WO2021246667A1 - 무선 충전 시스템, 무선 충전 방법 및 전기 차량 - Google Patents

무선 충전 시스템, 무선 충전 방법 및 전기 차량 Download PDF

Info

Publication number
WO2021246667A1
WO2021246667A1 PCT/KR2021/005770 KR2021005770W WO2021246667A1 WO 2021246667 A1 WO2021246667 A1 WO 2021246667A1 KR 2021005770 W KR2021005770 W KR 2021005770W WO 2021246667 A1 WO2021246667 A1 WO 2021246667A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
auxiliary
main
battery
circuit
Prior art date
Application number
PCT/KR2021/005770
Other languages
English (en)
French (fr)
Inventor
함석형
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/788,661 priority Critical patent/US20230035811A1/en
Priority to JP2022526506A priority patent/JP7383873B2/ja
Priority to EP21816667.6A priority patent/EP4060865A4/en
Priority to CN202180007290.0A priority patent/CN114846720A/zh
Publication of WO2021246667A1 publication Critical patent/WO2021246667A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/02Coils wound on non-magnetic supports, e.g. formers
    • H01F2005/027Coils wound on non-magnetic supports, e.g. formers wound on formers for receiving several coils with perpendicular winding axes, e.g. for antennae or inductive power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a technology for wirelessly charging a battery using a magnetic resonance phenomenon.
  • a battery pack includes a plurality of batteries connected in series.
  • a power receiving device In order to individually wirelessly charge a plurality of batteries, a power receiving device must be provided for each battery.
  • a plurality of power transmitting devices are installed in a wireless charging system. For example, for individual charging of 10 batteries, 10 power receiving devices and 10 power transmitting devices were necessary.
  • the wireless communication circuit of the power receiving device transmits battery information to the wireless communication circuit of the power transmission device, and the power transmission device controls charging of each battery based on the received battery information.
  • a wireless charging system including a plurality of power receiving devices and a plurality of power transmitting devices each having a wireless communication circuit added to each other requires high cost and increases the overall volume and weight of the wireless charging system.
  • a communication failure occurs in a wireless communication circuit provided in the power receiving device and/or the power transmitting device, it is impossible to transmit/receive battery information.
  • the present invention has been devised to solve the above problems, and a wireless charging system in which a single power transmission device can wirelessly transmit AC charging power individually to a plurality of power receiving devices using magnetic resonance, wireless charging
  • An object is to provide a method and an electric vehicle.
  • a wireless charging system in which the power transmission device can acquire (estimate) battery information of the battery connected to the power reception device based on the voltage and current of the AC power wirelessly transmitted to the power reception device without wireless communication with the power reception device;
  • An object of the present invention is to provide a wireless charging method and an electric vehicle.
  • a wireless charging system includes: a first power receiving device connected in parallel to a first battery and including a first sub-resonant circuit having a first resonant frequency; a second power receiving device connected in parallel to the second battery and including a second sub-resonant circuit having a second resonant frequency; and a power transmission device including a main resonance circuit.
  • the power transmission device is configured to determine a charging sequence between the first battery and the second battery in a preliminary charging mode. In a normal charging mode, when the first battery is selected according to the charging sequence, the power transmission device wirelessly transmits the first AC power having the first resonance frequency to the first sub resonance circuit through the main resonance circuit configured to transmit. In the normal charging mode, when the second battery is selected according to the charging order, the power transmission device wirelessly transmits second AC power having the second resonance frequency to the second sub resonance circuit through the main resonance circuit. is configured to send
  • the first sub-resonant circuit may include a first sub-coil and a first sub-capacitor connected in series.
  • the second sub-resonant circuit may include a second sub-coil and a second sub-capacitor connected in series.
  • a first rectifying circuit configured to rectify the first AC power received by the first sub-resonant circuit into first DC power and supply the first DC power to the first battery may further include.
  • a second rectifying circuit configured to rectify the second AC power received by the second sub-resonant circuit into a second DC power and supply the second DC power to the second battery may further include.
  • the power transmission device may be configured to wirelessly transmit the first AC power during a first main time in the preliminary charging mode.
  • the power transmission device may be configured to record first main sensing information indicating an AC voltage and an AC current of the first AC power.
  • the power transmission device is configured to wirelessly transmit a first auxiliary power having a first auxiliary frequency for a first auxiliary time.
  • the power transmission device may be configured to record first auxiliary sensing information indicating an AC voltage and an AC current of the first auxiliary power.
  • the power transmission device may be configured to determine a first DC voltage of the first battery based on the first main sensing information and the first auxiliary sensing information.
  • the power transmission device may be configured to wirelessly transmit the second AC power during a second main time.
  • the power transmission device is configured to record second main sensing information indicating an AC voltage and an AC current of the second AC power.
  • the power transmission device may be configured to wirelessly transmit a second auxiliary power having a second auxiliary frequency for a second auxiliary time.
  • the power transmission device may be configured to record second auxiliary sensing information indicating an AC voltage and an AC current of the second auxiliary power.
  • the power transmission device may be configured to determine a second DC voltage of the second battery based on the second main sensing information and the second auxiliary sensing information.
  • the power transmission device may be configured to determine a charging order between the first battery and the second battery based on the first DC voltage and the second DC voltage.
  • the power transmission device may include: a power generation circuit configured to selectively supply the first AC power, the first auxiliary power, the second AC power, and the second auxiliary power to the main resonance circuit; a sensing circuit configured to sense an AC voltage and an AC current of the AC power supplied to the main resonance circuit; and a control circuit operatively coupled to the main resonance circuit, the power generation circuit, and the sensing circuit.
  • the main resonance circuit may include a series-connected main coil and a variable capacitor.
  • the control circuit may be configured to adjust the capacitance of the variable capacitor to be equal to one of different first main capacitance, first auxiliary capacitance, second main capacitance and second auxiliary capacitance.
  • the first resonant frequency may be the same as a resonant frequency due to a main inductance of the main coil and the first main capacitance.
  • the first auxiliary frequency may be the same as a resonance frequency of the main inductance and the first auxiliary capacitance.
  • the second resonant frequency may be the same as a resonant frequency of the main inductance and the second main capacitance.
  • the second auxiliary frequency may be the same as a resonance frequency of the main inductance and the second auxiliary capacitance.
  • An electric vehicle may include the wireless charging system.
  • a wireless charging method is for a first battery connected in parallel to a first sub-resonant circuit having a first resonant frequency and a second battery connected in parallel to a second sub-resonant circuit having a second resonant frequency.
  • the wireless charging method may include, in a preliminary charging mode, determining a charging order between the first battery and the second battery; In a normal charging mode, when the first battery is selected according to the charging order, wirelessly transmitting the first AC power having the first resonant frequency to the first sub-resonant circuit; and wirelessly transmitting second AC power having the second resonant frequency to the second sub-resonant circuit when the second battery is selected according to the charging order in the normal charging mode.
  • the determining of the charging order may include: wirelessly transmitting the first AC power during a first main time; recording first main sensing information indicating an AC voltage and an AC current of the first AC power; wirelessly transmitting a first auxiliary power having a first auxiliary frequency for a first auxiliary time; recording first auxiliary sensing information indicating the AC voltage and AC current of the first auxiliary power; determining a first DC voltage of the first battery based on the first main sensing information and the first auxiliary sensing information; transmitting the second AC power wirelessly for a second main time; recording second main sensing information indicating an AC voltage and an AC current of the second AC power; wirelessly transmitting a second auxiliary power having a second auxiliary frequency for a second auxiliary time; recording second auxiliary sensing information indicating the AC voltage and AC current of the second auxiliary power; determining a second DC voltage of the second battery based on the second main sensing information and the second auxiliary sensing information; The method may include determining a charging order between the first battery and the second battery based
  • a single power transmission device may wirelessly transmit AC charging power to a plurality of power receiving devices individually by using magnetic resonance.
  • the battery of the battery connected to the power receiving device based on the voltage and current of the AC power wirelessly transmitted to the power transmitting device without the power transmitting device wirelessly communicating with each power receiving device Information can be obtained (estimated).
  • FIG. 1 is a view exemplarily showing the configuration of an electric vehicle according to an embodiment of the present invention.
  • FIG. 2 is a diagram exemplarily showing the configuration of a power transmitting device and a power receiving device of FIG. 1 .
  • FIG. 3 is a diagram exemplarily illustrating the configuration of the variable capacitor of FIG. 2 .
  • FIG. 4 is a diagram exemplarily showing equivalent circuits of the power transmitting device and the power receiving device of FIG. 1 in a phasor format.
  • FIG. 5 is a flowchart exemplarily showing a wireless charging method according to a first embodiment of the present invention.
