WO2021248955A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2021248955A1
WO2021248955A1 PCT/CN2021/080968 CN2021080968W WO2021248955A1 WO 2021248955 A1 WO2021248955 A1 WO 2021248955A1 CN 2021080968 W CN2021080968 W CN 2021080968W WO 2021248955 A1 WO2021248955 A1 WO 2021248955A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
light
signal light
fiber bundle
Prior art date
Application number
PCT/CN2021/080968
Other languages
English (en)
French (fr)
Inventor
濮宏图
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010513890.1A external-priority patent/CN113835164A/zh
Priority claimed from CN202010511663.5A external-priority patent/CN113835163B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2021248955A1 publication Critical patent/WO2021248955A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular to an optical module.
  • the traditional erbium-doped fiber amplifier is mainly composed of a section of erbium-doped fiber (about 10-30m in length) and a pump source. Its working principle is: the erbium-doped fiber generates stimulated radiation under the action of the pump source (wavelength 980nm or 1480nm), and the radiated light changes with the change of the input optical signal, which is equivalent to the input optical signal. Up zoom.
  • an embodiment of the present disclosure provides an optical module, including: an optical fiber amplifying component, including a baited fiber and an optical component, for realizing signal light amplification;
  • the optical component includes a fixed component and a first lens arranged on a base , Isolator, optical prism, filter and second lens; fixing assembly for fixing the first fiber bundle and the second fiber bundle;
  • the first fiber bundle includes the first fiber, the second fiber and the third fiber, the second
  • the optical fiber bundle includes a fourth optical fiber and a fifth optical fiber;
  • the first optical fiber is used to receive the pump light;
  • the second optical fiber is connected to one end of the baited fiber and is used to receive the first signal light transmitted through the filter and the filter The pump light reflected by the light sheet;
  • the third optical fiber is used to output the second signal light, wherein the second signal light is the amplified first signal light;
  • the fourth optical fiber is used to receive the first signal light;
  • the optical fiber is connected to the other end of the bait-doped fiber to
  • the present disclosure provides an optical module, including an optical component, including a base, and a fixing component, a first lens, an isolator, an optical prism, a filter, and a second lens respectively disposed on the base;
  • the fixing component is used to fix the first optical fiber bundle and the second optical fiber bundle;
  • the first lens is arranged opposite to the second optical fiber bundle, and can converge the light from the second optical fiber bundle or converge the light into the second optical fiber bundle;
  • optics A prism including a first reflecting surface and a second reflecting surface, can be used to change the transmission direction of light, and can establish a light path between the first fiber bundle and the second fiber bundle; the light transmission direction changes more than 90 degrees; isolator , Located between the optical prism and the second fiber bundle, allowing light to pass through in one direction; the second lens, arranged opposite to the first fiber bundle, can converge the light from the first fiber bundle or converge the light to the first fiber bundle middle.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal
  • Figure 2 is a schematic diagram of the optical network terminal structure
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of a part of the structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 5 is an exploded schematic diagram of a partial structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 6 is a front view of an exploded view of a partial structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of an optical fiber amplifying assembly provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of an optical prism provided by an embodiment of the disclosure.
  • FIG. 9 is a structural schematic diagram of a fixing assembly provided by an embodiment of the disclosure from one angle;
  • FIG. 10 is a schematic diagram of an exploded structure of FIG. 9;
  • FIG. 11 is a schematic structural diagram from another angle of the fixing assembly provided by the embodiments of the disclosure.
  • FIG. 12 is a schematic diagram of an exploded structure of FIG. 11;
  • Figure 13 is a side view of a fixing assembly provided by an embodiment of the disclosure.
  • FIG. 14 is a front view of an exploded view of a partial structure of another optical module provided by an embodiment of the disclosure.
  • 15 is a schematic diagram of the optical path of another optical module provided by an embodiment of the disclosure.
  • FIG. 16 is a schematic diagram of another optical path of another optical module provided by an embodiment of the disclosure.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides and other information transmission equipment, and the passive transmission characteristics of light in optical fibers/optical waveguides can achieve low-cost and low-loss information transmission; and computers and other information processing equipment Electrical signals are used.
  • information transmission equipment such as optical fibers/optical waveguides and information processing equipment such as computers, it is necessary to realize mutual conversion between electrical signals and optical signals.
  • the optical module realizes the above-mentioned mutual conversion function of optical and electrical signals in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data signal and grounding, etc.; the electrical connection method realized by the golden finger has become the optical module.
  • the mainstream connection method of the industry, based on this, the definition of pins on the golden finger forms a variety of industry protocols/standards.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101 and the network cable 103;
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing equipment.
  • the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is The optical network terminal 100 with the optical module 200 is completed.
  • the optical port of the optical module 200 is externally connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber 101; the electrical port of the optical module 200 is externally connected to the optical network terminal 100 to establish a bidirectional electrical signal connection with the optical network terminal 100;
  • the optical module realizes the mutual conversion between optical signals and electrical signals, thereby realizing the establishment of information connection between the optical fiber and the optical network terminal; in an embodiment of the present disclosure, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input In the optical network terminal 100, the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to connect to the optical module 200 and establish a two-way electrical signal connection with the optical module 200; the optical network terminal has a network cable interface 104, which is used to connect to the network cable 103 and establish a two-way electrical connection with the network cable 103 Signal connection; the optical module 200 and the network cable 103 establish a connection through the optical network terminal 100.
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module ,
  • the optical network terminal is used as the upper computer of the optical module to monitor the work of the optical module.
  • the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
  • the common optical module upper computer also has optical lines Terminal and so on.
  • FIG. 2 is a schematic diagram of the optical network terminal structure.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for accessing optical module electrical ports such as golden fingers;
  • a radiator 107 is provided on the cage 106, and the radiator 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal. Specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
  • the cage 106 is located on the circuit board and wraps the electrical connector on the circuit board in the cage, so that the electrical connector is arranged inside the cage; the optical module is inserted into the cage, and the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage 106, and then diffuse through the radiator 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper housing 201, a lower housing 202, and an unlocking component 203;
  • the upper shell 201 is covered on the lower shell 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square shape.
  • the lower shell includes a main board and a On both sides of the main board, there are two side plates arranged perpendicular to the main board; the upper casing includes a cover plate, and the cover plate covers the two side plates of the upper casing to form a wrapping cavity; the upper casing may also include a cover The two side walls on both sides of the plate and the two side walls arranged perpendicular to the cover plate are combined with the two side plates to realize the upper shell covering the lower shell.
  • the two openings can be two openings (204, 205) at the same end of the optical module, or two openings at different ends of the optical module; one of the openings is the electrical port 204, and the golden finger of the circuit board extends from the electrical port 204
  • the other opening is the optical port 205, which is used for external optical fiber access to connect the optical transceiver components inside the optical module; the circuit board, optical transceiver components and other optoelectronic devices are located in the package cavity.
  • the assembly method of the upper shell and the lower shell is used to facilitate the installation of circuit boards, optical transceiver devices and other devices into the shell.
  • the upper shell and the lower shell form the outermost package protection shell of the optical module;
  • the shell and the lower shell are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation; generally, the shell of the optical module is not made into an integral part, so when assembling circuit boards and other devices, positioning parts, heat dissipation and electromagnetic shielding parts cannot Installation is also not conducive to production automation.
  • the unlocking component 203 is located on the outer wall of the wrapping cavity/lower casing 202, and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking part 203 has an engaging part that matches the cage of the host computer; pulling the end of the unlocking part can make the unlocking part move relative to the surface of the outer wall; the optical module is inserted into the cage of the host computer, and the optical module is held by the engaging part of the unlocking part. Fixed in the cage of the host computer; by pulling the unlocking part, the locking part of the unlocking part moves accordingly, and then the connection relationship between the locking part and the host computer is changed to release the optical module and the host computer. The optical module is withdrawn from the cage of the host computer.
  • FIG. 4 is a schematic diagram of a part of the structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 5 is an exploded schematic diagram of a part of the structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 6 is a front view of an exploded view of a partial structure of an optical module provided by an embodiment of the disclosure.
  • Fig. 7 is a schematic diagram of an optical fiber amplifying assembly provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of an optical prism provided by an embodiment of the disclosure.
  • the optical module includes a fiber amplifying component, and the fiber amplifying component includes an optical component 300 and a baited fiber 400 for realizing signal light amplification.
  • the optical component 300 includes a fixing component 301, a first lens 302, an isolator 303, an optical prism 304, a filter 306, and a second lens 307 arranged on the base 500.
  • the bait-doped fiber 400 is used to amplify the first signal light to obtain the second signal light.
  • the second signal light is the amplified first signal light. Since the first signal light and the pump light exist in the Et-doped fiber 400 at the same time, the Et-doped fiber 400 transfers the energy of the pump light to the first signal light to realize the amplification of the first signal light and obtain the second signal light.
  • the base 500 is a whole, and the shape can be a cuboid, a cube, etc., and the fixing assembly 301, the second lens 302, the isolator 303, the optical prism 304, the filter 306 and the second lens 307 can all be fixed on the same horizontal plane. Facilitate the transmission of light.
  • the fixing assembly 301 is used to fix the first optical fiber bundle 308 and the second optical fiber bundle 309.
  • two fixing grooves are provided in the fixing assembly 301, and the first optical fiber bundle 308 and the second optical fiber bundle 309 respectively traverse the two fixing grooves to fix the first optical fiber bundle 308 and the second optical fiber. ⁇ 309.
  • the first optical fiber bundle 308 includes a first optical fiber, a second optical fiber, and a third optical fiber.
  • the first optical fiber is used for receiving pump light.
  • the pump light is emitted from the pump source.
  • the pump source can be arranged in the optical module or outside the optical module.
  • the pump source can be 980nm or 1480nm LD.
