WO2021248355A1 - 一种亚波长光栅光学膜 - Google Patents

一种亚波长光栅光学膜 Download PDF

Info

Publication number
WO2021248355A1
WO2021248355A1 PCT/CN2020/095320 CN2020095320W WO2021248355A1 WO 2021248355 A1 WO2021248355 A1 WO 2021248355A1 CN 2020095320 W CN2020095320 W CN 2020095320W WO 2021248355 A1 WO2021248355 A1 WO 2021248355A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
wavelength
grating
height
refractive index
Prior art date
Application number
PCT/CN2020/095320
Other languages
English (en)
French (fr)
Inventor
郑君
Original Assignee
厦门镌纹科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门镌纹科技有限公司 filed Critical 厦门镌纹科技有限公司
Publication of WO2021248355A1 publication Critical patent/WO2021248355A1/zh
Priority to US18/056,714 priority Critical patent/US20230080327A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/203Filters having holographic or diffractive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Definitions

  • the present invention relates to light filtering technology, in particular to a light filter film, which is suitable for use in display screens of televisions, computers, mobile phones, etc., and light filter films for preventing the transmission of blue-violet light in LED lighting.
  • blue LED lighting people use a blue light source with a wavelength of about 400-505 nanometers to produce white light by pumping yellow phosphors.
  • Long-term blue-violet light irradiation is very harmful to human eyes, especially blue-violet light with a wavelength below 450 nanometers has almost no contribution to human visual function, but it is the culprit of human eye diseases.
  • Blue-violet light has short wavelength, high frequency, and high energy, which can penetrate the lens of the human eye directly to the retina, causing damage to it. Long-term overexposure of human eyes can cause dry eyes, eye pain, decreased vision, macular degeneration, cataracts, etc.
  • the filter film technology is mainly used to filter harmful and unhelpful wavelengths.
  • the existing blue light filter film mainly adopts two schemes, but they have their own disadvantages: 1Using yellow phosphor to absorb blue light. This way of filtering the spectrum is too wide, which will cause chromatic aberration and affect the visual effect; 2Using vacuum coating technology
  • the multi-layer reflective film is made to reflect blue light and prevent the transmission of blue light; but at the same time, it also reflects the blue-violet light in the ambient light into the human eyes, which can damage the eyes.
  • the purpose of the present invention is to provide a sub-wavelength grating optical film, which can solve the problem of damage to human eyes that cannot effectively filter or prevent the transmission of blue-violet light.
  • a sub-wavelength grating optical film includes a plurality of one-dimensional periodic grating units repeatedly arranged side by side, and each grating unit with a grating period of p includes a first medium, a second medium, and a sixth medium.
  • each of the grating units further includes a third material, a fourth material, and a fifth material; the third material having a thickness or height of h3 and a width of w is arranged on the top of the first medium ;
  • a fourth material parallel to the bottom of the first medium is arranged between two adjacent first media, and the fourth material has a width of pw and a height of h4; a fifth with a height or thickness of h5 and a width of s
  • the material is arranged on both sides of the first medium and the third material, and the second medium is arranged between adjacent fifth materials arranged at intervals; wherein, the first medium, the third material, the fourth material and the fifth material
  • the height relationship of the materials is h5 ⁇ h+h3-h4; the first medium, the second medium, the third material, the fourth material, and the fifth material have at least one refractive index that is different from other refractive indexes; the grating period p Set so that the incident wavelength is less than the set
  • the wavelength of the blue-violet light to be filtered is ⁇
  • the grating structure equivalent waveguide composed of the first medium, the second medium, the sixth medium, the seventh medium, the third material, the fourth material and the fifth material satisfies
  • the waveguide resonantly absorbs the wavelength ⁇ , so that the optical efficiency of the wavelength ⁇ in the transmission and reflection spectra is the lowest.
  • the wavelength of the blue-violet light to be filtered is ⁇
  • the grating structure equivalent waveguide composed of the first medium, the second medium, the sixth medium, the seventh medium, the third material, the fourth material and the fifth material satisfies
  • the waveguide resonance reflection enhancement wavelength is ⁇ , so that the optical efficiency of the wavelength ⁇ in the transmission and reflection spectra is the lowest and the highest, respectively.
  • the wavelength of the blue-violet light band that does not need to be filtered is ⁇
  • the grating structure composed of the first medium, the second medium, the sixth medium, the seventh medium, the third material, the fourth material and the fifth material is equivalent to a waveguide
  • the waveguide resonance transmission enhancement wavelength of ⁇ is ⁇ , so that the optical efficiency of wavelength ⁇ in the transmission and reflection spectra is the highest and the lowest, respectively.
  • the first medium, the second medium, the third material, the fourth material, and the fifth material are single-layer or mixed-layer materials.
  • the third material, the fourth material and the fifth material of each of the grating units are materials with the same refractive index; at least one of the three materials of the first medium, the second medium and the third material and another The refractive index of the two materials is different.
  • the refractive index of the second medium, the third material, the fourth material, the fifth material and the seventh medium material are the same, and the refractive index of the first medium is different from other materials.
  • the width w of the first medium is 0.3-0.7 times the period, so that the transmission efficiency of blue-violet light below the wavelength of 450 nm is reduced.
  • the refractive index of the first medium is 2.3
  • the refractive indexes of the second medium, the third material, the fourth material, the fifth material, the sixth medium, and the seventh medium are 1.6
  • the third material is titanium oxide
  • the refractive index is 1.5, and the refractive index of the third material and the fifth material are 2.3, so that the transmission efficiency of blue-violet light below 450 nm is reduced.
  • the present invention has the following beneficial effects: 1. A very good blue-violet light filtering effect can be achieved through simple parameter design, and the cost is lower than that of the multilayer coating technology. 2. The blue-violet light is diffracted and filtered and will not cause reflection hazards.
  • Figure 1 is a schematic diagram of the geometric structure of the sub-wavelength grating optical film of the present invention
  • FIG. 2 is a schematic diagram of the structure of the first embodiment of the sub-wavelength grating optical film of the present invention and a simulation result diagram of diffraction efficiency, and the grating structure only contains two kinds of media;
  • Fig. 3 is a simulation result diagram of the second embodiment of the sub-wavelength grating optical film of the present invention, showing the filtering effect of TM polarized light;
  • FIG. 4 is a simulation result diagram of the third embodiment of the sub-wavelength grating optical film of the present invention, and the influence of the width of the first medium on the filtering effect;
  • FIG. 5 is a simulation result diagram of the fourth embodiment of the sub-wavelength grating optical film of the present invention, and the influence of the height of the first medium on the light filtering effect;
  • FIG. 6 is a diagram of simulation results of the fifth embodiment of the sub-wavelength grating optical film of the present invention, and the grating structure includes the first and second media and the fourth material;
  • FIG. 7 is a simulation result diagram of the sixth embodiment of the sub-wavelength grating optical film of the present invention, and the grating structure includes the first and second mediums and the third material;