  • FIG. 6 is a flowchart exemplarily showing a wireless charging method according to a second embodiment of the present invention.
  • FIG. 1 is a diagram exemplarily showing the configuration of an electric vehicle 1 according to an embodiment of the present invention
  • FIG. 2 is a diagram exemplarily showing the configuration of the power transmission device 200 and the power reception device 300 of FIG. 1
  • 3 is a diagram exemplarily illustrating the configuration of the variable capacitor 212 of FIG. 2 .
  • the electric vehicle 1 includes a vehicle controller 2 , a relay 10 , an inverter 20 , an electric motor 30 , a battery group 40 , and a wireless charging system 100 .
  • the vehicle controller 2 is configured to generate a key-on signal in response to a start button (not shown) provided on the electric vehicle 1 being switched to the ON-position by the user.
  • the vehicle controller 2 is configured to generate a key-off signal in response to the ignition button being switched to the OFF-position by the user.
  • the relay 10 is installed in the power line for the battery group 40 .
  • the relay 10 may be controlled on-off by the vehicle controller 2 and/or the wireless charging system 100 . While the relay 10 is on, power can be transferred from one of the battery group 40 and the inverter to the other.
  • the inverter 20 converts DC power supplied from the battery group 40 into AC power and supplies it to the electric motor 30 .
  • the electric motor 30 converts AC power from the inverter 20 into kinetic energy for the electric vehicle 1 .
  • the electric motor can be, for example, a single-phase induction motor or a three-phase induction motor.
  • the battery group 40 includes a plurality of batteries B 1 to B n connected in series. n is a natural number greater than or equal to 2.
  • the type of the battery B is not particularly limited as long as it can be repeatedly charged and discharged, such as a lithium ion battery.
  • the wireless charging system 100 includes a power transmission device 200 and a plurality of power reception devices 300 1 to 300 n .
  • the plurality of power receiving devices 300 1 to 300 n are connected in parallel to the plurality of batteries B 1 to B n on a one-to-one basis. That is, when i is a natural number of 1 to n, the power receiving device 300 i is connected to the battery B i in parallel.
  • the i-th power receiving device 300 i is configured to wirelessly receive AC power having a frequency within the i-th range wirelessly transmitted from the power transmitting device 200 through magnetic resonance.
  • the ith power receiving device 300 i charges the ith battery B i by using the received AC power.
  • the power transmission device 200 is configured to wirelessly transmit AC power individually to the plurality of power reception devices 300 1 to 300 n . That is, when the power transmission device 200 intends to charge the i- th battery B i , it selects an i-th resonant frequency from among the first to n-th resonant frequencies, and generates AC power having the selected i-th resonant frequency.
  • the ith power receiving device 300 i includes an ith sub resonance circuit 310 i .
  • the i-th sub-resonant circuit 310 i has an i-th resonant frequency. That is, in the i-th sub-resonant circuit 310 i , when the frequency of the AC power transmitted by the power transmission device 200 matches the i-th resonant frequency, the self-resonance phenomenon becomes the maximum. As the difference between the frequency of the AC power transmitted by the power transmission device 200 and the i-th resonant frequency increases, the self-resonance phenomenon of the i-th sub-resonant circuit 310 i is gradually weakened.
  • the i-th sub-resonant circuit 310 i includes an i-th sub-coil 311 i and an i-th sub-capacitor 312 i connected in series.
  • f i is the ith resonant frequency
  • L S_i is the inductance of the ith sub-coil 311 i
  • C S_i is the capacitance of the ith sub-capacitor 312 i
  • f i 1/ ⁇ 2 ⁇ ( CS_i ) ⁇ L S_i ) 0.5 ⁇ to be.
  • the ith power receiving device 300 i may further include an ith rectifying circuit 320 i .
  • the ith rectifier circuit 320 i may be a diode bridge circuit including four diodes.
  • the i-th rectifying circuit 320 i includes a pair of input terminals and a pair of output terminals. A pair of input terminals of the i-th rectifying circuit 320 i are respectively connected to the first end and the second end of the i-th sub-resonant circuit 310 i .
  • a pair of output terminals of the ith rectifier circuit 320 i are respectively connected to a first terminal (eg, a positive terminal) and a second terminal (eg, a negative terminal) of the ith battery B i .
  • the power transmission device 200 includes a main resonance circuit 210 .
  • the main resonance circuit 210 includes a main coil 211 and a variable capacitor 212 connected in series.
  • the control circuit 240 is configured to adjust the capacitance of the variable capacitor 212 from among first to nth main capacitance and first to nth auxiliary capacitance. That is, the capacitance of the variable capacitor 212 may be selected from first to nth main capacitances and first to nth auxiliary capacitances.
  • the resonance frequency of the main resonance circuit 210 may be adjusted to match the frequency of the AC power supplied to the main resonance circuit 210 . Accordingly, AC power generated by the main resonance circuit 210 may be wirelessly received by at least one of the plurality of power receiving devices 300 1 to 300 n due to a magnetic resonance phenomenon. For example, when AC power of the ith resonance frequency is input to the main resonance circuit 210 , the resonance frequency of the main resonance circuit 210 may be adjusted to match the ith resonance frequency. Accordingly, AC power having the ith resonance frequency may be transmitted to the ith sub resonance circuit 310 i through the main resonance circuit 210 .
  • the power transmission device 200 may further include a power generation circuit 220 .
  • the power generation circuit 220 is configured to convert the input power (V IN ) of a DC voltage source (eg, lead-acid battery) provided in the electric vehicle 1 or DC power supplied from a charging station into AC power having a desired frequency. do.
  • a known single-phase full-bridge inverter and/or oscillator may be used as the power generation circuit 220 .
  • the frequency of the AC power generated by the power generating circuit 220 may be selected from first to nth resonant frequencies and first to nth auxiliary frequencies. AC power having the selected frequency may be wirelessly transmitted as a charging signal to at least one of the plurality of power receiving devices 300 1 to 300 n through the main resonance circuit 210 .
  • the power transmission device 200 may further include a sensing circuit 230 .
  • the sensing circuit 230 includes a voltage sensor 231 and a current sensor 232 .
  • the sensing circuit 230 is configured to sense an AC voltage and an AC current of the AC power supplied to the main resonance circuit 210 , and transmit a signal representing the sensed information to the control circuit 240 .
  • the power transmission device 200 may further include a control circuit 240 .
  • the control circuit 240 is operatively coupled to at least one of the main resonant circuit 210 , the power generation circuit 220 , and the sensing circuit 230 . When the two components are operatively coupled, it means that the two components are connected to transmit/receive signals in one direction or in both directions.
  • Control circuit 240 in hardware, ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), FPGAs (field programmable gate arrays), micro It may be implemented using at least one of a processor (microprocessors) and an electrical unit for performing other functions.
  • the control circuit 240 may include an embedded memory.
  • the memory is, for example, a flash memory type, a hard disk type, a solid state disk type, an SDD type (Silicon Disk Drive type), and a multimedia card micro type.
  • RAM random access memory
  • SRAM static random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • PROM programmable read-only memory It may include a type of storage medium.
  • the memory may store data and programs required for an arithmetic operation by the control circuit 240 .
  • the control circuit 240 may write data representing the result of the arithmetic operation in the memory.
  • the control circuit 240 controls the power generating circuit 220 and the main resonance circuit 210 so that the frequency of the AC power generated by the power generating circuit 220 and the frequency of the main resonance circuit 210 coincide with each other. can do.
  • the control circuit 240 may include a frequency and a main resonance circuit of AC power generated by the power generating circuit 220 .
  • Each of the resonant frequencies of 210 may be matched to the selected frequency.
  • the variable capacitor 212 includes a selection switch 213 and a capacitor circuit 214 connected in series.
  • the capacitor circuit 214 may include first to n-th main capacitors 215 1 to 215 n and first to n-th auxiliary capacitors 216 1 to 216 n connected in parallel.
  • the capacitance of the ith main capacitor 215 i will be referred to as an 'i-th main capacitance
  • the capacitance of the ith auxiliary capacitor 216 i will be referred to as an 'i-th auxiliary capacitance.'
  • L M is the inductance of the main coil 211
  • C M_i is an ith main capacitance
  • C A_i is an ith auxiliary capacitance.
  • the frequency of the AC power wirelessly transmitted from the main resonance circuit 210 is 1/ ⁇ 2 ⁇ ⁇ (C A_i ⁇ L M ) 0.5 ⁇ and , equal to the i-th auxiliary frequency.
  • the i-th auxiliary frequency may have the smallest difference from the i-th resonant frequency among the first to n-th resonant frequencies. For example, a difference between any two of the first resonant frequency to the nth resonant frequency may be greater than a predetermined value, and the difference between the ith auxiliary frequency and the ith resonant frequency may be less than a predetermined value. Accordingly, the magnetic resonance by the i-th auxiliary power is greatest in the i- th sub-resonance circuit 310 i among the first to n-th sub-resonance circuits 310 1 to 310 n .