  • the pump source emits pump light, and the pump light is injected into the optical fiber assembly through the first optical fiber, wherein the wavelength of the pump light is smaller than the wavelength of the first signal light and the second signal light.
  • the second optical fiber is connected to one end of the erb-doped optical fiber 400 for receiving the first signal light transmitted by the filter 306 and the pump light reflected by the filter 306.
  • the first signal light is emitted by the second optical fiber bundle 309, enters the filter 306 through the first lens 302, the isolator 303, and the optical prism 304, and is transmitted to the second lens 307 through the filter 306.
  • 307 is coupled to the second optical fiber.
  • the pump light is emitted from the pump source, enters the filter 306 through the second lens 307, is emitted to the second lens 307 through the filter 306, and is coupled to the second optical fiber under the action of the second lens 307.
  • the third optical fiber is used to output the second signal light.
  • the second signal light is emitted from the bait-doped fiber, enters the filter 306 through the second fiber bundle 309, the first lens 302, the isolator 303, and the optical prism 304, and is transmitted to the second lens 307 through the filter 306. It is coupled to the third optical fiber under the action of the second lens 307.
  • the optical fiber amplifying component can be installed near the light emitting sub-module to amplify the first signal light emitted by the light emitting sub-module; or it can be installed near the light receiving sub-module and used to amplify the first signal light that enters the light receiving sub-module.
  • a signal light When the optical fiber amplifying component is used to amplify the first signal light emitted by the light emitting sub-module, the third optical fiber is connected to the external optical fiber. At this time, the third optical fiber sends out the second signal light to the external optical fiber.
  • the optical fiber amplifying component is used to amplify the first signal light incident on the light receiving sub-module, the third optical fiber is connected to the light receiving sub-module. At this time, the third optical fiber sends out the second signal light to the light receiving sub-module.
  • the second optical fiber bundle 309 includes a fourth optical fiber and a fifth optical fiber.
  • the fourth optical fiber is used to receive the first signal light.
  • the optical fiber amplifying component can be installed near the light emitting sub-module to amplify the first signal light emitted by the light emitting sub-module; or it can be installed near the light receiving sub-module and used to amplify the first signal light that enters the light receiving sub-module.
  • a signal light When the optical fiber amplifying component is used to amplify the first signal light emitted by the light emitting sub-module, the fourth optical fiber is connected to the light emitting sub-module. At this time, the fourth optical fiber receives the first signal light emitted by the light emitting sub-module.
  • the fourth optical fiber When the optical fiber amplifying component is used to amplify the first signal light incident on the light receiving sub-module, the fourth optical fiber is connected to the external optical fiber. At this time, the fourth optical fiber receives the first signal light emitted by the external optical fiber.
  • the fifth optical fiber is connected to the other end of the Et-doped optical fiber 400 for receiving the second signal light.
  • the second signal light is the first signal light amplified by the Et-doped fiber 400.
  • the second signal light passes through the fifth optical fiber, the first lens 302, the isolator 303, the optical prism 304, the optical filter 306, and the second lens 307 to enter the third optical fiber of the first optical fiber bundle 308.
  • the second optical fiber bundle 309 may also include a sixth optical fiber.
  • the sixth optical fiber is not connected to any device.
  • the cladding diameter of the optical fibers in the first optical fiber bundle 308 and the second optical fiber bundle 309 is 80 micrometers.
  • This kind of fiber with a cladding diameter of 80 micrometers has the following advantages over ordinary fibers with a cladding diameter of 125 micrometers: (1) When the working distance (the distance between the first lens and the second lens) is increased Large fiber coupling loss; (2) The 80-micron fiber has small bending loss and small size, which is suitable for winding the fiber in a small space and fixing it in the package shell.
  • the first lens 302 is located between the second optical fiber bundle 309 on the fixing assembly 301 and the isolator 303, and is used to collimate the signal light emitted by the second optical fiber bundle 309 into collimated light.
  • the first lens 302 is a collimating lens, which can collimate the light emitted by the second fiber bundle 309 into collimated light.
  • the first lens 302 is used to collimate the signal light emitted by the second optical fiber bundle 309 into collimated light.
  • the first lens 302 collimates the first signal light emitted from the fourth optical fiber into the first collimated light
  • the first lens 302 collimates the second signal light emitted from the fifth optical fiber into the second collimated light Light.
  • the isolator 303 is located between the first lens 302 and the optical prism 304 and is used to prevent the first signal light and the second signal light from returning to the first lens 302. In an embodiment of the present disclosure, since the isolator 303 allows light to pass through in one direction, the opposite direction is blocked, preventing the first signal light and the second signal light from returning to the first lens 302. At this time, the first signal light is the first collimated light, and the second signal light is the second collimated light.
  • the optical prism 304 located at the other end of the base 300 (the end opposite to the fixing direction of the fixing component 301), is used to change the transmission direction of the first signal light and the second signal light.
  • the first signal light and the second signal light vertically enter the transmission surface of the optical prism 304 and continue to enter the first total internal reflection surface of the optical prism 304.
  • the first signal light and the second signal light are totally reflected on the first total internal reflection surface of the optical prism 304, and continue to be incident to the second total internal reflection surface of the optical prism 304.
  • the first signal light and the second signal light are reflected on the second total internal reflection surface, and vertically exit the optical prism 304 through the transmission surface.
  • the angle between the first signal light incident on the optical prism 304 and the first signal light emitted through the optical prism 304 is 180°. Therefore, the optical prism 304 changes the transmission direction of the first signal light and the second signal light.
  • the filter 306 is located between the optical prism 304 and the second lens 307, and is used to transmit the first signal light and the second signal light, and reflect the pump light.
  • the filter 306 since the wavelength of the pump light is smaller than the wavelengths of the first signal light and the second signal light, the filter 306 can not only transmit the first signal light and the second signal light to the second lens 307 , The pump light can also be reflected to the second lens 307.
  • the second lens 307 is located between the filter 306 and the first fiber bundle 308 fixed on the fixing assembly 301, and is used to couple the first signal light, the second signal light and the pump light to the first fiber bundle 308.
  • the second lens 307 is a collimating lens for coupling the first signal light to the second fiber of the first fiber bundle 308, and the second signal light is coupled to the first fiber bundle 308
  • the pump light is also coupled to the second fiber of the first fiber bundle 308.
  • the optical component further includes a photodetector 305.
  • the photodetector 305 is arranged on the base 500 and is located between the optical prism 304 and the optical filter 306 for detecting optical power.
  • the photodetector 305 includes a photosensitive surface. The photosensitive surface of the photodetector 305 receives the reflected light and converts the reflected light into an electrical signal. The photodetector 305 leads the electrical signal from the wire to provide the reading of the optical power to realize the detection of the optical power.
  • the reflected light received by the photodetector 305 is part of the first signal light
  • what the photodetector 305 detects at this time is the unamplified signal light.
  • the reflected light received by the photodetector 305 is part of the second signal light
  • what the photodetector 305 detects at this time is the amplified signal light. According to the optical power of the first signal light and the second signal light detected by the photodetector 305, the amplification factor of the second signal light can be obtained.
  • the reflected light received by the photosensitive surface of the photodetector 305 is a small part of the first signal light or a small part of the second signal light reflected by the optical prism 304.
  • the optical prism 304 is provided with a power splitting surface.
  • the power splitting surface is used to reflect and transmit the incident light to obtain reflected light and transmitted light.
  • the reflected light is directed to the photodetector 305, and the transmitted light is fully reflected to the filter 306 on the total reflection surface.
  • the first signal light and the second signal light undergo total reflection through the first total internal reflection surface, and continue to be incident on the power splitting surface.
  • a small part of the first signal light and a small part of the second signal light are reflected on the power splitting surface, and the reflected light vertically exits the light-transmitting surface and enters the photodetector 305. Most of the first signal light and most of the second signal light are transmitted, the transmitted light enters the second total internal reflection surface, and total reflection occurs on the second total internal reflection surface. The reflected light vertically exits the transparent surface and enters the filtered light. ⁇ 306.
  • the specific process of the optical fiber amplifier assembly to achieve optical fiber amplification is as follows: the first signal light is transmitted to the first lens 302 through the fourth optical fiber in the second optical fiber bundle 309, and then enters the optical prism through the first lens 302 and the isolator 303 304.
  • the optical prism 304 changes the transmission direction of the first signal light so that the first signal light enters the filter 306, the first signal light is transmitted through the filter 306 to the second lens 307, and is coupled to the first optical fiber bundle 308 The second fiber.
  • the pump source emits pump light.
  • the pump light is transmitted to the second lens 307 through the first fiber in the first fiber bundle 308. After being coupled by the second lens 307, the pump light is coupled to the filter 306. Under the action of the sheet 306, the pump light is reflected to the second lens 307, and the reflected light of the pump light is also coupled to the second fiber in the first fiber bundle 308.
  • the second optical fiber in the first optical fiber bundle 308 emits the first signal light and the pump light.
  • the first signal light is amplified by the baited fiber 400 to obtain the second signal light, and the second signal light is sent to the second optical fiber
  • the fifth optical fiber in the second optical fiber bundle 309 emits the second signal light.
  • the second signal light enters the optical prism 304 through the first lens 302 and the isolator 303.
  • the optical prism 304 changes the transmission direction of the second signal light to make the second signal light.
  • the signal light enters the filter 306, and the second signal light is transmitted through the filter 306 to the second lens 307, and is coupled to the third optical fiber in the first optical fiber bundle 308.
  • the first signal light emitted by the fourth fiber of the second fiber bundle 309 needs to pass through the first lens 302, the isolator 303, the optical prism 304, the filter 306, and the second lens 307.
  • the light is coupled into the second fiber of the first fiber bundle 308.
  • the pump light emitted by the first optical fiber is reflected into the second optical fiber of the first optical fiber bundle 308 through the second lens 307, the filter 306, and the second lens 307.
