,具体包括:
对液晶盒加载亮态电压,控制液晶盒中的液晶偏转至第二状态;
步骤S103中,控制液晶盒中的液晶的处于第三状态,具体包括:
对液晶盒加载与灰阶值对应的预设电压,控制液晶盒中的液晶偏转至第三状态。
在具体实施时,显示装置包括下列之一:ADS液晶盒、IPS液晶盒、VA液晶盒,第一配向层的摩擦配向方向与第一偏光片的透过轴平行,且第二配向层的摩擦配向方向与第一偏光片的透过轴平行,步骤S101中,控制液晶盒中的液晶的处于第一状态,具体包括:
对液晶盒加载暗态电压,控制液晶盒中的液晶偏转至第一状态;
步骤S102中,控制液晶盒中的液晶的处于第二状态,具体包括:
对液晶盒不加载电压,控制液晶盒中的液晶偏转之初始配向状态;
步骤S103中,控制液晶盒中的液晶的处于第三状态,具体包括:
对液晶盒加载与灰阶值对应的预设电压,控制液晶盒中的液晶偏转至第三状态。
基于同一发明构思,本公开实施例还提供了一种上述显示装置的制备方法,如图21所示,包括:
S201、提供液晶盒;
S202、在液晶入光侧形成第一偏光片;
S203、在液晶盒背离第一偏光片的一侧形成反射偏振结构。
本公开实施例提供的上述显示装置的制备方法,在液晶盒背离第一偏光片一侧形成反射偏振结构,从而无需在液晶盒面向第一偏光片一侧设置1/2波片和1/4波片来实现相位差的改变,可以提高显示画面对比度,避免低灰阶漏光,提高显示效果,提升用户体验。并且,将反射偏振结构设置于液晶盒之外,从而无需对反射偏振结构进行图形化工艺,可以简化显示装置制备工艺流程。此外,由于反射偏振结构设置于液晶盒之外,可以在制作液晶盒样品后,对液晶盒进行液晶盒厚度的测量。
在具体实施时,本公开实施例提供的上述显示装置的制备方法中,步骤S202在液晶盒背离第一偏光片的一侧形成反射偏振结构,具体包括:
S2021、在液晶盒背离第一偏光片的一侧整面形成反射式光增亮膜;
S2022、在反射式光增亮膜背离液晶盒一侧整面形成吸光层。
或者,在具体实施时,本公开实施例提供的上述显示装置的制备方法中,步骤S202在液晶盒背离第一偏光片的一侧形成反射偏振结构,具体包括:
S2021、在液晶盒背离第一偏光片的一侧整面形成偏振器;
S2022、在偏振器背离液晶盒一侧整面形成吸光层。
或者,在具体实施时,本公开实施例提供的上述显示装置的制备方法中,步骤S202在液晶盒背离第一偏光片的一侧形成反射偏振结构,具体包括:
S2021、在液晶盒背离第一偏光片的一侧整面第二偏光片;
S2022、在第二偏光片背离液晶盒一侧整面形成反射层。
在具体实施时,反射层的材料例如可以是金属,可以采用蒸镀工艺在第二偏光片背离液晶盒一侧蒸镀金属材料作为反射层。
在具体实施时,本公开实施例提供的上述显示装置的制备方法中,还包括:
在反射偏振结构背离液晶盒的一侧形成保护层。
在具体实施时,例如可以采用蒸镀工艺在反射偏振结构背离液晶盒的一 侧蒸镀绝缘材料形成保护层。
在具体实施时,本公开实施例提供的上述显示装置的制备方法中,还包括:
在反射偏振结构与液晶之间形成减反射层。
在具体实施时,制备减反射层可以采用真空成膜法例如气相沉积或溅射,也可以采用湿式成膜法例如浸涂或旋涂。
在具体实施时,本公开实施例提供的上述显示装置的制备方法中,还包括:
在液晶盒和第一偏光片之间形成散射层。
在具体实施时,本公开实施例提供的上述显示装置的制备方法中,步骤S101提供液晶盒,具体包括:
提供阵列基板和对向基板;
采用对盒工艺将阵列基板和对向基板对盒,并在阵列基板和对向基板之间填入液晶。
在具体实施时,提供对向基板包括形成第一配向层以及对第一配向层进行摩擦配向的步骤,提供阵列基板包括形成第二配向层以及对第二配向层进行摩擦配向的步骤。
在具体实施时,对于TN液晶盒,第一配向层的摩擦配向方向与第一偏光片的透过轴平行,第二配向层的摩擦配向方向与第一偏光片的透过轴垂直。
在具体实施时,对于ADS液晶盒、IPS液晶盒、或VA液晶盒,第一配向层的摩擦配向方向与第一偏光片的透过轴平行,第二配向层的摩擦配向方向与第一偏光片的透过轴平行。
本公开实施例提供的显示装置及其驱动方法、制备方法,由于显示装置在液晶盒背离第一偏光片的一侧设置有反射偏振结构,该反射偏振结构可以吸收偏振方向与第一偏光片的透过轴方向平行的光,可以反射偏振方向与第一偏光片的透过轴方向垂直的光,从而通过对改变液晶盒中液晶的状态,实现光线位相差改变,使得光线被反射偏振结构吸收或反射,无需在液晶盒与 第一偏振片之间设置1/2波片和1/4波片来实现相位差的改变,便可以实现反射显示功能,可以提高显示画面对比度,避免低灰阶漏光,提高显示效果,提升用户体验。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (18)