  • First determining the charging sequence between 1 to n auxiliary capacitors (216 1 ⁇ 216 n) is generally a plurality of the battery (B 1 ⁇ B n), prior to the charging mode for a plurality of batteries (B 1 ⁇ B n) It can be used in a pre-charge mode for
  • FIG. 4 is a diagram exemplarily illustrating equivalent circuits of the power transmission device 200 and the power reception device 300 of FIG. 1 in a phasor format.
  • V 1 is a voltage phasor representing the AC voltage of the main resonance circuit 210
  • I 1 is a current phasor representing the AC current of the main resonance circuit 210
  • Z 1 is the main resonance circuit
  • Z R is a coupling impedance by inductive coupling between the main coil 211 and the i-th sub-coil 311 i
  • V 2 is a voltage phasor representing the AC voltage of the i-th sub-resonant circuit 310 i
  • I 2 is a current phasor representing the alternating current of the main resonant circuit 210
  • Z 2 is the equivalent impedance of the i-th sub-resonant circuit (310 i )
  • R L is the i-th rectifier circuit (320 i ) and the i-th battery ( B i ) represents the equivalent resistance.
  • each of Z 1 , Z 2 , and Z R may be expressed by Equations 1 to 3 below.
  • Z 1 R 1 + j2 ⁇ fL M + 1/(j2 ⁇ fC V )
  • R 1 equivalent resistance of the main resonant circuit 210
  • L M inductance (main inductance) of the main coil 211
  • C V capacitance of the variable capacitor 212
  • f (L M ⁇ C) V ) 0.5 .
  • V 1 , I 1 , V 2 , and I 2 satisfy the relationship of Equations 4 to 6 below.
  • R 1 , L M and C V are previously stored in the control circuit 240 as values representing the intrinsic characteristics of the main resonance circuit 210 .
  • R 2 , L S_i , and C S_i are previously stored in the control circuit 240 as values representing the intrinsic characteristics of the i-th sub-resonant circuit 310 i .
  • f is a value selected from among predetermined first to nth resonant frequencies and first to nth auxiliary frequencies, respectively. That is, among the parameters of Equation 4, only two parameters R L and M i are unknown.
  • each unknown can be determined (estimated) by acquiring two pieces of sensing information representing V 1 and I 1 of Equation 4 (4).
  • the control circuit 240 records V 1 and I 1 sensed by the sensing circuit 230 as i-th main sensing information when the i-th resonant frequency is selected as f of Equation 4 in the preliminary charging mode. and V 1 and I 1 sensed by the sensing circuit 230 when the ith auxiliary frequency is selected by f of Equation 4 may be recorded as the ith auxiliary sensing information.
  • the control circuit 240 may calculate R L and M i based on the i-th main sensing information, the i-th auxiliary sensing information, and Equation (4).
  • the ith main sensing information represents V 1 and I 1 of Equation 4 when f of Equation 4 is the same as the ith resonant frequency
  • the ith auxiliary sensing information indicates that f of Equation 4 is the same as the ith auxiliary frequency.
  • the control circuit 240 may calculate I 2 in Equation 5 based on R L , M i , and I 1 .
  • the control circuit 240 may calculate V 2 of Equation 6 based on R L and I 2 . That is, the control circuit 240, based on the amplitude and phase of each of the AC voltage and AC current of the main resonance circuit 210, the amplitude and phase of each of the AC voltage and AC current of the i-th sub resonance circuit 310 i can be calculated (estimated).
  • the i-th AC power received by the i-th sub-resonant circuit 310 i is converted into the i-th DC power through the i- th rectification circuit 320 i and supplied to the i-th battery B i .
  • the control circuit 240 may determine the ith DC voltage, which is the voltage across both ends of the ith battery, to be the same as the voltage amplitude of V 2 in Equation (6).
  • the ith DC voltage corresponds to a state of charge (SOC) of the ith battery B i .
  • the power transmission device 200 may determine the first to nth DC voltages by performing the above-described process once for the plurality of sub-resonant circuits. Let's say n ⁇ a>b>1. When the a-th DC voltage is less than the b-th DC voltage, the charging state of the a-th battery B a is less than the charging state of the b-th battery B b . When the a-th DC voltage is greater than the b-th DC voltage, it indicates that the charge state of the a-th battery B a is greater than the charge state of the b-th battery B b . Accordingly, the control circuit 240 may determine the charging order between the first to nth batteries B 1 to B n by arranging the first to nth DC voltages in order of magnitude.
  • FIG. 5 is a flowchart exemplarily showing a wireless charging method according to a first embodiment of the present invention.
  • the method of FIG. 5 may be executed to determine a charging sequence among the plurality of batteries B 1 to B n in the preliminary charging mode.
  • step S500 the control circuit 240 of the power transmission device 200 sets the first index k equal to 1 .
  • the power transmission device 200 wirelessly transmits the k-th AC power during the k-th main time.
  • the control circuit 240 sets the resonance frequency of the main resonance circuit 210 to be equal to the k-th resonance frequency during the k-th main time.
  • the k-th main time may be predetermined as 1/f k or more.
  • the k-th AC power is AC power having the k-th resonant frequency. For example, when the first index is 1, the first AC power having the first resonance frequency is wirelessly transmitted by the main resonance circuit 210 for the first main time.
  • the power transmission device 200 records the k-th main sensing information.
  • the k-th main sensing information may include amplitudes of each of the AC voltage and AC current of the k-th AC power wirelessly transmitted from the power transmission device 200 in operation S510 .
  • step S530 the power transmission device 200 wirelessly transmits the kth auxiliary power having the kth auxiliary frequency for the kth auxiliary time.
  • the control circuit 240 sets the resonance frequency of the main resonance circuit 210 to be equal to the k-th auxiliary frequency during the k-th auxiliary time.
  • the k-th auxiliary time may be predetermined as 1/(k-th auxiliary frequency) or more.
  • step S540 the power transmission device 200 records the kth auxiliary sensing information.
  • the kth auxiliary sensing information may include amplitudes of each of the AC voltage and AC current of the kth auxiliary power wirelessly transmitted from the power transmission device 200 in step S530 .
  • step S550 the power transmission device 200 determines the kth DC voltage based on the kth main sensing information and the kth auxiliary sensing information (refer to Equations 4 to 6).
  • step S560 the power transmission device 200 determines whether the first index k is equal to the target index n.
  • the target index n is the total number of batteries B included in the wireless charging system 100 . If the value of step S560 is "NO”, the flow proceeds to step S562. If the value of step S560 is "Yes”, the flow proceeds to step S570.
  • step S562 the power transmission device 200 increases the first index k by one.
  • step S562 the method of FIG. 5 may proceed to step S510.
  • the power transmission device 200 determines a charging order between the first to nth batteries B 1 to B n based on the first to nth DC voltages.
  • the control circuit 240 may arrange the first to nth DC voltages in an ascending order, and give a relatively high charging order to a battery corresponding to a relatively small DC voltage.
  • the control circuit 240 the second to the first case the DC voltage is lower than the second DC voltage, a first battery (B 1) and a second battery (B 2), the first battery (B 1) to override the A charging order higher than that of the battery B 2 is given, otherwise the second battery B 2 is given a higher charging order than the first battery B 1 .
  • the control circuit 240 may write a flag indicating a charging order of each of the first to nth batteries B 1 to B n in the memory.
  • FIG. 6 is a flowchart exemplarily showing a wireless charging method according to a second embodiment of the present invention.
  • the method of FIG. 6 may be performed to sequentially charge the plurality of batteries B 1 to B n in a normal charging mode according to the charging sequence determined through the method of FIG. 5 .
  • step S600 the power transmission device 200 sets the second index x to 1.
  • the second index x indicates the charging order.
  • step S610 the power transmission device 200 selects a j-th battery B j , which is one of the first to n-th batteries B 1 to B n , as a charging target according to the x-th charging order.
  • the j-th battery (B j ) is given the x-th highest charging rank among the first to n-th batteries ( B 1 to B n ).
  • step S620 the power transmission device 200 wirelessly transmits the j-th AC power having the j-th resonant frequency associated with the battery B j selected in step S610 .
  • the j-th AC power having the j-th resonant frequency is wirelessly transmitted. Accordingly, the j-th AC power is wirelessly received by the j-th sub-resonant circuit.
