WO2021248735A1 - 岩石蠕变冲击与微裂隙扫描实验中的保压装置及实验方法 - Google Patents

岩石蠕变冲击与微裂隙扫描实验中的保压装置及实验方法 Download PDF

Info

Publication number
WO2021248735A1
WO2021248735A1 PCT/CN2020/116800 CN2020116800W WO2021248735A1 WO 2021248735 A1 WO2021248735 A1 WO 2021248735A1 CN 2020116800 W CN2020116800 W CN 2020116800W WO 2021248735 A1 WO2021248735 A1 WO 2021248735A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
rock
hydraulic
micro
panel
Prior art date
Application number
PCT/CN2020/116800
Other languages
English (en)
French (fr)
Inventor
黄万朋
孙远翔
高琳
冯帆
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2021248735A1 publication Critical patent/WO2021248735A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means

Definitions

  • the invention relates to the field of rock mechanics experiments, in particular to a pressure maintaining device and an experiment method thereof in the process of detecting micro-cracks in a rock dynamics experiment.
  • Rock creep impact mechanics experiment is the main technical method to study the dynamic response (including deformation characteristics, failure mechanism, etc.) of coal and rock mass under the influence of external shock disturbance under high stress and creep state, in order to clarify the deformation of rock under creep impact state
  • the failure mechanism requires real-time detection of the development and development of internal micro-cracks during the loading process of rock dynamics experiments. At this time, it is necessary to combine micro-crack detection methods such as CT scanning and acoustic emission with rock creep impact test equipment. However, there are still great difficulties in real-time micro-fracture detection during rock loading, and there is still no good solution in experimental equipment and methods.
  • the main technical problems are:
  • micro-crack detection experimental equipment such as CT scanners, acoustic emission testing machines, etc. cannot be effectively docked with rock loading experimental equipment such as rock rheological disturbance effect testers, so they cannot be used in the process of creep impact experiments.
  • rock loading experimental equipment such as rock rheological disturbance effect testers
  • One of the objectives of the present invention is to provide a pressure holding device in the rock creep impact and micro-crack scanning experiment, which can maintain the high static load stress during the loading process of the rock creep impact mechanics experiment and perform constant pressure transfer on the rock specimen , So that the development of rock micro-cracks can be detected in real time in CT scanning and acoustic emission experiments.
  • Adopting a pressure holding method to allow the rock specimen under pressure to transfer freely is an effective way to solve the above problems.
  • the required pressure holding device must have unique characteristics.
  • the static load stress level in the rock creep perturbation experiment is relatively high, and at the same time, the impact of cyclic impact load must be applied.
  • the pressure holding device to have a higher and relatively high Stable constant pressure capability and real-time micro-adjustment function;
  • the size of the pressure holding device must also be able to effectively dock with the above-mentioned two experimental equipment at the same time.
  • the present invention adopts the following technical solutions:
  • a pressure-holding device in rock creep impact and micro-crack scanning experiments which includes a pressure-bearing mechanism, a constant pressure locking mechanism and a pressure real-time monitoring and adjusting mechanism.
  • the pressure-bearing mechanism includes a cylindrical panel, which is arranged in parallel, The upper and lower panels of the same size, when the pressure holding device is working, the rock specimen to be tested is placed on the cylindrical panel, and the constant pressure locking mechanism is provided with four groups, which are respectively set in At the four corners of the upper panel and the lower panel, each group of constant pressure locking mechanisms includes a cylindrical pressing rod and a hydraulic locking device, and the bottom of the hydraulic locking device is located on the lower panel.
  • the top of the circular pressing rod is connected to the upper panel, and the bottom is connected to the hydraulic locking device;
  • the hydraulic locking device includes a housing and a pressure maintaining unit located in the housing, the The pressure maintaining unit includes a hydraulic pump, an overflow valve, an oil tank, an oil inlet, an oil outlet, a hydraulic cylinder and a three-position four-way valve.
  • the three-position four-way valve is located on the outer surface of the housing and passes Manually adjust the switch of the three-position four-way valve to adjust the connection positions of the oil inlet and the oil outlet.
  • the three-position four-way valve divides the hydraulic locking device into a left position and a middle position. Three positions: bit and right bit:
  • the hydraulic pump discharges oil and is injected into the lower cavity of the hydraulic cylinder, the guide rod of the hydraulic cylinder can be raised and reset, and the overflow valve is used to overload the hydraulic pump Protect;
  • the pressure real-time monitoring and adjusting mechanism includes a pressure sensor, an intelligent pressure control hub, and a hydraulic pressure compensation device.
  • the hydraulic pressure compensation device includes a cylindrical shell and a hydraulic jack located in the cylindrical shell. The shell is located at the center of the lower panel, the cylindrical panel is located above the cylindrical shell, and the bottom area of the cylindrical panel is the same as the bottom area of the cylindrical shell;
  • the pressure sensor is located at the top of the telescopic movable post of the jack, and both the pressure sensor and the jack are connected to the smart pressure control hub by wires, and the smart pressure control hub pairs Pressure is monitored, displayed and adjusted in real time.
  • a displacement hole is respectively provided at the midpoints of the left and right sides of the lower panel, and the displacement hole can be inserted by a mobile forklift.
  • the hydraulic pressure compensation device and the hydraulic locking device are both connected to an external high-pressure oil pump to supply pressure, and the high-pressure oil pump is connected to the above-mentioned intelligent pressure control hub and is uniformly controlled by the above-mentioned intelligent pressure control hub.
  • the above-mentioned intelligent pressure control hub receives the displayed pressure signal in time and triggers the above-mentioned hydraulic pressure compensation device, and the above-mentioned hydraulic jack lifts the lower panel for pressure compensation.
  • Another object of the present invention is to provide a rock creep impact and micro-crack scanning experiment method, which sequentially includes the following steps:
  • step b Install the overall structure obtained in step a on a conventional rock mechanics testing machine, where the lower panel is placed above the lower bearing plate of the conventional rock mechanics testing machine, and the upper panel is placed under the upper bearing plate of the conventional rock mechanics testing machine, and Tighten, at this time, temporarily close the control hub part of the pressure real-time monitoring and regulating mechanism;
  • the pressure sensor will receive the signal and feed it back on the display of the external intelligent pressure control hub. After the control hub senses it, the wire transmits information in real time to the lower pressure adjustment mechanism to pressurize and stabilize the internal pressure of the device;
  • step d when the equipment and the rock test piece are removed together by using the conveying device, it is necessary to ensure that the equipment is stable and at a constant pressure.
  • the above-mentioned rock specimen is cylindrical, with a diameter of 0mm-75mm, and a height of 40mm-100mm.
