WO2021246842A1 - 무선랜 시스템에서 센싱을 수행하는 방법 및 장치 - Google Patents

무선랜 시스템에서 센싱을 수행하는 방법 및 장치 Download PDF

Info

Publication number
WO2021246842A1
WO2021246842A1 PCT/KR2021/007090 KR2021007090W WO2021246842A1 WO 2021246842 A1 WO2021246842 A1 WO 2021246842A1 KR 2021007090 W KR2021007090 W KR 2021007090W WO 2021246842 A1 WO2021246842 A1 WO 2021246842A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
wlan
sta
capability information
ghz band
Prior art date
Application number
PCT/KR2021/007090
Other languages
English (en)
French (fr)
Inventor
장인선
김정기
최진수
임동국
김상국
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/928,912 priority Critical patent/US20230224695A1/en
Publication of WO2021246842A1 publication Critical patent/WO2021246842A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This specification relates to a sensing technique in a WLAN system, and more particularly, to a procedure and a signaling method for performing sensing.
  • a wireless local area network has been improved in various ways.
  • IEEE 802.11bf wireless LAN sensing is the first standard that converges communications and radar technologies.
  • the demand for unlicensed spectrum is rapidly increasing in daily life and industry, there is a limit to the new spectrum supply. Therefore, the development of convergence technology between communication and radar is a very desirable direction in terms of increasing frequency utilization efficiency.
  • sensing technology that detects movement behind a wall using a wireless LAN signal or a radar technology that detects movement in a vehicle using a Frequency Modulated Continuous Wave (FMCW) signal in the 60GHz band is being developed. It can be of great significance in that it can raise the sensing performance to one level by linking it.
  • FMCW Frequency Modulated Continuous Wave
  • Wireless LAN sensing technology can be applied to a wide range of real-life applications such as motion detection, breathing monitoring, positioning/tracking, fall detection, in-vehicle infant detection, appearance/proximity recognition, personal identification, body motion recognition, and behavior recognition, thereby promoting the growth of related new businesses and It is expected to contribute to enhancing the competitiveness of the company.
  • a transmitting STA may generate capability information related to WLAN sensing.
  • the capability information may include a common part and an individual part.
  • the common part may include sensing support band information including information related to whether or not to support WLAN sensing performed in the sub 7 GHz band and information related to whether or not to support WLAN sensing performed in the 60 GHz band.
  • the individual part may include at least one of capability information for WLAN sensing performed in the sub 7 GHz band and capability information for WLAN sensing performed in the 60 GHz band based on the sensing support band information.
  • the transmitting STA may transmit the capability information to the receiving STA.
  • sensing capabilities between STAs may be recognized in the setup step, and association may be performed.
  • FIG. 1 shows an example of a transmitting apparatus and/or a receiving apparatus of the present specification.
  • FIG. 2 shows an example of a wireless LAN sensing scenario using a multi-sensing transmission device.
  • FIG. 3 shows an example of a wireless LAN sensing scenario using a multi-sensing receiving device.
  • 5 is an example of classification of wireless LAN sensing.
  • FIG. 8 is a diagram briefly illustrating a PPDU structure supported by an 802.11ay wireless LAN system.
  • FIG. 10 is a diagram illustrating an embodiment of WLAN sensing.
  • 11 is a diagram illustrating an overall procedure of WLAN sensing.
  • FIG. 12 is a diagram illustrating an embodiment of a simple indication method.
  • 13 to 22 are diagrams illustrating an embodiment of sensing capability.
  • 23 is a diagram illustrating an embodiment of a method of operating a transmitting STA.
  • 24 is a diagram illustrating an embodiment of a method of operating a receiving STA.
  • a slash (/) or a comma (comma) used herein may mean “and/or”.
  • “” may mean “and/or B”. Accordingly, “” can mean “only A,” “only B,” or “both both.”
  • “B, C” may mean “B or C”.
  • At least one of A and B may mean “only A”, “only B” or “both both of A and B”.
  • the expression “at least one of A or B” or “at least one of A and/or B” means “at least one It can be interpreted the same as “at least one of A and B”.
  • At least one of A, B and C means “only A” “only B” “only C” or “any and any combination of B and C” (any combination of A, B and C)”. Also, “at least one of A, B or C” or “at least one of A, B and/or C” means may mean “at least one of A, B and C”.
  • the following examples of the present specification may be applied to various wireless communication systems.
  • the following example of the present specification may be applied to a wireless local area network (WLAN) system.
  • WLAN wireless local area network
  • the present specification may be applied to the IEEE 802.11ad standard or the IEEE 802.11ay standard.
  • the present specification may be applied to a newly proposed wireless LAN sensing standard or IEEE 802.11bf standard.
  • FIG. 1 shows an example of a transmitting apparatus and/or a receiving apparatus of the present specification.
  • the example of FIG. 1 may perform various technical features described below.
  • 1 relates to at least one STA (station).
  • the STAs 110 and 120 of the present specification are a mobile terminal, a wireless device, a wireless transmit/receive unit (WTRU), a user equipment (UE), It may also be called by various names such as a mobile station (MS), a mobile subscriber unit, or simply a user.
  • the STAs 110 and 120 in the present specification may be referred to by various names such as a network, a base station, a Node-B, an access point (AP), a repeater, a router, and a relay.
  • the STAs 110 and 120 may be referred to by various names such as a receiving device (apparatus), a transmitting device, a receiving STA, a transmitting STA, a receiving device, and a transmitting device.
  • the STAs 110 and 120 may perform an access point (AP) role or a non-AP role. That is, the STAs 110 and 120 of the present specification may perform AP and/or non-AP functions.
  • the AP may also be indicated as an AP STA.
  • the STAs 110 and 120 of the present specification may support various communication standards other than the IEEE 802.11 standard.
  • a communication standard eg, LTE, LTE-A, 5G NR standard
  • the STA of the present specification may be implemented in various devices such as a mobile phone, a vehicle, and a personal computer.
  • the STA of the present specification may support communication for various communication services such as voice call, video call, data communication, and autonomous driving (Self-Driving, Autonomous-Driving).
  • the STAs 110 and 120 may include a medium access control (MAC) conforming to the IEEE 802.11 standard and a physical layer interface for a wireless medium.
  • MAC medium access control
  • the STAs 110 and 120 will be described based on the sub-view (a) of FIG. 1 as follows.
  • the first STA 110 may include a processor 111 , a memory 112 , and a transceiver 113 .
  • the illustrated processor, memory, and transceiver may each be implemented as separate chips, or at least two or more blocks/functions may be implemented through one chip.
  • the transceiver 113 of the first STA performs a signal transmission/reception operation. Specifically, IEEE 802.11 packets (eg, IEEE 802.11a/b/g/n/ac/ax/be, etc.) may be transmitted/received.
  • IEEE 802.11 packets eg, IEEE 802.11a/b/g/n/ac/ax/be, etc.
  • the first STA 110 may perform an intended operation of the AP.
  • the processor 111 of the AP may receive a signal through the transceiver 113 , process the received signal, generate a transmission signal, and perform control for signal transmission.
  • the memory 112 of the AP may store a signal (ie, a received signal) received through the transceiver 113 , and may store a signal to be transmitted through the transceiver (ie, a transmission signal).
  • the second STA 120 may perform an intended operation of a non-AP STA.
  • the transceiver 123 of the non-AP performs a signal transmission/reception operation.
  • IEEE 802.11 packets eg, IEEE 802.11a/b/g/n/ac/ax/be, etc.
  • IEEE 802.11a/b/g/n/ac/ax/be, etc. may be transmitted/received.
  • the processor 121 of the non-AP STA may receive a signal through the transceiver 123 , process the received signal, generate a transmission signal, and perform control for signal transmission.
  • the memory 122 of the non-AP STA may store a signal (ie, a received signal) received through the transceiver 123 and may store a signal to be transmitted through the transceiver (ie, a transmission signal).
  • an operation of a device indicated as an AP in the following specification may be performed by the first STA 110 or the second STA 120 .
  • the operation of the device marked as AP is controlled by the processor 111 of the first STA 110 , and is controlled by the processor 111 of the first STA 110 .
  • Relevant signals may be transmitted or received via the controlled transceiver 113 .
  • control information related to an operation of the AP or a transmission/reception signal of the AP may be stored in the memory 112 of the first STA 110 .
  • the operation of the device indicated by the AP is controlled by the processor 121 of the second STA 120 and controlled by the processor 121 of the second STA 120 .
  • a related signal may be transmitted or received via the transceiver 123 that is used.
  • control information related to an operation of the AP or a transmission/reception signal of the AP may be stored in the memory 122 of the second STA 110 .
  • an operation of a device indicated as a non-AP in the following specification may be performed by the first STA 110 or the second STA 120 .
  • the operation of the device marked as non-AP is controlled by the processor 121 of the second STA 120, and the processor ( A related signal may be transmitted or received via the transceiver 123 controlled by 121 .
  • control information related to the operation of the non-AP or the AP transmit/receive signal may be stored in the memory 122 of the second STA 120 .
  • the operation of the device marked as non-AP is controlled by the processor 111 of the first STA 110 , and the processor ( Related signals may be transmitted or received via transceiver 113 controlled by 111 .
  • control information related to the operation of the non-AP or the AP transmission/reception signal may be stored in the memory 112 of the first STA 110 .
  • transmission / reception STA, first STA, second STA, STA1, STA2, AP, first AP, second AP, AP1, AP2, (transmission / reception) Terminal, (transmission / reception) device , (transmitting/receiving) apparatus, a device called a network, etc. may refer to the STAs 110 and 120 of FIG. 1 .
  • a device indicated by a /receiver) device, a (transmit/receive) apparatus, and a network may also refer to the STAs 110 and 120 of FIG. 1 .
  • an operation in which various STAs transmit and receive signals may be performed by the transceivers 113 and 123 of FIG. 1 .
  • an example of an operation of generating a transmission/reception signal or performing data processing or operation in advance for a transmission/reception signal is 1) Determining bit information of a subfield (SIG, STF, LTF, Data) field included in a PPDU /Acquisition/configuration/computation/decoding/encoding operation, 2) time resource or frequency resource (eg, subcarrier resource) used for the subfield (SIG, STF, LTF, Data) field included in the PPDU, etc.
  • a specific sequence eg, pilot sequence, STF / LTF sequence, SIG
  • SIG subfield
  • SIG subfield
  • STF subfield
  • LTF LTF
  • Data subfield
  • an operation related to determination / acquisition / configuration / operation / decoding / encoding of the ACK signal may include
  • various information eg, field/subfield/control field/parameter/power related information used by various STAs for determination/acquisition/configuration/computation/decoding/encoding of transmit/receive signals is may be stored in the memories 112 and 122 of FIG. 1 .
  • the device/STA of the sub-view (a) of FIG. 1 described above may be modified as shown in the sub-view (b) of FIG. 1 .
  • the STAs 110 and 120 of the present specification will be described based on the sub-drawing (b) of FIG. 1 .
  • the transceivers 113 and 123 illustrated in (b) of FIG. 1 may perform the same function as the transceivers illustrated in (a) of FIG. 1 .
  • the processing chips 114 and 124 illustrated in (b) of FIG. 1 may include processors 111 and 121 and memories 112 and 122 .
  • the processors 111 and 121 and the memories 112 and 122 illustrated in (b) of FIG. 1 are the processors 111 and 121 and the memories 112 and 122 illustrated in (a) of FIG. ) can perform the same function.
  • a technical feature in which a transmitting STA transmits a control signal is that the control signals generated by the processors 111 and 121 shown in the sub-drawings (a)/(b) of FIG. 1 are (a) of FIG. ) / (b) can be understood as a technical feature transmitted through the transceivers 113 and 123 shown in (b).
  • the technical feature in which the transmitting STA transmits the control signal is a technical feature in which a control signal to be transmitted to the transceivers 113 and 123 is generated from the processing chips 114 and 124 shown in the sub-view (b) of FIG. can be understood
  • the technical feature in which the receiving STA receives the control signal may be understood as the technical feature in which the control signal is received by the transceivers 113 and 123 shown in the sub-drawing (a) of FIG. 1 .
  • the technical feature that the receiving STA receives the control signal is that the control signal received by the transceivers 113 and 123 shown in the sub-drawing (a) of FIG. 1 is the processor shown in (a) of FIG. 111, 121) can be understood as a technical feature obtained by.
  • the technical feature for the receiving STA to receive the control signal is that the control signal received by the transceivers 113 and 123 shown in the sub-view (b) of FIG. 1 is the processing chip shown in the sub-view (b) of FIG. It can be understood as a technical feature obtained by (114, 124).
  • software codes 115 and 125 may be included in the memories 112 and 122 .
  • the software codes 115 and 125 may include instructions for controlling the operations of the processors 111 and 121 .
  • Software code 115, 125 may be included in a variety of programming languages.
  • the processors 111 and 121 or the processing chips 114 and 124 shown in FIG. 1 may include an application-specific integrated circuit (ASIC), other chipsets, logic circuits, and/or data processing devices.
  • the processor may be an application processor (AP).
  • the processors 111 and 121 or the processing chips 114 and 124 shown in FIG. 1 may include a digital signal processor (DSP), a central processing unit (CPU), a graphics processing unit (GPU), and a modem (Modem). and demodulator).
  • DSP digital signal processor
  • CPU central processing unit
  • GPU graphics processing unit
  • Modem modem
  • demodulator demodulator
  • the processors 111 and 121 shown in Figure 1 or the processing chip (114, 124) is manufactured by Qualcomm® SNAPDRAGON TM series processor, a processor manufactured by Samsung® EXYNOS TM series, by Apple® It may be an A series processor manufactured by MediaTek®, a HELIO TM series processor manufactured by MediaTek®, an ATOM TM series processor manufactured by INTEL®, or an enhanced processor.
  • uplink may mean a link for communication from a non-AP STA to an AP STA, and an uplink PPDU/packet/signal may be transmitted through the uplink.
  • downlink may mean a link for communication from an AP STA to a non-AP STA, and a downlink PPDU/packet/signal may be transmitted through the downlink.
  • the wireless LAN sensing technology is a kind of radar technology that can be implemented without a standard, it is judged that stronger performance can be obtained through standardization.
  • the IEEE 802.11bf standard defines devices participating in wireless LAN sensing by function as shown in the table below. According to its function, it can be divided into a device that initiates wireless LAN sensing and a device that participates, and a device that transmits and receives a sensing PPDU (Physical Layer Protocol Data Unit).
  • PPDU Physical Layer Protocol Data Unit
  • Sensing Initiator device that initiates sensing Sensing Responder Devices participating in sensing Sensing Transmitter A device that transmits a sensing PPDU Sensing Receiver A device that receives a sensing PPDU
  • FIG. 2 shows an example of a wireless LAN sensing scenario using a multi-sensing transmission device.
  • FIG. 3 shows an example of a wireless LAN sensing scenario using a multi-sensing reception device.
  • FIG. 2 and 3 show sensing scenarios according to the function and arrangement of the wireless LAN sensing device.
  • FIG. 2 is a scenario using multiple sensing PPDU transmitting devices
  • FIG. 3 is a scenario using multiple sensing PPDU receiving devices.
  • the sensing PPDU receiving device includes the sensing measurement signal processing device
  • a procedure for transmitting (feedback) the sensing measurement result to the sensing start device STA 5 is additionally required.
  • discovery is a process of identifying the sensing capabilities of WLAN devices
  • negotiation is a process of determining a sensing parameter between a sensing start device and a participating device
  • measurement value exchange is a process of transmitting a sensing PPDU and transmitting a sensing measurement result
  • connection Release is the process of terminating the sensing procedure.
  • 5 is an example of classification of wireless LAN sensing.
  • Wireless LAN sensing can be classified into CSI-based sensing, which uses channel state information of a signal that arrives at the receiver through a channel, from the transmitter, and radar-based sensing, which uses a signal received after a transmitted signal is reflected by an object.
  • each sensing technology includes a method in which a sensing transmitter directly participates in the sensing process (coordinated CSI, active radar) and a method in which the sensing transmitter does not participate in the sensing process, that is, there is no dedicated transmitter participating in the sensing process (un -coordinated CSI, passive radar).
  • FIG. 6 is a diagram that utilizes CSI-based wireless LAN sensing for indoor positioning.
  • CSI to obtain an angle of arrival and a time of arrival, and converting these into orthogonal coordinates, indoor positioning information can be obtained. .
  • FIG. 7 shows a wireless LAN sensing device implemented by using the MATLAB toolbox, Zynq, and USRP.
  • MATLAB toolbox an IEEE 802.11ax wireless LAN signal is generated, and an RF signal is generated using Zynq Software Defined Radio (SDR).
  • SDR Software Defined Radio
  • the signal passing through the channel is received by USRP SDR and sensing signal processing is performed in the MATLAB toolbox.
  • one reference channel a channel directly receivable from the sensing transmitter
  • one surveillance channel a channel receivable by reflection from an object
  • IEEE 802.11bf wireless LAN sensing standardization is in the early development stage, and cooperative sensing technology to improve sensing accuracy is expected to be treated as important in the future. It is expected that standardization core topics include synchronization technology of sensing signals for cooperative sensing, CSI management and use technology, sensing parameter negotiation and sharing technology, and scheduling technology for CSI generation. In addition, long-distance sensing technology, low-power sensing technology, sensing security and privacy protection technology will also be considered as major agenda items.
  • IEEE 802.11bf wireless LAN sensing is a kind of radar technology that uses a wireless LAN signal that is commonly present anywhere at any time.
  • the table below shows typical IEEE 802.11bf use cases, which can be used in a wide range of real-life situations, such as indoor sensing, motion recognition, health care, 3D vision, and in-vehicle sensing. Because it is mainly used indoors, the operating range is usually within 10 to 20 meters, and the distance accuracy does not exceed 2 meters at most.
  • FIG. 8 is a diagram briefly illustrating a PPDU structure supported by an 802.11ay wireless LAN system.
  • the PPDU format applicable to the 802.11ay system is L-STF, L-CEF, L-Header, EDMG-Header-A, EDMG-STF, EDMG-CEF, EDMG-Header-B, Data , TRN field, and the fields may be selectively included according to the type of PPDU (eg, SU PPDU, MU PPDU, etc.).
  • a portion including the L-STF, L-CEF, and L-Header fields may be referred to as a non-EDMG portion, and the remaining portion may be referred to as an EDMG area.
  • the L-STF, L-CEF, L-Header, and EDMG-Header-A fields may be named pre-EDMG modulated fields, and the remaining parts may be named EDMG modulated fields.
  • the EDMG-Header-A field includes information required to demodulate an EDMG PPDU.
  • the definition of the EDMG-Header-A field is the same as that of the EDMG SC mode PPDU and the EDMG OFDM mode PPDU, but is different from the definition of the EDMG control mode PPDU.
  • the structure of the EDMG-STF depends on the number of consecutive 2.16 GHz channels through which the EDMG PPDU is transmitted and the index i STS of the i STS- th space-time stream.
  • the EDMG-STF field does not exist.
  • the EDMG-STF field shall be modulated using pi/(2-BPSK).
  • the structure of the EDMG-CEF depends on the number of consecutive 2.16GHz channels through which the EDMG PPDU is transmitted and the number of space-time streams i STSs .
  • the EDMG-CEF field does not exist.
  • the EDMG-CEF field shall be modulated using pi/(2-BPSK).
  • the (legacy) preamble portion of the PPDU as described above includes packet detection, automatic gain control (AGC), frequency offset estimation, synchronization, modulation (SC or OFDM) indication and channel measurement. (channel estimation) can be used.
  • the format of the preamble may be common for OFDM packet and SC packet.
  • the preamble may include a Short Training Field (STF) and a Channel Estimation (CE) field located after the STF field.
  • STF Short Training Field
  • CE Channel Estimation
  • FIG 9 shows a modified example of a transmitting apparatus and/or a receiving apparatus of the present specification.
  • Each device/STA of the sub-drawings (a)/(b) of FIG. 1 may be modified as shown in FIG. 9 .
  • the transceiver 930 of FIG. 9 may be the same as the transceivers 113 and 123 of FIG. 9 .
  • the transceiver 930 of FIG. 9 may include a receiver and a transmitter.
  • the processor 910 of FIG. 9 may be the same as the processors 111 and 121 of FIG. 1 . Alternatively, the processor 910 of FIG. 9 may be the same as the processing chips 114 and 124 of FIG. 1 .
  • the memory 150 of FIG. 9 may be the same as the memories 112 and 122 of FIG. 1 .
  • the memory 150 of FIG. 9 may be a separate external memory different from the memories 112 and 122 of FIG. 1 .
  • the power management module 911 manages power for the processor 910 and/or the transceiver 930 .
  • the battery 912 supplies power to the power management module 911 .
  • the display 913 outputs the result processed by the processor 910 .
  • Keypad 914 receives input to be used by processor 910 .
  • a keypad 914 may be displayed on the display 913 .
  • SIM card 915 may be an integrated circuit used to securely store an international mobile subscriber identity (IMSI) used to identify and authenticate subscribers in mobile phone devices, such as mobile phones and computers, and keys associated therewith. .
  • IMSI international mobile subscriber identity
  • the speaker 940 may output a sound related result processed by the processor 910 .
  • Microphone 941 may receive sound related input to be used by processor 910 .
  • 11SENS uses 60GHz Wi-Fi signals to sense motions or gestures of STAs or people, considering the signal transmission/reception methods of 802.11ad and 802.11ay, which are 60GHz Wi-Fi technologies.
  • a sensing start frame, a transmission start frame, and a method for configuring a sensing signal for channel estimation between an AP and an STA or an STA and an STA We propose a sensing sequence that transmits and receives .
  • the STA described below may be the apparatus of FIGS. 1 and/or 9 , and the PPDU may be the PPDU of FIG. 7 .
  • a device may be an AP or a non-AP STA.
  • WLAN Wireless Local Area Network
  • IEEE 802.11 MAC/PHY-based WLAN eg, Wi-Fi
  • Wi-Fi Wi-Fi
  • WLAN eg. Wi-Fi
  • Wi-Fi Wireless Fidelity
  • a WLAN (eg, Wi-Fi) signal transmitted from the transmitter to the receiver may include information on a transmission channel environment between the two transmitters and receivers.
  • WLAN sensing refers to a technology for obtaining cognitive information about various surrounding environments by processing information about a transmission channel environment acquired through a WLAN signal.
  • cognitive information includes gesture recognition, fall detection by elder people, intrusion detection, human motion detection, health monitoring, It may include information obtained through a technology such as pet movement detection.
  • WLAN sensing may be applied and used in various forms in real life.
  • devices having one or more WLAN sensing functions may be used for WLAN sensing.
  • WLAN sensing using a plurality of devices can use multiple pieces of information about the channel environment compared to a method using a single device (ie, a transceiver end), so more accurate sensing information can be obtained.
  • WLAN eg. Wi-Fi
  • WLAN transmission is performed in a broadband using channel aggregation, channel bonding, and the like. Also, WLAN transmission in a more extended broadband is being discussed.
  • WLAN sensing can cover a variety of scenarios.
  • FIG. 10 is a diagram illustrating an embodiment of WLAN sensing.
  • a target to be sensed exists and STAs sensing it may exist.
  • the AP and the STA may perform sensing.
  • a target may exist between the AP and the STA.
  • the AP may transmit a sensing signal to the STA, and the STA may transmit a feedback signal for the sensing signal to the AP. That is, the AP transmits a signal to identify the sensing target, and the STA can receive and measure the signal affected by the target.
  • the STA may transmit the measured result to the AP, and the AP may identify the target based on the measured result.
  • 11 is a diagram illustrating an overall procedure of WLAN sensing.
  • WLAN sensing may include the following steps.
  • Setup Phase Capability Advertisement & Negotiation: The stage of exchanging sensing-related capabilities and performing association.
  • STAs can perform association by determining whether sensing is possible and whether they have appropriate sensing capability. That is, in the association step, STAs can exchange information related to whether sensing is possible and capability related to sensing.
