WO2021249077A1 - 摄像头、变焦方法、终端及存储介质 - Google Patents

摄像头、变焦方法、终端及存储介质 Download PDF

Info

Publication number
WO2021249077A1
WO2021249077A1 PCT/CN2021/092471 CN2021092471W WO2021249077A1 WO 2021249077 A1 WO2021249077 A1 WO 2021249077A1 CN 2021092471 W CN2021092471 W CN 2021092471W WO 2021249077 A1 WO2021249077 A1 WO 2021249077A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
imaging lens
reflection
light
camera
Prior art date
Application number
PCT/CN2021/092471
Other languages
English (en)
French (fr)
Inventor
孙权
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021249077A1 publication Critical patent/WO2021249077A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • This application relates to the field of imaging technology, and in particular to a camera, a zoom method, a terminal, and a storage medium.
  • optical zoom technology can achieve higher magnification and image quality, it is widely used in mobile phone cameras.
  • the core principle of optical zoom technology is to change the focal length of the imaging lens to achieve the change of imaging magnification.
  • the optical zoom is achieved by setting multiple imaging lenses and controlling the movement of the imaging lens, which requires high internal space for the camera. , Is not conducive to the thinness of the camera.
  • the embodiments of the present application provide a camera, a zoom method, a terminal, and a storage medium.
  • an embodiment of the present application provides a camera, including: an imaging lens configured to collect light;
  • the sensor assembly is configured to perform imaging processing on light
  • the sensor assembly includes a first sensor and at least one second sensor, the first sensor is arranged in the light emission direction of the imaging lens, and the second sensor is arranged Out of the light emission direction of the imaging lens; a first reflection component configured to reflect light emitted by the imaging lens to the second sensor; a rotation mechanism configured to drive the first reflection component to rotate , So that the light emitted by the imaging lens reaches the first sensor, or the light emitted by the imaging lens is reflected to the second sensor by the first reflecting component, and the rotating mechanism is connected to the first sensor. Reflective components.
  • an embodiment of the present application also provides a zoom method applied to a terminal.
  • the terminal includes a camera and a controller.
  • the camera includes: an imaging lens configured to collect light; and sensor components configured to pair The light is subjected to imaging processing, and the sensor assembly includes a first sensor and at least one second sensor.
  • the first sensor is arranged in the light emission direction of the imaging lens, and the second sensor is arranged on the light of the imaging lens.
  • a first reflection component is configured to reflect light emitted by the imaging lens to the second sensor; a rotating mechanism is configured to drive the first reflection component to rotate, and the rotation mechanism is connected to the The first reflective assembly;
  • the zooming method includes: obtaining a zoom instruction; sending a drive signal to the rotation mechanism according to the zoom instruction to drive the first reflective assembly to rotate, so that the light emitted by the imaging lens reaches the The first sensor or the light emitted by the imaging lens is reflected to the second sensor via the first reflection component, and the rotation mechanism is connected to the first reflection component.
  • an embodiment of the present application further provides a terminal, including the camera described in the first aspect; or, including at least one processor and a memory configured to be communicatively connected with the at least one processor; the memory An instruction that can be executed by the at least one processor is stored, and the instruction is executed by the at least one processor, so that the at least one processor can execute the zoom method described in the second aspect.
  • an embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause a computer to execute the instructions described in the second aspect Zoom method.
  • FIG. 1 is a schematic structural diagram of an optical zoom camera in some situations provided by an embodiment of the present application
  • Embodiment 2 is a side cross-sectional view of the camera provided by Embodiment 1 of the present application when the light emitted by the imaging lens reaches the first sensor;
  • FIG. 3 is a side cross-sectional view of the camera provided in Embodiment 1 of the present application when the light emitted by the imaging lens is reflected to the second sensor by the first reflecting component;
  • FIG. 4 is a side cross-sectional view of the camera provided in the second embodiment of the present application when the light emitted by the imaging lens reaches the first sensor;
  • FIG. 5 is a side cross-sectional view of the camera provided in the second embodiment of the present application when the light emitted by the imaging lens is reflected to the second sensor by the first reflective component and the second reflective component;
  • FIG. 6 is a top cross-sectional view of a camera provided in Embodiment 3 of the present application.
  • FIG. 7 is a front cross-sectional view of a camera provided in Embodiment 3 of the present application.
  • Figure 8 is a front cross-sectional view of a camera provided in a fourth embodiment of the present application.
  • FIG. 9 is a front cross-sectional view of a camera provided in Embodiment 5 of the present application.
  • FIG. 10 is a flowchart of a zoom method provided by an embodiment of the present application.
  • FIG. 11 is a flowchart of specific steps of step 1002 in the zoom method provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • multiple means two or more, greater than, less than, exceeding, etc. are understood to not include the number, and above, below, and within are understood to include the number. If there are descriptions of "first”, “second”, etc., only for the purpose of distinguishing technical features, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features or implicitly indicating the indicated The precedence of technical characteristics.
  • optical zoom technology can achieve higher magnification and image quality, it is widely used in mobile phone cameras.
  • the core principle of optical zoom technology is to change the focal length of the imaging lens to achieve the change of imaging magnification.
  • the optical zoom is achieved by setting multiple imaging lenses and controlling the movement of the imaging lens, which requires high internal space for the camera. , Is not conducive to the thinness of the camera.
  • the embodiments of the present application provide a camera, a zoom method, a terminal, and a storage medium, which can reduce the thickness of the camera while realizing optical zoom.
  • the camera provided in the embodiments of the present application can be used on a terminal, which can be, but is not limited to, smart electronic devices such as mobile phones, tablets, and notebook computers.
  • an embodiment of the present application provides a camera 100, where this embodiment takes the rear camera 100 of a mobile phone as an example for description, and the projection of the camera 100 toward the back of the mobile phone is taken as the front view.
  • Figure 3 shows a side cross-sectional view of the camera 100 in this embodiment.
  • the camera 100 includes an imaging lens 101 configured to collect light, and a sensor assembly configured to perform imaging processing on the light.
  • the sensor assembly includes a first sensor 102 and a second sensor 103, and the camera 100 also includes an imaging lens 101 configured to collect light.
  • the first reflective component that reflects the light emitted by the imaging lens 101 to the second sensor 103 and a rotating mechanism (not shown in the drawings) configured to drive the first reflective component to rotate, the first sensor 102 is provided on the light of the imaging lens 101 In the exit direction, the second sensor 103 is arranged outside the light exit direction of the imaging lens 101.
  • the rotating mechanism may adopt a mechanism such as a rotating shaft.
  • the first reflecting assembly includes a first reflecting prism 104.
  • the rotating mechanism drives the first reflecting assembly to rotate so that the light emitted by the imaging lens 101 reaches the first sensor 102, or the imaging lens 101 is emitted.
  • the light reflected by the first reflective component to the second sensor 103, and the rotating mechanism is connected to the first reflective component.
  • the first reflective component is rotated to make the light emitted by the imaging lens 101 reach the position of the first sensor 102.