  • the above-mentioned intelligent pressure control hub monitors and displays the pressure intensity in the range of 0 MPa to 300 MPa.
  • the invention provides a pressure holding device in rock creep impact and micro-crack scanning experiments, which includes a pressure bearing mechanism, a constant pressure locking mechanism and a pressure real-time monitoring and adjusting mechanism, wherein the pressure bearing mechanism is used as the main bearing structure of the device
  • the constant pressure locking mechanism is located at the four corners of the upper and lower panels, and its function is to stabilize the voltage and connect the upper and lower panels.
  • the present invention uses hydraulic locking to maintain pressure and hydraulic system pressure regulation, which has a large controllable range, high control accuracy and precise pressure maintaining.
  • the pressure holding device of the present invention is compact in size, convenient to move, and can be connected in real time with various rock mechanics experimental devices such as MTS, CT scanner, and acoustic emission testing machine. And different from the conventional box device, this device is not equipped with a four-sided baffle. In the CT scanning experiment, it can perform microscopic and macroscopic observations at the same time to study various values of the development of rock fractures under different pressures.
  • the upper and lower panels of the device of the present invention adopt high-strength materials and are resistant to high temperatures. It can realize real-time tests of other physical and mechanical properties of coal and rock mass specimens in the process of mechanical loading experiments (compression, tension, shear, etc.), such as micro-fracture scanning, liquid-gas coupling influence test, temperature and humidity change experiment, etc., It can realize the study of rock characteristics under multi-field coupling.
  • the rock creep impact and micro-crack scanning experiment method provided by the present invention can instantly lock and stabilize the static load pressure of the rock specimen during the conventional mechanical experiment process, so as to realize the mechanical loading test (pressure Real-time tests on other physical and mechanical properties, such as micro-fracture scanning, liquid-gas coupling influence test, temperature and humidity change experiment, etc., can realize the study of rock mechanical properties under multi-field coupling.
  • Figure 1 is a schematic cross-sectional view of a pressure holding device in a rock creep impact and micro-crack scanning experiment of the present invention
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a pressure holding device in a rock creep impact and micro-crack scanning experiment of the present invention
  • Fig. 3 (3a) is a schematic diagram of the structure of the housing of the constant pressure locking mechanism of the present invention, and (3b) is a schematic diagram of the working flow of the medium pressure holding unit;
  • the present invention proposes a pressure holding device and an experimental method in the rock creep impact and micro-crack scanning experiment.
  • the present invention will be described in detail below with reference to specific embodiments.
  • testing machine refers to the "rock pressure testing machine", and its main structure and working principle are the same as those of the prior art.
  • a pressure holding device for rock creep impact and micro-crack scanning experiments of the present invention includes three parts: a pressure bearing mechanism, a constant pressure locking mechanism 3, and a pressure real-time monitoring and adjusting mechanism.
  • the pressure-bearing mechanism is mainly composed of an upper panel 1, a lower panel 2 and a cylindrical panel.
  • the upper and lower panels are made of excellent alloy steel materials, which have greater strength and rigidity, can transmit force well, and can meet the mechanical experiment requirements of the international standard rock mechanics time.
  • a displacement hole 18 is left at the midpoint of the left and right sides of the lower panel, which can be inserted by a mobile forklift to move the cage smoothly and avoid jitter and balance deviation caused by manual movement.
  • the upper panel is in contact with the upper bearing plate of the rock pressure testing machine, and the lower panel is in contact with the lower bearing plate of the testing machine, and the rock specimen 4 and other components are placed in the space between the two.
  • the constant pressure locking mechanism 3 is provided with four groups, which are respectively provided at the four corners of the upper and lower panels.
  • the constant pressure locking mechanism 3 forms a cage structure that can be observed while connecting the upper and lower panels.
  • the functions of the constant pressure locking mechanism are as follows: one is to connect the upper and lower panels, and the other is to lock the real-time pressure of the entire device.
  • the specific structure of the constant pressure locking mechanism 3 is composed of two parts, which are the circular pressing rod in the upper half and the hydraulic locking device in the lower half.
  • the hydraulic locking device is the key core component of the present invention. It includes a shell and a pressure holding unit located in the shell.
  • the hydraulic cylinder 17, the oil tank 11, the hydraulic pump 9, the overflow valve 10, the oil inlet 12, the oil outlet 13 and a three-position four-way valve are composed of the hydraulic cylinder, the oil tank, the hydraulic pump, and the overflow valve in the shell.
  • the three-position four-way valve is on the outer surface of the shell, and the connection position of the oil inlet and the oil outlet can be manually adjusted; as shown in Figure 3, its working principle is:
  • the hydraulic pump 9 discharges oil and injects it into the upper cavity of the hydraulic cylinder 17, the guide rod of the hydraulic cylinder 17 can drop with the pressure;
  • the hydraulic cylinder 17 is unaffected and stands still and can lock the current pressure;
  • the oil inlet 12 and the oil outlet 13 are connected to the right position 16.
  • the hydraulic pump 9 discharges oil and injects it into the lower cavity of the hydraulic cylinder 17, and the guide rod of the hydraulic cylinder 17 can be raised and reset. Carry out overload protection.
  • the pressure real-time monitoring and adjusting mechanism is divided into three parts: pressure sensor 5, intelligent pressure control hub 7 and hydraulic pressure compensation device.
  • the hydraulic pressure compensation device includes a cylindrical shell and a hydraulic jack located in the cylindrical shell.
  • the cylindrical shell is located at the center of the lower panel, the cylindrical panel is located above the cylindrical shell, and the bottom area of the cylindrical panel is the same as that of the cylinder.
  • the bottom area of the shell is the same; the hydraulic jack mentioned above is a small hydraulic jack.
  • the pressure sensor is placed on the top of the telescopic movable column of the hydraulic jack, which is an integrated structure.
  • Both the pressure sensor and the hydraulic jack are connected to the external intelligent pressure control hub by wires, and the real-time pressure parameters in the current experimental cage are displayed by the electronic display to monitor the pressure status inside the experimental device in real time.
  • the hydraulic pressure compensation device 6 has two functions. First, before the start of the experiment, pressurize the rock specimen to be fixed between the upper and lower plates to prevent the rock specimen from slipping; Second, when the constant pressure locking mechanism 3 locks After stopping, the rock testing machine is unloaded to a mobile forklift to move the device to other experimental devices. When pressure fluctuations occur inside the device, it is received by the pressure sensor 5, fed back to the external intelligent pressure control hub 7, and then sent a signal to the hydraulic pressure compensation device 6 Perform pressure adjustment to ensure a constant pressure in the device. If the pressure in the cage fluctuates, the intelligent pressure control hub can receive the display pressure signal in time and trigger the hydraulic pressure compensation device. The lower panel is lifted by the internal small hydraulic jack to supplement the pressure in the device.