  • Sensing Phase (Measurement during a sensing session & Feedback during a sensing session): Transmitting a sensing signal to identify a target and receiving and measuring a signal passing through the target.
  • One cycle of this step can be defined as a sensing session.
  • a series of processes from the negotiation phase to tear down can be defined as a sensing session.
  • a sensing start frame may be transmitted before the sensing signal is transmitted, and transmission of the sensing start frame may also be included in the sensing session. That is, transmission of a sensing start frame, transmission of a sensing signal, and transmission of a feedback frame may constitute one sensing session.
  • WLAN sensing requires capability negotiation in the setup phase to support it due to a new frame or a new protocol definition. That is, sensing devices need to know each other's sensing functionality. Sensing capability negotiation may be performed in the discovery (or scanning) and association steps of the existing legacy WLAN.
  • the WLAN standards that can operate in Sub-7GHz referred to in this specification may mean 11a, 11n, 11ac, 11ax, 11be, etc., and the WLAN standards that can operate in the 60GHz band may mean 11ad, 11ay, and the like.
  • the STA may be an AP or a non-AP STA.
  • Sensing capability may be defined in the following way, but is not limited thereto.
  • a capability indicating whether or not to simply support WLAN sensing can be defined. If only WLAN sensing is defined, other sensing-related capabilities can be reused with capabilities defined in the existing Sub-7GHz or 60GHz bands.
  • the 1-bit WLAN Sensing enabled field determines this, if the value is 1, WLAN sensing is supported, and if it is 0, WLAN sensing is not supported.
  • FIG. 12 is a diagram illustrating an embodiment of a simple indication method.
  • a capability related to whether WLAN sensing is supported may be defined.
  • the WLAN sensing enabled field may include information on whether WLAN sensing is supported. This method can significantly reduce overhead by reusing the existing capability, but it cannot indicate the capability specialized for sensing like the methods described below.
  • Capabilities can be classified by various elements specialized for WLAN sensing. That is, capabilities that can be distinguished in sensing may exist, and capabilities may be indicated as follows. In addition, capabilities not indicated here are not separately indicated, but may be indicated by an existing IE (eg, VHT/HE/EHT capabilities), which may be reused in connection with sensing.
  • 13 is a diagram illustrating an embodiment of sensing capability.
  • sensing capability may include all capabilities related to WLAN sensing.
  • WLAN sensing capability may include the following information.
  • A. Per band Whether to support sensing by band. That is, information on whether sensing is supported for each frequency band may be included. For example, 4-bit information related to whether 2.4 GHz, 5 GHz, 6 GHz, and 60 GHz is supported may be included.
  • CM Per channel measurement
  • bits related to several channel measurement methods may be included, and whether each channel measurement method is supported may be indicated through the corresponding bit. For example, information related to whether a channel state information (CSI)-based channel measurement method is supported may be included.
  • CSI channel state information
  • Sensing-capable bandwidth Sensing-capable bandwidth. That is, as information related to a bandwidth over which sensing can be performed, information on whether or not sensing can be performed for each bandwidth rather than the maximum bandwidth over which sensing can be performed may be included. For example, 5-bit information related to whether sensing can be performed in bandwidths of 20 MHz, 40 MHz, 80 MHz, 160 MHz, and 320 MHz may be included.
  • D. WLAN Sensing roles Whether or not what roles can be supported. Information on which role the corresponding STA can perform in sensing may be included. Examples of role types in sensing are as follows, but are not limited thereto.
  • Sensing initiator STA initiating a WLAN sensing session.
  • Sensing responder STA participating in the WLAN sensing session initiated by the sensing initiator.
  • Sensing transmitter STA that transmits a PPDU for sensing measurement in a sensing session.
  • Sensing receiver STA that receives the PPDU transmitted by the sensing transmitter and performs sensing measurement.
  • FIG. 14 is a diagram illustrating an embodiment of sensing capability.
  • the sensing capability may include the existing capability and the new WLAN sensing capability separately.
  • the capabilities indicated in the existing capabilities IE for WLAN sensing there may be capabilities that must be newly indicated in the WLAN sensing. Therefore, they can be indicated separately.
  • the sensing capability includes the Changed Existing capabilities for WLAN sensing field including existing capabilities such as supported band and maximum sensing-capable bandwidth, and New capabilities for WLAN sensing field including new capabilities for WLAN sensing such as Channel Measurement and Roles. may include
  • 15 is a diagram illustrating an embodiment of sensing capability.
  • sensing capabilities may be classified and listed according to specific capabilities.
  • the sensing capability may include separate capability information according to a band. That is, different capabilities may be configured according to Sub-7 GHz and 60 GHz. That is, capability information for sensing performed in a sub-7 GHz band and capability information for sensing performed in a 60 GHz band may be distinguished.
  • 16 is a diagram illustrating an embodiment of sensing capability.
  • sensing capability may be classified and listed according to specific capabilities, and existing capability and New WLAN sensing capability may be included separately. That is, capabilities may be configured in combination with the example in FIG. 13 .
  • the sensing capability may include a capability information field for sensing performed in a sub-7 GHz band and a capability information field for sensing performed in a 60 GHz band.
  • Each capability information field may include a Changed Existing capabilities for WLAN sensing field including an existing capability and a New capabilities for WLAN sensing field including a new capability.
  • WLAN sensing specific indication Non-hierarchical Structure
  • WLAN sensing can indicate different capabilities by specific capability. As a representative example, since supported technologies (eg, 11ax and 11ay) may vary depending on a band supported by WLAN, WLAN sensing capability may be indicated hierarchically. WLAN sensing capability may include a common part and an individual part.
  • Common part A part that includes the capability that can be shared in common regardless of the specific capability for WLAN sensing or whether it indicates whether a specific capability is indicated.
  • Individual Part A part that indicates specific capabilities according to the value indicated in the common part.
  • 17 is a diagram illustrating an example of sensing capability.
  • sensing capability may include a common part and an individual part.
  • the common part may include information related to capabilities commonly applied to sensing in a sub-7 GHz band and sensing in a 60 GHz band.
  • 18 is a diagram illustrating an example of sensing capability.
  • the common part may include information related to a band supported for WLAN sensing. That is, the common part of the sensing capability may include information related to whether or not to indicate a specific capability. Depending on the supported band, the capabilities of subsequent individual parts may vary. For example, if only Sub-7GHz is supported in the common part, the individual part can include only capabilities for Sub-7GHz. For example, the common part may include information related to whether or not to support WLAN sensing performed in a sub-7 GHz band and information related to whether or not to support WLAN sensing performed in a 60 GHz band.
  • the individual part includes capability information for sub-7 GHz band sensing when the STA supports WLAN sensing performed in the sub-7 GHz band based on the common part, and supports the WLAN sensing performed in the 60 GHz band in the 60 GHz band Capability information for performed WLAN sensing may be included.
  • 19 is a diagram illustrating an example of sensing capability.
  • the common part may include information supporting both WLAN sensing in the Sub-7 GHz and 60 GHz bands, and the individual part may include capabilities for WLAN sensing performed in the Sub-7 GHz and 60 GHz bands. have.
  • the PHY/MAC capabilities of FIG. 19 may be listed without specific classification as shown in FIG. 13 , but may be classified as New WLAN sensing capabilities as shown in FIG. 16 .
  • 20 is a diagram illustrating an example of sensing capability.
  • sensing capability may include a common part and an individual part.
  • fields for the changed capabilities may always be included, but some capabilities may not be changed.
  • the transmitting STA may indicate whether the corresponding capability field exists, such as a control part, through the Present field, and the receiving STA may check whether the changed capability field exists. For example, if the Maximum sensing-capable bandwidth present value is 1, the Maximum sensing-capable bandwidth field may exist, and if the B Present value is 0, the B field may not exist.
  • 21 is a diagram illustrating an example of sensing capability.
  • sensing capability may include a common part and an individual part.
  • the common part may include a capability that may be commonly possessed regardless of a specific capability (ie, a sensing band).
  • the common part may include information related to common PHY/MAC capabilities regardless of the band
  • the individual part may include information related to capabilities specific to each of the Sub-7 GHz and 60 GHz bands. For example, if a common capability or a specific capability corresponding to sub-7 GHz or 60 GHz does not exist, the corresponding field may not exist.
  • 22 is a diagram illustrating an example of sensing capability.
  • sensing capability may include a common part and an individual part.
  • the common part may include a capability that the common part may have in common regardless of a specific capability (ie, a sensing band).
  • the common part may include information related to a band supported for WLAN sensing.
  • the common part may include information related to whether or not to support WLAN sensing performed in a sub-7 GHz band and information related to whether or not to support WLAN sensing performed in a 60 GHz band.
  • the individual part includes capability information for sub-7 GHz band sensing when the STA supports WLAN sensing performed in the sub-7 GHz band based on the common part, and supports the WLAN sensing performed in the 60 GHz band in the 60 GHz band Capability information for performed WLAN sensing may be included.
  • the common part includes information related to common PHY/MAC capabilities regardless of the band, and the capabilities below it may vary according to the supported band. If the supported band supports both Sub-7GHz and 60GHz, the individual part may include information related to specific capabilities for Sub-7GHz and 60GHz.
  • Methods 1 to 3 above are methods of adding a separate IE for WLAN sensing, but for WLAN sensing, each existing capabilities IE (eg, VHT/HE capabilities element) may include the capability information described above. have. For example, capabilities for WLAN sensing may be included in the existing capabilities IE. In this method, it is not necessary to create a new IE, but by modifying the existing capabilities IE, it may cause a malfunction to the legacy STA, and all existing standards must be modified.
  • each existing capabilities IE eg, VHT/HE capabilities element
  • capabilities for WLAN sensing may be included in the existing capabilities IE. In this method, it is not necessary to create a new IE, but by modifying the existing capabilities IE, it may cause a malfunction to the legacy STA, and all existing standards must be modified.
  • 23 is a diagram illustrating an embodiment of a method of operating a transmitting STA.
  • an operation of a transmitting STA may be based on technical features described in at least one of FIGS. 1 to 22 .
  • the transmitting STA may generate capability information (S2310).
  • the transmitting STA may generate capability information related to WLAN sensing.
  • the capability information may include a common part and an individual part.
  • the common part may include sensing support band information including information related to whether or not to support WLAN sensing performed in a sub 7 GHz band and information related to whether or not to support WLAN sensing performed in a 60 GHz band.
  • the individual part includes at least one of capability information for WLAN sensing performed in the sub 7 GHz band and capability information for WLAN sensing performed in the 60 GHz band based on the sensing support band information.
  • Sensing capability may include a common part and an individual part.
  • the common part may include a capability that the common part may have in common regardless of a specific capability (ie, a sensing band).
  • the common part may include information related to a band supported for WLAN sensing.
  • the common part may include information related to whether or not to support WLAN sensing performed in a sub-7 GHz band and information related to whether or not to support WLAN sensing performed in a 60 GHz band.
  • the individual part includes capability information for sub-7 GHz band sensing when the STA supports WLAN sensing performed in the sub-7 GHz band based on the common part, and supports the WLAN sensing performed in the 60 GHz band in the 60 GHz band Capability information for performed WLAN sensing may be included.
  • the common part may further include common capability information commonly applied to WLAN sensing performed in the sub 7 GHz and 60 GHz bands.
  • the common capability information may further include information related to a senseable bandwidth.
  • the individual part may include at least one of whether a channel measurement method used for WLAN sensing is supported and whether a role in WLAN sensing is supported.
  • the role may include at least one of a sensing initiator, a sensing responder, a sensing transmitter, and a sensing receiver.
  • Sensing initiator STA initiating a WLAN sensing session.
  • Sensing responder STA participating in the WLAN sensing session initiated by the sensing initiator.
  • Sensing transmitter STA that transmits a PPDU for sensing measurement in a sensing session.
  • Sensing receiver STA that receives the PPDU transmitted by the sensing transmitter and performs sensing measurement.
  • the transmitting STA may transmit capability information (S2320). For example, the transmitting STA may transmit the capability information to the receiving STA.
  • the transmitting STA may determine a role (S2330). For example, the transmitting STA may determine roles to be performed by the transmitting STA and the receiving STA in WLAN sensing. For example, roles in WLAN sensing of the transmitting STA and the receiving STA may be determined.
  • the transmitting STA may transmit a sensing signal (S2340).
  • the transmitting STA may transmit a sensing signal to the receiving STA.
  • the transmitting STA may receive the feedback signal (S2350).
  • the transmitting STA may receive a feedback signal for the sensing signal from the receiving STA.
  • 24 is a diagram illustrating an embodiment of a method of operating a receiving STA.
  • an operation of a receiving STA may be based on technical features described in at least one of FIGS. 1 to 22 .
  • the receiving STA may receive capability information (S2410).
  • the receiving STA may receive capability information related to WLAN sensing from the transmitting STA.
  • the capability information may include a common part and an individual part.
  • the common part may include sensing support band information including information related to whether or not to support WLAN sensing performed in a sub 7 GHz band and information related to whether or not to support WLAN sensing performed in a 60 GHz band.
  • the individual part includes at least one of capability information for WLAN sensing performed in the sub 7 GHz band and capability information for WLAN sensing performed in the 60 GHz band based on the sensing support band information.
  • Sensing capability may include a common part and an individual part.
  • the common part may include a capability that the common part may have in common regardless of a specific capability (ie, a sensing band).
  • the common part may include information related to a band supported for WLAN sensing.
  • the common part may include information related to whether or not to support WLAN sensing performed in a sub-7 GHz band and information related to whether or not to support WLAN sensing performed in a 60 GHz band.
  • the individual part includes capability information for sub-7 GHz band sensing when the STA supports WLAN sensing performed in the sub-7 GHz band based on the common part, and supports the WLAN sensing performed in the 60 GHz band in the 60 GHz band Capability information for performed WLAN sensing may be included.
  • the common part may further include common capability information commonly applied to WLAN sensing performed in the sub 7 GHz and 60 GHz bands.
  • the common capability information may further include information related to a senseable bandwidth.
  • the individual part may include at least one of whether a channel measurement method used for WLAN sensing is supported and whether a role in WLAN sensing is supported.
  • the role may include at least one of a sensing initiator, a sensing responder, a sensing transmitter, and a sensing receiver.
  • Sensing initiator STA initiating a WLAN sensing session.
  • Sensing responder STA participating in the WLAN sensing session initiated by the sensing initiator.
  • Sensing transmitter STA that transmits a PPDU for sensing measurement in a sensing session.
  • Sensing receiver STA that receives the PPDU transmitted by the sensing transmitter and performs sensing measurement.
  • the receiving STA may decode the capability information (S2420). For example, the receiving STA may decode the capability information.
  • the receiving STA may determine a role (S2430). For example, the receiving STA may determine roles to be performed by the transmitting STA and the receiving STA in WLAN sensing. For example, roles in WLAN sensing of the transmitting STA and the receiving STA may be determined.
  • the receiving STA may receive the sensing signal (S2440).
  • the receiving STA may receive a sensing signal from the transmitting STA.
  • the receiving STA may transmit a feedback signal (S2450).
  • the receiving STA may transmit a feedback signal for the sensing signal to the transmitting STA.
  • Some of the detailed steps shown in the examples of FIGS. 23 and 24 may not be essential steps and may be omitted. In addition to the steps shown in FIGS. 23 and 24 , other steps may be added, and the order of the steps may vary. Some of the above steps may have their own technical meaning.
  • the technical features of the present specification described above may be applied to various devices and methods.
  • the above-described technical features of the present specification may be performed/supported through the apparatus of FIGS. 1 and/or 9 .
  • the technical features of the present specification described above may be applied only to a part of FIGS. 1 and/or 9 .
  • the technical features of the present specification described above are implemented based on the processing chips 114 and 124 of FIG. 1 , or implemented based on the processors 111 and 121 and the memories 112 and 122 of FIG. 1 , or , may be implemented based on the processor 910 and the memory 920 of FIG. 9 .
  • the apparatus includes: a memory; and a processor operatively coupled with the memory, wherein the processor generates capability information related to WLAN sensing, wherein the capability information includes a common portion and an individual portion.
  • the common part includes sensing support band information including information related to whether or not to support WLAN sensing performed in a sub 7 GHz band and information related to whether or not to support WLAN sensing performed in a 60 GHz band
  • the individual part includes at least one of capability information for WLAN sensing performed in the sub 7 GHz band and capability information for WLAN sensing performed in the 60 GHz band based on the sensing support band information; And it may be configured to transmit the capability information to the receiving STA.
  • CRM computer readable medium
  • CRM proposed by the present specification includes an instruction based on being executed by at least one processor of a transmitting STA (station) of a wireless local area network (Wireless Local Area Network) system.
  • capability information related to WLAN sensing is generated, wherein the capability information includes a common part and an individual part, and the The common part includes sensing support band information including information related to whether or not to support WLAN sensing performed in the sub 7 GHz band and information related to whether or not to support WLAN sensing performed in the 60 GHz band, and the individual part includes the sensing including at least one of capability information for WLAN sensing performed in the sub 7 GHz band and capability information for WLAN sensing performed in the 60 GHz band based on support band information; and an instruction for performing an operation including transmitting the capability information to the receiving STA.
  • the instructions stored in the CRM of the present specification may be executed by at least one processor.
  • At least one processor related to CRM in the present specification may be the processors 111 and 121 or the processing chips 114 and 124 of FIG. 1 , or the processor 910 of FIG. 9 .
  • the CRM of the present specification may be the memories 112 and 122 of FIG. 1 , the memory 920 of FIG. 9 , or a separate external memory/storage medium/disk.
  • Machine learning refers to a field that defines various problems dealt with in the field of artificial intelligence and studies methodologies to solve them. do.
  • Machine learning is also defined as an algorithm that improves the performance of a certain task through constant experience.
  • An artificial neural network is a model used in machine learning, and may refer to an overall model having problem-solving ability, which is composed of artificial neurons (nodes) that form a network by combining synapses.
  • An artificial neural network may be defined by a connection pattern between neurons of different layers, a learning process that updates model parameters, and an activation function that generates an output value.
  • the artificial neural network may include an input layer, an output layer, and optionally one or more hidden layers. Each layer includes one or more neurons, and the artificial neural network may include neurons and synapses connecting neurons. In the artificial neural network, each neuron may output a function value of an activation function for input signals, weights, and biases input through synapses.
  • Model parameters refer to parameters determined through learning, and include the weight of synaptic connections and the bias of neurons.
  • the hyperparameter refers to a parameter that must be set before learning in a machine learning algorithm, and includes a learning rate, the number of iterations, a mini-batch size, an initialization function, and the like.
  • the purpose of learning the artificial neural network can be seen as determining the model parameters that minimize the loss function.
  • the loss function may be used as an index for determining optimal model parameters in the learning process of the artificial neural network.
  • Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning according to a learning method.
  • Supervised learning refers to a method of training an artificial neural network in a state where a label for the training data is given, and the label is the correct answer (or result value) that the artificial neural network should infer when the training data is input to the artificial neural network.
  • Unsupervised learning may refer to a method of training an artificial neural network in a state where no labels are given for training data.
  • Reinforcement learning can refer to a learning method in which an agent defined in an environment learns to select an action or sequence of actions that maximizes the cumulative reward in each state.
  • machine learning implemented as a deep neural network (DNN) including a plurality of hidden layers is also called deep learning (deep learning), and deep learning is a part of machine learning.
  • DNN deep neural network
  • deep learning deep learning
  • machine learning is used in a sense including deep learning.
  • a robot can mean a machine that automatically handles or operates a task given by its own capabilities.
  • a robot having a function of recognizing an environment and performing an operation by self-judgment may be referred to as an intelligent robot.
  • Robots can be classified into industrial, medical, home, military, etc. depending on the purpose or field of use.
  • the robot may be provided with a driving unit including an actuator or a motor to perform various physical operations such as moving the robot joints.
  • the movable robot includes a wheel, a brake, a propeller, and the like in the driving unit, and may travel on the ground or fly in the air through the driving unit.
  • the extended reality is a generic term for virtual reality (VR), augmented reality (AR), and mixed reality (MR).
  • VR technology provides only CG images of objects or backgrounds in the real world
  • AR technology provides virtual CG images on top of images of real objects
  • MR technology is a computer that mixes and combines virtual objects in the real world. graphic technology.
  • MR technology is similar to AR technology in that it shows both real and virtual objects. However, there is a difference in that in AR technology, a virtual object is used in a form that complements a real object, whereas in MR technology, a virtual object and a real object are used with equal characteristics.
  • HMD Head-Mount Display
  • HUD Head-Up Display
  • mobile phone tablet PC, laptop, desktop, TV, digital signage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Databases & Information Systems (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선랜(Wireless Local Area Network) 시스템에서, 송신 STA은 WLAN 센싱(sensing)에 관련된 캐퍼빌리티 정보를 생성할 수 있다. 상기 캐퍼빌리티 정보는 공통 부분 및 개별(individual) 부분을 포함할 수 있다. 상기 공통 부분은 서브 7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함하는 센싱 지원 대역 정보를 포함할 수 있다. 상기 개별 부분은 상기 센싱 지원 대역 정보를 기초로 상기 서브 7GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 및 상기 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 중 적어도 하나를 포함할 수 있다. 송신 STA은 수신 STA에게 상기 캐퍼빌리티 정보를 전송할 수 있다.