  • step S630 the power transmission device 200 determines whether charging of the j-th battery B j is completed. Specifically, the control circuit 240 determines the DC voltage of the j- th battery B j every predetermined time while the j- th battery B j is being charged (see Equations 4 to 6), and the j-th battery B j . When the DC voltage of the battery B j reaches a predetermined upper limit voltage, it may be determined that charging is complete. If the value of step S630 is “No”, step S630 may be repeated. If the value of step S630 is "Yes", the flow proceeds to step S640.
  • step S640 the power transmission device 200 determines whether the second index x is equal to the target index n.
  • the target index n is the total number of batteries B included in the wireless charging system 100 . If the value of step S640 is NO, the flow advances to step S642. When the value of step S640 is “yes”, it indicates that charging of all of the first to nth batteries B 1 to B n is completed.
  • step S642 the power transmission device 200 increases the second index x by 1. After step S642, the method of FIG. 6 may proceed to step S610.
  • the embodiment of the present invention described above is not implemented only through the apparatus and method, and may be implemented through a program for realizing a function corresponding to the configuration of the embodiment of the present invention or a recording medium in which the program is recorded.
  • the implementation can be easily implemented by those skilled in the art to which the present invention pertains from the description of the above-described embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명에 따른 무선 충전 시스템은, 제1 배터리에 병렬 연결되고, 제1 공진 주파수를 가지는 제1 서브 공진 회로를 포함하는 제1 수전 장치; 제2 배터리에 병렬 연결되고, 제2 공진 주파수를 가지는 제2 서브 공진 회로를 포함하는 제2 수전 장치; 및 송전 장치를 포함한다. 상기 송전 장치는, 상기 제1 배터리 및 상기 제2 배터리 간의 충전 순서를 결정하도록 구성된다. 상기 송전 장치는, 상기 충전 순서에 따라 상기 제1 배터리가 선택된 경우, 상기 제1 공진 주파수를 가지는 제1 교류 전력을 상기 제1 서브 공진 회로에게 무선으로 송신한다. 상기 송전 장치는, 상기 충전 순서에 따라 상기 제2 배터리가 선택된 경우, 상기 제2 공진 주파수를 가지는 제2 교류 전력을 상기 제2 서브 공진 회로에게 무선으로 송신한다.

Description

무선 충전 시스템, 무선 충전 방법 및 전기 차량
본 발명은 자기 공진 현상을 이용하여 배터리를 무선 충전하기 위한 기술에 관한 것이다.
본 출원은 2020년 06월 03일자로 출원된 한국 특허출원 번호 제10-2020-0067106호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
일반적으로 배터리 팩은 직렬로 연결된 복수의 배터리를 포함한다. 복수의 배터리를 개별적으로 무선 충전하기 위해서는, 각 배터리에 수전 장치가 제공되어야 한다.
종래에는, 복수의 수전 장치에게 교류의 충전 전력을 일대일로 무선으로 송신하기 위해서는 복수의 송전 장치를 무선 충전 시스템 내에 설치하고 한다. 예컨대, 10개의 배터리에 대한 개별적인 충전을 위해서는, 10개의 수전 장치 및 10개의 송전 장치가 필수적이었다.
한편, 복수의 배터리에 대한 무선 충전을 효율적으로 수행하기 위해서는 각 배터리의 배터리 정보(예, 전압 등)를 모니터링할 필요가 있다. 이를 위해 수전 장치의 무선 통신 회로가 배터리 정보를 송전 장치의 무선 통신 회로에게 전송하고, 송전 장치는 수신된 배터리 정보를 기초로 각 배터리에 대한 충전을 제어한다.
그러나, 각각에 무선 통신 회로가 추가된 복수의 수전 장치 및 복수의 송전 장치를 포함하는 무선 충전 시스템을 제작하는 데에에는 고비용이 요구될 뿐만 아니라, 무선 충전 시스템의 전체적인 부피 및 무게가 증가된다는 문제가 있다. 또한, 수전 장치 및/또는 송전 장치에 마련된 무선 통신 회로에 통신 장애가 발생하는 경우, 배터리 정보의 송수신이 불가하다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 단일의 송전 장치가 자기 공진 현상을 이용하여 복수의 수전 장치에게 개별적으로 교류의 충전 전력을 무선으로 전송할 수 있는 무선 충전 시스템, 무선 충전 방법 및 전기 차량를 제공하는 것을 목적으로 한다.
또한, 송전 장치가 수전 장치와의 무선 통신없이도, 수전 장치에게 무선으로 전송되는 교류 전력의 전압 및 전류를 기초로, 수전 장치에 연결된 배터리의 배터리 정보를 취득(추정)할 수 있는 무선 충전 시스템, 무선 충전 방법 및 전기 차량를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 무선 충전 시스템은, 제1 배터리에 병렬 연결되고, 제1 공진 주파수를 가지는 제1 서브 공진 회로를 포함하는 제1 수전 장치; 제2 배터리에 병렬 연결되고, 제2 공진 주파수를 가지는 제2 서브 공진 회로를 포함하는 제2 수전 장치; 및 메인 공진 회로를 포함하는 송전 장치를 포함한다. 상기 송전 장치는, 예비 충전 모드에서, 상기 제1 배터리 및 상기 제2 배터리 간의 충전 순서를 결정하도록 구성된다. 상기 송전 장치는, 통상 충전 모드에서, 상기 충전 순서에 따라 상기 제1 배터리가 선택된 경우, 상기 제1 공진 주파수를 가지는 제1 교류 전력을 상기 메인 공진 회로를 통해 상기 제1 서브 공진 회로에게 무선으로 송신하도록 구성된다. 상기 송전 장치는, 상기 통상 충전 모드에서, 상기 충전 순서에 따라 상기 제2 배터리가 선택된 경우, 상기 제2 공진 주파수를 가지는 제2 교류 전력을 상기 메인 공진 회로를 통해 상기 제2 서브 공진 회로에게 무선으로 송신하도록 구성된다.
상기 제1 서브 공진 회로는, 직렬 연결된 제1 서브 코일 및 제1 서브 커패시터를 포함할 수 있다. 상기 제2 서브 공진 회로는 직렬 연결된 제2 서브 코일 및 제2 서브 커패시터를 포함할 수 있다.
상기 제1 수전 장치는, 상기 제1 서브 공진 회로에 의해 수신되는 상기 제1 교류 전력을 제1 직류 전력으로 정류하고, 상기 제1 직류 전력을 상기 제1 배터리에 공급하도록 구성되는 제1 정류 회로를 더 포함할 수 있다.
상기 제2 수전 장치는, 상기 제2 서브 공진 회로에 의해 수신되는 상기 제2 교류 전력을 제2 직류 전력으로 정류하고, 상기 제2 직류 전력을 상기 제2 배터리에 공급하도록 구성되는 제2 정류 회로를 더 포함할 수 있다.
상기 송전 장치는, 상기 예비 충전 모드에서, 상기 제1 교류 전력을 제1 메인 시간 동안 무선으로 송신하도록 구성될 수 있다. 상기 송전 장치는, 상기 제1 교류 전력의 교류 전압 및 교류 전류를 나타내는 제1 메인 센싱 정보를 기록하도록 구성될 수 있다. 상기 송전 장치는, 제1 보조 주파수를 가지는 제1 보조 전력을 제1 보조 시간 동안 무선으로 송신하도록 구성된다. 상기 송전 장치는, 상기 제1 보조 전력의 교류 전압 및 교류 전류를 나타내는 제1 보조 센싱 정보를 기록하도록 구성될 수 있다. 상기 송전 장치는, 상기 제1 메인 센싱 정보 및 상기 제1 보조 센싱 정보를 기초로, 상기 제1 배터리의 제1 직류 전압을 결정하도록 구성될 수 있다. 상기 송전 장치는, 상기 제2 교류 전력을 제2 메인 시간 동안 무선으로 송신하도록 구성될 수 있다. 상기 송전 장치는, 상기 제2 교류 전력의 교류 전압 및 교류 전류를 나타내는 제2 메인 센싱 정보를 기록하도록 구성된다. 상기 송전 장치는, 제2 보조 주파수를 가지는 제2 보조 전력을 제2 보조 시간 동안 무선으로 송신하도록 구성될 수 있다. 상기 송전 장치는, 상기 제2 보조 전력의 교류 전압 및 교류 전류를 나타내는 제2 보조 센싱 정보를 기록하도록 구성될 수 있다. 상기 송전 장치는, 상기 제2 메인 센싱 정보 및 상기 제2 보조 센싱 정보를 기초로, 상기 제2 배터리의 제2 직류 전압을 결정하도록 구성될 수 있다. 상기 송전 장치는, 상기 제1 직류 전압 및 상기 제2 직류 전압을 기초로, 상기 제1 배터리 및 상기 제2 배터리 간의 충전 순서를 결정하도록 구성될 수 있다.