  • the hydraulic jack in the hydraulic pressure compensation device 6 and the hydraulic locking device in the constant pressure locking mechanism 3 are both connected to an external high-pressure oil pump 8 to supply oil to the two devices.
  • the high-pressure oil pump 8 and the intelligent pressure control hub 7 are also connected by wires, and the intelligent pressure control hub 7 performs precise oil supply control.
  • the above-mentioned four mechanisms arranged at the four corners of the device have the same length, which ensures that the flatness accuracy of the upper and lower panels is high, and the unevenness is less than 0.01 mm.
  • the above-mentioned constant pressure locking mechanism uses high-strength hydraulic control principles to perform constant-pressure locking of high static load stresses, and can stably lock high static load stresses within 0-120 MPa, which can meet the experimental requirements of conventional sedimentary rock specimens.
  • the above-mentioned intelligent pressure control hub monitors and displays the pressure intensity range of 0MPa-300MPa. After 5s-10s after the hydraulic locking device is fixed, the hydraulic pressure compensation device can be adjusted and controlled. The hydraulic jack inside the above-mentioned hydraulic pressure compensation device can pressurize and adjust the pressure fluctuation between 0MPa and 20.00MPa in the device after the trigger jack is 2s-5s;
  • the rock specimen suitable for the experiment of the above-mentioned device is cylindrical, with a diameter ranging from 0mm to 75mm, and a height ranging from 40mm to 100mm.
  • Another object of the present invention is to provide an experimental method for rock creep impact and micro-fracture scanning.
  • the experimental method utilizes the above-mentioned pressure holding device and sequentially includes the following steps:
  • step b Install the overall structure obtained in step a on a conventional rock mechanics testing machine, where the lower panel is placed above the lower bearing plate of the conventional rock mechanics testing machine, and the upper panel is placed under the upper bearing plate of the conventional rock mechanics testing machine, and Tighten, at this time, temporarily close the control hub part of the pressure real-time monitoring and regulating mechanism;
  • the pressure sensor will receive the signal and feed it back on the display of the external intelligent pressure control hub. After the control hub senses it, the wire transmits information in real time to the lower pressure adjustment mechanism to pressurize and stabilize the internal pressure of the device;
  • the three-level static load stress levels were 40MPa, 60MPa and 80MPa respectively.
  • the dynamic impact disturbance experiment was carried out at each static load level. After the impact was completed, the specimen was put under pressure. Remove, scan the micro-cracks inside the rock with a CT scanner, and finally get the law of the development of the micro-cracks in the rock under the action of creep impact.
  • the specific experimental steps include:
  • Step 2 Extend the cylindrical pressure rods of the constant pressure locking mechanism 3 at the four corners to the maximum, relieve the pressure of the hydraulic cylinder 17 of the real-time pressure monitoring and adjustment mechanism to the lowest state, and place the prepared standard rock specimens Put it between the upper and lower panels; after the position of the test piece is determined, the hydraulic cylinder of the pressure real-time monitoring and adjustment mechanism is injected to make the hydraulic jack rise, and the rock test piece is clamped with a small force, and the test piece is firm as the standard ;
  • Step 3 Install the overall structure completed in step 2 on a conventional rock mechanics testing machine, where the lower panel is placed above the lower bearing plate of the testing machine, and the upper panel is placed under the upper bearing plate of the testing machine and tightened. At this time, temporarily Close the control hub part of the pressure real-time monitoring and adjustment mechanism, and stop the high-pressure oil pump to inject liquid into the hydraulic pressure compensation device;
  • Step 4 Start the experiment. First, adjust the three-position four-way valve in the constant pressure locking mechanism to the left position 14.
  • the predetermined pressure given to the rock specimen by the testing machine is set to 40MPa; when the testing machine is turned on, pressure is gradually applied.
  • the standard rock specimens are under pressure. In this case, fissures develop.
  • the hydraulic pump 9 discharges oil and is injected into the upper cavity of the hydraulic cylinder 17, and the upper panel 1 and the guide rod 19 of the hydraulic cylinder descend.
  • test machine When the test machine reaches the predetermined static load test pressure of 40MPa, it will stop. Adjust the three-position four-way valve to the neutral position 15. At this time, the hydraulic cylinder 17 and the hydraulic pump 9 are disconnected, and the guide rod 19 of the hydraulic cylinder will stand still. Subsequently, the pressure of the test machine was relieved, and the height between the upper and lower panels was fixed, and the rock specimen in the box was always kept at a constant pressure. After the test machine is closed, use a mobile forklift to insert the device and rock specimens into the displacement hole 18, move them into the transfer equipment, and then move them into the CT scanning test machine or acoustic emission tester without changing the rock test The development status of the micro-cracks of the piece;
  • the pressure sensor 5 is in the open state, and the pressure value in the box is monitored through the display screen of the external intelligent pressure control hub 7 to ensure that the device is in a constant pressure state; further, the absence of a four-sided box structure enables the experimenter Observe the macroscopic deformation characteristics of the rock specimen in the cage at any time; if the pressure of the device fluctuates slightly during the handling process, the pressure sensor 5 will receive the signal and feedback it on the display of the external intelligent pressure control hub 7, and the control hub will transmit information in real time through the wire Apply pressure to the lower pressure adjusting mechanism 6 to stabilize the internal pressure of the device;
  • Step 5 After the device undergoes CT scanning experiment and acoustic emission test, it clearly scans the distribution of the cracks inside the rock, observes and records the development results of the cracks, and obtains the data of the experiment; move the forklift through the shift hole 18 to keep the device constant Move the device and rock test piece to the pressure testing machine again under pressure, and fix the position of the device;
  • Step 6 Set the predetermined pressure to 60MPa and 80MPa in turn, repeat steps 4 and 5 until the rock specimen experiment process is completed;
  • Step 7 After the experiment, close the experimental machine and the hydraulic pressure compensation device 6, and adjust the three-position four-way valve in the constant pressure lock mechanism to the right position 16. At this time, the hydraulic pump 9 discharges oil and injects it into the hydraulic cylinder 17. In the cavity, the guide rod ascends to return to the initial height; finally, the rock specimen is taken out and the rock fragmentation residue is cleaned up.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种岩石蠕变冲击与微裂隙扫描实验中的保压装置,包括承压机构、恒压锁止机构(3)、压力实时监测调节机构三个部分,其中承压机构包括上面板(1)、下面板(2)和圆柱体面板,恒压锁止机构(3)设置有四组,分别设置在上、下面板(1,2)四角处,压力实时监测调节机构分为压力传感器(5)、智能压力控制枢纽(7)与液压补压装置(6)三个部分,实现在保压过程中的实时压力检测与调节。在岩石试件(4)的常规力学实验过程中对其静载压力进行即时锁定并稳压,实现煤岩体试件在力学加载试验过程中对其他物理力学特性的实时试验,能够实现多场耦合下的岩石力学特性研究。