Description

무선랜 시스템에서 센싱을 수행하는 방법 및 장치
본 명세서는 무선랜 시스템에서 센싱 기법에 관한 것으로, 보다 상세하게는, 센싱을 수행하기 위한 절차 및 시그널링 방법에 관한 것이다.
WLAN(wireless local area network)은 다양한 방식으로 개선되어왔다. 예를 들어, IEEE 802.11bf 무선랜 센싱은 통신과 레이더 기술이 융합된 최초의 표준이다. 일상생활과 산업 전반에 걸쳐 비면허 주파수 수요가 급증하고 있지만 주파수 신규 공급에는 한계가 있기 때문에 통신과 레이다의 융합 기술 개발은 주파수 이용 효율을 증대하는 측면에서 매우 바람직한 방향이다. 기존에도 무선랜 신호를 이용하여 벽 뒤의 움직임을 감지하는 센싱 기술이나 60GHz 대역에서 FMCW(Frequency Modulated Continuous Wave) 신호를 이용하여 차량 내 움직임을 감지하는 레이다 기술 등이 개발되고 있으나 IEEE 802.11bf 표준화와 연계하여 센싱 성능을 한 단계 끌어올릴 수 있다는 점에서 큰 의미를 둘 수 있다. 특히, 현대사회는 사생활 보호의 중요성이 점점 강조되고 있어 CCTV와 달리 사생활 침해 문제에 법적으로 보다 자유로운 무선랜 센싱 기술 개발이 더 기대되고 있다.
한편, 자동차, 국방, 산업, 생활 등 전반에 걸쳐 레이더 전체 시장은 2025년까지 연평균 성장률 약 5% 수준까지 성장할 것으로 예측되고, 특히, 생활 센서의 경우 연평균 성장률은 70% 수준까지 급성장할 것으로 전망된다. 무선랜 센싱 기술은 움직임 감지, 호흡 모니터링, 측위/추적, 낙상 감지, 차량 내 유아 감지, 출현/근접 인식, 개인 식별, 몸동작 인식, 행동 인식 등의 광범위한 실생활 적용이 가능하여 관련 신사업 성장을 촉진하고 기업의 경쟁력 제고에 기여할 수 있을 것으로 기대한다.
다양한 실시 예들에 따른 무선랜(Wireless Local Area Network) 시스템에서 송신 STA은 WLAN 센싱(sensing)에 관련된 캐퍼빌리티 정보를 생성할 수 있다. 상기 캐퍼빌리티 정보는 공통 부분 및 개별(individual) 부분을 포함할 수 있다. 상기 공통 부분은 서브 7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함하는 센싱 지원 대역 정보를 포함할 수 있다. 상기 개별 부분은 상기 센싱 지원 대역 정보를 기초로 상기 서브 7GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 및 상기 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 중 적어도 하나를 포함할 수 있다. 송신 STA은 수신 STA에게 상기 캐퍼빌리티 정보를 전송할 수 있다.
sub-7GHz 센싱과 60GHz 센싱의 양상이 다르기 때문에, STA이 sub-7GHz 센싱을 지원하는지 60GHz 센싱을 지원하는지에 따라 이후의 센싱 동작 및 시그널링이 달라질 수 있다 따라서 해당 캐퍼빌리티를 알 필요가 있다. 본 명세서의 일례에 따르면, Setup 단계에서 STA 간의 sensing capabilities를 인지하고, Association을 수행할 수 있다.
도 1은 본 명세서의 송신 장치 및/또는 수신 장치의 일례를 나타낸다.
도 2는 다중 센싱 송신 장치를 이용한 무선랜 센싱 시나리오 일례를 나타낸다.
도 3는 다중 센싱 수신 장치를 이용한 무선랜 센싱 시나리오 일례를 나타낸다.
도 4은 무선랜 센싱 절차의 일례를 나타낸다.
도 5는 무선랜 센싱을 분류한 일례이다.
도 6는 CSI 기반 무선랜 센싱을 이용한 실내 측위를 나타낸다.
도 7은 무선랜 센싱 장치를 구현한 일례이다.
도 8은 802.11ay 무선랜 시스템에서 지원하는 PPDU 구조를 간단히 도시한 도면이다.
도 9은 본 명세서에 사용되는 PPDU의 일례를 나타낸다.
도 10은 WLAN sensing의 일 실시예를 도시한 도면이다.
도 11은 WLAN 센싱의 전체적인 절차를 도시한 도면이다.
도 12는 simple indication 방법의 일 실시예를 도시한 도면이다.
도 13 내지 도 22는 Sensing capability의 일 실시예를 도시한 도면이다.
도 23은 송신 STA 동작 방법의 일 실시예를 도시한 도면이다.
도 24는 수신 STA 동작 방법의 일 실시예를 도시한 도면이다.
본 명세서에서 “또는 B(A or B)”는 “오직 A”“오직 B”또는 “와 B 모두”를 의미할 수 있다. 달리 표현하면, 본 명세서에서 “또는 B(A or B)”는 “및/또는 B(A and/or B)”으로 해석될 수 있다. 예를 들어, 본 명세서에서 “B 또는 C(A, B or C)”는 “오직 A”“오직 B”“오직 C”또는 “B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 “및/또는(and/or)”을 의미할 수 있다. 예를 들어, “”는 “및/또는 B”를 의미할 수 있다. 이에 따라 “”는 “오직 A”“오직 B”또는 “와 B 모두”를 의미할 수 있다. 예를 들어, “B, C”는 “B 또는 C”를 의미할 수 있다.
본 명세서에서 “적어도 하나의 A 및 B(at least one of A and B)”는, “오직 A”“오직 B”또는 “와 B 모두”를 의미할 수 있다. 또한, 본 명세서에서 “적어도 하나의 A 또는 B(at least one of A or B)”나 “적어도 하나의 A 및/또는 B(at least one of A and/or B)”라는 표현은 “적어도 하나의 A 및 B(at least one of A and B)”와 동일하게 해석될 수 있다.
또한, 본 명세서에서 “적어도 하나의 A, B 및 C(at least one of A, B and C)”는, “오직 A”“오직 B”“오직 C”또는 “B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다. 또한, “적어도 하나의 A, B 또는 C(at least one of A, B or C)”나 “적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)”는 “적어도 하나의 A, B 및 C(at least one of A, B and C)”를 의미할 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
본 명세서의 이하의 일례는 다양한 무선 통신시스템에 적용될 수 있다. 예를 들어, 본 명세서의 이하의 일례는 무선랜(wireless local area network, WLAN) 시스템에 적용될 수 있다. 예를 들어, 본 명세서는 IEEE 802.11ad의 규격이나, IEEE 802.11ay 규격에 적용될 수 있다. 또한 본 명세서는 새롭게 제안되는 무선랜 센싱 규격 또는 IEEE 802.11bf 규격에도 적용될 수 있다.
이하 본 명세서의 기술적 특징을 설명하기 위해 본 명세서가 적용될 수 있는 기술적 특징을 설명한다.
도 1은 본 명세서의 송신 장치 및/또는 수신 장치의 일례를 나타낸다.
도 1의 일례는 이하에서 설명되는 다양한 기술적 특징을 수행할 수 있다. 도 1은 적어도 하나의 STA(station)에 관련된다. 예를 들어, 본 명세서의 STA(110, 120)은 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit) 또는 단순히 유저(user) 등의 다양한 명칭으로도 불릴 수 있다. 본 명세서의 STA(110, 120)은 네트워크, 기지국(Base Station), Node-B, AP(Access Point), 리피터, 라우터, 릴레이 등의 다양한 명칭으로 불릴 수 있다. 본 명세서의 STA(110, 120)은 수신 장치(apparatus), 송신 장치, 수신 STA, 송신 STA, 수신 Device, 송신 Device 등의 다양한 명칭으로 불릴 수 있다.
예를 들어, STA(110, 120)은 AP(access Point) 역할을 수행하거나 non-AP 역할을 수행할 수 있다. 즉, 본 명세서의 STA(110, 120)은 AP 및/또는 non-AP의 기능을 수행할 수 있다. 본 명세서에서 AP는 AP STA으로도 표시될 수 있다.
본 명세서의 STA(110, 120)은 IEEE 802.11 규격 이외의 다양한 통신 규격을 함께 지원할 수 있다. 예를 들어, 3GPP 규격에 따른 통신 규격(예를 들어, LTE, LTE-A, 5G NR 규격)등을 지원할 수 있다. 또한 본 명세서의 STA은 휴대 전화, 차량(vehicle), 개인용 컴퓨터 등의 다양한 장치로 구현될 수 있다. 또한, 본 명세서의 STA은 음성 통화, 영상 통화, 데이터 통신, 자율 주행(Self-Driving, Autonomous-Driving) 등의 다양한 통신 서비스를 위한 통신을 지원할 수 있다.
본 명세서에서 STA(110, 120)은 IEEE 802.11 표준의 규정을 따르는 매체 접속 제어(medium access control, MAC)와 무선 매체에 대한 물리 계층(Physical Layer) 인터페이스를 포함할 수 있다.
도 1의 부도면 (a)를 기초로 STA(110, 120)을 설명하면 이하와 같다.
제1 STA(110)은 프로세서(111), 메모리(112) 및 트랜시버(113)를 포함할 수 있다. 도시된 프로세서, 메모리 및 트랜시버는 각각 별도의 칩으로 구현되거나, 적어도 둘 이상의 블록/기능이 하나의 칩을 통해 구현될 수 있다.
제1 STA의 트랜시버(113)는 신호의 송수신 동작을 수행한다. 구체적으로, IEEE 802.11 패킷(예를 들어, IEEE 802.11a/b/g/n/ac/ax/be 등)을 송수신할 수 있다.
예를 들어, 제1 STA(110)은 AP의 의도된 동작을 수행할 수 있다. 예를 들어, AP의 프로세서(111)는 트랜시버(113)를 통해 신호를 수신하고, 수신 신호를 처리하고, 송신 신호를 생성하고, 신호 송신을 위한 제어를 수행할 수 있다. AP의 메모리(112)는 트랜시버(113)를 통해 수신된 신호(즉, 수신 신호)를 저장할 수 있고, 트랜시버를 통해 송신될 신호(즉, 송신 신호)를 저장할 수 있다.
예를 들어, 제2 STA(120)은 Non-AP STA의 의도된 동작을 수행할 수 있다. 예를 들어, non-AP의 트랜시버(123)는 신호의 송수신 동작을 수행한다. 구체적으로, IEEE 802.11 패킷(예를 들어, IEEE 802.11a/b/g/n/ac/ax/be 등)을 송수신할 수 있다.
예를 들어, Non-AP STA의 프로세서(121)는 트랜시버(123)를 통해 신호를 수신하고, 수신 신호를 처리하고, 송신 신호를 생성하고, 신호 송신을 위한 제어를 수행할 수 있다. Non-AP STA의 메모리(122)는 트랜시버(123)를 통해 수신된 신호(즉, 수신 신호)를 저장할 수 있고, 트랜시버를 통해 송신될 신호(즉, 송신 신호)를 저장할 수 있다.
예를 들어, 이하의 명세서에서 AP로 표시된 장치의 동작은 제1 STA(110) 또는 제2 STA(120)에서 수행될 수 있다. 예를 들어 제1 STA(110)이 AP인 경우, AP로 표시된 장치의 동작은 제1 STA(110)의 프로세서(111)에 의해 제어되고, 제1 STA(110)의 프로세서(111)에 의해 제어되는 트랜시버(113)를 통해 관련된 신호가 송신되거나 수신될 수 있다. 또한, AP의 동작에 관련된 제어 정보나 AP의 송신/수신 신호는 제1 STA(110)의 메모리(112)에 저장될 수 있다. 또한, 제2 STA(110)이 AP인 경우, AP로 표시된 장치의 동작은 제2 STA(120)의 프로세서(121)에 의해 제어되고, 제2 STA(120)의 프로세서(121)에 의해 제어되는 트랜시버(123)를 통해 관련된 신호가 송신되거나 수신될 수 있다. 또한, AP의 동작에 관련된 제어 정보나 AP의 송신/수신 신호는 제2 STA(110)의 메모리(122)에 저장될 수 있다.
예를 들어, 이하의 명세서에서 non-AP(또는 User-STA)로 표시된 장치의 동작은 제 STA(110) 또는 제2 STA(120)에서 수행될 수 있다. 예를 들어 제2 STA(120)이 non-AP인 경우, non-AP로 표시된 장치의 동작은 제2 STA(120)의 프로세서(121)에 의해 제어되고, 제2 STA(120)의 프로세서(121)에 의해 제어되는 트랜시버(123)를 통해 관련된 신호가 송신되거나 수신될 수 있다. 또한, non-AP의 동작에 관련된 제어 정보나 AP의 송신/수신 신호는 제2 STA(120)의 메모리(122)에 저장될 수 있다. 예를 들어 제1 STA(110)이 non-AP인 경우, non-AP로 표시된 장치의 동작은 제1 STA(110)의 프로세서(111)에 의해 제어되고, 제1 STA(120)의 프로세서(111)에 의해 제어되는 트랜시버(113)를 통해 관련된 신호가 송신되거나 수신될 수 있다. 또한, non-AP의 동작에 관련된 제어 정보나 AP의 송신/수신 신호는 제1 STA(110)의 메모리(112)에 저장될 수 있다.
이하의 명세서에서 (송신/수신) STA, 제1 STA, 제2 STA, STA1, STA2, AP, 제1 AP, 제2 AP, AP1, AP2, (송신/수신) Terminal, (송신/수신) device, (송신/수신) apparatus, 네트워크 등으로 불리는 장치는 도 1의 STA(110, 120)을 의미할 수 있다. 예를 들어, 구체적인 도면 부호 없이 (송신/수신) STA, 제1 STA, 제2 STA, STA1, STA2, AP, 제1 AP, 제2 AP, AP1, AP2, (송신/수신) Terminal, (송신/수신) device, (송신/수신) apparatus, 네트워크 등으로 표시된 장치도 도 1의 STA(110, 120)을 의미할 수 있다. 예를 들어, 이하의 일례에서 다양한 STA이 신호(예를 들어, PPDU)를 송수신하는 동작은 도 1의 트랜시버(113, 123)에서 수행되는 것일 수 있다. 또한, 이하의 일례에서 다양한 STA이 송수신 신호를 생성하거나 송수신 신호를 위해 사전에 데이터 처리나 연산을 수행하는 동작은 도 1의 프로세서(111, 121)에서 수행되는 것일 수 있다. 예를 들어, 송수신 신호를 생성하거나 송수신 신호를 위해 사전에 데이터 처리나 연산을 수행하는 동작의 일례는, 1) PPDU 내에 포함되는 서브 필드(SIG, STF, LTF, Data) 필드의 비트 정보를 결정/획득/구성/연산/디코딩/인코딩하는 동작, 2) PPDU 내에 포함되는 서브 필드(SIG, STF, LTF, Data) 필드를 위해 사용되는 시간 자원이나 주파수 자원(예를 들어, 서브캐리어 자원) 등을 결정/구성/획득하는 동작, 3) PPDU 내에 포함되는 서브 필드(SIG, STF, LTF, Data) 필드를 위해 사용되는 특정한 시퀀스(예를 들어, 파일럿 시퀀스, STF/LTF 시퀀스, SIG에 적용되는 엑스트라 시퀀스) 등을 결정/구성/획득하는 동작, 4) STA에 대해 적용되는 전력 제어 동작 및/또는 파워 세이빙 동작, 5) ACK 신호의 결정/획득/구성/연산/디코딩/인코딩 등에 관련된 동작을 포함할 수 있다. 또한, 이하의 일례에서 다양한 STA이 송수신 신호의 결정/획득/구성/연산/디코딩/인코딩을 위해 사용하는 다양한 정보(예를 들어, 필드/서브필드/제어필드/파라미터/파워 등에 관련된 정보)는 도 1의 메모리(112, 122)에 저장될 수 있다.
상술한 도 1의 부도면 (a)의 장치/STA는 도 1의 부도면 (b)와 같이 변형될 수 있다. 이하 도 1의 부도면 (b)을 기초로, 본 명세서의 STA(110, 120)을 설명한다.
예를 들어, 도 1의 부도면 (b)에 도시된 트랜시버(113, 123)는 상술한 도 1의 부도면 (a)에 도시된 트랜시버와 동일한 기능을 수행할 수 있다. 예를 들어, 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)은 프로세서(111, 121) 및 메모리(112, 122)를 포함할 수 있다. 도 1의 부도면 (b)에 도시된 프로세서(111, 121) 및 메모리(112, 122)는 상술한 도 1의 부도면 (a)에 도시된 프로세서(111, 121) 및 메모리(112, 122)와 동일한 기능을 수행할 수 있다.
이하에서 설명되는, 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit), 유저(user), 유저 STA, 네트워크, 기지국(Base Station), Node-B, AP(Access Point), 리피터, 라우터, 릴레이, 수신 장치, 송신 장치, 수신 STA, 송신 STA, 수신 Device, 송신 Device, 수신 Apparatus, 및/또는 송신 Apparatus는, 도 1의 부도면 (a)/(b)에 도시된 STA(110, 120)을 의미하거나, 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)을 의미할 수 있다. 즉, 본 명세서의 기술적 특징은, 도 1의 부도면 (a)/(b)에 도시된 STA(110, 120)에 수행될 수도 있고, 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)에서만 수행될 수도 있다. 예를 들어, 송신 STA가 제어 신호를 송신하는 기술적 특징은, 도 1의 부도면 (a)/(b)에 도시된 프로세서(111, 121)에서 생성된 제어 신호가 도 1의 부도면 (a)/(b)에 도시된 트랜시버(113, 123)을 통해 송신되는 기술적 특징으로 이해될 수 있다. 또는, 송신 STA가 제어 신호를 송신하는 기술적 특징은, 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)에서 트랜시버(113, 123)로 전달될 제어 신호가 생성되는 기술적 특징으로 이해될 수 있다.
예를 들어, 수신 STA가 제어 신호를 수신하는 기술적 특징은, 도 1의 부도면 (a)에 도시된 트랜시버(113, 123)에 의해 제어 신호가 수신되는 기술적 특징으로 이해될 수 있다. 또는, 수신 STA가 제어 신호를 수신하는 기술적 특징은, 도 1의 부도면 (a)에 도시된 트랜시버(113, 123)에 수신된 제어 신호가 도 1의 부도면 (a)에 도시된 프로세서(111, 121)에 의해 획득되는 기술적 특징으로 이해될 수 있다. 또는, 수신 STA가 제어 신호를 수신하는 기술적 특징은, 도 1의 부도면 (b)에 도시된 트랜시버(113, 123)에 수신된 제어 신호가 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)에 의해 획득되는 기술적 특징으로 이해될 수 있다.
도 1의 부도면 (b)을 참조하면, 메모리(112, 122) 내에 소프트웨어 코드(115, 125)가 포함될 수 있다. 소프트웨어 코드(115, 125)는 프로세서(111, 121)의 동작을 제어하는 instruction이 포함될 수 있다. 소프트웨어 코드(115, 125)는 다양한 프로그래밍 언어로 포함될 수 있다.