  • FIG. 8 is a diagram of simulation results of the seventh embodiment of the sub-wavelength grating optical film of the present invention, and the grating structure includes the first and second media and the third, fourth, and fifth materials;
  • FIG. 9 is a diagram of simulation results of the eighth embodiment of the sub-wavelength grating optical film of the present invention.
  • the grating structure includes the first and second media and the third, fourth, and fifth materials.
  • the first medium 2. The second medium; 3. The third material; 4. The fourth material; 5. The fifth material; 6. The sixth medium; 7. The seventh medium; Wavelength light; 9, incident long-wavelength light; 10, diffracted short-wavelength light; 11, weak short-wavelength transmitted light; 12, strong long-wavelength transmitted light.
  • a sub-wavelength grating optical film has a filtering effect on TE polarized light, and its grating structure only contains two kinds of media: the first medium 1 and the second medium 2.
  • the sub-wavelength grating optical film includes a plurality of one-dimensional periodic grating units repeatedly arranged side by side, and each grating unit with a grating period of p includes a first medium 1 and a second The second medium 2, the sixth medium 6 and the seventh medium 7; the thickness or height of the first medium 1 arranged side by side at equal intervals is h, and the width is w, and the second medium 2 is filled in two adjacent first mediums.
  • a sixth medium 6 as a substrate is arranged at the bottom of a plurality of grating units periodically arranged side by side, and a seventh medium 7 as a cover layer is arranged on the top; the first medium 1 and the second medium 2 refract The rate is different; the grating period p is set so that the incident wavelength is less than the set wavelength of the blue-violet light, at least one of which is in the first medium 1, the second medium 2, the sixth medium 6 and the seventh medium 7.
  • the diffraction angle in the medium or material with the highest refractive index is less than 90 degrees, which causes at least one wavelength of the blue-violet light band of zero-order transmission to be weakened.
  • the refractive index is 2.3, and the refractive indexes of the second medium 2, the sixth medium 6 and the seventh medium 7 are 1.6.
  • the simulation results show that the transmission efficiency of TE polarized light with a wavelength of less than 450 nanometers is only 33%, and the efficiency of diffraction to the left and right sides of the waveguide formed by the grating structure is about 28%.
  • the transmission of long-wavelength light is strong, and the transmission efficiency of light with wavelengths greater than 500 nanometers is as high as 97%.
  • the 500-nanometer light has a low transmission efficiency due to the enhanced resonant reflection of the waveguide formed by the grating, but for the display, it will not affect the display effect, because the red, green and blue light of the LED has very little light intensity near 500nm.
  • the wavelength that can be diffracted to both sides of the waveguide becomes larger, and the wavelength of the waveguide resonance becomes larger. At this time, the filtering effect of blue-violet light can be divided.
  • the air diffraction effect (the diffraction angle in the air is less than 90 degrees) weakens the transmission; the diffraction effect in the waveguide weakens the transmission; the waveguide resonance reflection strengthens and weakens the transmission; the waveguide resonance absorption strengthens and weakens the transmission.
  • Example 2 the filtering effect of the sub-wavelength grating optical film on TM polarized light.
  • the incident light wave is changed to TM polarized light
  • the simulation result of the finite element software show that the transmission efficiency of TM polarized light with a wavelength of less than 450 nanometers is 65%.
  • the transmission of long-wavelength light is mostly greater than 96%.
  • the transmission efficiency of light with a wavelength between 450nm-518nm is almost 100% due to the waveguide resonance.
  • the transmission efficiency of 518nm light is low due to the waveguide resonance reflection, but for the display, it will not affect the display effect, because the redness of the LED
  • the light intensity of green and blue light is very small near 500nm.
  • This structure can increase the blue-violet transmission efficiency of 450nm-500nm to ensure the displayed blue-violet light transmission efficiency, and only filter the blue-violet light below 450nm which is more harmful to human eyes. In the same way, we can increase or decrease the wavelength of interest by increasing or decreasing the period.
  • Example 3 The effect of grating duty cycle on optical film.
  • the incident light wavelength is taken as 420 nanometers, and the duty cycle of the grating is changed.
  • the simulation result of the finite element software show that the grating duty cycle, that is, the ratio of the first medium width in the grating to the grating period, within the range of 0.3 to 0.5, the light wave transmission, reflection, and diffraction efficiency does not change much, and it is always a good blue-violet light filter. Light film.
  • Example 4 The effect of the height of the first medium on the optical film.
  • the incident light wavelength is taken as 420 nanometers, and the height of the first medium is changed.
  • the simulation result of the finite element software show that when the period is 285 nanometers and the grating height is in the range of 140 to 260 nanometers, the transmission, reflection, and diffraction efficiency of light waves do not change much, and it is always a better blue-violet light filter film.
  • Embodiment 5 A sub-wavelength grating optical film has a filtering effect on TE polarized light, and its grating structure includes a first medium, a second medium and a fourth material.
  • Each grating unit with a grating period of p includes a first medium 1, a second medium 2, a fourth material 4, a sixth medium 6 and a seventh medium 7. .
  • the fourth material 4 is arranged under the second medium 2 and between two adjacent first mediums 1, the thickness or height of the fourth material 4 is h4, the first medium 1, the second medium
  • the refractive index of at least one of the medium 2, the fourth material 4, the sixth medium 6 and the seventh medium 7 is different from the other refractive index;
  • the diffraction angle in the medium or material with the highest refractive index is less than 90 degrees, resulting in zero-order At least one wavelength of the transmitted blue-violet light band is weakened.
  • the simulation results show that the transmission efficiency of TE polarized light with a wavelength of less than 455 nanometers is only about 40%, and the efficiency of diffraction to the left and right sides of the waveguide formed by the grating is 20%.
  • the transmission of long-wavelength light is strong, and the transmission efficiency of light with a wavelength greater than 520 nanometers is as high as 95% or more.
  • the transmission efficiency of 505-nanometer light is very low due to the waveguide resonance reflection enhancement, but for the display, it will not affect the display effect, because the red, green and blue light of the LED is very weak near 500nm.
  • Embodiment 6 A sub-wavelength grating optical film has a filtering effect on TE polarized light, and its grating structure includes a first medium, a second medium and a third material.
  • Each grating unit with a grating period of p includes a first medium 1, a second medium 2, a third material 3, a sixth medium 6 and a seventh medium 7. .
  • each of the grating units further includes a third material 3, and the third material 3 with a thickness or height of h3 and a width of w is provided on the top of the first medium 1, and the first medium 1, the first medium At least one refractive index of the second medium 2, the third material 3, the sixth medium 6 and the seventh medium 7 is different from the other refractive index;
  • the diffraction angle in the medium or material with the highest refractive index is less than 90 degrees, resulting in zero At least one wavelength of the blue-violet light band of the first-order transmission is weakened.
  • the grating period p 285nm
  • the width w 142.5nm of the first medium 1 and the third material 3
  • the thickness or height h3 15nm
  • the refractive index of the first medium 1 is 2.3
  • the refractive index of the second medium 2 is 1.6