Description

岩石蠕变冲击与微裂隙扫描实验中的保压装置及实验方法 技术领域
本发明涉及岩石力学实验领域,具体涉及一种岩石动力学实验微裂隙探测过程中的压力保持装置及其实验方法。
背景技术
岩石蠕变冲击力学实验是研究煤岩体在高应力蠕变状态下受外部冲击扰动影响时动力响应(包括变形特征、破坏机理等)的主要技术手段,为了阐明蠕变冲击状态下岩石的变形破坏机理,在岩石动力学实验加载过程中需要实时探测其内部微观裂隙的发育发展规律,此时就要将微观裂隙探测手段如CT扫描、声发射等与岩石蠕变冲击实验装置进行组合应用。然而,目前在岩石加载过程中进行实时微观破裂探测尚存在较大困难,在实验装备和方法上尚没有很好的解决办法。主要存在的技术问题在于:
(一)目前主要的微裂隙探测实验设备如CT扫描仪、声发射实验机等均无法与岩石加载实验设备如岩石流变扰动效应试验仪等进行有效对接,因此无法在蠕变冲击实验过程中对岩石内部微裂隙进行实时扫描探测;
(二)当前岩石流变扰动效应试验仪在一定静载加压条件下,进行一次扰动冲击后,若想进行CT扫描或声发射实验,需要将岩石试件取下,再放到裂隙扫描装置上,但是这就会造成试件的压力卸载从而导致其内部微裂隙的闭合,使得实验结果不准确,甚至得不到想要的结果。
(三)当前尚没有能同时满足蠕变冲击和微裂隙扫描实验要求的一体式设备。
综上所述,急需研究一种能同时满足蠕变冲击和微裂隙扫描实验要求的一种装置及其实验方法。
技术解决方案
本发明的目的之一在于提供一种岩石蠕变冲击与微裂隙扫描实验中的保压装置,其能够保持住岩石蠕变冲击力学实验加载过程中的高静载应力,对岩石试件进行恒压转移,让岩石的微裂隙发育状况可以在CT扫描和声发射实验中得以实时探测。
为实现上述目的,本发明所需解决的主要技术难题在于:
采用一种保压手段让加压状态下的岩石试件能够自由转移是解决上述问题的一个有效途径,然而要实现在特定的岩石蠕变扰动实验和微裂隙扫描实验二者之间的一个平稳衔接,所需保压装置又要具有独特的特点,首先岩石蠕变扰动实验中的静载应力水平较高,同时要施加循环的冲击载荷影响,这就要求保压装置要具有较高和较稳定的恒压能力,同时要具有实时微调节功能;同时基于两个实验设备的尺寸参数,该保压装置尺寸也要能同时和上述两中实验设备进行有效对接安装。
为解决上述技术问题,本发明采用了以下技术方案:
一种岩石蠕变冲击与微裂隙扫描实验中的保压装置,其包括承压机构、恒压锁止机构和压力实时监测调节机构,所述的承压机构包括圆柱体面板、上下平行设置、大小相同的上面板和下面板,当所述的保压装置工作时,待测岩石试件放置在所述的圆柱体面板上,所述的恒压锁止机构设置有四组,分别设置在所述的上面板和下面板的四角处,其中每组恒压锁止机构包括圆柱形压杆和液压锁止装置,所述的液压锁止装置的底部位于所述的下面板上,所述的圆形压杆的顶部连接所述的上面板,底部连接在所述的液压锁止装置上;所述的液压锁止装置包括壳体及位于所述的壳体内的压力保持单元,所述的压力保持单元包括液压泵、溢流阀、油箱、进油口、出油口、液压缸及三位四通阀,所述的三位四通阀位于所述的壳体的外表面,通过手动调节所述的三位四通阀的开关来调节所述的进油口、出油口的连接位置, 所述的三位四通阀将所述的液压锁止装置分为左位、中位和右位三种位态:
当液压锁止装置处在左位时,通过所述的液压泵出油,注入所述的液压缸的上腔,所述的液压缸的导杆可随着压力下降;
当液压锁止装置处在中位时,所述的液压缸不受影响,静止不动,可以锁定当前压力;
当液压锁止装置处在右位时,所述的液压泵出油,注入液压缸下腔,所述的液压缸的导杆可上升复位,所述的溢流阀用于对液压泵进行过载保护;
所述的压力实时监测调节机构包括压力传感器、智能压力控制枢纽及液压补压装置,所述的液压补压装置包括圆柱体外壳和位于所述圆柱体外壳内的液压千斤顶,所述的圆柱体外壳位于所述的下面板的中心处,所述的圆柱体面板位于所述的圆柱体外壳的上方,且所述的圆柱体面板的底面积与所述的圆柱体外壳的底面积相同;所述的压力传感器位于所述的千斤顶的伸缩活柱的顶端,且所述的压力传感器和所述的千斤顶均由导线连接至所述的智能压力控制枢纽上,通过所述的智能压力控制枢纽对压力进行实时监测、显示和调节。
作为本发明的一个优选方案,在上述的下面板的左右两侧边的中点处分别设置一个移位孔,上述的移位孔可供移动叉车插入。
作为本发明的另一个优选方案,上述的上面板、下面板均采用合金钢材料制作而成,其可承载强度≥300 MPa,上述的上面板、下面板的长×宽×厚=300mm×300mm×20mm,上述的圆柱体面板的直径×高度=80mm×15mm。
进一步优选,上述的圆柱形压杆的高度×直径=120mm×20mm,上述的液压锁止装置的外壳的长×宽×高=50mm×50mm×80mm。
进一步优选,上述的液压补压装置与液压锁止装置均连接外部高压油泵,对其供压,上述的高压油泵与上述的智能压力控制枢纽连接,由上述的智能压力控制枢纽统一控制。
进一步优选,上述的智能压力控制枢纽及时接收显示压力信号并触发上述的液压补压装置,并由上述的液压千斤顶将下面板顶起进行补压。
本发明的另一目的在于提供一种岩石蠕变冲击与微裂隙扫描实验方法,其依次包括以下步骤:
a 安装岩石试件,
将四组恒压锁止机构伸长至最大,将压力实时监测调节机构的液压缸卸压至最低状态,将备好的岩石试件放入上、下面板之间;待岩石试件位置确定好后,将压力实时监测调节机构的液压缸注液上升,夹紧所述的岩石试件;
b 将步骤a完成所得整体结构安装于常规岩石力学实验机上,其中下面板安置在常规岩石力学实验机的下承压板上方,上面板安置于常规岩石力学实验机的上承压板下方,并紧固,此时,暂时关闭压力实时监测调节机构的控制枢纽部分;
c 开始实验,首先将恒压锁止机构中的三位四通阀调至左位,开启常规岩石力学实验机逐渐施压,岩石试件在高静载压力的作用下变形至裂隙发育;随着压力增大及试件变形,上面板与圆柱形压杆缓慢下降,当常规岩石力学实验机达到预定静载试验压力后停止,将三位四通阀调至中位,导杆将不再升降,常规岩石力学实验机施加的静载应力被锁止;
d 静载压力恒定后,进行外部冲击载荷实验,冲击实验完成后,将常规岩石力学实验机的静载压力卸压,由于上下面板之间的高度固定,因此箱体内的岩石试件始终保持一恒压的状态;待常规岩石力学实验机关闭后,开启压力实时监测调节机构的控制枢纽部分,同时利用搬运装置将设备与岩石试件一并移出;
e 若装置在搬运过程中压力出现轻微波动,压力传感器会接收信号反馈在外部智能压力控制枢纽的显示器上,控制枢纽感知后由导线实时传递信息给下方压力调节机构进行加压稳定装置内压力;
f 将装置和岩石试件一块取出后放入CT扫描实验机或声发射试验仪中,对岩石内部的裂隙分布进行实验扫描测定,观察并记录其裂隙的发育结果;