  • the erb-doped fiber connected to the second optical fiber contains pump light and first signal light, so that the first signal light is amplified to obtain the second signal light.
  • the second signal light emitted by the fifth optical fiber connected to the erbium-doped optical fiber passes through the first lens 302, the isolator 303, the optical prism 304, the filter 306, and the second lens 307 to couple the light to the third of the first optical fiber bundle 308. In the fiber.
  • the plane formed by the fourth optical fiber and the fifth optical fiber of the second optical fiber bundle 309 is parallel to the plane formed by the second optical fiber and the third optical fiber of the first optical fiber bundle 308.
  • the third fiber in the first fiber bundle 308 may not be accurate
  • the light coupled by the second lens 307 is received.
  • the distance between the fourth optical fiber and the fifth optical fiber of the second optical fiber bundle 309 is equal to the first optical fiber. The distance between the second fiber and the third fiber of the fiber bundle 308.
  • the plane formed by the fourth fiber and the fifth fiber of the second fiber bundle 309 is parallel to the plane formed by the second fiber and the third fiber of the first fiber bundle 308, and the fourth fiber and the fifth fiber of the second fiber bundle 309
  • the distance between is equal to the distance between the second fiber and the third fiber of the first fiber bundle 308, then the second fiber of the first fiber bundle 308 receives the first signal light emitted by the fourth fiber of the second fiber bundle 309,
  • the third optical fiber of the first optical fiber bundle 308 receives the second signal light emitted by the fifth optical fiber of the second optical fiber bundle 309.
  • FIG. 9 is a schematic structural diagram of a fixing assembly provided by an embodiment of the disclosure from one angle.
  • FIG. 10 is a schematic diagram of an exploded structure of FIG. 9.
  • FIG. 11 is a schematic structural diagram from another angle of the fixing assembly provided by the embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of an exploded structure of FIG. 11.
  • Fig. 13 is a side view of a fixing assembly provided by an embodiment of the disclosure.
  • the fixing assembly 301 includes a bottom plate 3011 and a cover plate 3012.
  • the bottom plate 3011 is arranged at one end of the base 300 and is connected to the base 300.
  • the cover plate 3012 and the bottom plate 3011 enclose two fixing grooves, and the two fixing grooves are used to fix the first optical fiber bundle 308 and the second optical fiber bundle 309 respectively.
  • the lower surface of the cover plate 3012 is provided with two first grooves 30121, and the bottom plate 3011 contacting the cover plate 3012 may be provided with a second groove or not provided with a second groove.
  • the grooves are set correspondingly.
  • the cover plate 3012 covers the bottom plate 3011, and the first groove 30121 and the second groove form two first fixing grooves.
  • the cover plate 3012 covers the bottom plate 3011, the first groove 30121 and the bottom plate 3011 form a first fixing groove and a second fixing groove, and the first fixing groove is used to fix the first optical fiber Bundle 308, the second fixing slot is used to fix the second fiber bundle 309.
  • neither end of the first fiber bundle 308 and the second fiber bundle 309 has a protective layer, that is, there are only a plurality of exposed fibers.
  • the first groove 30121 includes two intersecting surfaces.
  • the angle between the two intersecting surfaces is between 0°-180°.
  • the clamp between the two intersecting surfaces of the first groove The angle is set to 60°.
  • the present disclosure provides an optical module including an optical fiber amplifier assembly.
  • the optical fiber amplifying component is used to amplify the signal light.
  • Fiber amplification components include erbium-doped fiber and optical components.
  • the optical component includes a fixed component arranged on the base, a first lens, an isolator, an optical prism, a filter and a second lens.
  • the fixing component is used to fix the first fiber bundle and the second fiber bundle so that the first fiber bundle and the second fiber bundle are both located on the same side of the optical component.
  • the isolator is used to prevent the first signal light and the second signal light from returning to the isolator of the first lens.
  • the optical prism is used to change the transmission direction of the first signal light and the second signal light.
  • the filter is used to transmit the first signal light and the second signal light, and reflect the pump light.
  • the second lens is used to couple the first signal light, the second signal light and the pump light to the first fiber bundle.
  • the first lens is located between the second fiber bundle and the isolator; the isolator is located between the first lens and the optical prism; the filter is located between the optical prism and the second lens; the second lens is located between the filter and the first lens.
  • the first optical fiber bundle includes a first optical fiber, a second optical fiber, and a third optical fiber.
  • the second optical fiber bundle includes a fourth optical fiber and a fifth optical fiber.
  • the first optical fiber is used for receiving pump light.
  • the second optical fiber is connected to one end of the erbium-doped optical fiber, and is used for receiving the first signal light transmitted by the filter and the pump light reflected by the filter.
  • the third optical fiber is used for the second signal light output, where the second signal light is the amplified first signal light.
  • the fourth optical fiber is used to receive the first signal light.
  • the fifth optical fiber is connected to the other end of the erb-doped optical fiber for receiving the second signal light.
  • the signal amplification process is as follows: the first signal light enters the optical prism through the fourth optical fiber, the first lens and the isolator, and the transmission direction of the first signal light is changed under the action of the optical prism. At this time, the first signal light is filtered.
  • the transmission of the sheet and the second lens are coupled to the second optical fiber.
  • the pump light emitted by the first optical fiber is also coupled to the second optical fiber through the reflection of the filter and the second lens.
  • the first signal light and pump light in the second optical fiber enter the Et-doped fiber, and the first signal light is amplified in the Et-doped fiber to obtain the second signal light, where the second signal light is the amplified signal light. Since the second optical fiber and the fifth optical fiber are connected through the erb-doped optical fiber, the fifth optical fiber receives the second signal light.
  • the second signal light passes through the first lens, the isolator, the optical prism, the filter and the second lens, enters the third optical fiber, and is output through the third optical fiber. Since the first signal light is used as the light in the light-in process and the second signal light is used as the light in the light-out process, the transmission of the first signal light and the second signal light both pass through the same isolator.
  • the bait-doped fiber and the optical component includes a fixed component, a first lens, an isolator, an optical prism, a filter, and a second lens, not only can the first fiber bundle and the second fiber bundle be located in the optical On the same side of the component, it is convenient to wind the fiber bundle and reduce the volume; it is also possible to share an isolator for the light-in process and the light-out process to further reduce the volume and realize the miniaturization of the fiber amplifier.
  • FIG. 14 is a front view of an exploded view of a partial structure of another optical module provided by an embodiment of the disclosure.
  • Fig. 15 is a schematic diagram of an optical path of another optical module provided by an embodiment of the present disclosure.
  • the optical assembly 300 provided by the embodiments of the present disclosure can be applied to various optical designs. The description of the optical path in the specification of the present disclosure is only an example of using the optical assembly.
  • the wrapping cavity formed by the upper housing and the lower housing of the optical module includes a light emitting component and an optical assembly 300.
  • the light emitting component is used to emit light carrying signals.
  • the electro-optical conversion function of the optical module is embodied in converting the electrical signal from the upper computer of the optical module into an optical signal, and then sending the optical signal to an external optical fiber for transmission.
  • the light emitting component in the optical module is used to realize the conversion of electrical signals into optical signals.
  • the light carrying signal is output from the light emitting component.
  • the light carrying the signal finally enters the optical fiber outside the optical module, and the light carrying the signal is inside the optical module. Pass through the optical assembly 300 in the propagation process.
  • the light emitting component can be packaged in a coaxial TO-CAN, a cavity-type micro-optics package, a silicon optical chip can be used to achieve optical signal modulation, or a plastic lens-type COB package can be used.
  • the optical component 300 includes a fixing component 301, a first lens 302, an isolator 303, an optical prism 304, a filter 306, and a second lens 307 arranged on the base 500.
  • the base 500 is a whole, and the shape can be a rectangular parallelepiped, a cube, etc.
  • the above-mentioned various devices can be fixed on the same horizontal surface.
  • the fixing assembly 301 is used to fix the first optical fiber bundle 308 and the second optical fiber bundle 309.
  • two fixing grooves are provided in the fixing assembly 301, and the first optical fiber bundle 308 and the second optical fiber bundle 309 respectively traverse the two fixing grooves to fix the first optical fiber bundle 308 and the second optical fiber. ⁇ 309.
  • the second optical fiber bundle 309 is used to receive the signal-carrying light emitted from the light emitting component, and the silicon optical chip is used to modulate the light, and the emitted signal light emitted from the silicon optical chip enters the second In the fiber bundle 309.
  • the first lens 302 receives the transmitted signal light from the second optical fiber bundle 309, and the first lens 302 realizes the optical path shaping of the transmitted signal light. After the transmitted signal light is transmitted from the second optical fiber bundle 309, it is in a divergent state. The first lens 302 realizes the collimation of the signal light, so that the transmitted signal light becomes parallel light. The collimated light path/parallel light path can spread over a longer distance. Keeping the concentration of light energy in the middle to achieve lower transmission loss is also conducive to the realization of light convergence at the back end.
  • the isolator 303 is located on the optical path of the first lens 302 and receives the light transmitted from the first lens 302.
  • the isolator 303 is located between the first lens 302 and the optical prism 304, and is used to prevent the transmitted signal light from being reflected back to the first lens 302. In an embodiment of the present disclosure, since the isolator 303 allows light to pass through in one direction, the opposite direction is blocked, preventing the transmitted signal light from returning to the first lens 302.
  • the optical prism 304 is located at the other end of the base 300 (the end opposite to the fixing direction of the fixing component 301), and is used to change the transmission direction of light.
  • the transmitted signal light enters the first optical fiber bundle 308 from the second optical fiber bundle 309.
  • the first optical fiber bundle 308 and the second optical fiber bundle 309 are arranged horizontally with each other. Differently, the optical prism 304 needs to change the propagation direction of the transmitted signal light so as to propagate the light emitted from the second optical fiber bundle 309 into the first optical fiber bundle.