상기 송전 장치는, 상기 메인 공진 회로에게 상기 제1 교류 전력, 상기 제1 보조 전력, 상기 제2 교류 전력 및 상기 제2 보조 전력을 선택적으로 공급하도록 구성되는 전력 생성 회로; 상기 메인 공진 회로에 공급되는 교류 전력의 교류 전압 및 교류 전류를 센싱하도록 구성되는 센싱 회로; 및 상기 메인 공진 회로, 상기 전력 생성 회로 및 상기 센싱 회로에 동작 가능하게 결합되는 제어 회로를 더 포함할 수 있다.
상기 메인 공진 회로는, 직렬 연결된 메인 코일 및 가변 커패시터를 포함할 수 있다. 상기 제어 회로는, 서로 다른 제1 메인 커패시턴스, 제1 보조 커패시턴스, 제2 메인 커패시턴스 및 제2 보조 커패시턴스 중 하나와 동일하도록 상기 가변 커패시터의 커패시턴스를 조절하도록 구성될 수 있다.
상기 제1 공진 주파수는, 상기 메인 코일의 메인 인덕턴스와 상기 제1 메인 커패시턴스에 의한 공진 주파수와 동일할 수 있다. 상기 제1 보조 주파수는, 상기 메인 인덕턴스와 상기 제1 보조 커패시턴스에 의한 공진 주파수와 동일할 수 있다. 상기 제2 공진 주파수는, 상기 메인 인덕턴스와 상기 제2 메인 커패시턴스에 의한 공진 주파수와 동일할 수 있다. 상기 제2 보조 주파수는, 상기 메인 인덕턴스와 상기 제2 보조 커패시턴스에 의한 공진 주파수와 동일할 수 있다.
본 발명의 다른 측면에 따른 전기 차량은 상기 무선 충전 시스템을 포함할 수 있다.
본 발명의 또 다른 측면에 따른 무선 충전 방법은, 제1 공진 주파수를 가지는 제1 서브 공진 회로에 병렬 연결된 제1 배터리 및 제2 공진 주파수를 가지는 제2 서브 공진 회로에 병렬 연결된 제2 배터리를 위한 것이다. 상기 무선 충전 방법은, 예비 충전 모드에서, 상기 제1 배터리 및 상기 제2 배터리 간의 충전 순서를 결정하는 단계; 통상 충전 모드에서, 상기 충전 순서에 따라 상기 제1 배터리가 선택된 경우, 상기 제1 공진 주파수를 가지는 제1 교류 전력을 상기 제1 서브 공진 회로에게 무선으로 송신하는 단계; 및 상기 통상 충전 모드에서, 상기 충전 순서에 따라 상기 제2 배터리가 선택된 경우, 상기 제2 공진 주파수를 가지는 제2 교류 전력을 상기 제2 서브 공진 회로에게 무선으로 송신하는 단계를 포함한다.
상기 충전 순서를 결정하는 단계는, 상기 제1 교류 전력을 제1 메인 시간 동안 무선으로 송신하는 단계; 상기 제1 교류 전력의 교류 전압 및 교류 전류를 나타내는 제1 메인 센싱 정보를 기록하는 단계; 제1 보조 주파수를 가지는 제1 보조 전력을 제1 보조 시간 동안 무선으로 송신하는 단계; 상기 제1 보조 전력의 교류 전압 및 교류 전류를 나타내는 제1 보조 센싱 정보를 기록하는 단계; 상기 제1 메인 센싱 정보 및 상기 제1 보조 센싱 정보를 기초로, 상기 제1 배터리의 제1 직류 전압을 결정하는 단계; 상기 제2 교류 전력을 제2 메인 시간 동안 무선으로 송신하는 단계; 상기 제2 교류 전력의 교류 전압 및 교류 전류를 나타내는 제2 메인 센싱 정보를 기록하는 단계; 제2 보조 주파수를 가지는 제2 보조 전력을 제2 보조 시간 동안 무선으로 송신하는 단계; 상기 제2 보조 전력의 교류 전압 및 교류 전류를 나타내는 제2 보조 센싱 정보를 기록하는 단계; 상기 제2 메인 센싱 정보 및 상기 제2 보조 센싱 정보를 기초로, 상기 제2 배터리의 제2 직류 전압을 결정하는 단계; 상기 제1 직류 전압 및 상기 제2 직류 전압을 기초로, 상기 제1 배터리 및 상기 제2 배터리 간의 충전 순서를 결정하는 단계를 포함할 수 있다.
본 발명의 실시예들 중 적어도 하나에 의하면, 단일의 송전 장치가 자기 공진 현상을 이용하여 복수의 수전 장치에게 개별적으로 교류의 충전 전력을 무선으로 전송할 수 있다.
또한, 본 발명의 실시예들 중 적어도 하나에 의하면, 송전 장치가 각 수전 장치와의 무선 통신없이도, 송전 장치에게 무선으로 전송되는 교류 전력의 전압 및 전류를 기초로, 수전 장치에 연결된 배터리의 배터리 정보를 취득(추정)할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 전기 차량의 구성을 예시적으로 나타낸 도면이다.
도 2는 도 1의 송전 장치 및 수전 장치의 구성을 예시적으로 나타낸 도면이다.
도 3는 도 2의 가변 커패시터의 구성을 예시적으로 나타낸 도면이다.
도 4는 도 1의 송전 장치와 수전 장치의 등가 회로를 페이져 형식으로 예시적으로 나타낸 도면이다.
도 5는 본 발명의 제1 실시예에 따른 무선 충전 방법을 예시적으로 보여주는 순서도이다.
도 6은 본 발명의 제2 실시예에 따른 무선 충전 방법을 예시적으로 보여주는 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
도 1은 본 발명의 일 실시예에 따른 전기 차량(1)의 구성을 예시적으로 나타낸 도면이고, 도 2는 도 1의 송전 장치(200) 및 수전 장치(300)의 구성을 예시적으로 나타낸 도면이고, 도 3는 도 2의 가변 커패시터(212)의 구성을 예시적으로 나타낸 도면이다.
도 1 내지 도 3을 참조하면, 전기 차량(1)은, 차량 컨트롤러(2), 릴레이(10), 인버터(20), 전기 모터(30), 배터리 그룹(40) 및 무선 충전 시스템(100)을 포함한다.
차량 컨트롤러(2)는, 전기 차량(1)에 마련된 시동 버튼(미도시)이 사용자에 의해 ON-위치로 전환된 것에 응답하여, 키-온 신호를 생성하도록 구성된다. 차량 컨트롤러(2)는, 시동 버튼이 사용자에 의해 OFF-위치로 전환된 것에 응답하여, 키-오프 신호를 생성하도록 구성된다.
릴레이(10)는, 배터리 그룹(40)을 위한 전력 라인에 설치된다. 릴레이(10)는, 차량 컨트롤러(2) 및/또는 무선 충전 시스템(100)에 의해 온-오프 제어될 수 있다. 릴레이(10)가 온되어 있는 동안, 배터리 그룹(40)과 인버터 중 어느 하나로부터 다른 하나로의 전력 전달이 가능하다.
인버터(20)는, 배터리 그룹(40)으로부터 공급되는 직류 전력을 교류 전력으로 변환하여 전기 모터(30)에게 공급한다. 전기 모터(30)는, 인버터(20)로부터의 교류 전력을 전기 차량(1)을 위한 운동 에너지로 변환한다. 전기 모터는 예컨대 단상 유도 모터 또는 3상 유도 모터일 수 있다.
배터리 그룹(40)은, 직렬 연결된 복수의 배터리(B 1~B n)를 포함한다. n은 2 이상의 자연수이다. 배터리(B)는 예컨대 리튬 이온 배터리와 같이, 반복적인 충방전이 가능한 것이라면, 그 종류는 특별히 한정되지 않는다.
무선 충전 시스템(100)은, 송전 장치(200) 및 복수의 수전 장치(300 1~300 n)를 포함한다.
복수의 수전 장치(300 1~300 n)는, 복수의 배터리(B 1~B n)에 일대일로 병렬 연결된다. 즉, i가 1~n의 자연수라고 할 때, 수전 장치(300 i)는 배터리(B i)에 병렬 연결된다.
제i 수전 장치(300 i)는, 자기 공진을 통해, 송전 장치(200)로부터 무선으로 송신된 제i 범위 내의 주파수를 가지는 교류 전력을 무선으로 수신하도록 구성된다. 제i 수전 장치(300 i)는, 수신된 교류 전력을 이용하여, 제i 배터리(B i)를 충전한다.