  • the third material 3 is titanium oxide.
  • the simulation results show that the transmission efficiency of TE polarized light with a wavelength of less than 455 nanometers is less than 35%, and the efficiency of diffraction to the left and right sides is about 20-30%.
  • the transmission of long-wavelength light is strong, and the transmission efficiency of light with wavelengths greater than 520 nanometers is as high as 96% or more.
  • the light transmission efficiency of 495 nm is very low, but for the display, it will not affect the display effect, because the red, green and blue light of the LED is very small near 500 nm.
  • Embodiment 7 A sub-wavelength grating optical film has a filtering effect on TE polarized light, and its grating structure includes the first and second media and the third and fifth materials.
  • the third material 3 with a thickness or height of h3 and a width of w is arranged on the top of the first medium 1, and a fifth material 5 with a width of s and a height or thickness of h5 is arranged on the first medium 1 and On both sides of the third material 3, the second medium 2 is arranged between adjacent fifth materials 5; the first medium 1, the second medium 2, the third material 3, the fourth material, and the At least one of the five materials 5, the sixth medium 6 and the seventh medium 7 has a refractive index that is different from the others; the grating period p is set so that the incident wavelength is smaller than the set wavelength of blue-violet light, at least one of which is in Among the first medium 1, the second medium 2, the third material 3, the fifth material 5, the sixth medium 6, and the seventh medium 7, the diffraction angle in the medium or material with the highest refractive index is less than 90 degrees, resulting in zero At least one wavelength of the blue-violet
  • the grating period p 300nm
  • the width w 120nm of the first medium 1 and the thickness of the third material 3
  • height h3 140nm
  • the refractive index of the sixth medium 6 and the seventh medium 7 is 1.5
  • the refractive index of the third material 3 and the fifth material 5 is 2.3.
  • the simulation results show that the transmission efficiency of TE polarized light with a wavelength of less than 490 nanometers is less than 60%, and the efficiency of diffraction to the left and right sides is less than 30%.
  • the transmission of long-wavelength light is strong, and the transmission efficiency of light with a wavelength greater than 510 nanometers is as high as 95% or more.
  • Embodiment 8 A sub-wavelength grating optical film has a filtering effect on TE polarized light, and the grating structure includes the first and second media and the third, fourth, and fifth materials.
  • the sub-wavelength grating optical film includes a plurality of one-dimensional periodic grating units repeatedly arranged side by side, and each grating unit with a grating period of p includes a first medium 1 and a second The second medium 2, the third material 3, the fourth material 4, the fifth material 5, the sixth medium 6 and the seventh medium 7.
  • the third material 3 with a height of h3 is set at the height of h and a width of w.
  • a fifth material 5 with a width of s and a height of h5 is arranged on both sides of the first medium 1 and the third material 3, and the second medium 2 is arranged at the fifth adjacent interval.
  • a fourth material 4 parallel to the bottom of the first medium 1 is arranged between two adjacent first mediums 1, and the fourth material 4 has a width of pw and a height of h4, and is arranged adjacently
  • the second medium 2 is arranged between the fifth material 5 of the, and the sixth medium 6 as the substrate is arranged at the bottom of the plurality of grating units arranged periodically side by side, and the seventh medium 7 as the covering layer is arranged on the top, wherein the first medium 1.
  • the height relationship of the third material 3, the fourth material 4 and the fifth material 5 is h5 ⁇ h+h3-h4.
  • At least one refractive index of the first medium 1, the second medium 2, the third material 3, the fourth material 4, the fifth material 5, the sixth medium 6 and the seventh medium 7 is different from the other refractive index;
  • the period p is set so that in the blue-violet light whose incident wavelength is less than the set wavelength, at least one of the wavelengths is in the first medium 1, the second medium 2, the third material 3, the fourth material 4, and the fifth material 5.
  • the diffraction angle in the medium or material with the highest refractive index in the sixth medium 6 and the seventh medium 7 is less than 90 degrees, thereby causing at least one wavelength of the blue-violet light band of the zero-order transmission to be weakened.
  • the grating period p 300nm
  • the width w 90nm of the first medium 1 and the thickness of the third material 3
  • height h3 50nm
  • the width of the third material 3 is 90nm
  • the width of the fourth material 4 is 210nm
  • the refractive index of the first medium 1 is 1.7
  • the refractive index of the second medium 2 the sixth medium 6 and the seventh medium 7 are 1.5
  • the refractive index of material 5 is 2.3.
  • the simulation results show that the transmission efficiency of TE polarized light with a wavelength of less than 450 nanometers is less than 60%, and the efficiency of diffraction to the left and right sides is about 10%.
  • the transmission of long-wavelength light is strong, especially the transmission efficiency of light with a wavelength greater than 490 nanometers is as high as 95% or more.
  • first medium 1, the second medium 2, the third material 3, the fourth material 4, and the fifth material 5 are single-layer or mixed-layer materials.
  • the third material 3, the fourth material 4, and the fifth material 5 may be metal or dielectric material, and may be the same type of material as the first medium 1.
  • the width of the second medium 2 is less than or equal to the grating period p minus the width w of the first medium 1.
  • the thickness or height of the second medium 2 is less than or equal to the sum of the thickness or height of the first medium 1 and the third material 3.
  • the thickness or height of the fifth material 5 is less than or equal to the thickness or height of the first medium 1 and the third material 3 minus the thickness or height of the fourth material 4.
  • Sub-wavelength grating optical film by controlling the grating period, duty ratio, thickness and refractive index of each layer of material, at least ensure that the waveguide mode resonance wavelength of each layer of material under zero incidence is less than the most sensitive 550nm wavelength of the human eye or
  • the green center wavelength of the three-primary white light source preferably the resonance wavelength is located at the weakest green light wavelength of the white light source, so as to at least ensure that the transmission valley wavelength of the zero-order transmitted light under zero incidence is not the most sensitive 550nm wavelength of the human eye or the three-primary white light source
  • the center wavelength of the green chip by controlling the grating period, duty ratio, thickness and refractive index of each layer of material, at least ensure that the waveguide mode resonance wavelength of each layer of material under zero incidence is less than the most sensitive 550nm wavelength of the human eye or
  • the green center wavelength of the three-primary white light source preferably the resonance wavelength is located at the weakest green light wavelength of the white light source, so as to at least ensure that the
  • the present invention proposes to generate diffracted light through a grating to effectively reduce the transmission efficiency of blue-violet light below a certain wavelength. For example, to reduce the transmission efficiency of light with a wavelength of less than 450 nanometers, when the refractive index of the substrate is 1.6, the grating period is required to be 281 nanometers. Through numerical simulation, the grating thickness and duty cycle are further optimized to obtain the highest diffraction efficiency and lowest transmission efficiency of blue-violet light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种亚波长光栅光学膜,包括多个并排重复设置的一维周期光栅单元,每个周期为p的光栅单元包括第一介质(1)、第二介质(2)、第三材料(3)、第四材料(4)、第五材料(5)、第六介质(6)和第七介质(7),在并排周期设置的多个光栅单元的底部设置作为衬底的第六介质(6)、顶部设置作为覆盖层的第七介质(7)。通过控制光栅周期和折射率,使得入射蓝紫光满足在最高折射率层内的衍射角度小于90度;通过调整光栅的占空比和各层材料厚度,使得蓝紫光波段的透射光能量最低,从而可以隔绝有害蓝紫光,这种方法比传统镀膜方式成本更低。