  • the optical prism 304 realizes that the propagation direction of the transmitted signal light is changed by more than 90°, the transmitted signal light enters the transmission surface of the optical prism 304 (in an embodiment of the present disclosure, it is incident in a vertical direction), and continues to enter until the first optical prism 304 A reflective surface 3040.
  • the emitted signal light is reflected on the first reflective surface 3040 of the optical prism 304, and continues to be incident to the second reflective surface 3042 of the optical prism 304.
  • the emitted signal light is reflected on the second reflective surface 3042, and exits the optical prism 304 through the transmissive surface (ejected in a vertical direction in an embodiment of the present disclosure).
  • the angle between the transmitted signal light not incident on the optical prism 304 and the transmitted signal light emitted through the optical prism 304 is 180°.
  • the filter 306 is located between the optical prism 304 and the second lens 307 and is used to transmit the emitted signal light to the second lens 307.
  • the filter is used to filter out stray light and allow light of the required wavelength to pass.
  • the second lens 307 is located between the filter 306 and the first optical fiber bundle 308 fixed on the fixing assembly 301, and is used to converge the transmitted signal light so as to be coupled to the first optical fiber bundle 308.
  • the light from the second fiber bundle 309 enters the filter 306 through the first lens 302, the isolator 303, and the optical prism 304, is transmitted to the second lens 307 through the filter 306, and is coupled to the second lens 307 under the convergence of the second lens 307 The first fiber bundle 308.
  • the first optical fiber bundle may also receive the transmitted signal light from the light emitting component, and the second optical fiber bundle may transmit the transmitted signal light out of the optical module.
  • FIG. 16 is a schematic diagram of another optical path of another optical module provided by an embodiment of the disclosure.
  • the first optical fiber bundle 308 is used to receive the signal-carrying light emitted from the light emitting component, the light is modulated by the silicon optical chip, and the signal light is emitted from the silicon optical chip. a enters the first fiber bundle 308.
  • the second lens 307 receives the transmitted signal light a from the first optical fiber bundle 308, and the second lens 307 realizes the optical path shaping of the transmitted signal light. After the transmitted signal light is transmitted from the first optical fiber bundle 308, it is in a divergent state. The second lens 307 realizes the collimation of the signal light, so that the transmitted signal light becomes parallel light. The collimated light path/parallel light path can spread over a longer distance. Keeping the concentration of light energy in the middle to achieve lower transmission loss is also conducive to the realization of light convergence at the back end.
  • the filter 306 is located between the optical prism 304 and the second lens 307 and is used to transmit the emitted signal light to the optical prism 304.
  • the optical prism 304 is located at the other end of the base 300 (the end opposite to the fixing direction of the fixing component 301), and is used to change the transmission direction of light.
  • the transmitted signal light enters the second fiber bundle 309 from the first fiber bundle 308.
  • the first fiber bundle 308 and the second fiber bundle 309 are arranged horizontally with each other. Differently, the optical prism 304 needs to change the propagation direction of the transmitted signal light so as to propagate the light emitted by the first fiber bundle 308 into the second fiber bundle.
  • the optical prism 304 realizes that the propagation direction of the transmitted signal light is changed by more than 90°, the transmitted signal light enters the transmission surface of the optical prism 304 (in an embodiment of the present disclosure, it is incident in a vertical direction), and continues to enter until the first optical prism 304 Two reflective surfaces 3042.
  • the emitted signal light is reflected on the second reflective surface of the optical prism 304 and continues to be incident to the first reflective surface of the optical prism 304.
  • the emitted signal light is reflected on the first reflective surface, and exits the optical prism 304 through the transmissive surface (in an embodiment of the present disclosure, it exits in a vertical direction).
  • the angle between the transmitted signal light not incident on the optical prism 304 and the transmitted signal light emitted through the optical prism 304 is 180°.
  • the isolator 303 is located between the first lens 302 and the optical prism 304 and is used to prevent the transmitted signal light from being reflected back to the optical prism 304. In an embodiment of the present disclosure, since the isolator 303 allows light to pass through in one direction, the opposite direction is blocked, preventing the transmitted signal light from returning to the optical prism 304.
  • the first lens 302 is located between the isolator 303 and the second optical fiber bundle 309 fixed on the fixing assembly 301, and is used to couple the transmitted signal light a to the second optical fiber bundle 309.
  • the light from the first fiber bundle 308 enters the optical prism 304 through the second lens 307 and the filter 306, is reflected by the optical prism, and enters the first lens 302 through the isolator 303, and is coupled to the first lens 302 under the convergence of the first lens 302
  • the second fiber bundle 309
  • the second optical fiber bundle 309 not only realizes the transmission of the transmitted signal light to the optical fiber outside the optical module, but also realizes the transmission of the received signal light of the external optical fiber into the optical module, and realizes the use of an optical fiber to transmit and receive light outside the optical module. , That is, single-fiber bidirectional transmission mode.
  • the received signal light b is transmitted to the first lens 302 through the second optical fiber bundle 309, and the received signal light comes from the external optical fiber of the optical module.
  • the first lens 302 receives the received signal light from the second optical fiber bundle 309, and the first lens 302 implements shaping of the optical path of the received signal light. After the received signal light is transmitted from the second optical fiber bundle 309, it is in a divergent state. The first lens 302 realizes the collimation of the signal light, so that the received signal light becomes parallel light. The collimated light path/parallel light path can travel over a longer distance. Keeping the concentration of light energy in the middle to achieve lower transmission loss is also conducive to the realization of light convergence at the back end.
  • the isolator 303 is located on the optical path of the first lens 302 and receives the light transmitted from the first lens 302.
  • the isolator 303 is located between the first lens 302 and the optical prism 304 and is used to prevent the received signal light from being reflected back to the first lens 302. In an embodiment of the present disclosure, since the isolator 303 allows light to pass in one direction, the opposite direction is blocked, preventing the received signal light from returning to the first lens 302.
  • the optical prism 304 is located at the other end of the base 300 (the end opposite to the fixing direction of the fixing component 301), and is used to change the transmission direction of light.
  • the optical prism 304 also includes a light splitting surface 3041.
  • the light splitting surface is located between the first reflective surface 3040 and the second reflective surface 3042.
  • the reflection or transmission characteristics of light of different wavelengths are different when it enters the light splitting surface.
  • the transmitted signal light and the received signal light have different wavelengths, the transmitted signal light can be transmitted through the light splitting surface, and the received signal light is reflected at the light splitting surface.
  • the received signal light enters the transmission surface of the optical prism 304 (in an embodiment of the present disclosure in a vertical direction), and continues to enter until the first reflection surface of the optical prism 304; the received signal light is reflected on the first reflection surface of the optical prism 304 The surface is reflected; the received signal light is reflected by the first reflecting surface and then enters the beam splitting surface.
  • the beam splitting surface reflects the received signal light to the transmission surface (in an embodiment of the present disclosure, it is emitted in a vertical direction), and the received signal light is transmitted from the beam splitting surface. Face shot.
  • the optical assembly further includes a photodetector 305.
  • the photodetector 305 is arranged on the base 500 and is located on the side of the optical prism 304 facing the first lens 302, and can receive the light emitted from the transmission surface.
  • the photodetector 305 includes a photosensitive surface. The photosensitive surface of the photodetector 305 receives the received signal light b, and converts the received signal light into an electrical signal.
  • the photodetector 305 leads the electrical signal through the wire, and the electrical signal is processed by the receiving circuit and transmitted to the upper computer of the optical module.
  • the receiving circuit includes a transimpedance amplifier and a limiting amplifier.
  • the first optical fiber bundle can also receive the received signal light from the outside, the second optical fiber bundle receives the transmitted signal light from the light emitting component, and the first optical fiber bundle transmits the transmitted signal light to the outside of the optical module.
  • the inclination direction of the reflecting surface is changed to reflect the received signal light from the first optical fiber bundle to the photodetector.
  • the cladding diameter of the optical fibers in the first optical fiber bundle 308 and the second optical fiber bundle 309 is 80 micrometers.
  • This kind of fiber with a cladding diameter of 80 micrometers has the following advantages over ordinary fibers with a cladding diameter of 125 micrometers: (1) When the working distance (the distance between the first lens and the second lens) is increased Large fiber coupling loss; (2) The 80-micron fiber has small bending loss and small size, which is suitable for winding the fiber in a small space and fixing it in the package shell.
  • the first lens 302 is located between the second optical fiber bundle 309 on the fixing assembly 301 and the isolator 303, and is used to collimate the signal light emitted by the second optical fiber bundle 309 into collimated light.