  • the first reflective component is rotated to make the light emitted from the imaging lens 101 reflect to the second sensor.
  • the position of 103 can thus change the imaging distance of the imaging lens 101 to achieve the effect of zooming.
  • the number of imaging lens 101 is one, and the first reflection assembly is driven to rotate by setting a rotating mechanism, so that the light emitted by the imaging lens 101 reaches the first sensor 102, or the light emitted by the imaging lens 101 is first reflected
  • the component is reflected to the second sensor 103, so as to achieve the effect of changing the imaging distance of the imaging lens 101.
  • the imaging lens 101 does not need to be moved to achieve the effect of optical zooming, and the light emitted by the imaging lens 101 can be changed by setting the first reflective component to reflect
  • the propagation direction of the light can thus flexibly use the internal space of the camera 100, which is convenient to realize the thinner and lighter of the camera 100.
  • FIGS. 4 to 5 another embodiment of the present application further provides a camera 100, wherein, similar to FIGS. 2 to 3, FIGS. 4 to 5 also show side cross-sectional views of the camera 100 in this embodiment.
  • the camera 100 includes an imaging lens 101 configured to collect light, and a sensor assembly configured to perform imaging processing on the light.
  • the sensor assembly includes a first sensor 102 and two second sensors 103, and the camera 100 also includes A first reflection component configured to reflect light emitted by the imaging lens 101 to the second sensor 103 and a rotating mechanism configured to drive the rotation of the first reflection component, the first sensor 102 is disposed in the light emission direction of the imaging lens 101, The second sensor 103 is arranged outside the light emitting direction of the imaging lens 101.
  • the first reflective assembly includes a first reflective component configured to reflect light emitted by the imaging lens 101 and a second reflective component configured to reflect light reflected by the first reflective component.
  • the first reflective component It is the first reflecting prism 104
  • the second reflecting component is the second reflecting prism 105.
  • One of the second sensors 103 is arranged in the light reflection direction of the first reflecting prism 104, and the other second sensor 103 is arranged on the second reflecting prism 105 In the light reflection direction of, the first reflecting prism 104 and the second reflecting prism 105 are both connected with a rotating mechanism. It can be understood that the first reflective component and the second reflective component may also be other components with similar reflective functions.
  • the first reflecting prism 104 and the second reflecting prism 105 rotate to a position where the light emitted by the imaging lens 101 is reflected to one of the second sensors 103.
  • the first reflecting prism 104 and the second reflecting prism 105 The reflecting prism 105 rotates to a position where the light emitted by the imaging lens 101 is reflected to another second sensor 103, so that the imaging distance of the imaging lens 101 is changed, and the effect of zooming is achieved.
  • the first reflecting prism 104 can also be rotated to a position where the light emitted by the imaging lens 101 reaches the first sensor 102, and the drawings will not be shown again.
  • the light is reflected by the first reflecting prism 104 and the second reflecting prism 105 to change the direction of the light, thereby changing the imaging distance of the imaging lens 101.
  • the imaging lens 101 does not need to be moved to achieve The effect of optical zoom.
  • optical zooms of different magnifications can be achieved, and the flexibility is higher.
  • the number of the second sensor 103 and the second reflecting prism 105 described above can be changed according to actual conditions, and only one of them is used as an exemplary description in this embodiment.
  • FIG. 6 shows a top cross-sectional view of the camera 100 in this embodiment
  • FIG. 7 shows a front cross-sectional view of the camera 100.
  • the camera 100 includes an imaging lens 101 configured to collect light, and a sensor assembly configured to perform imaging processing on the light.
  • the sensor assembly includes a first sensor 102 and a second sensor 103, and the camera 100 also includes an imaging lens 101 configured to collect light.
  • the first reflection component that reflects the light emitted by the imaging lens 101 to the second sensor 103, the rotation mechanism that is configured to drive the rotation of the first reflection component, and the first reflection component that is configured to reflect the light that enters the camera 100 to the imaging lens 101
  • the first sensor 102 is arranged in the light emission direction of the imaging lens 101
  • the second sensor 103 is arranged outside the light emission direction of the imaging lens 101.
  • the first reflection component includes a first reflection prism 104
  • the second reflection component 106 includes a reflection prism
  • both the first reflection component and the second reflection component 106 are connected with a rotating mechanism.
  • the second reflective component 106 by providing the second reflective component 106, the light entering the camera 100 is first reflected by the second reflective component 106 and then passes through the imaging lens 101. Therefore, the imaging lens 101, the first reflective component, and the first sensor 102 The components such as the second sensor 103 and the like can be arranged around the camera 100, so as not to occupy the space in the thickness direction of the camera 100, which is beneficial to realize the thinner and lighter of the camera 100.
  • the above-mentioned reflection plane is perpendicular to the light incident direction of the camera 100 to achieve a better light collection effect.
  • FIG. 8 shows a front cross-sectional view of the camera 100.
  • the camera 100 includes an imaging lens 101 configured to collect light, and a sensor assembly configured to perform imaging processing on the light.
  • the sensor assembly includes a first sensor 102 and a second sensor 103, and the camera 100 also includes an imaging lens 101 configured to collect light.
  • the first reflection component that reflects the light emitted by the imaging lens 101 to the second sensor 103, the rotation mechanism that is configured to drive the rotation of the first reflection component, and the first reflection component that is configured to reflect the light that enters the camera 100 to the imaging lens 101
  • the first sensor 102 is arranged in the light emission direction of the imaging lens 101
  • the second sensor 103 is arranged outside the light emission direction of the imaging lens 101.
  • the first reflection assembly includes a first reflection component configured to reflect the light emitted by the imaging lens 101 and three second reflection components configured to sequentially reflect the light reflected by the first reflection prism 104 to the second sensor 103
  • the first reflective component is a first reflective prism 104
  • the second reflective component is a second reflective prism 105
  • the second reflective component 106 includes a reflective prism.
  • the first reflective component and the second reflective component 106 are both connected.
  • There is a rotating mechanism and the light reflection direction of the first reflection prism 104 and the light reflection direction of the second reflection prism 105 are correspondingly provided with second sensors 103, that is, the number of the second sensors 103 in the present application is four.
  • the first reflective component and the second reflective component may also be other components with similar reflective functions.
  • the direction of the light entering the camera 100 is changed by setting the second reflective component 106 to save the space in the thickness direction of the camera 100.
  • three second reflective prisms are provided. 105.
  • optical zooms of different magnifications can be achieved, and the flexibility is higher.
  • the second sensor 103 and the first sensor 102 corresponding to the last second reflecting prism 105 that reflect light are arranged on the same side of the camera 100, which can make better use of the space of the camera 100, and achieve multiple optical While zooming, the internal structure of the camera 100 is more compact.
  • the light reflection direction of the first reflection prism 104 and the light reflection direction of the second reflection prism 105 are both located in the same reflection plane, and the reflection plane is perpendicular to the light incident direction of the camera 100.