송전 장치(200)는, 복수의 수전 장치(300 1~300 n)에게 개별적으로 교류 전력을 무선으로 송신하도록 구성된다. 즉, 송전 장치(200)는, 제i 배터리(B i)를 충전하고자 할 경우, 제1 내지 제n 공진 주파수 중에서 제i 공진 주파수를 선택하고, 선택된 제i 공진 주파수를 가지는 교류 전력을 생성할 수 있다.
도 2를 참조하면, 제i 수전 장치(300 i)는, 제i 서브 공진 회로(310 i)를 포함한다. 제i 서브 공진 회로(310 i)는, 제i 공진 주파수를 가진다. 즉, 제i 서브 공진 회로(310 i)는, 송전 장치(200)에 의해 송신된 교류 전력의 주파수가 제i 공진 주파수에 일치할 경우, 자기 공진 현상이 최대가 된다. 송전 장치(200)에 의해 송신된 교류 전력의 주파수와 제i 공진 주파수 간의 차이가 커질수록, 제i 서브 공진 회로(310 i)의 자기 공진 현상은 점차 약화된다.
제i 서브 공진 회로(310 i)는, 직렬 연결된 제i 서브 코일(311 i) 및 제i 서브 커패시터(312 i)를 포함한다. f i를 제i 공진 주파수, L S_i를 제i 서브 코일(311 i)의 인덕턴스, C S_i를 제i 서브 커패시터(312 i)의 커패시턴스라고 할 때, f i = 1/{2π× (C S_i × L S_i) 0.5} 이다.
제i 수전 장치(300 i)는, 제i 정류 회로(320 i)를 더 포함할 수 있다. 제i 정류 회로(320 i)는 4개의 다이오드를 포함하는 다이오드 브릿지 회로일 수 있다. 제i 정류 회로(320 i)의 한 쌍의 입력단 및 한 쌍의 출력단을 포함한다. 제i 정류 회로(320 i)의 한 쌍의 입력단은 제i 서브 공진 회로(310 i)의 제1 단 및 제2 단에 각각 연결된다. 제i 정류 회로(320 i)의 한 쌍의 출력단은 제i 배터리(B i)의 제1 단(예, 양극 단자) 및 제2 단(예, 음극 단자)에 각각 연결된다.
송전 장치(200)는, 메인 공진 회로(210)를 포함한다. 메인 공진 회로(210)는, 직렬 연결된 메인 코일(211) 및 가변 커패시터(212)를 포함한다. 제어 회로(240)는, 가변 커패시터(212)의 커패시턴스를 제1 내지 제n 메인 커패시턴스 및 제1 내지 제n 보조 커패시턴스 중에서 조절하도록 구성된다. 즉, 가변 커패시터(212)의 커패시턴스는, 제1 내지 제n 메인 커패시턴스 및 제1 내지 제n 보조 커패시턴스 중에서 선택될 수 있다.
메인 공진 회로(210)의 공진 주파수는, 메인 공진 회로(210)에 공급되는 교류 전력의 주파수에 일치하도록 조절될 수 있다. 이에 따라, 메인 공진 회로(210)에 의해 생성되는 교류 전력은 자기 공진 현상에 의해 복수의 수전 장치(300 1~300 n) 중 적어도 하나에 의해 무선으로 수신될 수 있다. 예컨대, 제i 공진 주파수의 교류 전력이 메인 공진 회로(210)에 입력되는 경우, 메인 공진 회로(210)의 공진 주파수는 제i 공진 주파수에 일치되도록 조절될 수 있다. 이에 따라, 제i 공진 주파수를 가지는 교류 전력이 메인 공진 회로(210)를 통해 제i 서브 공진 회로(310 i)에게 전달될 수 있다.
송전 장치(200)는, 전력 생성 회로(220)를 더 포함할 수 있다. 전력 생성 회로(220)는, 전기 차량(1)에 구비된 직류 전압원(예, 납축 전지) 또는 충전소로부터 공급되는 직류 전력의 입력 전력(V IN)을 희망하는 주파수를 가지는 교류 전력으로 변환하도록 구성된다. 공지의 단상 풀-브릿지 인버터 및/또는 발진기가 전력 생성 회로(220)로서 이용될 수 있다.
전력 생성 회로(220)에 의해 생성되는 교류 전력의 주파수는, 제1 내지 제n 공진 주파수 및 제1 내지 제n 보조 주파수 중에서 선택될 수 있다. 선택된 주파수를 가지는 교류 전력은, 충전 신호로서, 메인 공진 회로(210)를 통해 복수의 수전 장치(300 1~300 n) 중 적어도 하나에게 무선으로 송신될 수 있다.
송전 장치(200)는, 센싱 회로(230)를 더 포함할 수 있다. 센싱 회로(230)는, 전압 센서(231) 및 전류 센서(232)를 포함한다. 센싱 회로(230)는, 메인 공진 회로(210)에 공급되는 교류 전력의 교류 전압 및 교류 전류를 센싱하고, 센싱된 정보를 나타내는 신호를 제어 회로(240)에게 전달하도록 구성된다.
송전 장치(200)는, 제어 회로(240)를 더 포함할 수 있다. 제어 회로(240)는, 메인 공진 회로(210), 전력 생성 회로(220) 및 센싱 회로(230) 중 적어도 하나에 동작 가능하게 결합된다. 두 구성이 동작 가능하게 결합된다는 것은, 단방향 또는 양방향으로 신호를 송수신 가능하도록 두 구성이 연결되어 있음을 의미한다.
제어 회로(240)는, 하드웨어적으로, ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다. 제어 회로(240)는, 내장된 메모리를 포함할 수 있다. 메모리는, 예컨대 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), SSD 타입(Solid State Disk type), SDD 타입(Silicon Disk Drive type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 램(random access memory; RAM), SRAM(static random access memory), 롬(read-only memory; ROM), EEPROM(electrically erasable programmable read-only memory), PROM(programmable read-only memory) 중 적어도 하나의 타입의 저장매체를 포함할 수 있다. 메모리는, 제어 회로(240)에 의한 연산 동작에 요구되는 데이터 및 프로그램을 기억할 수 있다. 제어 회로(240)는, 연산 동작의 결과를 나타내는 데이터를 메모리에 기록할 수 있다.
제어 회로(240)는, 전력 생성 회로(220)에 의해 생성되는 교류 전력의 주파수 및 메인 공진 회로(210)의 주파수가 서로 일치하도록, 전력 생성 회로(220) 및 메인 공진 회로(210)를 제어할 수 있다. 예컨대, 제어 회로(240)는, 서로 다른 제1 내지 제n 공진 주파수 및 제1 내지 제n 보조 주파수 중에서 하나가 선택된 경우, 전력 생성 회로(220)에 의해 생성되는 교류 전력의 주파수 및 메인 공진 회로(210)의 공진 주파수 각각을 선택된 주파수에 일치시킬 수 있다.
도 3를 참조하면, 가변 커패시터(212)는, 직렬 연결된 선택 스위치(213) 및 커패시터 회로(214)를 포함한다. 커패시터 회로(214)는, 병렬 연결된, 제1 내지 제n 메인 커패시터(215 1~215 n) 및 제1 내지 제n 보조 커패시터(216 1~216 n)를 포함할 수 있다. 본 명세서에서는, 제i 메인 커패시터(215 i)의 커패시턴스를 '제i 메인 커패시턴스'라고 칭하고, 제i 보조 커패시터(216 i)의 커패시턴스를 '제i 보조 커패시턴스'라고 칭하기로 한다.
L M을 메인 코일(211)의 인덕턴스, C M_i을 제i 메인 커패시턴스, C A_i를 제i 보조 커패시턴스라고 해보자. 선택 스위치(213)에 의해 제i 메인 커패시터(215 i)가 선택된 경우, 메인 공진 회로(210)로부터 무선으로 송신되는 교류 전력의 주파수는 1/{2π ×(C M_i × L M) 0.5}이고, 제i 공진 주파수와 동일하다. 선택 스위치(213)에 의해 제i 보조 커패시터(216 i)가 선택된 경우, 메인 공진 회로(210)로부터 무선으로 송신되는 교류 전력의 주파수는 1/{2π ×(C A_i × L M) 0.5}이고, 제i 보조 주파수와 동일하다.
제i 보조 주파수는, 제1 공진 주파수 내지 제n 공진 주파수 중에서 제i 공진 주파수와의 차이가 가장 작을 수 있다. 일 예로, 제1 공진 주파수 내지 제n 공진 주파수 중 어느 둘 간의 차이는 소정값보다 크고, 제i 보조 주파수와 제i 공진 주파수 간의 차이는 소정값 미만일 수 있다. 이에 따라, 제i 보조 전력에 의한 자기 공진이 제1 내지 제n 서브 공진 회로(310 1~310 n) 중에서 제i 서브 공진 회로(310 i)에서 가장 크게 나타난다.