  • the first lens 302 is a collimating lens, which can collimate the light emitted by the second fiber bundle 309 into collimated light.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块,包括光纤放大组件。光纤放大组件包括掺饵光纤(400)和光学组件(300)。光学组件(300)包括固定组件(301)、第一透镜(302)、隔离器(303)、光学棱镜(304)、滤光片(306)和第二透镜(307)。固定组件(301)用于固定第一光纤束(308)和第二光纤束(309)。第二光纤束(309)、第一透镜(302)、隔离器(303)、光学棱镜(304)依次设置,光学棱镜(304)、滤光片(306)、第二透镜(307)、第一光纤束(308)依次设置。第一光纤束(308)包括接收泵浦光的第一光纤、接收第一信号光和泵浦光的第二光纤,和输出第二信号光的第三光纤。第二光纤束(309)包括接收第一信号光的第四光纤和接收第二信号光的第五光纤。第二光纤和第五光纤通过掺饵光纤(400)连接。第一光纤束(308)和第二光纤束(309)均位于光学组件(300)的同一侧,方便绕光纤束,减少体积;进光过程和出光过程共用一个隔离器(303),进一步减少体积。

Description

一种光模块
本公开要求在2020年06月08日提交中国专利局、申请号为202010511663.5、发明名称为“一种光模块”,在2020年06月08日提交中国专利局、申请号为202010513890.1、发明名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
由于相干光通信的技术从网通向数通的发展,及高速芯片的使用造成的光功率衰减,在光模块内部设计使用光纤放大器成为目前不可避免的发展方向。
传统掺铒光纤放大器主要是由一段掺铒光纤(长约10-30m)和泵浦源组成。其工作原理是:掺铒光纤在泵浦源(波长980nm或1480nm)的作用下产生受激辐射,而且所辐射的光随着输入光信号的变化而变化,这就相当于对输入光信号进行了放大。
发明内容
一方面,本公开实施例提供一种光模块,包括:光纤放大组件,包括掺饵光纤和光学组件,用于实现信号光的放大;光学组件包括设置于基座上的固定组件、第一透镜、隔离器、光学棱镜、滤光片和第二透镜;固定组件,用于固定第一光纤束和第二光纤束;第一光纤束包括第一光纤、第二光纤和第三光纤,第二光纤束包括第四光纤和第五光纤;第一光纤,用于接收泵浦光;第二光纤,与掺饵光纤的一端连接,用于接收经滤光片透射的第一信号光和经滤光片反射的泵浦光;第三光纤,用于将第二信号光输出,其中,第二信号光为放大后的第一信号光;第四光纤,用于接收第一信号光;第五光纤,与掺饵光纤的另一端连接,用于接收第二信号光;第一透镜,位于第二光纤束与隔离器之间;隔离器,位于第一透镜与光学棱镜之间,用于防止第一信号光和第二信号光返回至第一透镜;光学棱镜,用于改变第一信号光和第二信号光的传输方向;滤光片,位于光学棱镜与第二透镜之间,用于将第一信号光、第二信号光透射,和泵浦光反射;第二透镜,位于滤光片与第一光纤束之间,用于将第一信号光、第二信号光和泵浦光耦合至第一光纤束。
另一方面,本公开提供了一种光模块,包括光学组件,包括基座,及分别设置在基座上的固定组件、第一透镜、隔离器、光学棱镜、滤光片及第二透镜;固定组件,用于固定第一光纤束和第二光纤束;第一透镜,与第二光纤束相对设置,可将来自第二光纤束的光汇聚或将光汇聚至第二光纤束中;光学棱镜,包括第一反射面及第二反射面,可用于改变光的传输方向,可在第一光纤束与第二光纤束中之间建立光通路;光传输方向的改变超过90度;隔离器,位于光学棱镜与第二光纤束之间,可允许光单方向通过;第二透镜,与第一光纤束相对设置,可将来自第一光纤束的光汇聚或将光汇聚至第一光纤束中。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络终端结构示意图;
图3为本公开实施例提供的一种光模块的结构示意图;
图4为本公开实施例提供的光模块的部分结构示意图;
图5为本公开实施例提供的光模块的部分结构的分解示意图;
图6为本公开实施例提供的光模块的部分结构的分解图的正视图;
图7为本公开实施例提供的光纤放大组件的原理图;
图8为本公开实施例提供的光学棱镜的原理图;
图9为本公开实施例提供的固定组件一个角度的结构示意图;
图10为图9的分解结构示意图;
图11为本公开实施例提供的固定组件另一个角度的结构示意图;
图12为图11的分解结构示意图;
图13为本公开实施例提供的固定组件的侧视图;
图14为本公开实施例提供的另一光模块的部分结构的分解图的正视图;
图15为本公开实施例提供的另一光模块光路示意图;
图16为本公开实施例提供的另一光模块的另一光路示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络 终端100、光模块200、光纤101及网线103之间的相互连接;
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接;在本公开某一实施例中,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接,在本公开某一实施例中,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端中,具体为光模块的电口插入笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块插入笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图。如图3所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203;
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体,在本公开某一实施例中,下壳体包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体盖合在下壳体上。
两个开口具体可以是位于光模块同一端的两处开口(204、205),也可以是在光模块不同端的两处开口;其中一个开口为电口204,电路板的金手指从电口204伸出,插入光 网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的光收发器件;电路板、光收发器件等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板、光收发器件等器件安装到壳体中,由上壳体、下壳体形成光模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
图4为本公开实施例提供的光模块的部分结构示意图。图5为本公开实施例提供的光模块的部分结构的分解示意图。图6为本公开实施例提供的光模块的部分结构的分解图的正视图。图7为本公开实施例提供的光纤放大组件的原理图。图8为本公开实施例提供的光学棱镜的原理图。如图4-8所示,本公开实施例中,光模块包括光纤放大组件,光纤放大组件包括光学组件300和掺饵光纤400,用于实现信号光的放大。
光学组件300包括设置于基座500上的固定组件301、第一透镜302、隔离器303、光学棱镜304、滤光片306和第二透镜307。
掺饵光纤400,用于将第一信号光放大,得到第二信号光。其中,第二信号光为放大后的第一信号光。由于掺饵光纤400内同时存在第一信号光和泵浦光,掺饵光纤400把泵浦光的能量转移到第一信号光中,实现了第一信号光的放大,得到第二信号光。
基座500为一个整体,形状可以是长方体、正方体等等,可将固定组件301、第二透镜302、隔离器303、光学棱镜304、滤光片306和第二透镜307均固定于同一水平面,方便光的传输。
固定组件301,用于固定第一光纤束308和第二光纤束309。在本公开某一实施例中,固定组件301内设置有两个固定槽,第一光纤束308和第二光纤束309分别对应横穿两个固定槽,固定第一光纤束308和第二光纤束309。
第一光纤束308包括第一光纤、第二光纤和第三光纤。
第一光纤,用于接收泵浦光。其中,泵浦光由泵浦源发出。该泵浦源可以设置在光模块内,也可以设置于光模块外。该泵浦源可以为980nm或者1480nmLD。泵浦源发出泵浦光,泵浦光经过第一光纤射入光纤组件,其中,泵浦光的波长小于第一信号光和第二信号光的波长。
第二光纤,与掺饵光纤400的一端连接,用于接收经滤光片306透射的第一信号光和经滤光片306反射的泵浦光。该第一信号光,由第二光纤束309发出,经过第一透镜302、隔离器303、光学棱镜304射入滤光片306,经滤光片306透射至第二透镜307,在第二透 镜307的作用下耦合至第二光纤中。该泵浦光,由泵浦源发出,经第二透镜307射入滤光片306,经滤光片306发射至第二透镜307,在第二透镜307的作用下耦合至第二光纤中。
第三光纤,用于将第二信号光输出。该第二信号光,由掺饵光纤发出,经过第二光纤束309、第一透镜302、隔离器303、光学棱镜304射入滤光片306,经滤光片306透射至第二透镜307,在第二透镜307的作用下耦合至第三光纤中。
该光纤放大组件,既可以设置于光发射次模块附近,用于放大光发射次模块发出的第一信号光;也可以设置于光接收次模块附近,用于放大射入光接收次模块的第一信号光。当光纤放大组件用于放大光发射次模块发出的第一信号光时,第三光纤与外部光纤连接。此时,第三光纤发出第二信号光至外部光纤。当光纤放大组件用于放大射入光接收次模块的第一信号光时,第三光纤与光接收次模块连接。此时,第三光纤发出第二信号光至光接收次模块。
第二光纤束309包括第四光纤和第五光纤。
第四光纤,用于接收第一信号光。
该光纤放大组件,既可以设置于光发射次模块附近,用于放大光发射次模块发出的第一信号光;也可以设置于光接收次模块附近,用于放大射入光接收次模块的第一信号光。当光纤放大组件用于放大光发射次模块发出的第一信号光时,第四光纤与光发射次模块连接。此时,第四光纤接收光发射次模块发出的第一信号光。当光纤放大组件用于放大射入光接收次模块的第一信号光时,第四光纤与外部光纤连接。此时,第四光纤接收外部光纤发出的第一信号光。
第五光纤,与掺饵光纤400的另一端连接,用于接收第二信号光。第二信号光为经掺饵光纤400放大后的第一信号光。该第二信号光经过第五光纤、第一透镜302、隔离器303、光学棱镜304、滤光片306、第二透镜307射入第一光纤束308的第三光纤。