  • the number of the second sensor 103 and the second reflecting prism 105 described above can be changed according to actual conditions, and only one of them is used as an exemplary description in this embodiment.
  • FIG. 9 shows a front cross-sectional view of the camera 100.
  • the component composition and zooming principle of this embodiment are similar to those in the fourth embodiment, and the difference lies in the position distribution of the first reflective assembly and the second sensor 103.
  • the last second reflecting prism 105 that reflects light and any one of the remaining second reflecting prisms 105 correspond to the same second sensor 103. Therefore, when the effect of multiple optical zooming is achieved One of the second sensors 103 can be multiplexed to reduce the number of second sensors 103 and reduce the manufacturing cost of the camera 100.
  • the last second reflecting prism 105 reflecting light and the first second reflecting prism 105 reflecting light correspond to the same second sensor 103.
  • the second reflecting prism 105 can be changed according to actual conditions.
  • the positions of a reflective component and the second sensor 103 are distributed so as to select and reuse any one of the second sensors 103.
  • the light reflection direction of the first reflection prism 104 and the light reflection direction of the second reflection prism 105 are straight, and the light reflection of the two adjacent second reflection prisms 105 The directions are perpendicular to each other, making the direction control of the light easier.
  • FIG. 10 another embodiment of the present application provides a zoom method applied to a terminal, where the terminal includes a controller and a camera in any one of the above embodiments.
  • the zoom method includes but is not limited to the following steps 1001 to 1002:
  • Step 1001 Obtain a zoom instruction
  • the zoom instruction may be manually sent by the user, or automatically sent by the terminal according to the position of the object to be imaged.
  • Step 1002 Send a driving signal to the rotating mechanism according to the zoom instruction to drive the first reflection assembly to rotate, so that the light emitted by the imaging lens reaches the first sensor, or the light emitted by the imaging lens is reflected by the first reflection assembly to the second sensor,
  • the rotating mechanism is connected to the first reflecting assembly.
  • the imaging lens By sending a driving signal to the rotating mechanism to drive the first reflection assembly to rotate, the light emitted by the imaging lens reaches the first sensor, or the light emitted by the imaging lens is reflected by the first reflection assembly to the second sensor, so as to change the imaging lens.
  • the imaging lens does not need to be moved to achieve the effect of optical zoom.
  • step 1001 based on the camera of the second, fourth, or fifth embodiment, the zoom instruction in step 1001 includes a zoom factor, and step 1002 may specifically include the following step 1101:
  • Step 1101 Send a driving signal to the rotating mechanism according to the zoom factor to drive the first reflection assembly to rotate, so that the light emitted by the imaging lens reaches the first sensor, or the light emitted by the imaging lens passes through the first reflecting prism and several second reflecting prisms in sequence.
  • the reflection prism reaches the corresponding second sensor after reflection.
  • the first reflection assembly is driven to rotate according to the zoom factor, so that the light emitted by the imaging lens can reach the first sensor, or the light emitted by the imaging lens can be reflected by the first reflecting prism and several second reflecting prisms in turn. Then it reaches the corresponding second sensor, so as to achieve the effect of multiple zooming and improve the flexibility of zooming.
  • the terminal may be a smart device such as a mobile phone, a tablet computer, or a notebook computer.
  • the terminal includes the camera in any of the above embodiments, and the camera may be a front camera. , It can also be a rear camera, or a side camera.
  • the camera of the terminal drives the first reflection component to rotate by setting a rotating mechanism, so that the light emitted by the imaging lens reaches the first sensor, or the light emitted by the imaging lens is reflected by the first reflection component to the second sensor, so as to change the imaging lens.
  • the imaging lens does not need to be moved to achieve the effect of optical zoom, and by setting the first reflecting component to reflect the light emitted by the imaging lens, the propagation direction of the light can be changed, so that the internal space of the camera can be flexibly used for easy realization
  • the camera is light and thin, so the camera of the terminal may not protrude from the main body of the terminal, and the overall structure is more beautiful.
  • FIG. 12 shows that an embodiment of the present application provides a terminal 1200 provided by the embodiment of the present application.
  • the terminal 1200 includes a memory 1201, a processor 1202, and a computer program that is stored on the memory 1201 and can run on the processor 1202, and the computer program is used to execute the foregoing heat dissipation method when the computer program is running.
  • the processor 1202 and the memory 1201 may be connected by a bus or in other ways.
  • the memory 1201 as a non-transitory computer-readable storage medium, can be used to store non-transitory software programs and non-transitory computer-executable programs, such as the heat dissipation method described in the embodiments of the present application.
  • the processor 1202 executes the non-transitory software programs and instructions stored in the memory 1201 to implement the heat dissipation method described above.
  • the memory 1201 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store and execute the heat dissipation method described above.
  • the memory 1201 may include a high-speed random access memory 1201, and may also include a non-transitory memory 1201, such as at least one magnetic disk storage 1201, a flash memory device, or other non-transitory solid-state memory 1201.
  • the memory 1201 may include a memory 1201 remotely provided with respect to the processor 1202, and these remote memories 1201 may be connected to the terminal 1200 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transitory software programs and instructions required to implement the foregoing heat dissipation method are stored in the memory 1201, and when executed by one or more processors 1202, the foregoing heat dissipation method is executed, for example, the foregoing heat dissipation method is executed, for example, as described in FIG. 10 and FIG. 11 Method steps.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are used to execute the heat dissipation method described above.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors 1202, for example, executed by one processor 1202 in the aforementioned terminal 1200.
  • the foregoing one or more processors 1202 are caused to execute the foregoing heat dissipation method, for example, to execute the method steps described in FIG. 10 and FIG. 1.
  • the embodiment of the present application includes: an imaging lens, a sensor assembly, a first reflective assembly, and a rotating mechanism.
  • the sensor assembly includes a first sensor and at least one second sensor.
  • the rotating mechanism drives the first reflective assembly to rotate so that the imaging lens emits The light reaches the first sensor, or the light emitted by the imaging lens is reflected to the second sensor through the first reflective component, so as to achieve the effect of changing the imaging distance of the imaging lens.
  • the imaging lens does not need to be moved to achieve the effect of optical zoom and pass Setting the first reflection component to reflect the light emitted by the imaging lens can change the propagation direction of the light, so that the internal space of the camera can be flexibly used, and it is convenient to realize the lightness and thinness of the camera.
  • the device embodiments described above are merely illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • computer storage medium includes volatile and non-volatile data implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Information such as computer-readable instructions, data structures, program modules, or other data.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other storage 1201 technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, magnetic tape, magnetic disk storage or other magnetic storage device, or Any other medium that can be used to store desired information and that can be accessed by a computer.
  • communication media generally include computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)