제1 내지 제n 보조 커패시터(216 1~216 n)는, 복수의 배터리(B 1~B n)에 대한 통상 충전 모드에 앞서서, 복수의 배터리(B 1~B n) 간의 충전 순서를 결정하기 위한 예비 충전 모드에 이용될 수 있다.
도 4는 도 1의 송전 장치(200)와 수전 장치(300)의 등가 회로를 페이져 형식으로 예시적으로 나타낸 도면이다.
도 1 내지 도 4를 참조하면, V 1은 메인 공진 회로(210)의 교류 전압을 나타내는 전압 페이저, I 1은 메인 공진 회로(210)의 교류 전류를 나타내는 전류 페이저, Z 1은 메인 공진 회로(210)의 등가 임피던스, Z R은 메인 코일(211)과 제i 서브 코일(311 i) 간의 유도 결합에 의한 결합 임피던스, V 2은 제i 서브 공진 회로(310 i)의 교류 전압을 나타내는 전압 페이저, I 2은 메인 공진 회로(210)의 교류 전류를 나타내는 전류 페이저, Z 2은 제i 서브 공진 회로(310 i)의 등가 임피던스, R L는 제i 정류 회로(320 i) 및 제i 배터리(B i)의 등가 저항을 나타낸다. 이 때, Z 1, Z 2 및 Z R 각각은 아래의 수식 1 내지 수식 3으로 표현될 수 있다.
<수식 1>
Z 1 = R 1 + j2πfL M + 1/(j2πfC V)
수식 1에서, R 1 = 메인 공진 회로(210)의 등가 저항, L M = 메인 코일(211)의 인덕턴스(메인 인덕턴스), C V = 가변 커패시터(212)의 커패시턴스, f = (L M × C V) 0.5.
<수식 2>
Z 2 = jωL S_i + 1/(j2πfC S_i) + R 2
수식 2에서, L S_i = 제i 서브 코일(311 i)의 인덕턴스, C S_i = 제i 서브 커패시터(312 i)의 커패시턴스, R 2 = 제i 서브 공진 회로(310 i)의 등가 저항.
<수식 3>
Z R = (2πfM i) 2/(Z 2 + R L)
수식 3에서, M i = 메인 코일(211)과 제i 서브 코일(311 i) 간의 상호 인덕턴스.
따라서, V 1, I 1, V 2 및 I 2는 다음의 수식 4 내지 수식 6의 관계를 만족한다.
<수식 4>
Figure PCTKR2021005770-appb-img-000001
<수식 5>
Figure PCTKR2021005770-appb-img-000002
<수식 6>
V 2 = R LI 2
수식 1 내지 수식 6에 있어서, R 1, L M 및 C V는, 메인 공진 회로(210)의 고유 특성을 나타내는 값으로서 제어 회로(240)에 미리 기억되어 있다. R 2, L S_i 및 C S_i는, 제i 서브 공진 회로(310 i)의 고유 특성을 나타내는 값으로서 제어 회로(240)에 미리 기억되어 있다. f는, 각각 미리 정해진, 제1 내지 제n 공진 주파수 및 제1 내지 제n 보조 주파수 중에서 선택되는 값이다. 즉, 수식 4의 파라미터들 중에서 두 파라미터 R L 및 M i만이 미지수이다.
미지수가 2개이므로, 수식 4의 V 1 및 I 1를 나타내는 두 센싱 정보를 취득함으로써, 각 미지수를 결정(추정)할 수 있다. 구체적으로, 제어 회로(240)는, 예비 충전 모드에서, 제i 공진 주파수가 수식 4의 f로 선택된 경우에 센싱 회로(230)에 의해 센싱되는 V 1과 I 1를 제i 메인 센싱 정보로서 기록하고, 제i 보조 주파수가 수식 4의 f로 선택된 경우에 센싱 회로(230)에 의해 센싱되는 V 1과 I 1를 제i 보조 센싱 정보로서 기록할 수 있다. 그 다음, 제어 회로(240)는, 제i 메인 센싱 정보, 제i 보조 센싱 정보 및 수식 4를 기초로, R L 및 M i를 연산할 수 있다. 즉, 제i 메인 센싱 정보는 수식 4의 f가 제i 공진 주파수와 동일한 경우의 수식 4의 V 1과 I 1를 나타내고, 제i 보조 센싱 정보는 수식 4의 f가 제i 보조 주파수와 동일한 경우의 수식 4의 V 1과 I 1를 나타낸다. 따라서, 수식 4로부터 얻어지는 연립 방정식의 해로서 R L 및 M i를 결정할 수 있다.
제어 회로(240)는, R L, M i 및 I 1를 기초로, 수식 5의 I 2를 연산할 수 있다. 제어 회로(240)는, R L 및 I 2을 기초로, 수식 6의 V 2를 연산할 수 있다. 즉, 제어 회로(240)는, 메인 공진 회로(210)의 교류 전압 및 교류 전류 각각의 진폭 및 위상을 기초로, 제i 서브 공진 회로(310 i)의 교류 전압 및 교류 전류 각각의 진폭 및 위상을 연산(추정)할 수 있다. 제i 서브 공진 회로(310 i)에 의해 수신된 제i 교류 전력은 제i 정류 회로(320 i)를 통해 제i 직류 전력으로 변환되어 제i 배터리(B i)에 공급된다. 제어 회로(240)는, 제i 배터리의 양단에 걸친 전압인 제i 직류 전압을 수식 6의 V 2의 전압 진폭과 동일하게 결정할 수 있다. 제i 직류 전압은 제i 배터리(B i)의 충전 상태(SOC: state of charge)에 대응한다.
송전 장치(200)는, 전술된 과정을 복수의 서브 공진 회로에 대하여 한번씩 진행함으로써, 제1 내지 제n 직류 전압을 결정할 수 있다. n≥a>b>1라고 해보자. 제a 직류 전압이 제b 직류 전압 미만인 것은, 제a 배터리(B a)의 충전 상태가 제b 배터리(B b)의 충전 상태 미만인 것을 나타낸다. 제a 직류 전압이 제b 직류 전압보다 큰 경우, 제a 배터리(B a)의 충전 상태가 제b 배터리(B b)의 충전 상태보다 큰 것을 나타낸다. 따라서, 제어 회로(240)는, 제1 내지 제n 직류 전압을 크기순으로 정렬함으로써, 제1 내지 제n 배터리(B 1~B n) 간의 충전 순서를 결정할 수 있다.
도 5는 본 발명의 제1 실시예에 따른 무선 충전 방법을 예시적으로 보여주는 순서도이다. 도 5의 방법은, 예비 충전 모드에서 복수의 배터리(B 1~B n) 간의 충전 순서를 결정하기 위해 실행될 수 있다.
도 5을 참조하면, 단계 S500에서, 송전 장치(200)의 제어 회로(240)는, 제1 인덱스 k를 1과 동일하게 설정한다.
단계 S510에서, 송전 장치(200)는, 제k 교류 전력을 제k 메인 시간 동안 무선으로 송신한다. 구체적으로, 제어 회로(240)는, 제k 메인 시간 동안, 메인 공진 회로(210)의 공진 주파수를 제k 공진 주파수와 동일하게 설정한다. 제k 공진 주파수=f k라고 할 때, 제k 메인 시간은 1/f k 이상으로 미리 정해질 수 있다. 제k 교류 전력은 제k 공진 주파수를 가지는 교류 전력이다. 예컨대, 제1 인덱스가 1인 경우 제1 공진 주파수를 가지는 제1 교류 전력이 제1 메인 시간 동안 메인 공진 회로(210)에 의해 무선으로 송신된다.
단계 S520에서, 송전 장치(200)는, 제k 메인 센싱 정보를 기록한다. 제k 메인 센싱 정보는, 단계 S510에서 송전 장치(200)로부터 무선으로 송신되는 제k 교류 전력의 교류 전압 및 교류 전류 각각의 진폭을 포함할 수 있다.
단계 S530에서, 송전 장치(200)는, 제k 보조 주파수를 가지는 제k 보조 전력을 제k 보조 시간 동안 무선으로 송신한다. 구체적으로, 제어 회로(240)는, 제k 보조 시간 동안, 메인 공진 회로(210)의 공진 주파수를 제k 보조 주파수와 동일하게 설정한다. 제k 보조 시간은, 1/(제k 보조 주파수) 이상으로 미리 정해질 수 있다.
단계 S540에서, 송전 장치(200)는, 제k 보조 센싱 정보를 기록한다. 제k 보조 센싱 정보는, 단계 S530에서 송전 장치(200)로부터 무선으로 송신되는 제k 보조 전력의 교류 전압 및 교류 전류 각각의 진폭을 포함할 수 있다.