도 1에 도시된 프로세서(111, 121) 또는 프로세싱 칩(114, 124)은 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 프로세서는 AP(application processor)일 수 있다. 예를 들어, 도 1에 도시된 프로세서(111, 121) 또는 프로세싱 칩(114, 124)은 DSP(digital signal processor), CPU(central processing unit), GPU(graphics processing unit), 모뎀(Modem; modulator and demodulator) 중 적어도 하나를 포함할 수 있다. 예를 들어, 도 1에 도시된 프로세서(111, 121) 또는 프로세싱 칩(114, 124)은 Qualcomm®에 의해 제조된 SNAPDRAGONTM 시리즈 프로세서, Samsung®에 의해 제조된 EXYNOSTM 시리즈 프로세서, Apple®에 의해 제조된 A 시리즈 프로세서, MediaTek®에 의해 제조된 HELIOTM 시리즈 프로세서, INTEL®에 의해 제조된 ATOMTM 시리즈 프로세서 또는 이를 개선(enhance)한 프로세서일 수 있다.
본 명세서에서 상향링크는 non-AP STA로부터 AP STA으로의 통신을 위한 링크를 의미할 수 있고 상향링크를 통해 상향링크 PPDU/패킷/신호 등이 송신될 수 있다. 또한, 본 명세서에서 하향링크는 AP STA로부터 non-AP STA으로의 통신을 위한 링크를 의미할 수 있고 하향링크를 통해 하향링크 PPDU/패킷/신호 등이 송신될 수 있다.
무선랜 센싱 기술은 표준이 없이도 구현 가능한 일종의 레이더 기술이지만 표준화를 통해 더 강력한 성능을 얻을 수 있을 것으로 판단된다. IEEE 802.11bf 표준에서는 무선랜 센싱에 참여하는 장치를 기능별로 아래 표와 같이 정의하고 있다. 그 기능에 따라 무선랜 센싱을 시작하는 장치와 참여하는 장치, 센싱 PPDU(Physical Layer Protocol Data Unit)를 송신하는 장치와 수신하는 장치 등으로 구분할 수 있다.
용어 기능
Sensing Initiator 센싱을 시작하는 장치
Sensing Responder 센싱에 참여하는 장치
Sensing Transmitter 센싱 PPDU를 송신하는 장치
Sensing Receiver 센싱 PPDU를 수신하는 장치
도 2는 다중 센싱 송신 장치를 이용한 무선랜 센싱 시나리오 일례를 나타낸다.도 3은 다중 센싱 수신 장치를 이용한 무선랜 센싱 시나리오 일례를 나타낸다.
도 2 및 도 3은 무선랜 센싱 장치의 기능과 배치에 따른 센싱 시나리오를 나타낸 것이다. 1개의 센싱 시작 장치와 여러 개의 센싱 참여 장치를 가정한 환경에서, 도 2는 여러 개의 센싱 PPDU 송신 장치를 이용하는 시나리오이고, 도 3은 여러 개의 센싱 PPDU 수신 장치를 이용하는 시나리오이다. 센싱 PPDU 수신 장치에 센싱 측정 신호처리 장치가 포함되어 있다고 가정하면, 도 3의 경우 센싱 측정 결과를 센싱 시작 장치(STA 5)에 전송(피드백)하는 절차가 추가로 필요하다.
도 4은 무선랜 센싱 절차의 일례를 나타낸다.
무선랜 센싱이 진행되는 절차를 살펴보면, 무선랜 센싱 시작 장치와 참여 장치 간에 탐색(discovery), 협상(negotiation), 측정값 교환(measurement exchange), 연결 해제(tear down) 등으로 진행된다. 탐색은 무선랜 장치들의 센싱 능력을 파악하는 과정이고, 협상은 센싱 시작 장치와 참여 장치 간의 센싱 파라미터를 결정하는 과정이고, 측정값 교환은 센싱 PPDU를 송신하고 센싱 측정 결과를 전송하는 과정이고, 연결 해제는 센싱 절차를 종료하는 과정이다.
도 5는 무선랜 센싱을 분류한 일례이다.
무선랜 센싱은 송신기를 출발하여 채널을 거쳐 수신기에 도달한 신호의 채널상태정보(channel state information)를 이용하는 CSI 기반 센싱과 송신신호가 물체에 반사되어 수신된 신호를 이용하는 레이더 기반 센싱으로 분류할 수 있다. 또한, 각 센싱 기술은 센싱용 송신기가 센싱 과정에 직접 참여하는 방식(coordinated CSI, active rader)과 센싱용 송신기가 센싱 과정에 참여하지 않는, 즉, 센싱 과정에 참여하는 전용 송신기가 없는 방식(un-coordinated CSI, passive radar)으로 다시 나뉜다.
도 6는 CSI 기반 무선랜 센싱을 이용한 실내 측위를 나타낸다.
도 6는 CSI 기반 무선랜 센싱을 실내 측위에 활용한 것으로, CSI를 이용하여 도달각(Angle of Arrival) 및 도달시간(Time of Arrival)을 구하고 이를 직교좌표로 변환하면 실내 측위 정보를 구할 수 있다.
도 7은 무선랜 센싱 장치를 구현한 일례이다.
도 7은 매트랩 툴박스, Zynq, USRP를 이용하여 무선랜 센싱 장치를 구현한 것으로, 매트랩 툴박스에서 IEEE 802.11ax 무선랜 신호를 생성하고, Zynq SDR(Software Defined Radio)을 이용하여 RF 신호를 발생한다. 채널을 통과한 신호는 USRP SDR로 수신하고 매트랩 툴박스에서 센싱 신호처리를 수행한다. 여기서 1개의 참조채널(reference channel, 센싱 송신기로부터 직접 수신 가능한 채널)과 1개의 감시채널(surveillance channel, 물체에 반사되어 수신 가능한 채널)을 가정하였다. 무선랜 센싱 장치를 이용하여 분석한 결과, 움직임이나 몸동작을 구별할 수 있는 고유한 특성을 얻을 수 있었다.
현재 IEEE 802.11bf 무선랜 센싱 표준화는 초기 개발 단계로 향후 센싱 정확도를 향상시키기 위한 협력 센싱 기술이 중요하게 다뤄질 예정이다. 협력 센싱을 위한 센싱 신호의 동기 기술, CSI 관리 및 이용 기술, 센싱 파라미터 협상 및 공유 기술, CSI 생성을 위한 스케줄링 기술 등이 표준화 핵심 주제가 될 것으로 예상한다. 이외에도 원거리 센싱 기술, 저전력 센싱 기술, 센싱 보안 및 사생활 보호 기술 등도 주요 의제로 검토될 예정이다.
IEEE 802.11bf 무선랜 센싱은 언제 어디서나 흔하게 존재하는 무선랜 신호를 이용하는 일종의 레이더 기술이다. 아래 표는 대표적인 IEEE 802.11bf 이용 사례를 나타낸 것으로, 실내 감지, 동작 인식, 건강관리, 3D 비전, 차량 내 감지 등 광범위한 실생활에 활용될 수 있다. 주로 실내에서 사용하기 때문에 대체로 동작 범위는 10~20미터 이내이고 거리 정확도는 최대 2미터를 넘지 않는다.
Name details Max range (m) Key Performance Indicator Range Accuracy (m) Max Velocity (m/s)/Velocity Accuracy angular Accuracy (deg)
Room Sensing presence detection, counting the number of people in the room 15 Number of Persons in Room 0.5-2 2/0.1
Smart meeting room presence detection, counting the number of people in the room, localization of active people 10 Location of persons in room 0.5-2 1/0.1-0.3
Motion detection in a room Detection of motion of in a room (of Human) 10
Home security Detection of presence of intruders in a home 10 Detection of a person in a room 0.5-2 3/0.1-0.3 medium
Audio with user tracking Tracking persons in a room and pointing the sound of an audio system at those people 6 Localization of persons to within 0.2m 0.2 0.5/0.05 3
Store Sensing Counting number of people in a store, their location, speed of movement. Accuracy less important 20 Number and location of persons in store 0.5-2 1/0.1-0.3 3
Home Appliance Control Tracking person and motion/ gesture detection 10 Gesture Detection <1
Gesture recognition - short range (finger movement) Identification of a gesture from a set of gestures - range < 0.5m 0.5 Gesture Detection 7 3
Gesture recognition - medium range (hand movement) Indentification of a gesture from a set of gestures - range > 0.5m 2 Gesture Detection
Gesture recognition - large range (full body movement) Indentification of a gesture from a set of gestures - range > 2m 7 Gesture Detection 0.2 2/0.1 5
Aliveliness detection Determination whether a close by object is alive or not 1 Aliveliness Detection 0.05
Face/Body Recognition Selection of the identity of a person from a set of known persons 1 Identity detection 0.02
Proximity Detection Detection of object in close proximity of device 0.5 Object Detection 0.02-2 1.5/0.2 none
Home Appliance Control Gesture Detection 3 Gesture Detection <1 3/0.1
health care - Fall detection Fall detection - abnormal position detection 10 0.2 3/0.1
Health case - remote diagnostics measurements of breathing rate, heart rate etc. 5 Breating rate accuracy/Pulse Accuracy 0.5 2/0.1
Surveillance/Monitoring of elder people and/or children Tracking person and presence detection 10 Detection and localization of person 0.2-2 3/0.1
Sneeze sensing Detecting and localizing the target human and sneeze droplet volume 10 Detection and localization of person and sneeze droplet volume 0.2-0.5 20/0.1
3d vision building a 3d picture of an environment , using multiple STA 10 accuracy of 3d map (range, angle) 0.01 5/0.1 2
In car sensing - detection detection of humans in car 5 Presence of Human in car 0.1 1/0.1 3
In car sensing Driver sleepiness detection/detection aid 3 Fast detection of driver sleepiness 0.01 1/0.1 3
IEEE 802.11에서는 60GHz의 wi-fi 신호(예를 들어, 802.11ad 혹은 802.11ay 신호)를 이용하여 object(사람 혹은 사물)의 움직임이나 제스처를 sensing하는 기술에 대해서 논의가 진행되고 있다. 본 명세서에서 wi-fi sensing을 위해서 사용되는 frame format을 구성하는 방법 및 wi-fi sensing sequence에 대해서 제안한다.도 8은 802.11ay 무선랜 시스템에서 지원하는 PPDU 구조를 간단히 도시한 도면이다.
도 8에 도시된 바와 같이, 802.11ay 시스템에 적용 가능한 PPDU 포맷은 L-STF, L-CEF, L-Header, EDMG-Header-A, EDMG-STF, EDMG-CEF, EDMG-Header-B, Data, TRN 필드를 포함할 수 있으며, 상기 필드들은 PPDU의 형태(예: SU PPDU, MU PPDU 등)에 따라 선택적으로 포함될 수 있다.
여기서, L-STF, L-CEF, L-Header 필드를 포함하는 부분은 비 EDMG 영역 (Non-EDMG portion)이라 명명할 수 있고, 나머지 부분은 EDMG 영역이라 명명할 수 있다. 또한, L-STF, L-CEF, L-Header, EDMG-Header-A 필드들은 pre-EDMG modulated fields라 명명될 수 있고, 나머지 부분은 EDMG modulated fields라 명명될 수 있다.
상기 EDMG-Header-A 필드는 EDMG PPDU를 복조하기 위해 요구되는 정보를 포함한다. 상기 EDMG-Header-A 필드의 정의는 EDMG SC mode PPDU와 EDMG OFDM mode PPDU의 그것과 동일하나, EDMG control mode PPDU의 정의와는 다르다.
EDMG-STF의 구조는 EDMG PPDU가 전송되는 연속적인 2.16GHz 채널의 개수 및 iSTS번째 공간-시간 스트림의 인덱스 iSTS에 의존한다. 하나의 2.16GHz 채널을 통해 EDMG SC mode를 사용한 단일 공간-시간 스트림 EDMG PPDU 전송에 대해, EDMG-STF 필드는 존재하지 않는다. EDMG SC 전송에 대해, EDMG-STF 필드는 pi/(2-BPSK)를 사용하여 변조되어야 한다.
EDMG-CEF의 구조는 EDMG PPDU가 전송되는 연속적인 2.16GHz 채널의 개수 및 공간-시간 스트림 iSTS의 개수에 의존한다. 하나의 2.16GHz 채널을 통해 EDMG SC mode를 사용한 단일 공간-시간 스트림 EDMG PPDU 전송에 대해, EDMG-CEF 필드는 존재하지 않는다. EDMG SC 전송에 대해, EDMG-CEF 필드는 pi/(2-BPSK)를 사용하여 변조되어야 한다.
상기와 같은 PPDU의 (레거시) 프리앰블 부분은 패킷 검출 (packet detection), AGC (Automatic Gain Control), 주파수 오프셋 측정 (frequency offset estimation), 동기화 (synchronization), 변조 (SC 또는 OFDM)의 지시 및 채널 측정 (channel estimation)에 사용될 수 있다. 프리앰블의 포맷은 OFDM 패킷 및 SC 패킷에 대해 공통될 수 있다. 이때, 상기 프리앰블은 STF (Short Training Field) 및 상기 STF 필드 이후에 위치한 CE (Channel Estimation) 필드로 구성될 수 있다.
도 9는 본 명세서의 송신 장치 및/또는 수신 장치의 변형된 일례를 나타낸다.
도 1의 부도면 (a)/(b)의 각 장치/STA은 도 9와 같이 변형될 수 있다. 도 9의 트랜시버(930)는 도 9의 트랜시버(113, 123)와 동일할 수 있다. 도 9의 트랜시버(930)는 수신기(receiver) 및 송신기(transmitter)를 포함할 수 있다.
도 9의 프로세서(910)는 도 1의 프로세서(111, 121)과 동일할 수 있다. 또는, 도 9의 프로세서(910)는 도 1의 프로세싱 칩(114, 124)과 동일할 수 있다.
도 9의 메모리(150)는 도 1의 메모리(112, 122)와 동일할 수 있다. 또는, 도 9의 메모리(150)는 도 1의 메모리(112, 122)와는 상이한 별도의 외부 메모리일 수 있다.
도 9를 참조하면, 전력 관리 모듈(911)은 프로세서(910) 및/또는 트랜시버(930)에 대한 전력을 관리한다. 배터리(912)는 전력 관리 모듈(911)에 전력을 공급한다. 디스플레이(913)는 프로세서(910)에 의해 처리된 결과를 출력한다. 키패드(914)는 프로세서(910)에 의해 사용될 입력을 수신한다. 키패드(914)는 디스플레이(913) 상에 표시될 수 있다. SIM 카드(915)는 휴대 전화 및 컴퓨터와 같은 휴대 전화 장치에서 가입자를 식별하고 인증하는 데에 사용되는 IMSI(international mobile subscriber identity) 및 그와 관련된 키를 안전하게 저장하기 위하여 사용되는 집적 회로일 수 있다.
도 9를 참조하면, 스피커(940)는 프로세서(910)에 의해 처리된 소리 관련 결과를 출력할 수 있다. 마이크(941)는 프로세서(910)에 의해 사용될 소리 관련 입력을 수신할 수 있다.
11SENS는 60GHz Wi-Fi 신호를 이용하여 STA 혹은 사람의 움직임이나 제스처를 sensing하기 위하여 60GHz wi-fi 기술인 802.11ad 및 802.11ay 의 신호 송수신 방법이 고려되고 있다. 본 명세서에서는 효율적인 Wi-Fi sensing을 위하여, AP와 STA 혹은 STA와 STA 간의 채널 추정을 하기 위한 센싱 개시 프레임, 전송 개시 프레임, 및 센싱 신호를 구성하는 방법 센싱 개시 프레임, 전송 개시 프레임, 및 센싱 신호를 송수신 하는 sensing sequence에 대해서 제안한다.
이하에서 설명되는 STA은 도 1 및/또는 도 9의 장치일 수 있고, PPDU는 도 7의 PPDU일 수 있다. 디바이스는 AP 또는 non-AP STA일 수 있다.
WLAN (Wireless Local Area Network)은 비면허 대역을 이용하여 근거리 데이터 전송을 목적으로 도입되었다. IEEE 802.11 MAC/PHY 기반의 WLAN(예를 들어, Wi-Fi) 는 현재 거의 모든 곳에 전개되어 있을 정도로 대표적인 기술이 되었다.
WLAN(예를 들어, Wi-Fi)는 데이터 신호의 전송을 위하여 설계되었지만, 최근 데이터 전송 이외의 용도로 그 쓰임이 확장되고 있다.
송신단으로부터 전송되어 수신단에 전달되는 WLAN(예를 들어, Wi-Fi) 신호는 두 송수신단 사이의 전송 채널환경에 대한 정보를 포함할 수 있다. WLAN 센싱(Sensing)은 WLAN 신호를 통해 획득한 전송 채널 환경에 대한 정보를 처리하여 다양한 주변 환경에 대한 인지 정보를 얻는 기술을 말한다.
예를 들어, 인지 정보는 동작 인식(Gesture recognition), 노인의 낙상 감지(fall detection by elder people), 침입 감지(intrusion detection), 인간의 움직임 감지(human motion detection), 건강 모니터링(health monitoring), 애완동물 움직임 감지(pet movement detection) 등의 기술을 통해 획득되는 정보를 포함할 수 있다.