Abstract

摄像头、变焦方法、终端及存储介质。其中,所述摄像头(100)包括成像镜头(101)、传感器组件、第一反射组件和旋转机构,其中,传感器组件包括第一传感器(102)和至少一个第二传感器(103),通过设置旋转机构驱动第一反射组件旋转,使得成像镜头(101)射出的光线到达第一传感器(102),或者使得成像镜头(101)射出的光线经第一反射组件反射至第二传感器(103)。

Description

摄像头、变焦方法、终端及存储介质
相关申请的交叉引用
本申请基于申请号为202010529410.0、申请日为2020年06月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及成像技术领域,特别是涉及一种摄像头、变焦方法、终端及存储介质。
背景技术
随着科学技术的进步,人们对于照相功能的要求变得越来越高,光学变焦技术由于可以实现较高的放大倍数和图像质量,因而在手机的摄像头上广泛应用。光学变焦技术的核心原理是改变成像镜头的焦距从而实现成像倍数的变化,然而,一些情况中的光学变焦是通过设置多个成像镜头并且控制成像镜头移动来实现,对于摄像头的内部空间要求较高,不利于摄像头的轻薄化。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种摄像头、变焦方法、终端及存储介质。
第一方面,本申请实施例提供了一种摄像头,包括:成像镜头,被设置成采集光线;
传感器组件,被设置成对光线进行成像处理,所述传感器组件包括第一传感器和至少一个第二传感器,所述第一传感器设置于所述成像镜头的光线出射方向上,所述第二传感器设置于所述成像镜头的光线出射方向之外;第一反射组件,被设置成将所述成像镜头射出的光线反射至所述第二传感器;旋转机构,被设置成驱动所述第一反射组件旋转,以使所述成像镜头射出的光线到达所述第一传感器,或者使所述成像镜头射出的光线经所述第一反射组件反射至所述第二传感器,所述旋转机构连接所述第一反射组件。
第二方面,本申请实施例还提供了一种变焦方法,应用于终端,所述终端包括摄像头和控制器,所述摄像头包括:成像镜头,被设置成采集光线;传感器组件,被设置成对光线进行成像处理,所述传感器组件包括第一传感器和至少一个第二传感器,所述第一传感器设置于所述成像镜头的光线出射方向上,所述第二传感器设置于所述成像镜头的光线出射方向之外;第一反射组件,被设置成将所述成像镜头射出的光线反射至所述第二传感器;旋转机构,被设置成驱动所述第一反射组件旋转,所述旋转机构连接所述第一反射组件;所述变焦方法包括:获取变焦指令;根据所述变焦指令向所述旋转机构发送驱动信号以驱动所述第一反射组件旋转,以使所述成像镜头射出的光线到达所述第一传感器,或者使所述成像镜头射出的光线经所述第一反射组件反射至所述第二传感器,所述旋转机构连接所 述第一反射组件。
第三方面,本申请实施例还提供了一种终端,包括第一方面所述的摄像头;或者,包括至少一个处理器和被设置成与所述至少一个处理器通信连接的存储器;所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行第二方面所述的变焦方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行第二方面所述的变焦方法。
本申请的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请实施例提供的一些情况中的光学变焦摄像头的结构示意图;
图2是本申请实施例一提供的摄像头在成像镜头射出的光线到达第一传感器时的侧面剖视图;
图3是本申请实施例一提供的摄像头在成像镜头射出的光线经第一反射组件反射至第二传感器时的侧面剖视图;
图4是本申请实施例二提供的摄像头在成像镜头射出的光线到达第一传感器时的侧面剖视图;
图5是本申请实施例二提供的摄像头在成像镜头射出的光线经第一反射组件和第二反射组件反射至第二传感器时的侧面剖视图;
图6是本申请实施例三提供的摄像头的俯视剖视图;
图7是本申请实施例三提供的摄像头的主视剖视图;
图8是本申请实施例四提供的摄像头的主视剖视图;
图9是本申请实施例五提供的摄像头的主视剖视图;
图10是本申请实施例提供的一种变焦方法的流程图;
图11是本申请实施例提供的变焦方法中步骤1002的具体步骤流程图;
图12是本申请实施例提供的一种终端的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应了解,在本申请实施例的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到“第一”、 “第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
随着科学技术的进步,人们对于照相功能的要求变得越来越高,光学变焦技术由于可以实现较高的放大倍数和图像质量,因而在手机的摄像头上广泛应用。光学变焦技术的核心原理是改变成像镜头的焦距从而实现成像倍数的变化,然而,一些情况中的光学变焦是通过设置多个成像镜头并且控制成像镜头移动来实现,对于摄像头的内部空间要求较高,不利于摄像头的轻薄化。
本申请实施例提供一种摄像头、变焦方法、终端及存储介质,能够在实现光学变焦的同时降低摄像头的厚度。
本申请实施例提供的摄像头可以使用在终端上,该终端可以是但不限于手机、平板、笔记本电脑等智能电子设备。
实施例一
参照图1,为一些情况中的光学变焦摄像头100的结构示意图,由于设置了多个成像镜头101,因此占用的空间会增大,使得摄像头100的厚度变大。
参照图2至图3,本申请一实施例提供了一种摄像头100,其中,本实施例以手机的后置摄像头100为例进行说明,以摄像头100朝手机背面的投影作为主视图,图2至图3展示了本实施例中摄像头100的侧面剖视图。
其中,该摄像头100包括被设置成采集光线的成像镜头101、被设置成对光线进行成像处理的传感器组件,其中,传感器组件包括第一传感器102和第二传感器103,该摄像头100还包括被设置成将成像镜头101射出的光线反射至第二传感器103的第一反射组件以及被设置成驱动第一反射组件旋转的旋转机构(附图未展示),第一传感器102设置于成像镜头101的光线出射方向上,第二传感器103设置于成像镜头101的光线出射方向之外。
其中,旋转机构可以采用转轴等机构,第一反射组件包括第一反射棱镜104,旋转机构驱动第一反射组件旋转,以使成像镜头101射出的光线到达第一传感器102,或者使成像镜头101射出的光线经第一反射组件反射至第二传感器103,旋转机构连接第一反射组件。