第二光纤束309除了包括第四光纤和第五光纤外,还可以包括第六光纤。第六光纤不与任何器件连接。
第一光纤束308和第二光纤束309内的光纤的包层直径是80微米。这种包层直径是80微米的光纤相对于包层直径是125微米的普通光纤具有以下优点:(1)在加长了工作距离(第一透镜和第二透镜中间的距离)时不会有太大的光纤耦合损耗;(2)80微米光纤的弯曲损耗小,体积小,适合在较小的空间里绕纤并固定在封装壳中。
第一透镜302,位于固定组件301上的第二光纤束309与隔离器303之间,用于将第二光纤束309发出的信号光准直为准直光。在本公开某一实施例中,第一透镜302为准直透镜,可将第二光纤束309发出的光准直为准直光。
由于第四光纤用于接收第一信号光,第五光纤用于接收第二信号光,则第一透镜302用于将第二光纤束309发出的信号光准直为准直光,在本公开某一实施例中:第一透镜302将第四光纤发出的第一信号光准直为第一准直光,第一透镜302将第五光纤发出的第二信号光准直为第二准直光。
隔离器303,位于第一透镜302与光学棱镜304之间,用于防止第一信号光和第二信号光返回至第一透镜302。在本公开某一实施例中,由于隔离器303允许光单方向通过, 反方向被阻拦,防止第一信号光和第二信号光返回至第一透镜302。此时,第一信号光为第一准直光,第二信号光为第二准直光。
光学棱镜304,位于基座300的另一端(与固定组件301固定方向相反的一端),用于改变第一信号光和第二信号光的传输方向。第一信号光和第二信号光垂直射入光学棱镜304的透射面,继续射入直至光学棱镜304的第一内全反射面。第一信号光和第二信号光在光学棱镜304的第一内全反射面发生全反射,继续射入直至光学棱镜304的第二内全反射面。第一信号光和第二信号光在第二内全反射面反射,并通过透射面垂直射出光学棱镜304。此时,射入光学棱镜304的第一信号光与经光学棱镜304射出的第一信号光之间的夹角为180°。因此,光学棱镜304改变了第一信号光和第二信号光的传输方向。
滤光片306,位于光学棱镜304与第二透镜307之间,用于将第一信号光、第二信号光透射,和泵浦光反射。在本公开某一实施例中,由于泵浦光的波长小于第一信号光和第二信号光的波长,滤光片306不仅可将第一信号光、第二信号光透射至第二透镜307,还可将泵浦光反射至第二透镜307。
第二透镜307,位于滤光片306与固定于固定组件301上的第一光纤束308之间,用于将第一信号光、第二信号光和泵浦光耦合至第一光纤束308。在本公开某一实施例中,第二透镜307,为准直透镜,用于将第一信号光耦合至第一光纤束308的第二光纤,第二信号光耦合至第一光纤束308中的第三光纤,泵浦光也耦合至第一光纤束308的第二光纤。
为了探测第一信号光与第二信号光的光功率,本公开中,光学组件还包括光电探测器305。光电探测器305,设置于基座500上,位于光学棱镜304和滤光片306之间,用于探测光功率。在本公开某一实施例中,光电探测器305包括光敏面。光电探测器305的光敏面接收反射光,将反射光转化为电信号。光电探测器305将电信号由导线引出,提供光功率的报读,以实现探测光功率。当光电探测器305接收到的反射光是部分第一信号光时,此时光电探测器305探测到的是未放大后的信号光。当光电探测器305接收到的反射光是部分第二信号光时,此时光电探测器305探测到的是放大后的信号光。根据光电探测器305探测到第一信号光和第二信号光的光功率,可得到第二信号光的放大倍数。
光电探测器305的光敏面接收的反射光是光学棱镜304反射的小部分第一信号光或者小部分第二信号光。为了使光学棱镜304可以反射小部分第一信号光或者小部分第二信号光,光学棱镜304内设置有功率分光面。功率分光面,用于将射入的光反射和透射,得到反射光和透射光,其中,反射光射向光电探测器305,透射光在全反射面发生全反射向滤光片306。在本公开某一实施例中,第一信号光和第二信号光经过第一全内反射面发生全反射,继续射入至功率分光面。小部分第一信号光和小部分第二信号光在功率分光面发生反射,反射光垂直射出透光面,射入至光电探测器305。大部分第一信号光和大部分第二信号光发生透射,透射光射入第二内全反射面,在第二内全反射面发生全反射,反射光垂直射出透光面,射入滤光片306。
本公开中,光纤放大组件实现光纤放大的具体过程如下:第一信号光经过第二光纤束309中的第四光纤传输至第一透镜302,经过第一透镜302和隔离器303射入光学棱镜304,光学棱镜304改变第一信号光的传输方向,使第一信号光射入滤光片306,第一信号光通 过滤光片306透射至第二透镜307,耦合至第一光纤束308中的第二光纤。
泵浦源发出泵浦光,泵浦光经过第一光纤束308中的第一光纤传输至第二透镜307,经过第二透镜307耦合后,泵浦光耦合至滤光片306,在滤光片306的作用下,泵浦光反射至第二透镜307,泵浦光的反射光也耦合至第一光纤束308中的第二光纤。
第一光纤束308中的第二光纤发出第一信号光和泵浦光,第一信号光经过掺饵光纤400进行放大后,得到第二信号光,并将第二信号光发送至第二光纤束309中的第五光纤。第二光纤束309中的第五光纤发出第二信号光,第二信号光经过第一透镜302和隔离器303射入光学棱镜304,光学棱镜304改变第二信号光的传输方向,使第二信号光射入滤光片306,第二信号光通过滤光片306透射至第二透镜307,耦合至第一光纤束308中的第三光纤。
结合上述描述可知,为了实现光纤放大,需要第二光纤束309的第四光纤发出的第一信号光通过第一透镜302、隔离器303、光学棱镜304、滤光片306和第二透镜307把光耦合至第一光纤束308的第二光纤中。第一光纤发出的泵浦光经过第二透镜307、滤光片306和第二透镜307反射入第一光纤束308的第二光纤中。与第二光纤连接的掺饵光纤内有泵浦光和第一信号光,使得第一信号光放大得到第二信号光。与掺饵光纤连接的第五光纤发出的第二信号光通过第一透镜302、隔离器303、光学棱镜304、滤光片306和第二透镜307把光耦合至第一光纤束308的第三光纤中。
本公开实施例中,第二光纤束309的第四光纤和第五光纤构成的平面平行于第一光纤束308的第二光纤和第三光纤构成的平面。
由于仅第二光纤束309的第四光纤和第五光纤构成的平面平行于第一光纤束308的第二光纤和第三光纤构成的平面,第一光纤束308内的第三光纤可能无法准确接收到第二透镜307耦合来的光。为了实现第一光纤束308内的第二光纤和第三光纤均可对应接收到第二透镜307耦合来的光,第二光纤束309的第四光纤和第五光纤之间的距离等于第一光纤束308的第二光纤和第三光纤之间的距离。
由于第二光纤束309的第四光纤和第五光纤构成的平面平行于第一光纤束308的第二光纤和第三光纤构成的平面,且第二光纤束309的第四光纤和第五光纤之间的距离等于第一光纤束308的第二光纤和第三光纤之间的距离,则第一光纤束308的第二光纤接收第二光纤束309的第四光纤发出的第一信号光,第一光纤束308的第三光纤接收第二光纤束309的第五光纤发出的第二信号光。
图9为本公开实施例提供的固定组件一个角度的结构示意图。图10为图9的分解结构示意图。图11为本公开实施例提供的固定组件另一个角度的结构示意图。图12为图11的分解结构示意图。图13为本公开实施例提供的固定组件的侧视图。如图9-13所示,本公开实施例中,固定组件301包括底板3011和盖板3012。在本公开某一实施例中,
底板3011,设置于基座300的一端,与基座300连接。盖板3012,与底板3011围城两个固定槽,两个固定槽分别用于固定第一光纤束308和第二光纤束309。
盖板3012下表面设置有两个第一凹槽30121,与盖板3012相接触的底板3011一面可以设置第二凹槽,也可以不设置第二凹槽,其中,第二凹槽与第一凹槽对应设置。当底板 3011设置有第二凹槽时,盖板3012盖于底板3011上,第一凹槽30121和第二凹槽形成两个第一固定槽。当底板3011不设置第二凹槽时,盖板3012盖于底板3011上,第一凹槽30121与底板3011形成第一固定槽和第二固定槽,且第一固定槽用于固定第一光纤束308,第二固定槽用于固定第二光纤束309。
如图7-11可知,本公开实施例中,第一光纤束308和第二光纤束309的一端均无保护层,即只有裸露的多根光纤。
为了将第一光纤束308内的多根光纤固定于第一固定槽,第二光纤束309内的多根光纤固定于第二固定槽,第一凹槽30121包括两个相交面。两个相交面之间的夹角介于0°-180°。当第一光纤束308和第二光纤束309内光纤的数量均为3时,为了将三根光纤精确地固定于第一凹槽30121,可将第一凹槽的两个相交面之间的夹角设置为60°。
本公开提供了一种光模块,包括光纤放大组件。光纤放大组件用于实现信号光的放大。光纤放大组件包括掺饵光纤和光学组件。光学组件包括设置于基座上的固定组件、第一透镜、隔离器、光学棱镜、滤光片和第二透镜。固定组件用于固定第一光纤束和第二光纤束,以使得第一光纤束和第二光纤束均位于光学组件的同一侧。隔离器用于防止第一信号光和第二信号光返回至第一透镜的隔离器。光学棱镜用于改变第一信号光和第二信号光的传输方向。滤光片用于将第一信号光、第二信号光透射,和泵浦光反射。第二透镜用于将第一信号光、第二信号光和泵浦光耦合至第一光纤束。其中,第一透镜位于第二光纤束与隔离器之间;隔离器位于第一透镜与光学棱镜之间;滤光片位于光学棱镜与第二透镜之间;第二透镜位于滤光片与第一光纤束之间。第一光纤束包括第一光纤、第二光纤和第三光纤。第二光纤束包括第四光纤和第五光纤。第一光纤用于接收泵浦光。第二光纤,与掺饵光纤的一端连接,用于接收经滤光片透射的第一信号光和经滤光片反射的泵浦光。第三光纤用于第二信号光输出,其中,第二信号光为放大后的第一信号光。第四光纤用于接收第一信号光。第五光纤,与掺饵光纤的另一端连接,用于接收第二信号光。信号放大过程如下:第一信号光经过第四光纤、第一透镜和隔离器射入光学棱镜,在光学棱镜的作用下改变第一信号光的传输方向,此时的第一信号光经过滤光片的透射和第二透镜,耦合至第二光纤。而第一光纤发射的泵浦光经过滤光片的反射和第二透镜,也耦合至第二光纤。此时的第二光纤内同时有信号光和泵浦光。第二光纤内的第一信号光和泵浦光进入掺饵光纤,第一信号光在掺饵光纤内放大,得到第二信号光,其中,第二信号光为放大后的信号光。由于第二光纤与第五光纤通过掺饵光纤连接,第五光纤接收第二信号光。第二信号光经过第一透镜、隔离器、光学棱镜、滤光片和第二透镜,射入第三光纤,并通过第三光纤输出。由于第一信号光作为进光过程的光,第二信号光作为出光过程的光,第一信号光的传输和第二信号光均通过同一个隔离器。本公开中,掺饵光纤和光学组件,光学组件包括固定组件、第一透镜、隔离器、光学棱镜、滤光片和第二透镜,不仅可以使得第一光纤束和第二光纤束均位于光学组件的同一侧,方便绕光纤束,减少体积;还可以让进光过程和出光过程公用一个隔离器,进一步减少体积,实现光纤放大器小型化。