g 将装置从CT扫描实验机或声发射试验仪中取出,放置在常规岩石力学实验机上,重复步骤b,然后将常规岩石试验机加压至保压装置中岩石试件的静载应力水平,当二者压力相同时,将恒压锁止机构中的三位四通阀调至左位,重复步骤c、d、e、f,直至岩石试件实验过程全部完成;
h 实验结束后,关闭常规岩石实验机与压力调节机构,将恒压锁止机构中的三位四通阀调至右位,导杆上升恢复初始高度,取出岩石试件。
进一步优选,步骤d中,利用搬运装置将设备与岩石试件一并移出时,需保证设备稳定恒压。
进一步优选,上述的岩石试件为圆柱形,其直径为0mm—75mm,高度为40mm—100mm。
进一步优选,上述的智能压力控制枢纽监测显示的压力强度范围为0MPa—300MPa。
有益效果
与现有技术相比,本发明带来了以下有益技术效果:
本发明提供了一种岩石蠕变冲击与微裂隙扫描实验中的保压装置,包括承压机构、恒压锁止机构和压力实时监测调节机构,其中,承压机构作为该装置的主要承载结构,恒压锁止机构位于上下面板的四角,其作用是用于稳压和连接上下面板,作为本发明的主要改进点,通过对恒压锁止机构进行改进,可实现对高静载压力下的长期保压,本发明通过液压锁止保压、液压系统调压,可控制范围大,控制精度高,保压精确。
本发明保压装置尺寸精巧,方便移动,能够与MTS、CT扫描仪、声发射试验机等多种岩石力学实验装置进行实时对接。并且不同于常规箱体装置,该装置并未设置四面挡体,在CT扫描实验中可同时进行微观和宏观的观察,研究不同压力作用下岩石裂隙发育状况的各项数值。
由于本发明装置的上下面板采用高强度材料,且耐高温。可以实现煤岩体试件在力学加载实验(压、拉、剪切等实验)过程中对其他物理力学特性的实时试验,如微裂隙扫描、液气耦合影响试验、温湿度改变实验等等,能够实现多场耦合下的岩石特性研究。
本发明提供的岩石蠕变冲击与微裂隙扫描实验方法,可以在岩石试件的常规力学实验过程中对其静载压力进行即时锁定并稳压,实现煤岩体试件在力学加载试验(压、拉、剪切等实验)过程中对其他物理力学特性的实时试验,如微裂隙扫描、液气耦合影响试验、温湿度改变实验等等,能够实现多场耦合下的岩石力学特性研究。
附图说明
下面结合附图对本发明做进一步说明:
图1为本发明一种岩石蠕变冲击与微裂隙扫描实验中的保压装置的剖面示意图;
图2为本发明一种岩石蠕变冲击与微裂隙扫描实验中的保压装置的立体结构示意图;
图3中(3a)为本发明恒压锁止机构的壳体的结构示意图,(3b)是中压力保持单元的工作流程示意图;
图中:1—上面板;2—下面板;3—恒压锁止机构;4—岩石试件;5—压力传感器;6—液压补压装置;7—智能压力控制枢纽;8—高压油泵;9—液压泵;10—溢流阀;11—油箱;12—进油口;13—出油口;14—左位;15—中位;16—右位;17—液压缸;18—移位孔,19、液压缸的导杆。
本发明的实施方式
本发明提出了一种岩石蠕变冲击与微裂隙扫描实验中的保压装置及实验方法,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做详细说明。
本发明中述及的“实验机”指“岩石压力实验机”,其主要结构及工作原理与现有技术相同。
结合图1和图2所示,本发明一种岩石蠕变冲击与微裂隙扫描实验中的保压装置,包括承压机构、恒压锁止机构3、压力实时监测调节机构三个部分,其中承压机构主要由上面板1、下面板2和圆柱体面板组成,上面板1的形状、大小与下面板2相同,且为长×宽×厚=300mm×300mm×20mm的长方体形,上面板与下面板位置相对、相互平行,圆柱体面板直径×高度=80mm×15mm,其具体位置在液压补压装置6的上方。上面板、下面板均采用优秀合金钢材料制成,自身具有较大的强度且刚度较高,可以很好地传递力,可满足国际标准岩石力学时间的力学实验要求。
作为优选,在下面板左右两侧边中点位置分别留有一个移位孔18,可供移动叉车插入,平稳移动笼体,避免人工移动带来的抖动以及平衡偏差。当进行岩石力学实验时,上面板和岩石压力实验机的上承压板接触,下面板与实验机的下承压板接触,二者之间的空间处放置岩石试件4及其他构件等。
作为本发明的主要改进点,恒压锁止机构3设置有四组,分别设置在上、下面板的四角处。恒压锁止机构3在连接上、下面板的同时形成一个可被观察的笼状结构。恒压锁止机构的作用有,其一、用于连接上、下面板,其二、锁定整个装置的实时压力。
恒压锁止机构3的具体结构由两部分组成,分别为上半部分的圆形压杆和下半部分的液压锁止装置。圆形压杆为高度×直径=120mm×20mm的圆柱体,其材质坚固,不会由于压力过大导致的杆体变形。液压锁止装置为本发明的关键核心构件,包括壳体及位于所述的壳体内的压力保持单元,壳体为长×宽×高=50mm×50mm×80mm的长方体结构,压力保持单元主要由液压缸17、油箱11、液压泵9、溢流阀10、进油口12、出油口13以及一个三位四通阀构成,液压缸、油箱、液压泵、溢流阀在壳体内,其中三位四通阀在壳体的外表面,可手动调节进油口与出油口的连接位置;如图3所示,其工作原理为:
当装置处在左位14时,进油口12和出油口13与左位14相连,液压泵9出油,注入液压缸17上腔,液压缸17的导杆可随着压力下降;当装置处在中位15时,进油口12和出油口13与中位15相连,此时液压缸17不受影响,静止不动,可以锁定当前压力;当装置处在右位16时,进油口12和出油口13与右位16相连,液压泵9出油,注入液压缸17下腔,液压缸17的导杆可上升复位;其中,溢流阀10的作用为了对液压泵进行过载保护。
压力实时监测调节机构分为压力传感器5、智能压力控制枢纽7与液压补压装置三个部分。液压补压装置包括圆柱体外壳和位于所述圆柱体外壳内的液压千斤顶,圆柱体外壳位于下面板的中心处,圆柱体面板位于圆柱体外壳的上方,且圆柱体面板的底面积与圆柱体外壳的底面积相同;上述的液压千斤顶是一个小型液压千斤。压力传感器置于液压千斤顶的伸缩活柱顶端,为一体式结构。压力传感器和液压千斤顶均由导线连接至外部智能压力控制枢纽上,并由电子显示器将当前实验笼体内的实时压力参数显示出来,实时监控实验装置内部的压力状态。液压补压装置6有两个作用,一、在实验开始之前,加压将岩石试件固定在上、下部板之间,防止岩石试件滑移;二、当恒压锁止机构3进行锁止后,岩石实验机卸载至移动叉车将装置移动到其他实验装置中,该装置内部出现压力波动时,由压力传感器5接收,反馈至外部智能压力控制枢纽7,然后发出信号给予液压补压装置6进行压力调节,保证装置内的压力恒定。若笼体内的压力产生波动,智能压力控制枢纽可以及时接收显示压力信号并触发液压补压装置,由内部小型液压千斤顶将下部面板顶起,给装置内补压。