Description

一种亚波长光栅光学膜 技术领域
本发明涉及滤光技术,尤其涉及一种滤光膜,适用于电视、电脑、手机等的显示屏和LED照明中的防止蓝紫光透射的滤光膜。
背景技术
在白光LED照明中,人们用波长400-505纳米左右的蓝光光源通过泵浦黄色荧光粉而产生白光。长期的蓝紫光照射对人眼十分有害,尤其是波长在450纳米以下的蓝紫光对人眼视觉功能几乎没有贡献,却是人眼病变的祸首。蓝紫光波长短、频率大、能量高,能够穿透人眼晶状体直达视网膜,对其造成损害。人眼长期处于过度曝光下,会引起眼干、眼痛、视力下降、黄斑病变、白内障等。
为了避免蓝紫光对眼睛的损害,现在主要采用滤光膜技术进行有害无益波长的波过滤。现有的蓝光过滤膜主要采用两种方案,它们却又产生了各自的缺陷:①利用黄色荧光粉吸收蓝光,这种方式过滤光谱过宽,会造成色差,影响视觉效果;②利用真空镀膜技术制作多层反射膜反射蓝光,阻止蓝光透射;但同时,它也会反射环境光中的蓝紫光进到人眼,反而损伤眼睛。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种亚波长光栅光学膜,其能解决不能有效过滤或阻止蓝紫光的透射对人眼的损害问题。
设计原理:利用亚波长光栅结构的纳米光学膜,通过合理设计参数,将蓝紫光横向导引或者共振反射,使其透射降低。
技术方案:为了达到滤除蓝紫光的目的,本发明采用以下技术方案实现。
一种亚波长光栅光学膜,所述亚波长光栅光学膜包括多个并排重复设置的一维周期光栅单元,每个光栅周期为p的所述光栅单元包括第一介质、第二介质、第六介质和第七介质;每个所述光栅单元还包括第三材料、第四材料和第五材料;厚度或高度为h3、宽度为w的所述第三材料设置在所述第一介质的顶部;在相邻的两个第一介质之间设置与第一介质底部平行的第四材料,所述第四材料的宽度为p-w、高度为h4;高度或厚度为h5、宽度为s的第五材料设置在所述第一介质和第三材料的两侧,所述第二介质设置在相邻间隔设置的第五材料之间;其中,第一介质、第三材料、第四材料和第五材料的高度关系为h5≤h+h3-h4;所述第一介质、第二介质、第三材料、第四材料和第五材料至少有一种折射率和其它折射率不一样;光栅周期p的设置使得入射的波长小于设定波长的蓝紫色光中其至少有一个波长在所述第一介质、第二介质、第三材料、第四材料、第五材料、第六介质和第七介质中折射率最高的介质或材料内的衍射角小于90度,从而导致零阶透射的蓝紫光波段的至少一个波长减弱。
优选的,所需要过滤的蓝紫光波段的波长为λ,第一介质、第二介质、第六介质、第七介质、第三材料、第四材料和第五材料构成的光栅结构等效波导满足波导共振吸收波长为λ,以使得透射和反射光谱中波长为λ的光学效率最低。
优选的,所需要过滤的蓝紫光波段的波长为λ,第一介质、第二介质、第六介质、第七介质、第三材料、第四材料和第五材料构成的光栅结构等效波导满足波导共振反射增强波长为λ,以使得透射和反射光谱中波长为λ的光学效率分别为最低和最高。
优选的,所不需要过滤的蓝紫光波段的波长为λ,第一介质、第二介质、第六介质、第七介质、第三材料、第四材料和第五材料构成的光栅结构等效波导的波导共振透射增强波长为λ,以使得透射和反射光谱中波长为λ的光学效率分别为最高和最低。
优选的,所述第一介质、第二介质、第三材料、第四材料、第五材料为单层或混合多层材料。
优选的,每个所述光栅单元的第三材料、第四材料和第五材料为折射率相同材料;所述第一介质、第二介质和第三材料这三种材料中至少一种和另外两种材料折射率不一样。
优选的,光栅周期p≤505nm;第一介质的厚度或高度h=50-800nm,第一介质的宽度w为周期p的0.3-0.7;第三材料的厚度或高度h3=20-150nm,第三材料的宽度等于第一介质宽度;第四材料的厚度或高度h4=20nm-150nm,第五材料的厚度或高度等于第一材料,第五材料的宽度s=20-150nm;第一介质为树脂、PC、PET、PMMA、SU8或者光刻胶,第二介质、第六介质和第七介质为玻璃、树脂、PC、PET、PMMA、SU8或者光刻胶,第三材料、第四材料和第五材料为相同材料的氧化锌、氧化钛、氧化锆或者氮化硅。
优选的,第二介质、第三材料、第四材料、第五材料和第七介质材料折射率相同,且第一介质的折射率和其他材料不同。
优选的,当第一介质的折射率为2.3,第二介质、第六介质和第七介质的折射率为1.6时,光栅周期p≤505nm,第一介质的厚度或高度h=50-240nm,第一介质的宽度w为周期的0.3-0.7倍,以使得450nm波长以下的蓝紫光透射效率降低。
优选的,当第一介质的折射率为2.3,第二介质、第三材料、第五材料、第六介质和第七介质的折射率为1.6时,第四材料为氧化钛,第四材料的厚度或高度h4=10nm,光栅周期p≤505nm,第一介质的厚度或高度h=100-300nm,第一介质的宽度w为周期的0.3-0.7倍,以此使得505nm波长以下的蓝紫光透射效率降低。
优选的,当第一介质的折射率为2.3,第二介质、第三材料、第四材料、第五材料、第六介质和第七介质的折射率为1.6,第三材料为氧化钛时,光栅周期p≤285nm,第一介质的厚度或高度h=50-200nm,第一介质的宽度w为周期的0.3-0.7,第三材料的厚度或高度h3=15nm,第三材料的宽度为周期的0.3-0.7,以此使得450nm以下的蓝紫光透射效率降低。
优选的,光栅周期p≤300nm,第一介质的厚度或高度h=50-600nm,第一介质的宽度为周期的0.3-0.7,第三材料的厚度或高度h3=50-2000nm,第三材料的宽度为w周期的0.3-0.7,第五材料的厚度或高度h5=100-700nm,第五材料的宽度s=20-50nm;第一介质、第二介质、第六介质和第七介质的折射率为1.5,第三材料和第五材料的折射率为2.3,以此使得450nm以下的蓝紫光透射效率降低。
技术效果:相比现有技术,本发明的有益效果在于:1、通过简单的参数设计可以实现非常好的蓝紫光过滤效果,比多层镀膜技术成本更低。2、蓝紫光被衍射过滤不会产生反光危害。
附图说明
图1为本发明亚波长光栅光学膜的几何结构示意图;
图2为本发明亚波长光栅光学膜的第1实施例的结构示意图和衍射效率的 模拟结果图,其光栅结构只包含2种介质;
图3为本发明亚波长光栅光学膜的第2实施例的模拟结果图,TM偏振光的滤光效果;
图4为本发明亚波长光栅光学膜的第3实施例的模拟结果图,第一介质的宽度对滤光效果的影响;
图5为本发明亚波长光栅光学膜的第4实施例的模拟结果图,第一介质的高度对滤光效果的影响;