  1. 一种显示装置,其中,所述显示装置包括:
    液晶盒;
    第一偏光片,位于所述液晶盒的入光侧;
    反射偏振结构,位于所述液晶盒背离所述第一偏光片一侧;所述反射偏振结构被配置为:吸收偏振方向与所述第一偏光片的透过轴方向平行的光,反射偏振方向与所述第一偏光片的透过轴方向垂直的光。
  2. 根据权利要求1所述的显示装置,其中,所述反射偏振结构包括:
    反射式光增亮膜,所述反射式光增亮膜的透过轴与所述第一偏光片的透过轴平行,所述反射式光增亮膜的反射轴与所述第一偏光片的透过轴垂直;
    吸光层,位于所述反射式光增亮膜背离所述液晶盒一侧。
  3. 根据权利要求1所述的显示装置,其中,所述反射偏振结构包括:
    偏振器,包括多个堆叠的波片;所述偏振器的透过轴与所述第一偏光片的透过轴平行,所述偏振器的反射轴与所述第一偏光片的透过轴垂直;
    吸光层,位于所述偏振器背离液晶盒一侧。
  4. 根据权利要求1所述的显示装置,其中,所述反射偏振结构包括:
    第二偏光片,所述第二偏光片的透过轴与所述第一偏光片的透过轴垂直;
    反射层,位于所述第二偏光片背离所述液晶盒一侧。
  5. 根据权利要求1~4任一项所述的显示装置,其中,还包括:
    减反射层,位于所述反射偏振结构与所述液晶盒之间。
  6. 根据权利要求1所述的显示装置,其中,还包括:
    保护层,位于所述反射偏振结构背离所述液晶盒一侧。
  7. 根据权利要求1所述的显示装置,其中,还包括:
    散射层,位于所述第一偏光片和所述液晶盒之间。
  8. 根据权利要求1所述的显示装置,其中,所述液晶盒包括:
    液晶层;
    对向基板,位于所述液晶层面向所述第一偏光片一侧;包括:与所述液晶层相邻的第一配向层,所述第一配向层的摩擦配向方向与所述第一偏光片的透过轴平行;
    阵列基板,位于所述液晶层面向所述反射偏振结构一侧;包括:与所述液晶层相邻的第二配向层,所述第二配向层的摩擦配向方向与所述第一偏光片的透过轴垂直。
  9. 根据权利要求1所述的显示装置,其中,所述液晶盒包括:
    液晶层;
    对向基板,位于所述液晶层面向所述第一偏光片一侧;包括:与所述液晶层相邻的第一配向层,所述第一配向层的摩擦配向方向与所述第一偏光片的透过轴平行;
    阵列基板,位于所述液晶层面向所述反射偏振结构一侧;包括:与所述液晶层相邻的第二配向层,所述第二配向层的摩擦配向方向与所述第一偏光片的透过轴平行。
  10. 一种根据权利要求1~9任一项所述的显示装置的驱动方法,其中,包括:
    控制所述液晶盒中的液晶的处于第一状态,以使透过所述第一偏光片的光,经过所述液晶盒后偏振状态改变,以被所述反射偏振结构反射,反射光经过所述液晶盒后偏振状态再次改变,并从所述第一偏光片出射,实现亮态显示;
    控制所述液晶盒中的液晶的处于第二状态,以使透过所述第一偏光片的光,经过所述液晶盒后偏振状态改变,被所述反射偏振结构吸收,实现暗态显示;
    控制所述液晶盒中的液晶的处于第三状态,以使透过所述第一偏光片的光,经过所述液晶盒后,部分光的偏振状态改变被所述反射偏振结构吸收,其余部分光的偏振状态不变被所述反射偏振结构反射,反射光经过所述液晶盒后偏振状态再次改变,并从所述第一偏光片出射,实现所述亮态和所述暗 态之间的灰阶显示。
  11. 根据权利要求10所述的显示装置的驱动方法,其中,所述第一配向层的摩擦配向方向与所述第一偏光片的透过轴平行,且所述第二配向层的摩擦配向方向与所述第一偏光片的透过轴垂直,控制所述液晶盒中的液晶的处于第一状态,具体包括:
    对所述液晶盒不加载电压,控制所述液晶盒中的液晶处于初始配向状态;
    控制所述液晶盒中的液晶的处于第二状态,具体包括:
    对所述液晶盒加载亮态电压,控制所述液晶盒中的液晶偏转至第二状态;
    控制所述液晶盒中的液晶的处于第三状态,具体包括:
    对所述液晶盒加载与灰阶值对应的预设电压,控制所述液晶盒中的液晶偏转至第三状态。
  12. 根据权利要求10所述的显示装置的驱动方法,其中,所述第一配向层的摩擦配向方向与所述第一偏光片的透过轴平行,且所述第二配向层的摩擦配向方向与所述第一偏光片的透过轴平行,控制所述液晶盒中的液晶的处于第一状态,具体包括:
    对所述液晶盒加载暗态电压,控制所述液晶盒中的液晶偏转至第一状态;
    控制所述液晶盒中的液晶的处于第二状态,具体包括:
    对所述液晶盒不加载电压,控制所述液晶盒中的液晶偏转之初始配向状态;
    控制所述液晶盒中的液晶的处于第三状态,具体包括:
    对所述液晶盒加载与灰阶值对应的预设电压,控制所述液晶盒中的液晶偏转至第三状态。
  13. 一种根据权利要求1~9任一项所述的显示装置的制备方法,其中,包括:
    提供液晶盒;
    在液晶入光侧形成第一偏光片;
    在所述液晶盒背离所述第一偏光片的一侧形成反射偏振结构。
  14. 根据权利要求13所述的显示装置的制备方法,其中,在所述液晶盒背离所述第一偏光片的一侧形成反射偏振结构,具体包括:
    在所述液晶盒背离所述第一偏光片的一侧整面形成反射式光增亮膜;
    在所述反射式光增亮膜背离所述液晶盒一侧整面形成吸光层。
  15. 根据权利要求13所述的显示装置的制备方法,其中,在所述液晶盒背离所述第一偏光片的一侧形成反射偏振结构,具体包括:
    在所述液晶盒背离所述第一偏光片的一侧整面形成偏振器;
    在所述偏振器背离所述液晶盒一侧整面形成吸光层。
  16. 根据权利要求13所述的显示装置的制备方法,其中,在所述液晶盒背离所述第一偏光片的一侧形成反射偏振结构,具体包括:
    在所述液晶盒背离所述第一偏光片的一侧整面第二偏光片;
    在所述第二偏光片背离所述液晶盒一侧整面形成反射层。
  17. 根据权利要求13~16任一项所述的显示装置的制备方法,其中,还包括:
    在所述反射偏振结构背离所述液晶盒的一侧形成保护层。
  18. 根据权利要求13所述的显示装置的制备方法,其中,还包括:
    在所述反射偏振结构与所述液晶之间形成减反射层。
PCT/CN2021/093330 2020-06-11 2021-05-12 显示装置及其驱动方法、制备方法 WO2021249094A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/761,986 US20230089004A1 (en) 2020-06-11 2021-05-12 Display device and driving method therefor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010530166.X 2020-06-11
CN202010530166.XA CN113805375A (zh) 2020-06-11 2020-06-11 显示装置及其驱动方法、制备方法