具体地,参照图2,第一反射组件旋转至使成像镜头101射出的光线到达第一传感器102的位置,参照图3,第一反射组件旋转至使成像镜头101射出的光线反射至第二传感器103的位置,从而实现改变成像镜头101的成像距离,达到变焦的效果。
在本实施例中,成像镜头101的数量为一个,通过设置旋转机构驱动第一反射组件旋转,使得成像镜头101射出的光线到达第一传感器102,或者使得成像镜头101射出的光线经第一反射组件反射至第二传感器103,从而达到改变成像镜头101的成像距离的效果,成像镜头101无须进行移动,达到光学变焦的效果,并且通过设置第一反射组件反射成像镜头101射出的光线,能够改变光线的传播方向,从而可以灵活地利用摄像头100的内部空间,便于实现摄像头100的轻薄化。
实施例二
参照图4至图5,本申请另一实施例还提供了一种摄像头100,其中,与图2至图3类似,图4至图5也展示了本实施例中摄像头100的侧面剖视图。
其中,该摄像头100包括被设置成采集光线的成像镜头101、被设置成对光线进行成像处理的传感器组件,其中,传感器组件包括第一传感器102和两个第二传感器103,该摄像头100还包括被设置成将成像镜头101射出的光线反射至第二传感器103的第一反射组件以及被设置成驱动第一反射组件旋转的旋转机构,第一传感器102设置于成像镜头101的光线出射方向上,第二传感器103设置于成像镜头101的光线出射方向之外。
其中,第一反射组件包括被设置成反射成像镜头101射出的光线的第一反射部件和被设置成反射第一反射部件反射的光线的第二反射部件,在本实施例中,第一反射部件为第一反射棱镜104,第二反射部件为第二反射棱镜105,其中一个第二传感器103设置于第一反射棱镜104的光线反射方向上,另一个第二传感器103设置于第二反射棱镜105的光线反射方向上,第一反射棱镜104和第二反射棱镜105均连接有旋转机构。可以理解的是,第一反射部件和第二反射部件还可以为其他具有类似反射功能的部件。
具体地,参照图4,第一反射棱镜104和第二反射棱镜105旋转至使成像镜头101射出的光线反射至其中一个第二传感器103的位置,参照图5,第一反射棱镜104和第二反射棱镜105旋转至使成像镜头101射出的光线反射至另一个第二传感器103的位置从而实现改变成像镜头101的成像距离,达到变焦的效果。
可以理解的是,与实施例一类似,第一反射棱镜104也可以旋转至使成像镜头101射出的光线到达第一传感器102的位置,附图不再进行展示。
相类似地,在本实施例中,通过第一反射棱镜104和第二反射棱镜105对光线进行反射,以改变光线的方向,从而改变成像镜头101的成像距离,成像镜头101无须进行移动,达到光学变焦的效果。并且,通过设置第一传感器102和两个第二传感器103,并控制第一反射棱镜104或者第二反射棱镜105旋转,可以达到不同倍数的光学变焦,灵活性更高。
可以理解的是,上述第二传感器103和第二反射棱镜105的数量可以根据实际情况而变化,本实施例中仅以其中一种情况做示例性的说明。
实施例三
参照图6至图7,本申请另一实施例还提供了一种摄像头100,其中,本实施例以手机的后置摄像头100为例进行说明,以摄像头100朝手机背面的投影作为主视图,图6展示了本实施例中摄像头100的俯视剖视图,图7展示了摄像头100的主视剖视图。
其中,该摄像头100包括被设置成采集光线的成像镜头101、被设置成对光线进行成像处理的传感器组件,其中,传感器组件包括第一传感器102和第二传感器103,该摄像头100还包括被设置成将成像镜头101射出的光线反射至第二传感器103的第一反射组件、被设置成驱动第一反射组件旋转的旋转机构以及被设置成将射入摄像头100的光线反射至成像镜头101的第二反射组件106,第一传感器102设置于成像镜头101的光线出射方向上,第二传感器103设置于成像镜头101的光线出射方向之外。
其中,第一反射组件包括第一反射棱镜104,第二反射组件106包括一个反射棱镜,第一反射组件和第二反射组件106均连接有旋转机构。
在本实施例中,通过设置第二反射组件106,射入摄像头100的光线先通过第二反射组件106反射后再经过成像镜头101,因此,成像镜头101、第一反射组件、第一传感器102和第二传感器103等部件可以往摄像头100的四周设置,从而不占用摄像头100厚度方向的空间,有利于实现摄像头100的轻薄化。
在本实施例中,上述反射平面垂直于摄像头100的光线入射方向,以达到较佳的光线采集效果。
本实施例中的具体变焦原理与实施例一相类似,在此不再赘述。
实施例四
参照图8,本申请另一实施例还提供了一种摄像头100,与实施例三类似,图8展示了摄像头100的主视剖视图。
其中,该摄像头100包括被设置成采集光线的成像镜头101、被设置成对光线进行成像处理的传感器组件,其中,传感器组件包括第一传感器102和第二传感器103,该摄像头100还包括被设置成将成像镜头101射出的光线反射至第二传感器103的第一反射组件、被设置成驱动第一反射组件旋转的旋转机构以及被设置成将射入摄像头100的光线反射至成像镜头101的第二反射组件106,第一传感器102设置于成像镜头101的光线出射方向上,第二传感器103设置于成像镜头101的光线出射方向之外。
其中,第一反射组件包括被设置成反射成像镜头101射出的光线的第一反射部件和被设置成将第一反射棱镜104反射的光线依次反射至第二传感器103的三个第二反射部件,在本实施例中,第一反射部件为第一反射棱镜104,第二反射部件为第二反射棱镜105,第二反射组件106包括一个反射棱镜,第一反射组件和第二反射组件106均连接有旋转机构,并且,第一反射棱镜104的光线反射方向、第二反射棱镜105的光线反射方向上均对应设置有第二传感器103,即本申请中第二传感器103的数量为四个。可以理解的是,第一反射部件和第二反射部件还可以为其他具有类似反射功能的部件。
与实施例三类似,本实施例中通过设置第二反射组件106改变射入摄像头100的光线的方向,以实现节省摄像头100厚度方向的空间,在此基础上,通过设置三个第二反射棱镜105,与实施例二类似,通过控制第一反射组件旋转,可以达到不同倍数的光学变焦,灵活性更高。
在本实施例中,最后一个反射光线的第二反射棱镜105对应的第二传感器103与第一传感器102设置于摄像头100的同一侧,可以更好地利用摄像头100的空间,在实现多倍光学变焦的同时使得摄像头100的内部结构更加紧凑。
在本实施例中,第一反射棱镜104的光线反射方向与第二反射棱镜105的光线反射方向均位于同一个反射平面内,上述反射平面垂直于摄像头100的光线入射方向。