인지 정보를 통해 부가적인 서비스가 제공될 수 있고, WLAN 센싱은 실생활에서 다양한 형태로 응용되어 이용될 수 있다. WLAN Sensing의 정확도를 높이기 위한 방법으로 하나 이상의 WLAN Sensing 기능이 있는 기기들이 WLAN Sensing에 이용될 수 있다. 복수의 기기를 이용한 WLAN sensing은 하나의 기기(즉, 송수신단)을 이용하는 방법 대비, 채널 환경에 대한 다중의 정보를 이용할 수 있어, 보다 정확한 Sensing의 정보를 얻을 수 있다.
WLAN(예를 들어, Wi-Fi) 전송은 Channel Aggregation, Channel Bonding등을 이용하여 광대역에서 이루어지고 있다. 또한, 보다 확장된 광대역에서의 WLAN 전송이 논의되고 있다.
최근 WLAN 신호를 이용하여 sensing을 수행하는 WLAN device에 대한 관심이 높아지고 있으며, IEEE 802.11에서는 Study Group을 구성하여 논의 중에 있다. WLAN sensing은 다양한 시나리오를 포함할 수 있다.
도 10은 WLAN sensing의 일 실시예를 도시한 도면이다.
도 10을 참조하면, sensing할 target이 존재하고 이를 sensing하는 STA들이 존재할 수 있다. 예를 들어, AP와 STA이 센싱을 수행할 수 있다. Target이 AP와 STA 사이에 존재할 수 있다. 예를 들어, AP가 STA에게 센싱 신호를 전송할 수 있고, STA은 상기 센싱 신호에 대한 피드백 신호를 AP에게 전송할 수 있다. 즉, AP가 sensing target을 식별하기 위해 signal을 전송하고 STA은 target으로부터 영향을 받은 signal을 수신하고 측정할 수 있다. STA은 측정된 결과를 AP에게 전송하고, AP는 측정된 결과를 기반으로 target을 식별할 수 있다.
도 11은 WLAN 센싱의 전체적인 절차를 도시한 도면이다.
도 11을 참조하면, WLAN sensing은 다음과 같은 단계들을 포함할 수 있다.
1) Setup Phase (Capability Advertisement & Negotiation): Sensing과 관련된 capability를 exchange하며, association을 수행하는 단계. Setup Phase에서 STA들은 sensing이 가능한지 여부와 적절한 sensing capability를 가지고 있는지 판단하여 association을 수행할 수 있다. 즉, association 단계에서 STA들은 sensing이 가능한지 여부 및 sensing에 관련된 capability에 관련된 정보를 교환할 수 있다.
2) Negotiation Phase (필요하다면, Grouping도 포함할 수 있음) : Sensing과 관련된 각 STA의 role과 sensing시 사용될 parameter들에 대해 negotiation을 수행하는 단계. negotiation된 role과 parameter는 tear-down되기 전까지 sensing session에서 사용될 수 있다. 즉, sensing session에서의 role/parameter들이 negotiation phase에서 결정될 수 있고, negotiation된 role/parameter들은 tear down되기 전까지 사용될 수 있다. 즉, tear down 된 후에는 새로운 role/parameter가 사용될 수 있다.
3) Sensing Phase (Measurement during a sensing session & Feedback during a sensing session): target을 식별하기 위해 sensing signal을 전송하고 target을 거친 signal을 수신하고 측정하는 단계. 이 단계의 한 cycle을 sensing session으로 정의할 수 있다.
4) Tear down: negotiated role과 parameter를 reset하고, 다시 sensing session을 시작하기 위해서는 negotiation과정을 거칠 수 있다.
즉, negotiation phase 부터 tear down 까지 일련의 과정을 sensing session으로 정의할 수 있다. 예를 들어, 센싱 신호 전송 전에 센싱 개시 프레임이 전송될 수 있고, 센싱 개시 프레임의 전송도 센싱 세션에 포함될 수 있다. 즉, 센싱 개시 프레임 전송, 센싱 신호 전송, 피드백 프레임 전송이 하나의 센싱 세션을 구성할 수 있다.
본 명세서에서는 Setup phase에 대해 설명된다.
WLAN sensing은 새로운 frame 또는 새로운 protocol 정의로 인해 이를 지원하기 위해 setup단계에서 capability negotiation이 필요하다. 즉, sensing device들은 서로 sensing functionality의 여부를 알 필요가 있다. Sensing Capability negotiation은 기존 Legacy WLAN의 discovery(또는, scanning) 및 association 단계에서 수행될 수 있다.
본 명세서에서 언급하는 Sub-7GHz에서 동작할 수 있는 WLAN 표준은 11a, 11n, 11ac, 11ax, 11be 등을 의미하며, 60GHz 대역에서 동작할 수 있는 WLAN 표준은 11ad, 11ay 등을 의미할 수 있다. 또한, 본 명세서에서 STA은 AP 또는 non-AP STA이 될 수 있다.
Sensing capability는 다음과 같은 방법으로 정의될 수 있으며, 이로 한정되지 않는다.
1. Simple indication
단순히 WLAN sensing을 지원하는지에 대한 여부를 지시하는 캐퍼빌리티가 정의될 수 있다. WLAN sensing 여부만 정의된다면, 그 이외의 sensing 관련 capability는 기존의 Sub-7GHz나 60GHz 대역에서 정의되는 Capability가 재사용될 수 있다.
예를 들어, 1bit의 WLAN Sensing enabled field가 이 여부를 결정한다면 값이 1이면 WLAN sensing을 지원하고 0이면 WLAN sensing을 지원하지 않는다.
도 12는 simple indication 방법의 일 실시예를 도시한 도면이다.
도 12를 참조하면, WLAN Sensing 지원 여부에 관련된 캐퍼빌리티가 정의될 수 있다. 예를 들어, WLAN sensing enabled 필드가 WLAN Sensing 지원 여부에 대한 정보를 포함할 수 있다. 이 방법은 기존 capability를 재사용함으로써 overhead를 현저히 줄일 수 있지만, 다음으로 기술되는 방법들과 같이 sensing에 특화된 capability를 지시할 수 없다.
2. WLAN sensing specific indication: Non-hierarchical Structure
WLAN sensing에 특화된 여러 요소 별로 capability가 구분될 수 있다. 즉, sensing에서 구별될 수 있는 capabilities가 존재할 수 있고, 다음과 같이 capabilities가 지시될 수 있다. 또한, 여기서 지시되지 않는 capabilities는 따로 지시되지 않고, 기존의 IE(예를 들어, VHT/HE/EHT capabilities)로 지시될 수 있고, 이는 sensing 관련하여 재사용될 수도 있다.
이 지시 방법에 따른 구체적인 예시는 다음과 같다.
- 특정 Capability에 따른 구분 없이 나열하는 경우
도 13은 Sensing capability의 일 실시예를 도시한 도면이다.
도 13을 참조하면, Sensing capability는 WLAN sensing에 관련된 전반적인 캐퍼빌리티를 모두 포함할 수 있다. 예를 들어, WLAN sensing capability는 아래와 같은 정보를 포함할 수 있다.
A. Per band: band별로 sensing을 지원하는지에 대한 여부. 즉, 주파수 대역 별로 sensing을 지원하는지 여부에 대한 정보를 포함할 수 있다. 예를 들어, 2.4GHz, 5GHz, 6GHz, 60GHz를 각각 지원하는지 여부에 관련된 4bit 정보가 포함될 수 있다.
B. Per channel measurement (CM) method: signal sensing시 채널 측정 방법 지원에 대한 여부. 즉, 여러 채널 측정 방법에 관련된 bit가 포함될 수 있고, 각 채널 측정 방법을 지원하는지 여부가 해당 bit를 통해 지시될 수 있다. 예를 들어, CSI(channel state information) 기반의 채널 측정 방법이 지원되는지 여부에 관련된 정보가 포함될 수 있다.
C. Per sensing-capable bandwidth: Sensing이 가능한 bandwidth. 즉, 센싱이 수행될 수 있는 대역폭에 관련된 정보로서, 센싱이 수행될 수 있는 최대 대역폭이 아닌, 각 대역폭 별로 센싱이 수행될 수 있는지 여부에 대한 정보가 포함될 수 있다. 예를 들어, 20MHz, 40MHz, 80MHz, 160MHz, 320MHz의 대역폭에서 각각 센싱이 수행될 수 있는지 여부에 관련된 5bit 정보가 포함될 수 있다.
D. WLAN Sensing roles: 어떤 role을 지원할 수 있는지에 대한 여부. 해당 STA이 센싱에서 어떤 역할을 수행할 수 있는지에 대한 정보가 포함될 수 있다. 센싱에서의 Role의 종류 예시는 다음과 같으며, 이로 한정되지는 않는다.
Sensing initiator : WLAN 센싱 세션을 개시하는 STA.
Sensing responder : Sensing initiator에 의해 시작된 WLAN 센싱 세션에 참여하는 STA.
Sensing transmitter : 센싱 세션에 센싱 측정(sensing measurement)을 위해 PPDU를 전송하는 STA.
Sensing receiver : Sensing transmitter에 의해 전송된 PPDU를 수신하고, 센싱 측정(sensing measurement)을 수행하는 STA.
- New WLAN sensing capability를 구분하여 나열하는 경우
도 14는 Sensing capability의 일 실시예를 도시한 도면이다.
도 14를 참조하면, Sensing capability는 기존의 capability와 New WLAN sensing capability를 구분하여 포함할 수 있다. WLAN sensing을 위해서 기존에 capabilities IE에서 지시되는 capabilities를 변경하는 경우, WLAN sensing에서 새롭게 지시되어야 하는 capabilities가 존재할 수 있다. 따라서 이들을 구분하여 지시할 수 있다.
즉, Sensing capability는 supported band, maximum sensing-capabile bandwidth 등의 기존 capability를 포함하는 Changed Existing capabilities for WLAN sensing 필드 및 Channel Measurement, Roles 등의 WLAN 센싱을 위한 새로운 capability를 포함하는 New capabilities for WLAN sensing 필드를 포함할 수 있다.
- 특정 Capability에 따라 구분하여 나열하는 경우
도 15는 Sensing capability의 일 실시예를 도시한 도면이다.
도 15를 참조하면, Sensing capability는 특정 Capability에 따라 구분하여 나열될 수 있다.
예를 들어, Sensing capability는 band에 따라 별도의 캐퍼빌리티 정보를 포함할 수 있다. 즉, Sub-7GHz와 60GHz에 따라 다른 capabilities가 구성될 수 있다. 즉, sub-7GHz 대역에서 수행되는 센싱을 위한 캐퍼빌리티 정보와 60GHz 대역에서 수행되는 센싱을 위한 캐퍼빌리티 정보가 구분될 수 있다.
도 16은 Sensing capability의 일 실시예를 도시한 도면이다.
도 16을 참조하면, Sensing capability는 특정 Capability에 따라 구분하여 나열될 수 있고 기존의 capability와 New WLAN sensing capability를 구분하여 포함할 수 있다. 즉, capabilities는 도 13에서의 예시와 결합되어 구성될 수 있다. 예를 들어, Sensing capability는 sub-7GHz 대역에서 수행되는 센싱을 위한 캐퍼빌리티 정보 필드와 60GHz 대역에서 수행되는 센싱을 위한 캐퍼빌리티 정보 필드를 포함할 수 있다. 각각의 캐퍼빌리티 정보 필드는 기존 capability를 포함하는 Changed Existing capabilities for WLAN sensing 필드 및 새로운 capability를 포함하는 New capabilities for WLAN sensing 필드를 포함할 수 있다.
"2. WLAN sensing specific indication: Non-hierarchical Structure" 방법에 따른 capability는 모든 field가 특정 capability에 따른 field들의 존재 여부와 상관없이 항상 존재한다. 따라서 때로는 상당히 큰 signaling overhead가 발생할 수 있다. 예를 들어, WLAN sensing을 위한 60GHz를 지원하지 않는데도 60GHz에 대한 WLAN sensing capabilities에 대한 정보가 포함될 수 있다.
3. WLAN sensing specific indication: Hierarchical Structure
WLAN sensing은 특정 capability에 의해 서로 다른 capabilities를 지시할 수 있다. 대표적인 예로 WLAN에서 지원하는 band에 따라 지원하는 기술(예를 들어, 11ax와 11ay)이 달라질 수 있기 때문에 WLAN sensing capability는 계층적으로 지시될 수 있다. WLAN sensing capability는 Common part와 Individual part를 포함할 수 있다.
Common part: WLAN sensing을 위한 특정 capability에 상관없이 공통적으로 가질 수 있는 capability나 특정 capability에 대한 지시 여부 등을 포함하는 부분.
Individual Part: Common part에서 지시되는 값에 따라 구체적인 capabilities를 지시하는 부분.
도 17은 Sensing capability의 일례를 도시한 도면이다.
도 17을 참조하면, Sensing capability는 공통 부분(common part)과 개별 부분(individual part)을 포함할 수 있다. 예를 들어, 공통 부분은 sub-7GHz 대역에서의 센싱과 60GHz 대역에서의 센싱에 공통적으로 적용되는 캐퍼빌리티에 관련된 정보를 포함할 수 있다.
도 18은 Sensing capability의 일례를 도시한 도면이다.
도 18을 참조하면, Common part는 WLAN sensing을 위해 지원하는 대역에 관련된 정보를 포함할 수 있다. 즉, Sensing capability의 공통 부분은 특정 capability에 대한 지시 여부에 관련된 정보를 포함할 수 있다. Supported band에 따라서 이후 individual part의 capabilities가 달라질 수 있다. 예를 들어, Common part에서 Sub-7GHz만 지원한다고 하면 individual part는 Sub-7GHz에 대한 capabilities만 포함할 수 있다. 예를 들어, 공통 부분은 sub-7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함할 수 있다. 개별 부분은 상기 공통 부분을 기초로 STA이 sub-7GHz 대역에서 수행되는 WLAN 센싱을 지원하면 sub-7GHz 대역 센싱을 위한 캐퍼빌리티 정보를 포함하고, 60GHz 대역에서 수행되는 WLAN 센싱을 지원하면 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보를 포함할 수 있다.
도 19는 Sensing capability의 일례를 도시한 도면이다.
도 19를 참조하면, Common part는 Sub-7GHz과 60GHz 대역에서 WLAN 센싱을 모두 지원한다는 정보를 포함할 수 있고, individual part는 Sub-7GHz와 60GHz 대역에서 수행되는 WLAN 센싱을 위한 capabilities를 포함할 수 있다.
이하에서는 individual part에 대한 실시예들이 설명된다. 도 19의 PHY/MAC capabilities는 도 13과 같이 특정 구분 없이 나열될 수 있지만, 도 16과 같이 New WLAN sensing capabilities로 구분할 수 있다.
도 20은 Sensing capability의 일례를 도시한 도면이다.
도 20을 참조하면, Sensing capability는 공통 부분과 개별 부분을 포함할 수 있다. 기존 capabilities를 변경하는 경우에는 변경되는 capability들에 대한 field가 항상 포함될 수 있지만, 일부에 capability는 변경되지 않을 수 있다. 따라서, overhead를 줄이기 위해 송신 STA은 Control part와 같이 해당 capability field가 존재하는지에 대한 여부를 Present field를 통해 지시할 수 있고, 수신 STA은 변경된 capability 필드의 존재 여부를 확인할 수 있다. 예를 들어, Maximum sensing-capable bandwidth present값이 1이면 Maximum sensing-capable bandwidth field는 존재하고, B Present 값이 0이면 B field는 존재하지 않을 수 있다.
본 실시예에서는 Changed Existing capabilities에만 적용하였지만, 이는 New capabilities, 앞서 기술했던 Common part, 그리고 changed existing capabilities와 new capabilities각각이 아닌 Individual Part 전체에 대해서도 적용될 수 있다. 즉, sensing capability의 모든 영역에 present field가 존재할 수 있고, present field에 기초하여 해당 capability에 관련된 필드가 존재하는지 여부가 결정될 수 있다.
도 21은 Sensing capability의 일례를 도시한 도면이다.
도 21을 참조하면, Sensing capability는 공통 부분과 개별 부분을 포함할 수 있다. 공통 부분은 특정 capability(즉, 센싱 대역)에 상관없이 공통적으로 가질 수 있는 capability를 포함할 수 있다. 예를 들어, Common part는 Band에 상관없는 공통의 PHY/MAC capabilities에 관련된 정보를 포함할 수 있고, individual part는 Sub-7GHz와 60GHz band 각각에 specific한 capabilities에 관련된 정보를 포함할 수 있다. 예를 들어, common한 capability 또는 sub-7GHz 또는 60GHz에 해당하는 specific capability가 존재하지 않는다면 해당 field가 존재하지 않을 수 있다.