在以上光模块实施例的基础上,本公开实施例还提供了一种改进的光模块设计。图14为本公开实施例提供的另一光模块的部分结构的分解图的正视图。图15为本公开实施例 提供的另一光模块光路示意图。本公开实施例提供的光学组件300,可以应用于多种光学设计中,本公开说明书中的光路描述仅是使用该光学组件的示例。
如图14至图15所示,本公开实施例中,光模块上壳体与下壳体形成的包裹腔体中包括光发射部件及光学组件300。
光发射部件用于发出携带信号的光。光模块的电光转换作用,体现在将来自光模块上位机的电信号转化为光信号,然后将光信号发送至外部光纤中进行传输。光模块中的光发射部件用于实现电信号转化为光信号,从光发射部件中输出携带信号的光,携带信号的光最终要进入光模块外部的光纤中,携带信号的光在光模块内部传播过程中经过光学组件300。
光发射部件可以采用同轴TO-CAN封装,也可以采用腔体式的微光学封装,也可以使用硅光芯片实现光信号的调制,也可以采用塑料透镜式的COB封装。
光学组件300包括设置于基座500上的固定组件301、第一透镜302、隔离器303、光学棱镜304、滤光片306和第二透镜307。
基座500为一个整体,形状可以是长方体、正方体等等,固定组件301、第一透镜302、隔离器303、光学棱镜304、滤光片306和第二透镜307之间的高度设置要满足光在上述各个器件之间连续的传播,在本公开某一实施例中,可以将上述各个器件固定于同一水平面上。
固定组件301,用于固定第一光纤束308和第二光纤束309。在本公开某一实施例中,固定组件301内设置有两个固定槽,第一光纤束308和第二光纤束309分别对应横穿两个固定槽,固定第一光纤束308和第二光纤束309。
在本公开的某一实施例中,第二光纤束309用于接收来自光发射部件发出的携带信号的光,采用硅光芯片对光进行调制,从硅光芯片发出的发射信号光进入第二光纤束309中。
第一透镜302接收来自第二光纤束309的发射信号光,第一透镜302实现对发射信号光的光路整形。发射信号光从第二光纤束309传出后,呈发散状态,第一透镜302实现对信号光的准直,使发射信号光成为平行光,准直光路/平行光路可以在较长的传播距离中保持光能量的集中,实现较低传输损耗,也有利于在后端实现光汇聚。
隔离器303位于第一透镜302的光路上,接收来自第一透镜302传来的光。隔离器303,位于第一透镜302与光学棱镜304之间,用于防止发射信号光反射回第一透镜302。在本公开某一实施例中,由于隔离器303允许光单方向通过,反方向被阻拦,防止发射信号光返回至第一透镜302。
光学棱镜304,位于基座300的另一端(与固定组件301固定方向相反的一端),用于改变光的传输方向。发射信号光从第二光纤束309进入第一光纤束308,第一光纤束308与第二光纤束309呈相互水平的位置设置,第二光纤束的出光方向与第一光纤束的入光方向不同,光学棱镜304需要实现发射信号光传播方向的改变,以将第二光纤束309发出的光传播进入第一光纤束中。光学棱镜304实现对发射信号光传播方向改变超过90°,发射信号光射入光学棱镜304的透射面(在本公开某一实施例中以垂直方向入射),继续射入直至光学棱镜304的第一反射面3040。发射信号光在光学棱镜304的第一反射面3040发 生反射,继续射入直至光学棱镜304的第二反射面3042。发射信号光在第二反射面3042反射,并通过透射面射出光学棱镜304(在本公开某一实施例中以垂直方向射出)。此时,未射入光学棱镜304的发射信号光与经光学棱镜304射出的发射信号光之间的夹角为180°。
滤光片306,位于光学棱镜304与第二透镜307之间,用于将发射信号光透射至第二透镜307。滤光片用于滤除杂光,允许所需波长的光通过。
第二透镜307,位于滤光片306与固定于固定组件301上的第一光纤束308之间,用于将发射信号光汇聚,以便耦合至第一光纤束308。
来自第二光纤束309的光经过第一透镜302、隔离器303、光学棱镜304射入滤光片306,经滤光片306透射至第二透镜307,在第二透镜307的汇聚下耦合至第一光纤束308中。
根据光路传输需求,也可以由第一光纤束接收光发射部件发来的发射信号光,由第二光纤束将发射信号光传出光模块。
图16为本公开实施例提供的另一光模块的另一光路示意图。在本公开实施例提供的另一光模块中,第一光纤束308用于接收来自光发射部件发出的携带信号的光,采用硅光芯片对光进行调制,从硅光芯片发出的发射信号光a进入第一光纤束308中。
第二透镜307接收来自第一光纤束308的发射信号光a,第二透镜307实现对发射信号光的光路整形。发射信号光从第一光纤束308传出后,呈发散状态,第二透镜307实现对信号光的准直,使发射信号光成为平行光,准直光路/平行光路可以在较长的传播距离中保持光能量的集中,实现较低传输损耗,也有利于在后端实现光汇聚。
滤光片306,位于光学棱镜304与第二透镜307之间,用于将发射信号光透射至光学棱镜304。
光学棱镜304,位于基座300的另一端(与固定组件301固定方向相反的一端),用于改变光的传输方向。发射信号光从第一光纤束308进入第二光纤束309,第一光纤束308与第二光纤束309呈相互水平的位置设置,第一光纤束的出光方向与第二光纤束的入光方向不同,光学棱镜304需要实现发射信号光传播方向的改变,以将第一光纤束308发出的光传播进入第二光纤束中。光学棱镜304实现对发射信号光传播方向改变超过90°,发射信号光射入光学棱镜304的透射面(在本公开某一实施例中以垂直方向入射),继续射入直至光学棱镜304的第二反射面3042。发射信号光在光学棱镜304的第二反射面发生反射,继续射入直至光学棱镜304的第一反射面。发射信号光在第一反射面反射,并通过透射面射出光学棱镜304(在本公开某一实施例中以垂直方向射出)。此时,未射入光学棱镜304的发射信号光与经光学棱镜304射出的发射信号光之间的夹角为180°。
隔离器303,位于第一透镜302与光学棱镜304之间,用于防止发射信号光反射回光学棱镜304。在本公开某一实施例中,由于隔离器303允许光单方向通过,反方向被阻拦,防止发射信号光返回至光学棱镜304。
第一透镜302,位于隔离器303与固定于固定组件301上的第二光纤束309之间,用于将发射信号光a耦合至第二光纤束309。
来自第一光纤束308的光经过第二透镜307、滤光片306射入光学棱镜304,经光学棱镜反射后经过隔离器303射入第一透镜302,在第一透镜302的汇聚下耦合至第二光纤束309中。
第二光纤束309不仅实现了将发射信号光传出至光模块外部的光纤,还实现了将外部光纤的接收信号光传入光模块中,实现了光模块外部使用一根光纤发射与接收光,即单纤双向传输模式。
接收信号光b通过第二光纤束309传输至第一透镜302,接收信号光来自光模块的外部光纤。
第一透镜302接收来自第二光纤束309的接收信号光,第一透镜302实现对接收信号光的光路整形。接收信号光从第二光纤束309传出后,呈发散状态,第一透镜302实现对信号光的准直,使接收信号光成为平行光,准直光路/平行光路可以在较长的传播距离中保持光能量的集中,实现较低传输损耗,也有利于在后端实现光汇聚。
隔离器303位于第一透镜302的光路上,接收来自第一透镜302传来的光。隔离器303,位于第一透镜302与光学棱镜304之间,用于防止接收信号光反射回第一透镜302。在本公开某一实施例中,由于隔离器303允许光单方向通过,反方向被阻拦,防止接收信号光返回至第一透镜302。
光学棱镜304,位于基座300的另一端(与固定组件301固定方向相反的一端),用于改变光的传输方向。光学棱镜304中还包括分光面3041,分光面位于第一反射面3040与第二反射面3042之间,不同波长的光在射入分光面时发生的反射或透射特性不同。发射信号光与接收信号光具有不同的波长,发射信号光可以透射过分光面,而接收信号光在分光面处发生反射。接收信号光射入光学棱镜304的透射面(在本公开某一实施例中以垂直方向入射),继续射入直至光学棱镜304的第一反射面;接收信号光在光学棱镜304的第一反射面发生反射;接收信号光经第一反射面反射后射入分光面,由分光面将接收信号光反射向透射面(在本公开某一实施例中以垂直方向射出),接收信号光从透射面射出。
为了实现对接收信号光的接收,光学组件还包括光电探测器305。光电探测器305,设置于基座500上,位于光学棱镜304朝向第一透镜302的一侧,可以接收来自透射面射出的光。在本公开某一实施例中,光电探测器305包括光敏面。光电探测器305的光敏面收到接收信号光b,将接收信号光转化为电信号。光电探测器305将电信号由导线引出,引出的电信号由接收电路处理后传至光模块的上位机中,接收电路包括跨阻放大器及限幅放大器。
未射入光学棱镜304的接收信号光,与经光学棱镜304中分光面反射继而射出的接收信号光,实现了光传播方向的改变,方向的改变超过了90°,具体可以是180°。
根据光路传输需求,也可以由第一光纤束接收来自外部的接收信号光,由第二光纤束接收来自光发射部件的发射信号光,由第一光纤束将发射信号光传出光模块外部,这时反射面的倾斜方向发生改变,以将来自第一光纤束的接收信号光反射向光电探测器。
第一光纤束308和第二光纤束309内的光纤的包层直径是80微米。这种包层直径是80微米的光纤相对于包层直径是125微米的普通光纤具有以下优点:(1)在加长了工作距 离(第一透镜和第二透镜中间的距离)时不会有太大的光纤耦合损耗;(2)80微米光纤的弯曲损耗小,体积小,适合在较小的空间里绕纤并固定在封装壳中。
第一透镜302,位于固定组件301上的第二光纤束309与隔离器303之间,用于将第二光纤束309发出的信号光准直为准直光。在本公开某一实施例中,第一透镜302为准直透镜,可将第二光纤束309发出的光准直为准直光。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (17)

  1. 一种光模块,其特征在于,包括:
    光纤放大组件,包括掺饵光纤和光学组件,用于实现信号光的放大;
    所述光学组件包括设置于基座上的固定组件、第一透镜、隔离器、光学棱镜、滤光片和第二透镜;
    所述固定组件,用于固定第一光纤束和第二光纤束;
    所述第一光纤束包括第一光纤、第二光纤和第三光纤,所述第二光纤束包括第四光纤和第五光纤;
    所述第一光纤,用于接收泵浦光;
    所述第二光纤,与所述掺饵光纤的一端连接,用于接收经所述滤光片透射的第一信号光和经所述滤光片反射的泵浦光;
    所述第三光纤,用于将第二信号光输出,其中,第二信号光为放大后的第一信号光;
    所述第四光纤,用于接收第一信号光;
    所述第五光纤,与所述掺饵光纤的另一端连接,用于接收第二信号光;
    所述第一透镜,位于所述第二光纤束与所述隔离器之间;