可以理解的是,上述第二传感器103和第二反射棱镜105的数量可以根据实际情况而变化,本实施例中仅以其中一种情况做示例性的说明。
实施例五
参照图9,本申请另一实施例还提供了一种摄像头100,与实施例四类似,图9展示了摄像头100的主视剖视图。
其中,本实施例的部件构成和变焦原理与实施例四中的类似,区别在于第一反射组件和第二传感器103的位置分布。
具体地,在本实施例中,最后一个反射光线的第二反射棱镜105与剩余的第二反射棱镜105中的任意一个对应同一个第二传感器103,因此,在达到多倍光学变焦的效果时,其中一个第二传感器103可以进行复用,以减少第二传感器103的数量,降低摄像头100的制造成本。
示例性地,本实施例中最后一个反射光线的第二反射棱镜105与第一个反射光线的第二反射棱镜105对应同一个第二传感器103,在其他实施例中,可以根据实际情况改变第一反射组件和第二传感器103的位置分布,以选择复用任意一个第二传感器103。
在上述实施例二、实施例四和实施例五中,第一反射棱镜104的光线反射方向与第二反射棱镜105的光线反射方向相互吹直,相邻两个第二反射棱镜105的光线反射方向相互垂直,使得光线的方向控制变得更加简单。
另外,参照图10,本申请另一实施例提供了一种变焦方法,应用于终端,其中,该终端包括有控制器和上述任意一个实施例中的摄像头。该变焦方法包括但不限于以下步骤1001至1002:
步骤1001:获取变焦指令;
其中,在步骤1001中,变焦指令可以是用户手动发送,也可以是终端根据待成像的物体的位置自动发送。
步骤1002:根据变焦指令向旋转机构发送驱动信号以驱动第一反射组件旋转,以使成像镜头射出的光线到达第一传感器,或者使成像镜头射出的光线经第一反射组件反射至第二传感器,旋转机构连接第一反射组件。
通过向旋转机构发送驱动信号以驱动第一反射组件旋转,使得成像镜头射出的光线到达第一传感器,或者使得成像镜头射出的光线经第一反射组件反射至第二传感器,从而达到改变成像镜头的成像距离的效果,成像镜头无须进行移动,达到光学变焦的效果。
参照图11,在一实施例中,基于上述实施例二、实施例四或者实施例五的摄像头,上述步骤1001中的变焦指令包括变焦倍数,上述步骤1002中,具体可以包括以下步骤1101:
步骤1101:根据变焦倍数向旋转机构发送驱动信号以驱动第一反射组件旋转,以使成像镜头射出的光线到达第一传感器,或者使成像镜头射出的光线依次经第一反射棱镜和若干个第二反射棱镜反射后到达对应的第二传感器。
其中,在步骤1101中,根据变焦倍数驱动第一反射组件旋转,可以使成像镜头射出的光线到达第一传感器,或者使成像镜头射出的光线依次经第一反射棱镜和若干个第二反射棱镜反射后到达对应的第二传感器,从而达到多倍变焦的效果,提高了变焦的灵活性。
另外,本申请另一实施例还提供了一种终端,该终端可以是手机、平板电脑、笔记本电脑等智能设备,该终端包括有上述任一实施例中的摄像头,该摄像头可以是前置摄像头,也可以是后置摄像头,或者是侧面摄像头等。该终端的摄像头通过设置旋转机构驱动第一反射组件旋转,使得成像镜头射出的光线到达第一传感器,或者使得成像镜头射出的光线经第一反射组件反射至第二传感器,从而达到改变成像镜头的成像距离的效果,成像镜头无须进行移动,达到光学变焦的效果,并且通过设置第一反射组件反射成像镜头射出的光线,能够改变光线的传播方向,从而可以灵活地利用摄像头的内部空间,便于实现摄像头的轻薄化,因此该终端的摄像头可以不突出于终端的主体,整体结构更加美观。
还应了解,本申请实施例提供的各种实施方式可以任意进行组合,以实现不同的技术效果。
图12示出了本申请实施例提供了本申请实施例提供的终端1200。终端1200包括:存储器1201、处理器1202及存储在存储器1201上并可在处理器1202上运行的计算机程序,计算机程序运行时用于执行上述的散热方法。
处理器1202和存储器1201可以通过总线或者其他方式连接。
存储器1201作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请实施例描述的散热方法。处理器1202通过运行存储在存储器1201中的非暂态软件程序以及指令,从而实现上述的散热方法。
存储器1201可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的散热方法。此外,存储器1201可以包括高速随机存取存储器1201,还可以包括非暂态存储器1201,例如至少一个磁盘存储器1201件、闪存器件或其他非暂态固态存储器1201件。在一些实施方式中,存储器1201可能包括相对于处理器1202远程设置的存储器1201,这些远程存储器1201可以通过网络连接至该终端1200。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的散热方法所需的非暂态软件程序以及指令存储在存储器1201中,当被一个或者多个处理器1202执行时,执行上述的散热方法,例如,执行图10、图11中描述的方法步骤。
本申请实施例还提供了计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述的散热方法。
在一实施例中,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器1202执行,例如,被上述终端1200中的一个处理器1202执行,可使得上述一个或多个处理器1202执行上述的散热方法,例如,执行图10、图1中描述的方法步骤。
本申请实施例包括:成像镜头、传感器组件、第一反射组件和旋转机构,其中,传感器组件包括第一传感器和至少一个第二传感器,通过设置旋转机构驱动第一反射组件旋转,使得成像镜头射出的光线到达第一传感器,或者使得成像镜头射出的光线经第一反射组件反射至第二传感器,从而达到改变成像镜头的成像距离的效果,成像镜头无须进行移动,达到光学变焦的效果,并且通过设置第一反射组件反射成像镜头射出的光线,能够改变光线的传播方向,从而可以灵活地利用摄像头的内部空间,便于实现摄像头的轻薄化。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器1201技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介 质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (13)