도 22는 Sensing capability의 일례를 도시한 도면이다.
도 22를 참조하면, Sensing capability는 공통 부분과 개별 부분을 포함할 수 있다. 공통 부분은 공통 부분은 특정 capability(즉, 센싱 대역)에 상관없이 공통적으로 가질 수 있는 capability를 포함할 수 있다. 또한, 공통 부분은 WLAN sensing을 위해 지원하는 대역에 관련된 정보를 포함할 수 있다. 예를 들어, 공통 부분은 sub-7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함할 수 있다.
개별 부분은 상기 공통 부분을 기초로 STA이 sub-7GHz 대역에서 수행되는 WLAN 센싱을 지원하면 sub-7GHz 대역 센싱을 위한 캐퍼빌리티 정보를 포함하고, 60GHz 대역에서 수행되는 WLAN 센싱을 지원하면 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보를 포함할 수 있다.
Common part는 Band에 상관없는 공통의 PHY/MAC capabilities에 관련된 정보를 포함하고, Supported band에 따라서 그 아래 capabilities는 달라질 수 있다. Supported band에서 Sub-7GHz과 60GHz 모두 지원한다고 하면 individual part는 Sub-7GHz와 60GHz에 대한 specific capabilities에 관련된 정보를 포함할 수 있다.
4. 기존 spec에 amendment하는 경우
위 1 내지 3 방법은 WLAN sensing을 위한 별도의 IE를 추가하는 방법이지만, WLAN sensing을 위해서 각각의 기존 capabilities IE (예를 들어, VHT/HE capabilities element)가 위에서 설명된 캐퍼빌리티 정보들을 포함할 수 있다. 예를 들어, 기존 capabilities IE에 WLAN sensing을 위한 캐퍼빌리티들이 포함될 수 있다. 이 방법은 새로운 IE를 만들 필요는 없지만, 기존 capabilities IE를 수정함으로써 legacy STA에게 오동작을 일으킬 수 있으며, 기존 표준을 모두 수정해야 한다.
도 23은 송신 STA 동작 방법의 일 실시예를 도시한 도면이다.
도 23을 참조하면, 송신 STA 동작은 도 1 내지 도 22 중 적어도 하나의 도면에서 설명되는 기술적 특징을 기초로 할 수 있다.
송신 STA은 캐퍼빌리티 정보를 생성할 수 있다(S2310). 예를 들어, 송신 STA은 WLAN 센싱(sensing)에 관련된 캐퍼빌리티 정보를 생성할 수 있다. 예를 들어, 상기 캐퍼빌리티 정보는 공통 부분 및 개별(individual) 부분을 포함할 수 있다. 예를 들어, 상기 공통 부분은 서브 7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함하는 센싱 지원 대역 정보를 포함할 수 있다. 예를 들어, 상기 개별 부분은 상기 센싱 지원 대역 정보를 기초로 상기 서브 7GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 및 상기 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 중 적어도 하나를 포함할 수 있다.
Sensing capability는 공통 부분과 개별 부분을 포함할 수 있다. 공통 부분은 공통 부분은 특정 capability(즉, 센싱 대역)에 상관없이 공통적으로 가질 수 있는 capability를 포함할 수 있다. 또한, 공통 부분은 WLAN sensing을 위해 지원하는 대역에 관련된 정보를 포함할 수 있다. 예를 들어, 공통 부분은 sub-7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함할 수 있다.
개별 부분은 상기 공통 부분을 기초로 STA이 sub-7GHz 대역에서 수행되는 WLAN 센싱을 지원하면 sub-7GHz 대역 센싱을 위한 캐퍼빌리티 정보를 포함하고, 60GHz 대역에서 수행되는 WLAN 센싱을 지원하면 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보를 포함할 수 있다.
예를 들어, 상기 공통 부분은 상기 서브 7GHz 및 상기 60GHz 대역에서 수행되는 WLAN 센싱에 공통으로 적용되는 공통 캐퍼빌리티 정보를 더 포함할 수 있다.
예를 들어, 상기 공통 캐퍼빌리티 정보는, 센싱 가능한 대역폭에 관련된 정보를 더 포함할 수 있다.
예를 들어, 상기 개별 부분은, WLAN 센싱에 사용되는 채널 측정 방법 지원 여부 및 WLAN 센싱에서의 역할(role) 지원 여부 중 적어도 하나를 포함할 수 있다.
예를 들어, 상기 역할은, 센싱 개시자(initiator), 센싱 응답자(responder), 센싱 전송자(transmitter), 센싱 수신자(receiver) 중 적어도 하나를 포함할 수 있다.
센싱에서의 Role의 종류 예시는 다음과 같으며, 이로 한정되지는 않는다.
Sensing initiator : WLAN 센싱 세션을 개시하는 STA.
Sensing responder : Sensing initiator에 의해 시작된 WLAN 센싱 세션에 참여하는 STA.
Sensing transmitter : 센싱 세션에 센싱 측정(sensing measurement)을 위해 PPDU를 전송하는 STA.
Sensing receiver : Sensing transmitter에 의해 전송된 PPDU를 수신하고, 센싱 측정(sensing measurement)을 수행하는 STA.
송신 STA은 캐퍼빌리티 정보를 전송할 수 있다(S2320). 예를 들어, 송신 STA은 수신 STA에게 상기 캐퍼빌리티 정보를 전송할 수 있다.
송신 STA은 역할을 결정할 수 있다(S2330). 예를 들어, 송신 STA은 WLAN 센싱에서 상기 송신 STA과 수신 STA이 수행할 역할을 결정할 수 있다. 예를 들어, 상기 송신 STA과 상기 수신 STA의 WLAN 센싱에서의 역할이 결정될 수 있다.
송신 STA은 센싱 신호를 전송할 수 있다(S2340). 예를 들어, 송신 STA은 상기 수신 STA에게 센싱 신호를 전송할 수 있다.
송신 STA은 피드백 신호를 수신할 수 있다(S2350). 예를 들어, 송신 STA은 상기 수신 STA으로부터 상기 센싱 신호에 대한 피드백 신호를 수신할 수 있다.
도 24는 수신 STA 동작 방법의 일 실시예를 도시한 도면이다.
도 24를 참조하면, 수신 STA 동작은 도 1 내지 도 22 중 적어도 하나의 도면에서 설명되는 기술적 특징을 기초로 할 수 있다.
수신 STA은 캐퍼빌리티 정보를 수신할 수 있다(S2410). 예를 들어, 수신 STA은 송신 STA으로부터 WLAN 센싱(sensing)에 관련된 캐퍼빌리티 정보를 수신할 수 있다. 예를 들어, 상기 캐퍼빌리티 정보는 공통 부분 및 개별(individual) 부분을 포함할 수 있다. 예를 들어, 상기 공통 부분은 서브 7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함하는 센싱 지원 대역 정보를 포함할 수 있다. 예를 들어, 상기 개별 부분은 상기 센싱 지원 대역 정보를 기초로 상기 서브 7GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 및 상기 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 중 적어도 하나를 포함할 수 있다.
Sensing capability는 공통 부분과 개별 부분을 포함할 수 있다. 공통 부분은 공통 부분은 특정 capability(즉, 센싱 대역)에 상관없이 공통적으로 가질 수 있는 capability를 포함할 수 있다. 또한, 공통 부분은 WLAN sensing을 위해 지원하는 대역에 관련된 정보를 포함할 수 있다. 예를 들어, 공통 부분은 sub-7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함할 수 있다.
개별 부분은 상기 공통 부분을 기초로 STA이 sub-7GHz 대역에서 수행되는 WLAN 센싱을 지원하면 sub-7GHz 대역 센싱을 위한 캐퍼빌리티 정보를 포함하고, 60GHz 대역에서 수행되는 WLAN 센싱을 지원하면 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보를 포함할 수 있다.
예를 들어, 상기 공통 부분은 상기 서브 7GHz 및 상기 60GHz 대역에서 수행되는 WLAN 센싱에 공통으로 적용되는 공통 캐퍼빌리티 정보를 더 포함할 수 있다.
예를 들어, 상기 공통 캐퍼빌리티 정보는, 센싱 가능한 대역폭에 관련된 정보를 더 포함할 수 있다.
예를 들어, 상기 개별 부분은, WLAN 센싱에 사용되는 채널 측정 방법 지원 여부 및 WLAN 센싱에서의 역할(role) 지원 여부 중 적어도 하나를 포함할 수 있다.
예를 들어, 상기 역할은, 센싱 개시자(initiator), 센싱 응답자(responder), 센싱 전송자(transmitter), 센싱 수신자(receiver) 중 적어도 하나를 포함할 수 있다.
센싱에서의 Role의 종류 예시는 다음과 같으며, 이로 한정되지는 않는다.
Sensing initiator : WLAN 센싱 세션을 개시하는 STA.
Sensing responder : Sensing initiator에 의해 시작된 WLAN 센싱 세션에 참여하는 STA.
Sensing transmitter : 센싱 세션에 센싱 측정(sensing measurement)을 위해 PPDU를 전송하는 STA.
Sensing receiver : Sensing transmitter에 의해 전송된 PPDU를 수신하고, 센싱 측정(sensing measurement)을 수행하는 STA.
수신 STA은 캐퍼빌리티 정보를 복호할 수 있다(S2420). 예를 들어, 수신 STA은 상기 캐퍼빌리티 정보를 복호할 수 있다.
수신 STA은 역할을 결정할 수 있다(S2430). 예를 들어, 수신 STA은 WLAN 센싱에서 상기 송신 STA과 수신 STA이 수행할 역할을 결정할 수 있다. 예를 들어, 상기 송신 STA과 상기 수신 STA의 WLAN 센싱에서의 역할이 결정될 수 있다.
수신 STA은 센싱 신호를 수신할 수 있다(S2440). 예를 들어, 수신 STA은 상기 송신 STA으로부터 센싱 신호를 수신할 수 있다.
수신 STA은 피드백 신호를 전송할 수 있다(S2450). 예를 들어, 수신 STA은 상기 송신 STA에게 상기 센싱 신호에 대한 피드백 신호를 전송할 수 있다.
도 23 및 도 24의 일례에 표시된 세부 단계 중 일부는 필수 단계가 아닐 수 있고, 생략될 수 있다. 도 23 및 도 24에 도시된 단계 외에 다른 단계가 추가될 수 있고, 상기 단계들의 순서는 달라질 수 있다. 상기 단계들 중 일부 단계가 독자적 기술적 의미를 가질 수 있다.
상술한 본 명세서의 기술적 특징은 다양한 장치 및 방법에 적용될 수 있다. 예를 들어, 상술한 본 명세서의 기술적 특징은 도 1 및/또는 도 9 의 장치를 통해 수행/지원될 수 있다. 예를 들어, 상술한 본 명세서의 기술적 특징은, 도 1 및/또는 도 9의 일부에만 적용될 수 있다. 예를 들어, 상술한 본 명세서의 기술적 특징은, 도 1의 프로세싱 칩(114, 124)을 기초로 구현되거나, 도 1의 프로세서(111, 121)와 메모리(112, 122)를 기초로 구현되거나, 도 9의 프로세서(910)와 메모리(920)를 기초로 구현될 수 있다. 예를 들어, 본 명세서의 장치에 있어서, 상기 장치는, 메모리; 및 상기 메모리와 동작 가능하게 결합된 프로세서(processor)를 포함하되, 상기 프로세서는, WLAN 센싱(sensing)에 관련된 캐퍼빌리티 정보를 생성하되, 상기 캐퍼빌리티 정보는 공통 부분 및 개별(individual) 부분을 포함하고, 상기 공통 부분은 서브 7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함하는 센싱 지원 대역 정보를 포함하고, 상기 개별 부분은 상기 센싱 지원 대역 정보를 기초로 상기 서브 7GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 및 상기 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 중 적어도 하나를 포함하고; 그리고 수신 STA에게 상기 캐퍼빌리티 정보를 전송하도록 설정될 수 있다.
본 명세서의 기술적 특징은 CRM(computer readable medium)을 기초로 구현될 수 있다. 예를 들어, 본 명세서에 의해 제안되는 CRM은, 무선랜(Wireless Local Area Network) 시스템의 송신 STA(station)의 적어도 하나의 프로세서(processor)에 의해 실행됨을 기초로 하는 명령어(instruction)를 포함하는 적어도 하나의 컴퓨터로 읽을 수 있는 기록매체(computer readable medium)에 있어서, WLAN 센싱(sensing)에 관련된 캐퍼빌리티 정보를 생성하되, 상기 캐퍼빌리티 정보는 공통 부분 및 개별(individual) 부분을 포함하고, 상기 공통 부분은 서브 7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함하는 센싱 지원 대역 정보를 포함하고, 상기 개별 부분은 상기 센싱 지원 대역 정보를 기초로 상기 서브 7GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 및 상기 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 중 적어도 하나를 포함하는, 단계; 및 수신 STA에게 상기 캐퍼빌리티 정보를 전송하는 단계를 포함하는 동작(operation)을 수행하는 명령어(instruction)를 포함할 수 있다.
본 명세서의 CRM 내에 저장되는 명령어는 적어도 하나의 프로세서에 의해 실행(execute)될 수 있다. 본 명세서의 CRM에 관련된 적어도 하나의 프로세서는 도 1의 프로세서(111, 121) 또는 프로세싱 칩(114, 124)이거나, 도 9의 프로세서(910)일 수 있다. 한편, 본 명세서의 CRM은 도 1의 메모리(112, 122)이거나 도 9의 메모리(920)이거나, 별도의 외부 메모리/저장매체/디스크 등일 수 있다.
상술한 본 명세서의 기술적 특징은 다양한 응용예(application)나 비즈니스 모델에 적용 가능하다. 예를 들어, 인공 지능(Artificial Intelligence: AI)을 지원하는 장치에서의 무선 통신을 위해 상술한 기술적 특징이 적용될 수 있다.
인공 지능은 인공적인 지능 또는 이를 만들 수 있는 방법론을 연구하는 분야를 의미하며, 머신 러닝(기계 학습, Machine Learning)은 인공 지능 분야에서 다루는 다양한 문제를 정의하고 그것을 해결하는 방법론을 연구하는 분야를 의미한다. 머신 러닝은 어떠한 작업에 대하여 꾸준한 경험을 통해 그 작업에 대한 성능을 높이는 알고리즘으로 정의하기도 한다.
인공 신경망(Artificial Neural Network; ANN)은 머신 러닝에서 사용되는 모델로써, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)들로 구성되는, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 인공 신경망은 다른 레이어의 뉴런들 사이의 연결 패턴, 모델 파라미터를 갱신하는 학습 과정, 출력값을 생성하는 활성화 함수(Activation Function)에 의해 정의될 수 있다.
인공 신경망은 입력층(Input Layer), 출력층(Output Layer), 그리고 선택적으로 하나 이상의 은닉층(Hidden Layer)를 포함할 수 있다. 각 층은 하나 이상의 뉴런을 포함하고, 인공 신경망은 뉴런과 뉴런을 연결하는 시냅스를 포함할 수 있다. 인공 신경망에서 각 뉴런은 시냅스를 통해 입력되는 입력 신호들, 가중치, 편향에 대한 활성 함수의 함숫값을 출력할 수 있다.
모델 파라미터는 학습을 통해 결정되는 파라미터를 의미하며, 시냅스 연결의 가중치와 뉴런의 편향 등이 포함된다. 그리고, 하이퍼파라미터는 머신 러닝 알고리즘에서 학습 전에 설정되어야 하는 파라미터를 의미하며, 학습률(Learning Rate), 반복 횟수, 미니 배치 크기, 초기화 함수 등이 포함된다.
인공 신경망의 학습의 목적은 손실 함수를 최소화하는 모델 파라미터를 결정하는 것으로 볼 수 있다. 손실 함수는 인공 신경망의 학습 과정에서 최적의 모델 파라미터를 결정하기 위한 지표로 이용될 수 있다.
머신 러닝은 학습 방식에 따라 지도 학습(Supervised Learning), 비지도 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning)으로 분류할 수 있다.
지도 학습은 학습 데이터에 대한 레이블(label)이 주어진 상태에서 인공 신경망을 학습시키는 방법을 의미하며, 레이블이란 학습 데이터가 인공 신경망에 입력되는 경우 인공 신경망이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다. 비지도 학습은 학습 데이터에 대한 레이블이 주어지지 않는 상태에서 인공 신경망을 학습시키는 방법을 의미할 수 있다. 강화 학습은 어떤 환경 안에서 정의된 에이전트가 각 상태에서 누적 보상을 최대화하는 행동 혹은 행동 순서를 선택하도록 학습시키는 학습 방법을 의미할 수 있다.
인공 신경망 중에서 복수의 은닉층을 포함하는 심층 신경망(DNN: Deep Neural Network)으로 구현되는 머신 러닝을 딥 러닝(심층 학습, Deep Learning)이라 부르기도 하며, 딥 러닝은 머신 러닝의 일부이다. 이하에서, 머신 러닝은 딥 러닝을 포함하는 의미로 사용된다.
또한 상술한 기술적 특징은 로봇의 무선 통신에 적용될 수 있다.
로봇은 스스로 보유한 능력에 의해 주어진 일을 자동으로 처리하거나 작동하는 기계를 의미할 수 있다. 특히, 환경을 인식하고 스스로 판단하여 동작을 수행하는 기능을 갖는 로봇을 지능형 로봇이라 칭할 수 있다.
로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류할 수 있다. 로봇은 액츄에이터 또는 모터를 포함하는 구동부를 구비하여 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 이동 가능한 로봇은 구동부에 휠, 브레이크, 프로펠러 등이 포함되어, 구동부를 통해 지상에서 주행하거나 공중에서 비행할 수 있다.
또한 상술한 기술적 특징은 확장 현실을 지원하는 장치에 적용될 수 있다.
확장 현실은 가상 현실(VR: Virtual Reality), 증강 현실(AR: Augmented Reality), 혼합 현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.