图6为本发明亚波长光栅光学膜的第5实施例的模拟结果图,其光栅结构包含第一、二介质和第四材料;
图7为本发明亚波长光栅光学膜的第6实施例的模拟结果图,其光栅结构包含第一、二介质和第三材料;
图8为本发明亚波长光栅光学膜的第7实施例的模拟结果图,其光栅结构包含第一、二介质和第三、四、五材料;
图9为本发明亚波长光栅光学膜的第8实施例的模拟结果图,其光栅结构包含第一、二介质和第三、四、五材料。
图中:1、第一介质;2、第二介质;3、第三材料;4、第四材料;5、第五材料;6、第六介质;7、第七介质;8、入射的短波长光;9、入射的长波长光;10、被衍射的短波长光;11、弱的短波长透射光;12、强的长波长透射光。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所 有其他实施例,都属于本发明保护的范围。
实施例1,一种亚波长光栅光学膜对TE偏振光的滤光效果,其光栅结构只包含2种介质:第一介质1和第二介质2。
光学膜的结构示意图,参见图2中的图2a,亚波长光栅光学膜包括多个并排重复设置的一维周期光栅单元,每个光栅周期为p的所述光栅单元包括第一介质1、第二介质2、第六介质6和第七介质7;并排等间隔设置的所述第一介质1的厚度或高度为h、宽度为w,所述第二介质2填充在相邻的两个第一介质1之间,在并排周期设置的多个光栅单元的底部设置作为衬底的第六介质6、顶部设置作为覆盖层的第七介质7;所述第一介质1和第二介质2折射率不一样;光栅周期p的设置使得入射的波长小于设定波长的蓝紫色光中其至少有一个波长在所述第一介质1、第二介质2、第六介质6和第七介质7中折射率最高的介质或材料内的衍射角小于90度,从而导致零阶透射的蓝紫光波段的至少一个波长减弱。
利用有限元软件模拟结果,参见图2b,具体实施例中,光栅周期p=285nm,第一介质1的厚度或高度h=200nm,第一介质1的宽度w=142.5nm,第一介质1的折射率为2.3,第二介质2、第六介质6和第七介质7的折射率为1.6。模拟结果显示波长小于450纳米的TE偏振光透射效率只有33%,向光栅结构构成的波导左右两侧衍射的效率各为28%左右。而长波长光的透射强,尤其波长大于500纳米的光透射效率高达97%。500纳米的光由于光栅构成的波导共振反射增强,所以透射效率较低,但对显示器来说,不会影响显示效果,因为LED的红绿蓝三色光在500nm附近光强很小。通过模拟,我们也可以知道,增大周期,能够向波导两边衍射(在波导内部的衍射角度小于90度)的波长变大,波导共振的 波长也变大,此时蓝紫光的过滤效果可以分为:空气衍射效应(在空气中的衍射角小于90度)减弱透射;波导内的衍射效应减弱透射;波导共振反射增强减弱透射;波导共振吸收增强减弱透射。
实施例2,亚波长光栅光学膜对TM偏振光的滤光效果。
参见图3,在实施例1的基础上,入射光波改为TM偏振光,有限元软件的模拟结果。此模拟结果显示,波长小于450纳米的TM偏振光透射效率有65%。而长波长光的透射大部分大于96%。波长在450nm-518nm之间的光透射效率由于波导共振透射增强几乎达到100%,518纳米的光由于波导共振反射因此透射效率低,但对显示器来说,不会影响显示效果,因为LED的红绿蓝三色光在500nm附近光强很小。该结构可以提高450nm-500nm的蓝光透射效率从而保证显示的蓝光透射效率,并且只过滤对人眼伤害更大的450nm以下蓝紫光。同理,我们增大周期或者减少周期都可以导致感兴趣波长的增大或者减少。
实施例3:光栅占空比对光学膜的影响。
参见图4,在实施例1的基础上,取入射的光波长为420纳米,改变光栅的占空比,有限元软件的模拟结果。此模拟结果显示,光栅占空比,即光栅中第一介质宽度和光栅周期的比值,在0.3到0.5的范围内,光波透射、反射、衍射效率变化不大,始终是较好的蓝紫光滤光膜。
实施例4:第一介质高度对光学膜的影响。
参见图5,在实施例1的基础上,取入射的光波长为420纳米,改变第一介质的高度,有限元软件的模拟结果。此模拟结果显示,当周期为285纳米,光栅高度在140到260纳米的范围内,光波透射、反射、衍射效率变化不大,始终是较好的蓝紫光滤光膜。
实施例5:一种亚波长光栅光学膜对TE偏振光的滤光效果,其光栅结构包含第一、二介质和第四材料。
光学膜的结构示意图,参见图6中的图6a,每个光栅周期为p的所述光栅单元包括第一介质1、第二介质2、第四材料4、第六介质6和第七介质7。
其中,第四材料4设置在所述第二介质2下方且位于相邻两个第一介质1之间,所述第四材料4的厚度或高度为h4,所述第一介质1、第二介质2、第四材料4、第六介质6和第七介质7中至少有一种折射率和其它折射率不一样;光栅周期p的设置使得入射的波长小于设定波长的蓝紫色光中其至少有一个波长在所述第一介质1、第二介质2、第四材料4、第六介质6和第七介质7中折射率最高的介质或材料内的衍射角小于90度,从而导致零阶透射的蓝紫光波段的至少一个波长减弱。
利用有限元软件模拟结果,参见图6b,具体实施例中,光栅周期p=285nm,第一介质1的厚度或高度h=200nm,第一介质1的宽度w=142.5nm,第四材料的厚度或高度h4=10nm,第一介质1的折射率为2.3,第二介质2、第六介质6和第七介质7的折射率为1.6,第四材料4为氧化钛。模拟结果显示波长小于455纳米的TE偏振光透射效率只有约40%,向光栅构成的波导左右两侧衍射的效率都为20%。而长波长光的透射强,尤其波长大于520纳米的光透射效率高达95%以上。505纳米的光由于波导共振反射增强透射效率很低,但对显示器来说,不会影响显示效果,因为LED的红绿蓝三色光在500nm附近光强很弱。
实施例6:一种亚波长光栅光学膜对TE偏振光的滤光效果,其光栅结构包含第一、二介质和第三材料。
光学膜的结构示意图,参见图7中的图7a,每个光栅周期为p的所述光栅 单元包括第一介质1、第二介质2、第三材料3、第六介质6和第七介质7。其中,每个所述光栅单元还包括第三材料3,厚度或高度为h3、宽度为w的所述第三材料3设置在所述第一介质1的顶部,所述第一介质1、第二介质2、第三材料3、第六介质6和第七介质7中至少有一种折射率和其它折射率不一样;光栅周期p的设置使得入射的波长小于设定波长的蓝紫色光中其至少有一个波长在所述第一介质1、第二介质2、第三材料3、第六介质6和第七介质7中折射率最高的介质或材料内的衍射角小于90度,从而导致零阶透射的蓝紫光波段的至少一个波长减弱。