    所述隔离器,位于所述第一透镜与所述光学棱镜之间,用于防止所述第一信号光和第二信号光返回至第一透镜;
    所述光学棱镜,用于改变所述第一信号光和所述第二信号光的传输方向;
    所述滤光片,位于所述光学棱镜与所述第二透镜之间,用于将所述第一信号光、所述第二信号光透射,和所述泵浦光反射;
    所述第二透镜,位于所述滤光片与所述第一光纤束之间,用于将所述第一信号光、所述第二信号光和所述泵浦光耦合至所述第一光纤束。
  2. 根据权利要求1所述的光模块,其特征在于,将所述第一信号光、所述第二信号光和所述泵浦光耦合至所述第一光纤束,指的是:将所述第一信号光和所述泵浦光均耦合至所述第一光纤束的第二光纤,将所述第二信号光耦合至所述第一光纤束的第三光纤。
  3. 根据权利要求1所述的光模块,其特征在于,所述光学组件还包括:
    光电探测器,用于探测光功率。
  4. 根据权利要求3所述的光模块,其特征在于,所述光学棱镜包括功率分光面;
    所述功率分光面,用于将射入的光反射和透射,得到反射光和透射光,其中,所述反射光射向所述光电探测器,所述透射光在内全反射面发生全反射向所述滤光片。
  5. 根据权利要求1所述的光模块,其特征在于,所述光模块还包括:
    泵浦源,用于发出所述泵浦光,其中,所述泵浦光的波长小于所述第一信号光和所述第二信号光的波长。
  6. 根据权利要求1所述的光模块,其特征在于,所述第一光纤束和所述第二光纤束内的光纤的包层直径是80微米。
  7. 根据权利要求1所述的光模块,其特征在于,所述第二光纤和所述第三光纤构成 的第一平面平行于所述第四光纤和所述第五光纤构成的第二平面。
  8. 根据权利要求7所述的光模块,其特征在于,所述第二光纤和所述第三光纤之间的距离等于所述第四光纤和所述第五光纤之间的距离。
  9. 根据权利要求1所述的光模块,其特征在于,所述固定组件包括底板和盖板;
    所述底板,设置于所述基座的一端,与所述基座连接;
    所述盖板,与所述底板上形成两个固定槽;
    所述盖板的下表面设置有两个第一凹槽。
  10. 根据权利要求8所述的光模块,其特征在于,所述第一凹槽包括两个相交面,两个所述相交面之间的夹角为60°。
  11. 一种光模块,其特征在于,包括:
    光学组件,包括基座,及分别设置在所述基座上的固定组件、第一透镜、隔离器、光学棱镜、滤光片及第二透镜;
    所述固定组件,用于固定第一光纤束和第二光纤束;
    所述第一透镜,与所述第二光纤束相对设置,可将来自所述第二光纤束的光汇聚或将光汇聚至所述第二光纤束中;
    所述光学棱镜,包括第一反射面及第二反射面,可用于改变光的传输方向,可在所述第一光纤束与所述第二光纤束中之间建立光通路;光传输方向的改变超过90度;
    所述隔离器,位于所述光学棱镜与所述第二光纤束之间,可允许光单方向通过;
    所述第二透镜,与所述第一光纤束相对设置,可将来自所述第一光纤束的光汇聚或将光汇聚至所述第一光纤束中。
  12. 根据权利要求11所述的光模块,其特征在于,所述光学组件还包括:
    光电探测器,设置在所述基座上,位于所述光学棱镜与所述固定组件之间;
    所述光学棱镜还包括分光面,所述分光面位于所述第一反射面与所述第二反射面之间,所述分光面可将接收信号光反射向所述光电探测器,可将所述发射信号光透射;
    所述滤光片,位于所述光学棱镜与所述第二透镜之间,可允许特定波长的光通过。
  13. 根据权利要求11所述的光模块,其特征在于,所述第一光纤束和所述第二光纤束内的光纤的包层直径是80微米。
  14. 根据权利要求11所述的光模块,其特征在于,所述固定组件包括底板和盖板;
    所述底板,设置于所述基座的一端,与所述基座连接;
    所述盖板,与所述底板上形成两个固定槽。
  15. 根据权利要求14所述的光模块,其特征在于,所述盖板的下表面设置有两个第一凹槽。
  16. 根据权利要求15所述的光模块,其特征在于,所述第一凹槽包括两个相交面,两个所述相交面之间的夹角介于0°-180°。
  17. 根据权利要求16所述的光模块,其特征在于,所述第一凹槽的两个相交面之间的夹角为60°。
PCT/CN2021/080968 2020-06-08 2021-03-16 一种光模块 WO2021248955A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010513890.1 2020-06-08
CN202010513890.1A CN113835164A (zh) 2020-06-08 2020-06-08 一种光模块
CN202010511663.5A CN113835163B (zh) 2020-06-08 2020-06-08 一种光模块
CN202010511663.5 2020-06-08

Publications (1)

Publication Number Publication Date
WO2021248955A1 true WO2021248955A1 (zh) 2021-12-16

Family

ID=78845137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080968 WO2021248955A1 (zh) 2020-06-08 2021-03-16 一种光模块

Country Status (1)

Country Link
WO (1) WO2021248955A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815089A (zh) * 2022-04-18 2022-07-29 东莞立讯技术有限公司 光模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439111A (zh) * 2000-02-16 2003-08-27 Adc电信股份公司 用于多波长光学信号的光纤光学隔离器
US6628455B1 (en) * 2000-03-03 2003-09-30 Dicon Fiberoptics, Inc. Multi-functional optical processor useful for fiberoptic applications
US6810195B2 (en) * 2002-12-19 2004-10-26 Cornining Incorporated Securing optical elements and optical devices
WO2013009135A2 (ko) * 2011-07-14 2013-01-17 주식회사 럭스퍼트 광학 패키지 장치
CN106410580A (zh) * 2016-12-02 2017-02-15 中国电子科技集团公司第四十四研究所 集成化掺铒光纤放大自发辐射光源
CN109390839A (zh) * 2017-08-11 2019-02-26 珠海保税区光联通讯技术有限公司 光学模块及掺铒光纤放大器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439111A (zh) * 2000-02-16 2003-08-27 Adc电信股份公司 用于多波长光学信号的光纤光学隔离器
US6628455B1 (en) * 2000-03-03 2003-09-30 Dicon Fiberoptics, Inc. Multi-functional optical processor useful for fiberoptic applications
US6810195B2 (en) * 2002-12-19 2004-10-26 Cornining Incorporated Securing optical elements and optical devices
WO2013009135A2 (ko) * 2011-07-14 2013-01-17 주식회사 럭스퍼트 광학 패키지 장치
CN106410580A (zh) * 2016-12-02 2017-02-15 中国电子科技集团公司第四十四研究所 集成化掺铒光纤放大自发辐射光源
CN109390839A (zh) * 2017-08-11 2019-02-26 珠海保税区光联通讯技术有限公司 光学模块及掺铒光纤放大器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815089A (zh) * 2022-04-18 2022-07-29 东莞立讯技术有限公司 光模块
CN114815089B (zh) * 2022-04-18 2023-10-24 东莞立讯技术有限公司 光模块

Similar Documents

Publication Publication Date Title
WO2021227317A1 (zh) 一种光模块
US9983374B2 (en) WDM Mux/DeMux on cable and methods of making the same
CN110488433A (zh) 一种光模块
JP2010122312A (ja) 送受信レンズブロック及びそれを用いた光モジュール
CN111061019A (zh) 一种光模块
US11841539B2 (en) Optical module
WO2022057621A1 (zh) 一种光模块
WO2021248955A1 (zh) 一种光模块
WO2021109776A1 (zh) 一种光模块
CN110542960A (zh) 一种光模块
WO2021223448A1 (zh) 一种光模块
CN113484960A (zh) 一种光模块
WO2020248642A1 (zh) 光模块
CN217606135U (zh) 光模块
CN214795316U (zh) 一种光模块
CN217443588U (zh) 一种光模块
WO2021232862A1 (zh) 一种光模块
WO2021218462A1 (zh) 一种光模块
CN113835163B (zh) 一种光模块
CN114879324A (zh) 光模块
CN114994839A (zh) 光模块
CN111983759A (zh) 一种光模块
CN114647037A (zh) 一种光模块
CN114384646A (zh) 一种光模块
WO2021109645A1 (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821985

Country of ref document: EP

Kind code of ref document: A1