  1. 一种摄像头,包括:
    成像镜头,被设置成采集光线;
    传感器组件,被设置成对光线进行成像处理,所述传感器组件包括第一传感器和至少一个第二传感器,所述第一传感器设置于所述成像镜头的光线出射方向上,所述第二传感器设置于所述成像镜头的光线出射方向之外;
    第一反射组件,被设置成将所述成像镜头射出的光线反射至所述第二传感器;
    旋转机构,被设置成驱动所述第一反射组件旋转,以使所述成像镜头射出的光线到达所述第一传感器,或者使所述成像镜头射出的光线经所述第一反射组件反射至所述第二传感器;所述旋转机构连接所述第一反射组件。
  2. 根据权利要求1所述的摄像头,其中:
    所述摄像头还包括第二反射组件,所述第二反射组件被设置成将射入所述摄像头的光线反射至所述成像镜头。
  3. 根据权利要求1或2所述的摄像头,其中:
    所述第一反射组件包括被设置成反射所述成像镜头射出的光线的第一反射部件和被设置成将所述第一反射部件反射的光线依次反射至所述第二传感器的多个第二反射部件;
    所述旋转机构连接所述第一反射部件,所述旋转机构被设置成驱动所述第一反射部件旋转,以使所述成像镜头射出的光线到达所述第一传感器,或者使所述成像镜头射出的光线依次经所述第一反射部件和所述多个第二反射部件反射后到达所述第二传感器。
  4. 根据权利要求3所述的摄像头,其中:
    所述传感器组件包括多个第二传感器;
    所述第一反射部件的光线反射方向、所述第二反射部件的光线反射方向上均对应设置有所述第二传感器;
    所述第一反射部件和所述多个第二反射部件均连接有所述旋转机构,所述旋转机构被设置成驱动所述第一反射组件旋转,以使所述成像镜头射出的光线到达所述第一传感器,或者使所述成像镜头射出的光线依次经所述第一反射部件和若干个所述第二反射部件反射后到达对应的所述第二传感器。
  5. 根据权利要求4所述的摄像头,其中:
    所述第一反射部件的光线反射方向与所述第二反射部件的光线反射方向均位于同一个反射平面内。
  6. 根据权利要求5所述的摄像头,其中:
    所述反射平面垂直于所述摄像头的光线入射方向。
  7. 根据权利要求4所述的摄像头,其中:
    最后一个反射光线的所述第二反射部件对应的所述第二传感器与所述第一传感器设置于所述摄像头的同一侧;
    或者,最后一个反射光线的所述第二反射部件与剩余的所述第二反射部件中的任意一个对应同一个第二传感器。
  8. 根据权利要求3所述的摄像头,其中:
    所述第一反射部件的光线反射方向与所述第二反射部件的光线反射方向相互垂直,相邻两个所述第二反射部件的光线反射方向相互垂直。
  9. 根据权利要求1所述的摄像头,其中:
    所述第一反射组件包括至少一个反射棱镜。
  10. 一种变焦方法,应用于终端,其中:
    所述终端包括摄像头和控制器,所述摄像头包括:
    成像镜头,被设置成采集光线;
    传感器组件,被设置成对光线进行成像处理,所述传感器组件包括第一传感器和至少一个第二传感器,所述第一传感器设置于所述成像镜头的光线出射方向上,所述第二传感器设置于所述成像镜头的光线出射方向之外;
    第一反射组件,被设置成将所述成像镜头射出的光线反射至所述第二传感器;
    旋转机构,被设置成驱动所述第一反射组件旋转,所述旋转机构连接所述第一反射组件;
    所述变焦方法包括:
    获取变焦指令;
    根据所述变焦指令向所述旋转机构发送驱动信号以驱动所述第一反射组件旋转,以使所述成像镜头射出的光线到达所述第一传感器,或者使所述成像镜头射出的光线经所述第一反射组件反射至所述第二传感器,所述旋转机构连接所述第一反射组件。
  11. 根据权利要求10所述的变焦方法,其中:
    所述第一反射组件包括被设置成反射所述成像镜头射出的光线的第一反射部件和被设置成将所述第一反射部件反射的光线依次反射至所述第二传感器的多个第二反射部件;
    所述传感器组件包括多个第二传感器;
    所述第一反射部件的光线反射方向、所述第二反射部件的光线反射方向上均对应设置有所述第二传感器;
    所述第一反射部件和所述多个第二反射部件均连接有所述旋转机构;
    所述变焦指令包括变焦倍数,所述的根据所述变焦指令向所述旋转机构发送驱动信号以驱动所述第一反射组件旋转,以使所述成像镜头射出的光线到达所述第一传感器,或者使所述成像镜头射出的光线经所述第一反射组件反射至所述第二传感器,所述旋转机构连接所述第一反射组件,包括:
    根据所述变焦倍数向所述旋转机构发送驱动信号以驱动所述第一反射组件旋转,以使所述成像镜头射出的光线到达所述第一传感器,或者使所述成像镜头射出的光线依次经所述第一反射部件和若干个所述第二反射部件反射后到达对应的所述第二传感器。
  12. 一种终端,
    包括权利要求1至9任意一项所述的摄像头;
    或者,
    包括至少一个处理器和被设置成与所述至少一个处理器通信连接的存储器;所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求10或11所述的变焦方法。
  13. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行 指令用于使计算机执行如权利要求10或11所述的变焦方法。
PCT/CN2021/092471 2020-06-11 2021-05-08 摄像头、变焦方法、终端及存储介质 WO2021249077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010529410.0 2020-06-11
CN202010529410.0A CN113810560A (zh) 2020-06-11 2020-06-11 摄像头、变焦方法、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2021249077A1 true WO2021249077A1 (zh) 2021-12-16