其中,液压补压装置6内液压千斤顶与恒压锁止机构3中的液压锁止装置均与外部的高压油泵8连接,为两个装置内供油。并且,高压油泵8与智能压力控制枢纽7也由导线连接,通过智能压力控制枢纽7进行精确供油控制。
进一步的,上述布置在设备四角处的四个机构的长度相同,保证上、下面板的平整度精度高,不平整度小于0.01mm。
上述的恒压锁止机构通过高强液压控制原理对高静载应力进行恒压锁定,对0-120MPa内的高静载应力能够进行稳定锁止,可以满足常规沉积岩岩石试件的实验要求。
上述的智能压力控制枢纽监测显示的压力强度范围为0MPa—300MPa,液压锁止装置固定后5s—10s后,可进行液压补压装置调控。上述的液压补压装置内部的液压千斤顶,触发千斤顶在2s—5s后可对装置内0MPa—20.00MPa之间的压力波动进行加压调节;
上述的装置适于实验的岩石试件为圆柱形,其直径范围为0mm—75mm,高度范围为40mm—100mm。
本发明的另一目的在于提供一种岩石蠕变冲击与微裂隙扫描实验方法,该实验方法利用上述的保压装置,依次包括以下步骤:
a 安装岩石试件,
将四组恒压锁止机构伸长至最大,将压力实时监测调节机构的液压缸卸压至最低状态,将备好的岩石试件放入上、下面板之间;待岩石试件位置确定好后,将压力实时监测调节机构的液压缸注液上升,夹紧所述的岩石试件;
b 将步骤a完成所得整体结构安装于常规岩石力学实验机上,其中下面板安置在常规岩石力学实验机的下承压板上方,上面板安置于常规岩石力学实验机的上承压板下方,并紧固,此时,暂时关闭压力实时监测调节机构的控制枢纽部分;
c 开始实验,首先将恒压锁止机构中的三位四通阀调至左位,开启常规岩石力学实验机逐渐施压,岩石试件在高静载压力的作用下变形至裂隙发育;随着压力增大及试件变形,上面板与圆柱形压杆缓慢下降,当常规岩石力学实验机达到预定静载试验压力后停止,将三位四通阀调至中位,导杆将不再升降,常规岩石力学实验机施加的静载应力被锁止;
d 静载压力恒定后,进行外部冲击载荷实验,冲击实验完成后,将常规岩石力学实验机的静载压力卸压,由于上下面板之间的高度固定,因此箱体内的岩石试件始终保持一恒压的状态;待常规岩石力学实验机关闭后,开启压力实时监测调节机构的控制枢纽部分,同时利用搬运装置将设备与岩石试件一并移出;
e 若装置在搬运过程中压力出现轻微波动,压力传感器会接收信号反馈在外部智能压力控制枢纽的显示器上,控制枢纽感知后由导线实时传递信息给下方压力调节机构进行加压稳定装置内压力;
f 将装置和岩石试件一块取出后放入CT扫描实验机或声发射试验仪中,对岩石内部的裂隙分布进行实验扫描测定,观察并记录其裂隙的发育结果;
g 将装置从CT扫描实验机或声发射试验仪中取出,放置在常规岩石力学实验机上,重复步骤b,然后将常规岩石试验机加压至保压装置中岩石试件的静载应力水平,当二者压力相同时,将恒压锁止机构中的三位四通阀调至左位,重复步骤c、d、e、f,直至岩石试件实验过程全部完成;
h 实验结束后,关闭常规岩石实验机与压力调节机构,将恒压锁止机构中的三位四通阀调至右位,导杆上升恢复初始高度,取出岩石试件。
下面结合具体实施例对本发明实验方法做详细说明。
实施例1:
以某岩石单轴压缩蠕变扰动效应力学实验为例,来对本发明的实验方法进行具体说明:
该实验共进行三级静载应力下的冲击扰动实验,三级静载应力水平分别为40MPa、60MPa和80MPa,在每级静载水平下进行动力冲击扰动实验,冲击完成后将试件带压移出,利用CT扫描仪进行岩石内部微裂隙扫描,最终得到岩石在蠕变冲击作用下的微裂隙发育规律。其具体实验步骤包括:
步骤1:实验开始前,首先制备标准岩石试件,直径×高度=50mm×100mm;
步骤2:将四个角位置处的恒压锁止机构3的圆柱形压杆伸长至最大,将压力实时监测调节机构的液压缸17卸压至最低状态,将备好的标准岩石试件放入上、下面板之间;试件位置确定好后,将压力实时监测调节机构的液压缸注液使液压千斤顶上升,以一个较小的力夹紧岩石试件,以试件牢固为标准;
步骤3:将步骤2完成的整体结构安装于常规岩石力学实验机上,其中下面板安置在实验机下承压板上方,上面板安置于实验机上承压板下方,并紧固,此时,暂时关闭压力实时监测调节机构的控制枢纽部分,停止高压油泵向液压补压装置注液;
步骤4:开始实验,首先将恒压锁止机构中的三位四通阀调至左位14,实验机给予岩石试件的预定压力设置为40MPa;开启实验机逐渐施压,由于上部面板为长×宽×高=300mm×300mm×20mm的高强度合金钢材质板,可满足国际标准岩石力学试件的力学实验要求,很好地将压力传递给岩石试件,标准岩石试件在压力的情况下裂隙发育。随着压力增大,液压泵9出油,注入液压缸17上腔,上面板1与液压缸的导杆19下降。当实验机达到预定静载试验压力40MPa后停止。将三位四通阀调至中位15,此时,液压缸17和液压泵9连接断开,液压缸的导杆19将静止不动。随后实验机卸压,上下部面板之间的高度固定,箱体内的岩石试件始终保持一恒压的状态。待实验机关闭完毕,使用移动叉车通过插入移位孔18中,将装置和岩石试件取出,移动放入转运设备,随后将其移入CT扫描实验机或声发射试验仪中而不改变岩石试件的微裂隙发育状况;
实验过程中,压力传感器5处在开启状态,通过外部智能压力控制枢纽7的显示屏监测箱内压力值,以确保装置内部处于恒压状态;进一步的,不设置四面箱面构造能够使实验人员随时观察笼体内岩石试件的宏观变形特征;若装置在搬运过程中压力出现轻微波动,压力传感器5会接收信号反馈在外部智能压力控制枢纽7的显示器上,控制枢纽感知后由导线实时传递信息给下方压力调剂机构6进行加压稳定装置内压力;
步骤5:装置经过CT扫描实验和声发射试验,清晰扫描到岩石内部的裂隙分布,观察并记录其裂隙的发育结果,取得该项实验的数据后;移动叉车通过移位孔18,保持装置恒压状态下将装置和岩石试件再次移动到压力实验机上,固定好装置位置;
步骤6:依次设定预定压力为60MPa和80MPa,重复步骤4和步骤5,直至岩石试件实验过程全部完成;
步骤7:实验结束后,关闭实验机与液压补压装置6,将恒压锁止机构中的三位四通阀调至右位16,此时,液压泵9出油,注入液压缸17下腔中,导杆上升恢复至初始高度;最后取出岩石试件,清理岩石碎裂残渣。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于此。
尽管本文中较多的使用了诸如上面板、下面板、恒压锁止机构等术语,但并不排除使用其它术语的可能性,使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。
需要进一步说明的是,本文中所描述的具体实施例仅仅是对本发明的精神所作的举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (10)