利用有限元软件模拟结果,参见图7b,具体实施例中,光栅周期p=285nm,第一介质1的厚度或高度h=200nm,第一介质1的宽度w=142.5nm,第三材料3的厚度或高度h3=15nm,第三材料3的宽度为w=142.5nm,第一介质1的折射率为2.3,第二介质2、第六介质6和第七介质7的折射率为1.6,第三材料3为氧化钛。模拟结果显示波长小于455纳米的TE偏振光透射效率不到35%,向左右两侧衍射的效率约20~30%。而长波长光的透射强,尤其波长大于520纳米的光透射效率高达96%以上。495纳米的光透射效率很低,但对显示器来说,不会影响显示效果,因为LED的红绿蓝三色光在500nm附近光强很小。
实施例7:一种亚波长光栅光学膜对TE偏振光的滤光效果,其光栅结构包含第一、二介质和第三、五材料。
光学膜的结构示意图,参见图8中的图8a。厚度或高度为h3、宽度为w的所述第三材料3设置在所述第一介质1的顶部,宽度为s、高度或厚度为h5的第五材料5设置在所述第一介质1和第三材料3的两侧,所述第二介质2设置在相邻间隔设置的第五材料5之间;所述第一介质1、第二介质2、第三材料3、 第四材料、第五材料5、第六介质6和第七介质7中至少有一种折射率和其它折射率不一样;光栅周期p的设置使得入射的波长小于设定波长的蓝紫色光中其至少有一个波长在所述第一介质1、第二介质2、第三材料3、第五材料5、第六介质6和第七介质7中折射率最高的介质或材料内的衍射角小于90度,从而导致零阶透射的蓝紫光波段的至少一个波长减弱。
利用有限元软件模拟结果,参见图8b,具体实施例中,光栅周期p=300nm,第一介质1的厚度或高度h=540nm,第一介质1的宽度w=120nm,第三材料3的厚度或高度h3=140nm,第三材料3的宽度为w=120nm,第五材料5的厚度或高度h5=680nm,第五材料5的宽度s=20nm;第一介质1、第二介质2、第六介质6和第七介质7的折射率为1.5,第三材料3和第五材料5的折射率为2.3。模拟结果显示波长小于490纳米的TE偏振光透射效率小于60%,向左右两侧衍射的效率小于30%。而长波长光的透射强,尤其波长大于510纳米的光透射效率高达95%以上。
实施例8:一种亚波长光栅光学膜对TE偏振光的滤光效果,其光栅结构包含第一、二介质和第三、四、五材料。
光学膜的结构示意图,参见图9中的图9a,亚波长光栅光学膜包括多个并排重复设置的一维周期光栅单元,每个光栅周期为p的所述光栅单元包括第一介质1、第二介质2、第三材料3、第四材料4、第五材料5、第六介质6和第七介质7,高度为h3的所述第三材料3设置在高度为h、宽度为w的第一介质1顶部,在所述第一介质1和第三材料3的两侧均设置宽度为s、高度为h5的第五材料5,所述第二介质2设置在相邻间隔设置的第五材料5之间;在相邻的两个第一介质1之间设置与第一介质1底部平行的第四材料4,所述第四材料4的 宽度为p-w、高度为h4,相邻间隔设置的第五材料5之间设置第二介质2,在并排周期设置的多个光栅单元的底部设置作为衬底的第六介质6、顶部设置作为覆盖层的第七介质7,其中,第一介质1、第三材料3、第四材料4和第五材料5的高度关系为h5≤h+h3-h4。所述第一介质1、第二介质2、第三材料3、第四材料4、第五材料5、第六介质6和第七介质7中至少有一种折射率和其它折射率不一样;光栅周期p的设置使得入射的波长小于设定波长的蓝紫色光中其至少有一个波长在所述第一介质1、第二介质2、第三材料3、第四材料4、第五材料5、第六介质6和第七介质7中折射率最高的介质或材料内的衍射角小于90度,从而导致零阶透射的蓝紫光波段的至少一个波长减弱。
利用有限元软件模拟结果,参见图9b,具体实施例中,光栅周期p=300nm,第一介质1的厚度或高度h=200nm,第一介质1的宽度w=90nm,第三材料3的厚度或高度h3=50nm,第三材料3的宽度为90nm,第四材料4的厚度或高度h4=20nm,第四材料4的宽度为210nm,第五材料5的厚度或高度h5=230nm,第五材料5的宽度s=20nm;第一介质1的折射率为1.7,第二介质2、第六介质6和第七介质7的折射率为1.5,第三材料3、第四材料4和第五材料5的折射率为2.3。模拟结果显示波长小于450纳米的TE偏振光透射效率小于60%,向左右两侧衍射的效率约10%。而长波长光的透射强,尤其波长大于490纳米的光透射效率高达95%以上。
进一步的,所述第一介质1、第二介质2、第三材料3、第四材料4、第五材料5为单层或混合多层材料。
进一步的,所述的第三材料3、第四材料4和第五材料5可以是金属或者介质材料,可以和第一介质1是同种类材料。
进一步的,所述的第二介质2的宽度小于或等于光栅周期p减去第一介质1的宽度w。所述的第二介质2的厚度或高度小于或等于第一介质1和第三材料3的厚度或高度之和。
进一步的,所述的第五材料5的厚度或高度小于或等于第一介质1和第三材料3的厚度或高度减去第四材料4的厚度或高度。
工作原理:亚波长光栅光学膜,通过控制光栅周期、占空比、各层材料的厚度和折射率,至少保证零度入射下的各层材料的波导模式共振波长小于人眼最敏感的550nm波长或者三基色白光光源的绿光中心波长,优选共振波长位于白光光源的绿光最弱波长,从而至少保证零度入射下零级透射光的透射谷波长不在人眼最敏感550nm波长或者三基色白光光源的绿光芯片中心波长。具体的光学原理为,光栅衍射公式kisinθi+mG=kosinθo,其中,k i和k o分别是入射光和衍射光的波矢,θo和θi分别是衍射角和入射角,G是光栅矢量,m是衍射级数。当光垂直入射,即θi=0°时,此公式可演化为T=mλ/(n*sinθo),其中n为衍射光经过的介质折射率或者等效波导折射率。本发明提出通过光栅产生衍射光来有效降低某波长以下的蓝紫光的透射效率。比如,要将波长小于450纳米的光的透射效率降低,衬底折射率为1.6的情况下,光栅周期要求为281纳米。通过数值模拟,进一步优化光栅厚度和占空比,从而获得蓝紫光的最高衍射效率和最低透射效率。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的 本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种亚波长光栅光学膜,所述亚波长光栅光学膜包括多个并排重复设置的一维周期光栅单元,其特征在于:每个光栅周期为p的所述光栅单元包括第一介质(1)、第二介质(2)、第六介质(6)和第七介质(7);每个所述光栅单元还包括第三材料(3)、第四材料(4)和第五材料(5);厚度或高度为h3、宽度为w的所述第三材料(3)设置在所述第一介质(1)的顶部;在相邻的两个第一介质(1)之间设置与第一介质(1)底部平行的第四材料(4),所述第四材料(4)的宽度为p-w、高度为h4;高度或厚度为h5、宽度为s的第五材料(5)设置在所述第一介质(1)和第三材料(3)的两侧,所述第二介质(2)设置在相邻间隔设置的第五材料(5)之间;其中,第一介质(1)、第三材料(3)、第四材料(4)和第五材料(5)的高度关系为h5≤h+h3-h4;所述第一介质(1)、第二介质(2)、第三材料(3)、第四材料(4)和第五材料(5)至少有一种折射率和其它折射率不一样;光栅周期p的设置使得入射的波长小于设定波长的蓝紫色光中其至少有一个波长在所述第一介质(1)、第二介质(2)、第三材料(3)、第四材料(4)、第五材料(5)、第六介质(6)和第七介质(7)中折射率最高的介质或材料内的衍射角小于90度,从而导致零阶透射的蓝紫光波段的至少一个波长减弱。