Claims (18)

  1. 무선랜(wireless local area network, WLAN) 시스템의 송신 STA(station)에서 수행되는 방법에 있어서,
    WLAN 센싱(sensing)에 관련된 캐퍼빌리티 정보를 생성하되,
    상기 캐퍼빌리티 정보는 공통 부분 및 개별(individual) 부분을 포함하고,
    상기 공통 부분은 서브 7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함하는 센싱 지원 대역 정보를 포함하고,
    상기 개별 부분은 상기 센싱 지원 대역 정보를 기초로 상기 서브 7GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 및 상기 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 중 적어도 하나를 포함하는, 단계; 및
    수신 STA에게 상기 캐퍼빌리티 정보를 전송하는 단계를 포함하는,
    방법.
  2. 청구항 1에 있어서,
    상기 공통 부분은 상기 서브 7GHz 및 상기 60GHz 대역에서 수행되는 WLAN 센싱에 공통으로 적용되는 공통 캐퍼빌리티 정보를 더 포함하는,
    방법.
  3. 청구항 2에 있어서,
    상기 공통 캐퍼빌리티 정보는, 센싱 가능한 대역폭에 관련된 정보를 더 포함하는,
    방법.
  4. 청구항 1에 있어서,
    상기 개별 부분은,
    WLAN 센싱에 사용되는 채널 측정 방법 지원 여부 및 WLAN 센싱에서의 역할(role) 지원 여부 중 적어도 하나를 포함하는,
    방법.
  5. 청구항 4에 있어서,
    상기 역할은,
    센싱 개시자(initiator), 센싱 응답자(responder), 센싱 전송자(transmitter), 센싱 수신자(receiver) 중 적어도 하나를 포함하는,
    방법.
  6. 청구항 1에 있어서,
    상기 송신 STA이,
    상기 송신 STA과 상기 수신 STA의 WLAN 센싱에서의 역할을 결정하는 단계를 더 포함하는,
    방법.
  7. 청구항 1에 있어서,
    상기 송신 STA이,
    상기 수신 STA에게 센싱 신호를 전송하는 단계; 및
    상기 수신 STA으로부터 상기 센싱 신호에 대한 피드백 신호를 수신하는 단계를 더 포함하는,
    방법.
  8. 무선랜(wireless local area network, WLAN) 시스템의 송신 STA(station)에 있어서,
    무선 신호를 송수신하는 송수신기(transceiver); 및
    상기 송수신기에 연결되는 프로세서를 포함하되, 상기 프로세서는,
    WLAN 센싱(sensing)에 관련된 캐퍼빌리티 정보를 생성하되,
    상기 캐퍼빌리티 정보는 공통 부분 및 개별(individual) 부분을 포함하고,
    상기 공통 부분은 서브 7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함하는 센싱 지원 대역 정보를 포함하고,
    상기 개별 부분은 상기 센싱 지원 대역 정보를 기초로 상기 서브 7GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 및 상기 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 중 적어도 하나를 포함하고; 그리고
    수신 STA에게 상기 캐퍼빌리티 정보를 전송하도록 설정된,
    송신 STA.
  9. 청구항 8에 있어서,
    상기 공통 부분은 상기 서브 7GHz 및 상기 60GHz 대역에서 수행되는 WLAN 센싱에 공통으로 적용되는 공통 캐퍼빌리티 정보를 더 포함하는,
    송신 STA.
  10. 청구항 9에 있어서,
    상기 공통 캐퍼빌리티 정보는, 센싱 가능한 대역폭에 관련된 정보를 더 포함하는,
    송신 STA.
  11. 청구항 8에 있어서,
    상기 개별 부분은,
    WLAN 센싱에 사용되는 채널 측정 방법 지원 여부 및 WLAN 센싱에서의 역할(role) 지원 여부 중 적어도 하나를 포함하는,
    송신 STA.
  12. 청구항 11에 있어서,
    상기 역할은,
    센싱 개시자(initiator), 센싱 응답자(responder), 센싱 전송자(transmitter), 센싱 수신자(receiver) 중 적어도 하나를 포함하는,
    송신 STA.
  13. 청구항 8에 있어서,
    상기 프로세서는,
    상기 송신 STA과 상기 수신 STA의 WLAN 센싱에서의 역할을 결정하도록 더 설정된,
    송신 STA.
  14. 청구항 8에 있어서,
    상기 송신 STA이,
    상기 수신 STA에게 센싱 신호를 전송하는 단계; 및
    상기 수신 STA으로부터 상기 센싱 신호에 대한 피드백 신호를 수신하는 단계를 더 포함하는,
    송신 STA.
  15. 무선랜(Wireless Local Area Network) 시스템의 수신 STA(station)에서 수행되는 방법에 있어서,
    송신 STA으로부터 WLAN 센싱(sensing)에 관련된 캐퍼빌리티 정보를 수신하되,
    상기 캐퍼빌리티 정보는 공통 부분 및 개별(individual) 부분을 포함하고,
    상기 공통 부분은 서브 7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함하는 센싱 지원 대역 정보를 포함하고,
    상기 개별 부분은 상기 센싱 지원 대역 정보를 기초로 상기 서브 7GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 및 상기 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 중 적어도 하나를 포함하는, 단계; 및
    상기 캐퍼빌리티 정보를 복호하는 단계를 포함하는,
    방법.
  16. 무선랜(Wireless Local Area Network) 시스템에서 사용되는 수신 STA(station)에 있어서,
    무선 신호를 송수신하는 송수신기(transceiver); 및
    상기 송수신기에 연결되는 프로세서를 포함하되, 상기 프로세서는,
    송신 STA으로부터 WLAN 센싱(sensing)에 관련된 캐퍼빌리티 정보를 수신하되,
    상기 캐퍼빌리티 정보는 공통 부분 및 개별(individual) 부분을 포함하고,
    상기 공통 부분은 서브 7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함하는 센싱 지원 대역 정보를 포함하고,
    상기 개별 부분은 상기 센싱 지원 대역 정보를 기초로 상기 서브 7GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 및 상기 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 중 적어도 하나를 포함하고; 그리고
    상기 캐퍼빌리티 정보를 복호하도록 설정된,
    수신 STA.
  17. 무선랜(Wireless Local Area Network) 시스템의 송신 STA(station)의 적어도 하나의 프로세서(processor)에 의해 실행됨을 기초로 하는 명령어(instruction)를 포함하는 적어도 하나의 컴퓨터로 읽을 수 있는 기록매체(computer readable medium)에 있어서,
    WLAN 센싱(sensing)에 관련된 캐퍼빌리티 정보를 생성하되,
    상기 캐퍼빌리티 정보는 공통 부분 및 개별(individual) 부분을 포함하고,
    상기 공통 부분은 서브 7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함하는 센싱 지원 대역 정보를 포함하고,
    상기 개별 부분은 상기 센싱 지원 대역 정보를 기초로 상기 서브 7GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 및 상기 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 중 적어도 하나를 포함하는, 단계; 및
    수신 STA에게 상기 캐퍼빌리티 정보를 전송하는 단계를 포함하는 동작(operation)을 수행하는,
    장치.
  18. 무선랜(Wireless Local Area Network) 시스템 상의 장치에 있어서,
    상기 장치는,
    메모리; 및
    상기 메모리와 동작 가능하게 결합된 프로세서(processor)를 포함하되, 상기 프로세서는:
    WLAN 센싱(sensing)에 관련된 캐퍼빌리티 정보를 생성하되,
    상기 캐퍼빌리티 정보는 공통 부분 및 개별(individual) 부분을 포함하고,
    상기 공통 부분은 서브 7GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보 및 60GHz 대역에서 수행되는 WLAN 센싱을 지원하는지 여부에 관련된 정보를 포함하는 센싱 지원 대역 정보를 포함하고,
    상기 개별 부분은 상기 센싱 지원 대역 정보를 기초로 상기 서브 7GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 및 상기 60GHz 대역에서 수행되는 WLAN 센싱을 위한 캐퍼빌리티 정보 중 적어도 하나를 포함하고; 그리고
    수신 STA에게 상기 캐퍼빌리티 정보를 전송하도록 설정된,
    장치.
PCT/KR2021/007090 2020-06-05 2021-06-07 무선랜 시스템에서 센싱을 수행하는 방법 및 장치 WO2021246842A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/928,912 US20230224695A1 (en) 2020-06-05 2021-06-07 Method and device for performing sensing in wireless lan system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US202063034991P 2020-06-05 2020-06-05
US63/034,991 2020-06-05
US202063080035P 2020-09-18 2020-09-18
US63/080,035 2020-09-18
US202063087311P 2020-10-05 2020-10-05
US63/087,311 2020-10-05
US202063104462P 2020-10-22 2020-10-22
US63/104,462 2020-10-22