  1. 一种岩石蠕变冲击与微裂隙扫描实验中的保压装置,其包括承压机构、恒压锁止机构和压力实时监测调节机构,所述的承压机构包括圆柱体面板、上下平行设置、大小相同的上面板和下面板,当所述的保压装置工作时,待测岩石试件放置在所述的圆柱体面板上,其特征在于:
    所述的恒压锁止机构设置有四组,分别设置在所述的上面板和下面板的四角处,其中每组恒压锁止机构包括圆柱形压杆和液压锁止装置,所述的液压锁止装置的底部位于所述的下面板上,所述的圆形压杆的顶部连接所述的上面板,底部连接在所述的液压锁止装置上;所述的液压锁止装置包括壳体及位于所述的壳体内的压力保持单元,所述的压力保持单元包括液压泵、溢流阀、油箱、进油口、出油口、液压缸及三位四通阀,所述的三位四通阀位于所述的壳体的外表面,通过手动调节所述的三位四通阀的开关来调节所述的进油口、出油口的连接位置, 所述的三位四通阀将所述的液压锁止装置分为左位、中位和右位三种位态:
    当液压锁止装置处在左位时,通过所述的液压泵出油,注入所述的液压缸的上腔,所述的液压缸的导杆可随着压力下降;
    当液压锁止装置处在中位时,所述的液压缸不受影响,静止不动,可以锁定当前压力;
    当液压锁止装置处在右位时,所述的液压泵出油,注入液压缸下腔,所述的液压缸的导杆可上升复位,所述的溢流阀用于对液压泵进行过载保护;
    所述的压力实时监测调节机构包括压力传感器、智能压力控制枢纽及液压补压装置,所述的液压补压装置包括圆柱体外壳和位于所述圆柱体外壳内的液压千斤顶,所述的圆柱体外壳位于所述的下面板的中心处,所述的圆柱体面板位于所述的圆柱体外壳的上方,且所述的圆柱体面板的底面积与所述的圆柱体外壳的底面积相同;所述的压力传感器位于所述的千斤顶的伸缩活柱的顶端,且所述的压力传感器和所述的千斤顶均由导线连接至所述的智能压力控制枢纽上,通过所述的智能压力控制枢纽对压力进行实时监测、显示和调节。
  2. 根据权利要求1所述的一种岩石蠕变冲击与微裂隙扫描实验中的保压装置,其特征在于:在所述的下面板的左右两侧边的中点处分别设置一个移位孔,所述的移位孔可供移动叉车插入。
  3. 根据权利要求1所述的一种岩石蠕变冲击与微裂隙扫描实验中的保压装置,其特征在于:所述的上面板、下面板均采用合金钢材料制作而成,其可承载强度≥300 MPa,所述的上面板、下面板的长×宽×厚=300mm×300mm×20mm,所述的圆柱体面板的直径×高度=80mm×15mm。
  4. 根据权利要求1所述的一种岩石蠕变冲击与微裂隙扫描实验中的保压装置,其特征在于:所述的圆柱形压杆的高度×直径=120mm×20mm,所述的液压锁止装置的外壳的长×宽×高=50mm×50mm×80mm。
  5. 根据权利要求1所述的一种岩石蠕变冲击与微裂隙扫描实验中的保压装置,其特征在于:所述的液压补压装置与液压锁止装置均连接外部高压油泵,对其供压,所述的高压油泵与所述的智能压力控制枢纽连接,由所述的智能压力控制枢纽统一控制。
  6. 根据权利要求5所述的一种岩石蠕变冲击与微裂隙扫描实验中的保压装置,其特征在于:所述的智能压力控制枢纽及时接收显示压力信号并触发所述的液压补压装置,并由所述的液压千斤顶将下面板顶起进行补压。
  7. 一种岩石蠕变冲击与微裂隙扫描实验方法,其特征在于,其采用权利要求1~6任一项所述的一种岩石蠕变冲击与微裂隙扫描实验中的保压装置,所述的实验方法依次包括以下步骤:
    a  安装岩石试件,
    将四组恒压锁止机构伸长至最大,将压力实时监测调节机构的液压缸卸压至最低状态,将备好的岩石试件放入上、下面板之间;待岩石试件位置确定好后,将压力实时监测调节机构的液压缸注液上升,夹紧所述的岩石试件;
    b  将步骤a完成所得整体结构安装于常规岩石力学实验机上,其中下面板安置在常规岩石力学实验机的下承压板上方,上面板安置于常规岩石力学实验机的上承压板下方,并紧固,此时,暂时关闭压力实时监测调节机构的控制枢纽部分;
    c  开始实验,首先将恒压锁止机构中的三位四通阀调至左位,开启常规岩石力学实验机逐渐施压,岩石试件在高静载压力的作用下变形至裂隙发育;随着压力增大及试件变形,上面板与圆柱形压杆缓慢下降,当常规岩石力学实验机达到预定静载试验压力后停止,将三位四通阀调至中位,导杆将不再升降,常规岩石力学实验机施加的静载应力被锁止;
    d 静载压力恒定后,进行外部冲击载荷实验,冲击实验完成后,将常规岩石力学实验机的静载压力卸压,由于上下面板之间的高度固定,因此箱体内的岩石试件始终保持一恒压的状态;待常规岩石力学实验机关闭后,开启压力实时监测调节机构的控制枢纽部分,同时利用搬运装置将设备与岩石试件一并移出;
    e 若装置在搬运过程中压力出现轻微波动,压力传感器会接收信号反馈在外部智能压力控制枢纽的显示器上,控制枢纽感知后由导线实时传递信息给下方压力调节机构进行加压稳定装置内压力;
    f 将装置和岩石试件一块取出后放入CT扫描实验机或声发射试验仪中,对岩石内部的裂隙分布进行实验扫描测定,观察并记录其裂隙的发育结果;
    g 将装置从CT扫描实验机或声发射试验仪中取出,放置在常规岩石力学实验机上,重复步骤b,然后将常规岩石试验机加压至保压装置中岩石试件的静载应力水平,当二者压力相同时,将恒压锁止机构中的三位四通阀调至左位,重复步骤c、d、e、f,直至岩石试件实验过程全部完成;
    h 实验结束后,关闭常规岩石实验机与压力调节机构,将恒压锁止机构中的三位四通阀调至右位,导杆上升恢复初始高度,取出岩石试件。
  8. 根据权利要求7所述的一种岩石蠕变冲击与微裂隙扫描实验方法,其特征在于:步骤d中,利用搬运装置将设备与岩石试件一并移出时,需保证设备稳定恒压。
  9. 根据权利要求7所述的一种岩石蠕变冲击与微裂隙扫描实验方法,其特征在于:所述的岩石试件为圆柱形,其直径为0mm—75mm,高度为40mm—100mm。
  10. 根据权利要求7所述的一种岩石蠕变冲击与微裂隙扫描实验方法,其特征在于:所述的智能压力控制枢纽监测显示的压力强度范围为0MPa—300MPa。
PCT/CN2020/116800 2020-06-08 2020-09-22 岩石蠕变冲击与微裂隙扫描实验中的保压装置及实验方法 WO2021248735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010510167.8 2020-06-08
CN202010510167.8A CN111811943B (zh) 2020-06-08 2020-06-08 岩石蠕变冲击与微裂隙扫描实验中的保压装置及实验方法