  2. 根据权利要求1所述的亚波长光栅光学膜,其特征在于:所需要过滤的蓝紫光波段的波长为λ,第一介质(1)、第二介质(2)、第六介质(6)、第七介质(7)、第三材料(3)、第四材料(4)和第五材料(5)构成的光栅结构等效波导满足波导共振吸收波长为λ,以使得透射和反射光谱中波长为λ的光学效率最低。
  3. 根据权利要求1所述的亚波长光栅光学膜,其特征在于:所需要过滤的蓝 紫光波段的波长为λ,第一介质(1)、第二介质(2)、第六介质(6)、第七介质(7)、第三材料(3)、第四材料(4)和第五材料(5)构成的光栅结构等效波导满足波导共振反射增强波长为λ,以使得透射和反射光谱中波长为λ的光学效率分别为最低和最高。
  4. 根据权利要求1所述的亚波长光栅光学膜,其特征在于:所不需要过滤的蓝紫光波段的波长为λ,第一介质(1)、第二介质(2)、第六介质(6)、第七介质(7)、第三材料(3)、第四材料(4)和第五材料(5)构成的光栅结构等效波导的波导共振透射增强波长为λ,以使得透射和反射光谱中波长为λ的光学效率分别为最高和最低。
  5. 根据权利要求1-4任一项所述的亚波长光栅光学膜,其特征在于:所述第一介质(1)、第二介质(2)、第三材料(3)、第四材料(4)、第五材料(5)为单层或混合多层材料。
  6. 根据权利要求1所述的亚波长光栅光学膜,其特征在于:每个所述光栅单元的第三材料(3)、第四材料(4)和第五材料(5)为折射率相同材料;所述第一介质(1)、第二介质(2)和第三材料(3)这三种材料中至少一种和另外两种材料折射率不一样。
  7. 根据权利要求6所述的亚波长光栅光学膜,其特征在于:光栅周期p≤505nm;第一介质(1)的厚度或高度h=50-800nm,第一介质(1)的宽度w为周期p的0.3-0.7;第三材料(3)的厚度或高度h3=20-150nm,第三材料(3)的宽度等于第一介质宽度;第四材料(4)的厚度或高度h4=20nm-150nm,第五材料(5)的厚度或高度等于第一材料,第五材料(5)的宽度s=20-150nm;第一介质(1)为树脂、PC、PET、PMMA、SU8或者光刻胶,第二介质(2)、 第六介质(6)和第七介质(7)为玻璃、树脂、PC、PET、PMMA、SU8或者光刻胶,第三材料(3)、第四材料(4)和第五材料(5)为相同材料的氧化锌、氧化钛、氧化锆或者氮化硅。
  8. 根据权利要求1-4任一项所述的亚波长光栅光学膜,其特征在于:第二介质(2)、第三材料(3)、第四材料(4)、第五材料(5)和第七介质(7)材料折射率相同,且第一介质(1)的折射率和其他材料不同。
  9. 根据权利要求1-4任一项所述的亚波长光栅光学膜,其特征在于:当第一介质(1)的折射率为2.3,第二介质(2)、第六介质(6)和第七介质(7)的折射率为1.6时,光栅周期p≤505nm,第一介质(1)的厚度或高度h=50-240nm,第一介质(1)的宽度w为周期的0.3-0.7倍,以使得450nm波长以下的蓝紫光透射效率降低。
  10. 根据权利要求1-4任一项所述的亚波长光栅光学膜,其特征在于:当第一介质(1)的折射率为2.3,第二介质(2)、第三材料(3)、第五材料(5)、第六介质(6)和第七介质(7)的折射率为1.6时,第四材料(4)为氧化钛,第四材料(4)的厚度或高度h4=10nm,光栅周期p≤505nm,第一介质(1)的厚度或高度h=100-300nm,第一介质(1)的宽度w为周期的0.3-0.7倍,以此使得505nm波长以下的蓝紫光透射效率降低。
  11. 根据权利要求1-4任一项所述的亚波长光栅光学膜,其特征在于:当第一介质(1)的折射率为2.3,第二介质(2)、第三材料(3)、第四材料(4)、第五材料(5)、第六介质(6)和第七介质(7)的折射率为1.6,第三材料(3)为氧化钛时,光栅周期p≤285nm,第一介质(1)的厚度或高度h=50-200nm,第一介质(1)的宽度w为周期的0.3-0.7,第三材料(3)的厚度或高度h3=15nm, 第三材料(3)的宽度为周期的0.3-0.7,以此使得450nm以下的蓝紫光透射效率降低。
  12. 根据权利要求1-4任一项所述的亚波长光栅光学膜,其特征在于:光栅周期p≤300nm,第一介质(1)的厚度或高度h=50-600nm,第一介质(1)的宽度为周期的0.3-0.7,第三材料(3)的厚度或高度h3=50-2000nm,第三材料(3)的宽度为w周期的0.3-0.7,第五材料(5)的厚度或高度h5=100-700nm,第五材料(5)的宽度s=20-50nm;第一介质(1)、第二介质(2)、第六介质(6)和第七介质(7)的折射率为1.5,第三材料(3)和第五材料(5)的折射率为2.3,以此使得450nm以下的蓝紫光透射效率降低。
PCT/CN2020/095320 2020-06-09 2020-06-10 一种亚波长光栅光学膜 WO2021248355A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/056,714 US20230080327A1 (en) 2020-06-09 2022-11-17 Sub-wavelength grating optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010518417.2 2020-06-09
CN202010518417.2A CN111679353B (zh) 2020-06-09 2020-06-09 一种亚波长光栅光学膜