Publications (1)

Publication Number Publication Date
WO2021249094A1 true WO2021249094A1 (zh) 2021-12-16

Family

ID=78845262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093330 WO2021249094A1 (zh) 2020-06-11 2021-05-12 显示装置及其驱动方法、制备方法

Country Status (3)

Country Link
US (1) US20230089004A1 (zh)
CN (1) CN113805375A (zh)
WO (1) WO2021249094A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113985643A (zh) * 2021-10-29 2022-01-28 京东方科技集团股份有限公司 显示面板和显示装置
WO2023123109A1 (zh) * 2021-12-29 2023-07-06 京东方科技集团股份有限公司 显示装置
CN114578612A (zh) * 2022-03-25 2022-06-03 北京京东方显示技术有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188902A (zh) * 1997-01-20 1998-07-29 精工爱普生株式会社 液晶装置及电子设备
CN1236444A (zh) * 1997-07-30 1999-11-24 时至准钟表股份有限公司 液晶显示装置
CN1969225A (zh) * 2004-04-27 2007-05-23 富士胶片株式会社 液晶显示装置
CN102246090A (zh) * 2008-12-12 2011-11-16 索尼爱立信移动通讯有限公司 具有可调节反射器的透反型液晶显示器
WO2014084482A1 (ko) * 2012-11-30 2014-06-05 동우화인켐 주식회사 반사형 화상 표시 장치 및 이를 구비한 전자 기기

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487945B (zh) * 2013-09-30 2016-01-20 中国科学院光电技术研究所 一种高效率偏振纯化装置
US9939700B2 (en) * 2014-04-15 2018-04-10 Boe Technology Group Co., Ltd. Display panel and display apparatus
CN109154693B (zh) * 2016-05-26 2021-05-04 3M创新有限公司 偏振器叠堆
CN106154628B (zh) * 2016-08-30 2019-10-29 昆山龙腾光电有限公司 具有反射功能的液晶显示面板及液晶显示装置
JP3225094U (ja) * 2017-03-27 2020-02-13 株式会社村上開明堂 反射型液晶セル
CN109031787A (zh) * 2018-08-31 2018-12-18 京东方科技集团股份有限公司 一种前置光源及显示装置
CN109856830B (zh) * 2019-01-03 2022-03-08 京东方科技集团股份有限公司 反射式显示面板及其制作方法、驱动方法、显示装置
CN110879494A (zh) * 2019-11-19 2020-03-13 菏泽学院 一种镜面显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188902A (zh) * 1997-01-20 1998-07-29 精工爱普生株式会社 液晶装置及电子设备
CN1236444A (zh) * 1997-07-30 1999-11-24 时至准钟表股份有限公司 液晶显示装置
CN1969225A (zh) * 2004-04-27 2007-05-23 富士胶片株式会社 液晶显示装置
CN102246090A (zh) * 2008-12-12 2011-11-16 索尼爱立信移动通讯有限公司 具有可调节反射器的透反型液晶显示器
WO2014084482A1 (ko) * 2012-11-30 2014-06-05 동우화인켐 주식회사 반사형 화상 표시 장치 및 이를 구비한 전자 기기

Also Published As

Publication number Publication date
CN113805375A (zh) 2021-12-17
US20230089004A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
WO2021249094A1 (zh) 显示装置及其驱动方法、制备方法
JP4412388B2 (ja) 光学素子、液晶装置及び電子機器
US8018553B2 (en) Liquid crystal display device that includes both a transmissive portion and a reflective portion
CN110888270B (zh) 一种显示面板和显示装置
CN110286525B (zh) 显示基板、显示面板和显示装置
US9329431B2 (en) Transflective liquid crystal display panel and transflective liquid crystal display
TW554221B (en) Liquid crystal display device and manufacturing method thereof
US7106407B2 (en) Liquid crystal display device and electronic apparatus
CN110596947A (zh) 一种显示装置
WO2020087638A1 (zh) 光学复合膜、显示面板及显示装置
JP2004279566A (ja) 液晶表示装置および電子機器
WO2020087624A1 (zh) 光学复合膜、显示面板和显示装置
JP2008268482A (ja) 液晶装置、液晶装置の製造方法並びに電子機器
WO2020087635A1 (zh) 光学复合膜、显示面板和显示装置
WO2020087634A1 (zh) 光学复合膜层、显示面板和显示装置
US20210080777A1 (en) Liquid crystal panel and manufacturing for the same
WO2020087632A1 (zh) 光学复合膜、显示面板和显示装置
WO2020087630A1 (zh) 光学复合膜、显示面板和显示装置
CN110187548B (zh) 显示面板
JP2004240177A (ja) 液晶表示装置および電子機器
JP2010026091A (ja) 円偏光板、及び液晶表示装置
US20130329147A1 (en) Liquid crystal panel and liquid crystal display
US11947211B2 (en) Display panel and display apparatus
JP2007334085A (ja) 液晶表示装置、及び電子機器
CN110501835B (zh) 一种显示面板、其驱动方法及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822714

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21822714

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.06.2023)