Publications (1)

Publication Number Publication Date
WO2021248735A1 true WO2021248735A1 (zh) 2021-12-16

Family

ID=72844856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116800 WO2021248735A1 (zh) 2020-06-08 2020-09-22 岩石蠕变冲击与微裂隙扫描实验中的保压装置及实验方法

Country Status (2)

Country Link
CN (1) CN111811943B (zh)
WO (1) WO2021248735A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486546A (zh) * 2022-01-27 2022-05-13 福州大学 恒定刚度边界水压致裂试验装置
CN116625770A (zh) * 2023-05-26 2023-08-22 中国矿业大学(北京) 采煤深陷区微裂隙研究装置及研究方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111811943B (zh) * 2020-06-08 2021-03-30 山东科技大学 岩石蠕变冲击与微裂隙扫描实验中的保压装置及实验方法
CN112834324A (zh) * 2021-01-11 2021-05-25 武汉科技大学 一种便携式拉压剪应力施加装置
CN114740026B (zh) * 2022-04-06 2022-11-01 安徽理工大学 一种带ct实时扫描的水力耦合实验装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008665A (ja) * 2007-05-25 2009-01-15 Tohoku Univ 応力保持装置およびx線回折装置
CN106546492A (zh) * 2016-10-28 2017-03-29 中国地质大学(武汉) 一种岩土体大尺寸原位三轴蠕变试验系统
CN108732043A (zh) * 2018-05-03 2018-11-02 山东科技大学 一种可模拟冲击扰动的深部岩体蠕变冲击试验装置
CN111122323A (zh) * 2019-12-31 2020-05-08 太原理工大学 锚杆对围岩动静载荷作用下阻裂机理的试验装置及方法
CN111811943A (zh) * 2020-06-08 2020-10-23 山东科技大学 岩石蠕变冲击与微裂隙扫描实验中的保压装置及实验方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620996A (zh) * 2012-04-11 2012-08-01 江苏师范大学 一种同时测定破碎岩石蠕变参数及渗透参数的操作方法
CN105716947B (zh) * 2016-01-26 2018-07-24 河海大学 一种岩石的细观蠕变破坏过程的测试方法
CN105716956A (zh) * 2016-01-28 2016-06-29 山东大学 一种蠕变试验装置及其控制系统
CN207147874U (zh) * 2017-06-21 2018-03-27 辽宁科技大学 一种在电子万能实验机上测试压缩蠕变时效的夹具
CN208334092U (zh) * 2018-05-03 2019-01-04 山东科技大学 一种可模拟冲击扰动的深部岩体蠕变冲击试验装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008665A (ja) * 2007-05-25 2009-01-15 Tohoku Univ 応力保持装置およびx線回折装置
CN106546492A (zh) * 2016-10-28 2017-03-29 中国地质大学(武汉) 一种岩土体大尺寸原位三轴蠕变试验系统
CN108732043A (zh) * 2018-05-03 2018-11-02 山东科技大学 一种可模拟冲击扰动的深部岩体蠕变冲击试验装置
CN111122323A (zh) * 2019-12-31 2020-05-08 太原理工大学 锚杆对围岩动静载荷作用下阻裂机理的试验装置及方法
CN111811943A (zh) * 2020-06-08 2020-10-23 山东科技大学 岩石蠕变冲击与微裂隙扫描实验中的保压装置及实验方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486546A (zh) * 2022-01-27 2022-05-13 福州大学 恒定刚度边界水压致裂试验装置
CN114486546B (zh) * 2022-01-27 2023-02-03 福州大学 恒定刚度边界水压致裂试验装置
CN116625770A (zh) * 2023-05-26 2023-08-22 中国矿业大学(北京) 采煤深陷区微裂隙研究装置及研究方法
CN116625770B (zh) * 2023-05-26 2023-11-28 中国矿业大学(北京) 采煤深陷区微裂隙研究装置及研究方法

Also Published As

Publication number Publication date
CN111811943B (zh) 2021-03-30
CN111811943A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2021248735A1 (zh) 岩石蠕变冲击与微裂隙扫描实验中的保压装置及实验方法
CN107941615B (zh) 一种三轴试验机及试验系统
Zhou et al. Fracture evolution and failure behaviour of marble specimens containing rectangular cavities under uniaxial loading
Joye et al. A bubble inflation technique for the measurement of viscoelastic properties in equal biaxial extensional flow
CN1318834C (zh) 岩石直剪试验机
CN108007763A (zh) 一种侧向双轴加载试验装置及方法
KR20150119523A (ko) 콘크리트 인장 크리프 시험장치 및 방법
CN108751022A (zh) 一种岩石力学测试的荷载平台
CN105716956A (zh) 一种蠕变试验装置及其控制系统
Logan et al. Triaxial compression testing at intermediate strain rates
CN106680120A (zh) 一种高频电液伺服疲劳试验机
Liu Breakage and deformation mechanisms of crushable granular materials
CN105466758A (zh) 可消除摩擦影响且可对柱轴力进行控制的加载装置及方法
CN108414365B (zh) 混凝土受自然力作用下破坏应力-应变全曲线测试装置
CN104458311B (zh) 结构柱抗爆试验装置
CN210263180U (zh) 一种工程桩基检测装置
CN206906143U (zh) 一种建筑混凝土试样压力测试装置
Yaguchi et al. Creep-fatigue damage assessment by subsequent fatigue straining
JPH0979960A (ja) 圧裂引張試験装置
CN108931436A (zh) 一种软弱岩石的偏心加载及剪切蠕变复合作用试验装置
CN204373926U (zh) 结构柱抗爆试验装置
CN101762380A (zh) 一种脚手架竖向极限稳定承载能力试验方法
CN110108462A (zh) 一种作动器随动控制的结构试验机减振方法
CN205786112U (zh) 用于现场检测水泥砂浆抗压强度的试验仪
CN213275174U (zh) 混凝土抗压强度检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940067

Country of ref document: EP

Kind code of ref document: A1