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/056,714 Continuation US20230080327A1 (en) 2020-06-09 2022-11-17 Sub-wavelength grating optical film

Publications (1)

Publication Number Publication Date
WO2021248355A1 true WO2021248355A1 (zh) 2021-12-16

Family

ID=72454213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095320 WO2021248355A1 (zh) 2020-06-09 2020-06-10 一种亚波长光栅光学膜

Country Status (3)

Country Link
US (1) US20230080327A1 (zh)
CN (1) CN111679353B (zh)
WO (1) WO2021248355A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113359219B (zh) * 2021-05-12 2023-04-07 上海交通大学烟台信息技术研究院 一种二维周期对称性光栅光谱过滤光学膜
CN113363368B (zh) * 2021-05-19 2022-05-10 厦门镌纹科技有限公司 二维周期非对称光栅光学器件及电子设备
CN114242711A (zh) * 2021-12-17 2022-03-25 电子科技大学 一种高光谱光电探测器的制备工艺
CN114895394B (zh) * 2022-07-15 2022-09-30 华侨大学 具有宽频段光能存储特性的亚波长光栅结构及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090041971A1 (en) * 2006-08-15 2009-02-12 Api Nanofabrication And Research Corp. Polarizer films and methods of making the same
CN101551482A (zh) * 2009-01-24 2009-10-07 苏州大学 一种亚波长光栅结构彩色滤光片及其制作方法
CN102346269A (zh) * 2011-11-09 2012-02-08 苏州大学 一种反射式彩色滤光片
CN105765421A (zh) * 2013-10-29 2016-07-13 瑞士Csem电子显微技术研发中心 光栅耦合结构
US20170324217A1 (en) * 2014-09-26 2017-11-09 Thales Method for producing a resonant structure of a distributed-feedback semiconductor laser
CN109328314A (zh) * 2016-06-24 2019-02-12 凸版印刷株式会社 光学装置、显示体、带显示体的装置、滤光镜、以及光学装置的制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7196406B2 (ja) * 2017-03-17 2022-12-27 大日本印刷株式会社 回折光学素子
CN107037517B (zh) * 2017-06-19 2019-04-19 中国计量大学 一种双层金属光栅导模共振带通滤波器
CN109814257B (zh) * 2019-02-25 2020-08-25 中国科学院光电技术研究所 一种中心零级光强可控的激光分束器件及其设计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090041971A1 (en) * 2006-08-15 2009-02-12 Api Nanofabrication And Research Corp. Polarizer films and methods of making the same
CN101551482A (zh) * 2009-01-24 2009-10-07 苏州大学 一种亚波长光栅结构彩色滤光片及其制作方法
CN102346269A (zh) * 2011-11-09 2012-02-08 苏州大学 一种反射式彩色滤光片
CN105765421A (zh) * 2013-10-29 2016-07-13 瑞士Csem电子显微技术研发中心 光栅耦合结构
US20170324217A1 (en) * 2014-09-26 2017-11-09 Thales Method for producing a resonant structure of a distributed-feedback semiconductor laser
CN109328314A (zh) * 2016-06-24 2019-02-12 凸版印刷株式会社 光学装置、显示体、带显示体的装置、滤光镜、以及光学装置的制造方法

Also Published As

Publication number Publication date
CN111679353A (zh) 2020-09-18
US20230080327A1 (en) 2023-03-16
CN111679353B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2021248355A1 (zh) 一种亚波长光栅光学膜
CN105765422B (zh) 蓝色边缘滤光片光学透镜
JP5774807B2 (ja) 狭い帯域の全方向性反射体および構造色としてのそれらの使用
CN107942540B (zh) 一种基于相变材料的具有动态色彩显示的光调制器件及其制备方法
US7006292B2 (en) Multi-cavity optical filter
CN111727401B (zh) 眼科有色镜片
CN104570184A (zh) 一种可集成窄带微型滤光器
KR20150122770A (ko) 반사형 컬러 필터 및 컬러 디스플레이 디바이스
CN108957860A (zh) 显示装置及其制备方法
CN113554938B (zh) 出光改善型功能膜以及显示面板
CN113363368B (zh) 二维周期非对称光栅光学器件及电子设备
CN109270616B (zh) 一种多谷透射元件及其制备方法
KR101674562B1 (ko) 유전체 덮개층을 갖는 나노공진기 기반의 전방향 컬러 필터
US20120127406A1 (en) Reflective display
CN209879043U (zh) 一种消偏振的立方棱镜截止滤光片
US8009357B2 (en) Image screen
KR101942235B1 (ko) 광학 부재 및 이를 포함하는 액정 표시 장치
JP3584257B2 (ja) 偏光ビームスプリッタ
CN111312927A (zh) 显示装置
TWM603536U (zh) 光吸收白鏡片
CN113359219B (zh) 一种二维周期对称性光栅光谱过滤光学膜
US20220359794A1 (en) Light-emitting diode structure
CN221079113U (zh) 一种改善光致变色片变色性能的膜层
KR101892054B1 (ko) 편광 광학 부재
JP2008191587A (ja) 偏光子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939542

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20939542

Country of ref document: EP

Kind code of ref document: A1