Publications (1)

Publication Number Publication Date
WO2021246842A1 true WO2021246842A1 (ko) 2021-12-09

Family

ID=78830497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007090 WO2021246842A1 (ko) 2020-06-05 2021-06-07 무선랜 시스템에서 센싱을 수행하는 방법 및 장치

Country Status (2)

Country Link
US (1) US20230224695A1 (ko)
WO (1) WO2021246842A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114731679A (zh) * 2022-02-28 2022-07-08 北京小米移动软件有限公司 用于代理感知的通信方法和通信装置
WO2023014274A1 (en) * 2021-08-06 2023-02-09 Beammwave Ab A control unit for controlling a sensing/localization transceiver for a wireless device, a wireless device, a method, and a computer program product
WO2023131315A1 (zh) * 2022-01-07 2023-07-13 维沃移动通信有限公司 无线感知方法、装置、设备及存储介质
WO2023133695A1 (zh) * 2022-01-11 2023-07-20 北京小米移动软件有限公司 Wlan感知测量方法及装置、电子设备及存储介质
WO2023165408A1 (zh) * 2022-03-01 2023-09-07 华为技术有限公司 一种通信的方法和通信装置
WO2023231919A1 (zh) * 2022-05-30 2023-12-07 维沃移动通信有限公司 无线感知条件切换方法及设备
WO2024100639A1 (en) * 2023-02-03 2024-05-16 Lenovo (Singapore) Pte. Ltd. Sensor network capability determination

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150118887A (ko) * 2014-04-15 2015-10-23 뉴라컴 인코포레이티드 무선랜에서 저전력 통신 방법 및 장치
KR20200034647A (ko) * 2018-09-21 2020-03-31 삼성전자주식회사 무선 통신 시스템에서 다중 주파수 부분 대역을 운용하기 위한 장치 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150118887A (ko) * 2014-04-15 2015-10-23 뉴라컴 인코포레이티드 무선랜에서 저전력 통신 방법 및 장치
KR20200034647A (ko) * 2018-09-21 2020-03-31 삼성전자주식회사 무선 통신 시스템에서 다중 주파수 부분 대역을 운용하기 위한 장치 및 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABHISHEK PATIL; DUNCAN HO; GEORGE CHERIAN; ALFRED ASTERJADHI: "Container for advertising ML Information", IEEE 802.11-20/0357R0. IEEE DRAFT 11-20-0357-00-00BE-MLO-CONTAINER-STRUCTURE-FOR-CAPABILITY-ADVERTISEMENT, 15 March 2020 (2020-03-15), pages 1 - 27, XP009532616 *
CLAUDIO DA SILVA (INTEL): "WLAN Sensing Functional Requirements", IEEE DRAFT; 11-20-0780-01-SENS-WLAN-SENSING-FUNCTIONAL-REQUIREMENTS, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 SENS, no. 1, 20 May 2020 (2020-05-20), Piscataway, NJ USA , pages 1 - 3, XP068167998 *
LIWEN CHU; YOUNG HOON KWON; MANISH KUMAR; HONGYUAN ZHANG; YAN ZHANG; RUI CAO; SUDHIR SRINIVASA; HUI-LING LOU: "Beacon, Capability, Operating Parameters.", IEEE 802.11-19/0395R1 IEEE DRAFT 11-20-0395-01-00BE-MULTI-LINK-BEACONING-CAPABILITY-OPERATION-PARAMETER, pages 1 - 10, XP009532615 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023014274A1 (en) * 2021-08-06 2023-02-09 Beammwave Ab A control unit for controlling a sensing/localization transceiver for a wireless device, a wireless device, a method, and a computer program product
WO2023131315A1 (zh) * 2022-01-07 2023-07-13 维沃移动通信有限公司 无线感知方法、装置、设备及存储介质
WO2023133695A1 (zh) * 2022-01-11 2023-07-20 北京小米移动软件有限公司 Wlan感知测量方法及装置、电子设备及存储介质
CN114731679A (zh) * 2022-02-28 2022-07-08 北京小米移动软件有限公司 用于代理感知的通信方法和通信装置
CN114731679B (zh) * 2022-02-28 2023-08-18 北京小米移动软件有限公司 用于代理感知的通信方法和通信装置
WO2023165408A1 (zh) * 2022-03-01 2023-09-07 华为技术有限公司 一种通信的方法和通信装置
WO2023231919A1 (zh) * 2022-05-30 2023-12-07 维沃移动通信有限公司 无线感知条件切换方法及设备
WO2024100639A1 (en) * 2023-02-03 2024-05-16 Lenovo (Singapore) Pte. Ltd. Sensor network capability determination

Also Published As

Publication number Publication date
US20230224695A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
WO2021246842A1 (ko) 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
WO2021246807A1 (ko) 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
WO2022092650A1 (ko) 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
WO2021246691A1 (ko) 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
WO2021256828A1 (ko) 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
WO2022139449A1 (ko) 개선된 무선랜 센싱 절차
WO2021256832A1 (ko) 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
WO2022055182A1 (ko) 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
WO2021256831A1 (ko) 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
WO2021256838A1 (ko) 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
WO2021215753A1 (ko) P2p 전송 방법
WO2021246656A1 (ko) 선호 링크 정보 전송 방법
WO2021256830A1 (ko) 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
WO2022010260A1 (ko) 무선 통신 시스템에서 멀티 링크 셋업
WO2022114468A1 (ko) 무선랜 시스템에서 트리거 프레임에 의해 할당된 txop 구간에서 peer sta으로 su ppdu를 전송하는 방법 및 장치
WO2022005165A1 (ko) 무선랜 시스템에서 p2p 전송 방법
WO2022108327A1 (ko) 개선된 트리거 프레임
WO2021246806A1 (ko) 무선랜 시스템에서 센싱을 위한 그루핑을 수행하는 방법 및 장치
WO2022186635A1 (ko) 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
WO2021246690A1 (ko) 무선랜 시스템에서 센싱 프레임을 분류하는 방법 및 장치
WO2022114716A1 (ko) Obss 환경의 제한된 twt
WO2022060049A1 (ko) 무선랜 시스템에서 절전 모드로 센싱을 수행하는 방법 및 장치
WO2021235836A1 (ko) 무선 통신 시스템에서 트리거 프레임 전송
WO2022169324A1 (ko) 개선된 링크 적응 제어
WO2021256726A1 (ko) 240mhz를 위한 1x ltf 시퀀스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817951

Country of ref document: EP

Kind code of ref document: A1