Family

ID=78845150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092471 WO2021249077A1 (zh) 2020-06-11 2021-05-08 摄像头、变焦方法、终端及存储介质

Country Status (2)

Country Link
CN (1) CN113810560A (zh)
WO (1) WO2021249077A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115103045A (zh) * 2022-06-17 2022-09-23 Oppo广东移动通信有限公司 电子设备
CN115065779A (zh) * 2022-06-29 2022-09-16 维沃移动通信有限公司 摄像模组和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540843A (zh) * 2008-03-17 2009-09-23 索尼株式会社 成像设备、信号处理方法以及计算机程序
US20130070103A1 (en) * 2011-09-19 2013-03-21 Michael Mojaver Super resolution binary imaging and tracking system
CN105049698A (zh) * 2015-08-21 2015-11-11 广东欧珀移动通信有限公司 摄像模组及电子装置
CN105163011A (zh) * 2015-08-21 2015-12-16 广东欧珀移动通信有限公司 摄像模组及电子装置
CN107295239A (zh) * 2017-07-31 2017-10-24 广东欧珀移动通信有限公司 一种摄像头组件及电子设备
CN208782911U (zh) * 2018-06-26 2019-04-23 深圳阜时科技有限公司 镜头组件、传感装置及成像系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540843A (zh) * 2008-03-17 2009-09-23 索尼株式会社 成像设备、信号处理方法以及计算机程序
US20130070103A1 (en) * 2011-09-19 2013-03-21 Michael Mojaver Super resolution binary imaging and tracking system
CN105049698A (zh) * 2015-08-21 2015-11-11 广东欧珀移动通信有限公司 摄像模组及电子装置
CN105163011A (zh) * 2015-08-21 2015-12-16 广东欧珀移动通信有限公司 摄像模组及电子装置
CN107295239A (zh) * 2017-07-31 2017-10-24 广东欧珀移动通信有限公司 一种摄像头组件及电子设备
CN208782911U (zh) * 2018-06-26 2019-04-23 深圳阜时科技有限公司 镜头组件、传感装置及成像系统

Also Published As

Publication number Publication date
CN113810560A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2020259442A1 (zh) 电子设备及拍摄方法
WO2021249077A1 (zh) 摄像头、变焦方法、终端及存储介质
WO2020125304A1 (zh) 成像方法、成像装置、电子装置及介质
KR20180032058A (ko) 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치
WO2020125203A1 (zh) 图像处理方法、电子装置及介质
CN111866328B (zh) 一种摄像头模组及移动终端
CN106405798B (zh) 成像装置及电子装置
CN115327743A (zh) 一种光学成像系统、摄像模组及电子设备
US11378871B2 (en) Optical system, and imaging apparatus
US20130286264A1 (en) Imaging device and projector unit
CN112073625A (zh) 摄像模组及电子设备
JP2006064958A (ja) 撮像装置
WO2016113920A1 (ja) 複数の撮像光学系及びそれを有する撮像装置
US20110234859A1 (en) Image-projecting and image-capturing system and method
JP4670261B2 (ja) 撮像レンズ装置
JP2006098962A5 (zh)
JP2010243763A (ja) 接合レンズ、レンズ鏡胴及び撮像装置
WO2020093822A1 (zh) 电子装置及其控制方法
JP2009192581A (ja) レンズ鏡胴及び撮像装置
WO2021258908A1 (zh) 摄像头模组及其控制方法以及终端设备
CN103428414A (zh) 用于便携式终端的摄像装置
US6817787B2 (en) Shutter apparatus and camera
JP2013097715A (ja) 電子機器およびプログラム
JP2009181102A (ja) レンズ鏡胴及び撮像装置
CN207504999U (zh) 一种单芯片多摄像头模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21821934

Country of ref document: EP

Kind code of ref document: A1