단계 S550에서, 송전 장치(200)는, 제k 메인 센싱 정보 및 제k 보조 센싱 정보를 기초로, 제k 직류 전압을 결정한다(수식 4 내지 수식 6 참조).
단계 S560에서, 송전 장치(200)는, 제1 인덱스 k가 목표 인덱스 n과 동일한지 여부를 판정한다. 목표 인덱스 n은 무선 충전 시스템(100)에 포함된 배터리(B)의 총 개수이다. 단계 S560의 값이 "아니오"인 경우, 단계 S562로 진행된다. 단계 S560의 값이 "예"인 경우, 단계 S570으로 진행한다.
단계 S562에서, 송전 장치(200)는, 제1 인덱스 k를 1만큼 증가시킨다. 단계 S562 후, 도 5의 방법은 단계 S510으로 진행할 수 있다.
단계 S570에서, 송전 장치(200)는, 제1 내지 제n 직류 전압을 기초로, 제1 내지 제n 배터리(B 1~B n) 간의 충전 순서를 결정한다. 제어 회로(240)는, 제1 내지 제n 직류 전압을 올림차순으로 정렬하고, 상대적으로 작은 직류 전압에 대응하는 배터리에게 상대적으로 높은 충전 순서를 부여할 수 있다. 예컨대, 제어 회로(240)는, 제1 직류 전압이 제2 직류 전압 미만인 경우, 제1 배터리(B 1)가 제2 배터리(B 2)에 우선하도록, 제1 배터리(B 1)에게 제2 배터리(B 2)보다 높은 충전 순서를 부여하고, 그 외에는 제2 배터리(B 2)에게 제1 배터리(B 1)보다 높은 충전 순서를 부여한다. 제어 회로(240)는, 제1 내지 제n 배터리(B 1~B n) 각각의 충전 순서를 나타내는 플래그를 메모리에 기록할 수 있다.
도 6은 본 발명의 제2 실시예에 따른 무선 충전 방법을 예시적으로 보여주는 순서도이다. 도 6의 방법은, 도 5의 방법을 통해 결정된 충전 순서에 따라, 통상 충전 모드에서 복수의 배터리(B 1~B n)를 순차적으로 충전하기 위해 실행될 수 있다.
단계 S600에서, 송전 장치(200)는, 제2 인덱스 x를 1로 설정한다. 제2 인덱스 x는, 충전 순서를 나타낸다.
단계 S610에서, 송전 장치(200)는, 제x 충전 순서에 따라, 제1 내지 제n 배터리(B 1~B n) 중 하나인 제j 배터리(B j)를 충전 대상으로 선택한다. 제j 배터리(B j)는, 제1 내지 제n 배터리(B 1~B n) 중에서 x번째로 높은 충전 순위가 부여된 것이다.
단계 S620에서, 송전 장치(200)는, 단계 S610에서 선택된 배터리(B j)에 연관된 제j 공진 주파수를 가지는 제j 교류 전력을 무선으로 송신한다. 단계 S620에서는 제j 공진 주파수를 가지는 제j 교류 전력이 무선으로 송신된다. 이에 따라, 제j 서브 공진 회로에 의해 제j 교류 전력이 무선으로 수신된다.
단계 S630에서, 송전 장치(200)는, 제j 배터리(B j)의 충전이 완료되었는지 여부를 판정한다. 구체적으로, 제어 회로(240)는, 제j 배터리(B j)가 충전되는 중에, 소정 시간마다, 제j 배터리(B j)의 직류 전압을 결정하고(수식 4 내지 수식 6 참조), 제j 배터리(B j)의 직류 전압이 소정의 상한 전압에 도달한 경우, 충전이 완료된 것으로 판정할 수 있다. 단계 S630의 값이 "아니오"인 경우 단계 S630를 반복할 수 있다. 단계 S630의 값이 "예"인 경우, 단계 S640로 진행한다.
단계 S640에서, 송전 장치(200)는, 제2 인덱스 x가 목표 인덱스 n과 동일한지 여부를 판정한다. 목표 인덱스 n은 무선 충전 시스템(100)에 포함된 배터리(B)의 총 개수이다. 단계 S640의 값이 "아니오"인 경우, 단계 S642로 진행된다. 단계 S640의 값이 "예"인 것은, 제1 내지 제n 배터리(B 1~B n) 모두의 충전이 완료된 것을 나타낸다.
단계 S642에서, 송전 장치(200)는, 제2 인덱스 x를 1만큼 증가시킨다. 단계 S642 후, 도 6의 방법은 단계 S610으로 진행할 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.

Claims (10)

  1. 제1 배터리에 병렬 연결되고, 제1 공진 주파수를 가지는 제1 서브 공진 회로를 포함하는 제1 수전 장치;
    제2 배터리에 병렬 연결되고, 제2 공진 주파수를 가지는 제2 서브 공진 회로를 포함하는 제2 수전 장치; 및
    메인 공진 회로를 포함하는 송전 장치를 포함하되,
    상기 송전 장치는,
    예비 충전 모드에서, 상기 제1 배터리 및 상기 제2 배터리 간의 충전 순서를 결정하고,
    통상 충전 모드에서, 상기 충전 순서에 따라 상기 제1 배터리가 선택된 경우, 상기 제1 공진 주파수를 가지는 제1 교류 전력을 상기 메인 공진 회로를 통해 상기 제1 서브 공진 회로에게 무선으로 송신하고,
    상기 통상 충전 모드에서, 상기 충전 순서에 따라 상기 제2 배터리가 선택된 경우, 상기 제2 공진 주파수를 가지는 제2 교류 전력을 상기 메인 공진 회로를 통해 상기 제2 서브 공진 회로에게 무선으로 송신하도록 구성되는 무선 충전 시스템.
  2. 제1항에 있어서,
    상기 제1 서브 공진 회로는, 직렬 연결된 제1 서브 코일 및 제1 서브 커패시터를 포함하고,
    상기 제2 서브 공진 회로는 직렬 연결된 제2 서브 코일 및 제2 서브 커패시터를 포함하는 무선 충전 시스템.
  3. 제1항에 있어서,
    상기 제1 수전 장치는,
    상기 제1 서브 공진 회로에 의해 수신되는 상기 제1 교류 전력을 제1 직류 전력으로 정류하고, 상기 제1 직류 전력을 상기 제1 배터리에 공급하도록 구성되는 제1 정류 회로를 더 포함하고,
    상기 제2 수전 장치는,
    상기 제2 서브 공진 회로에 의해 수신되는 상기 제2 교류 전력을 제2 직류 전력으로 정류하고, 상기 제2 직류 전력을 상기 제2 배터리에 공급하도록 구성되는 제2 정류 회로를 더 포함하는 무선 충전 시스템.
  4. 제1항에 있어서,
    상기 송전 장치는, 상기 예비 충전 모드에서,
    상기 제1 교류 전력을 제1 메인 시간 동안 무선으로 송신하고,
    상기 제1 교류 전력의 교류 전압 및 교류 전류를 나타내는 제1 메인 센싱 정보를 기록하고,
    제1 보조 주파수를 가지는 제1 보조 전력을 제1 보조 시간 동안 무선으로 송신하고,
    상기 제1 보조 전력의 교류 전압 및 교류 전류를 나타내는 제1 보조 센싱 정보를 기록하고,
    상기 제1 메인 센싱 정보 및 상기 제1 보조 센싱 정보를 기초로, 상기 제1 배터리의 제1 직류 전압을 결정하고,
    상기 제2 교류 전력을 제2 메인 시간 동안 무선으로 송신하고,
    상기 제2 교류 전력의 교류 전압 및 교류 전류를 나타내는 제2 메인 센싱 정보를 기록하고,
    제2 보조 주파수를 가지는 제2 보조 전력을 제2 보조 시간 동안 무선으로 송신하고,
    상기 제2 보조 전력의 교류 전압 및 교류 전류를 나타내는 제2 보조 센싱 정보를 기록하고,
    상기 제2 메인 센싱 정보 및 상기 제2 보조 센싱 정보를 기초로, 상기 제2 배터리의 제2 직류 전압을 결정하고,
    상기 제1 직류 전압 및 상기 제2 직류 전압을 기초로, 상기 제1 배터리 및 상기 제2 배터리 간의 충전 순서를 결정하도록 구성되는 무선 충전 시스템.
  5. 제4항에 있어서,
    상기 송전 장치는,
    상기 메인 공진 회로에게 상기 제1 교류 전력, 상기 제1 보조 전력, 상기 제2 교류 전력 및 상기 제2 보조 전력을 선택적으로 공급하도록 구성되는 전력 생성 회로;
    상기 메인 공진 회로에 공급되는 교류 전력의 교류 전압 및 교류 전류를 센싱하도록 구성되는 센싱 회로; 및
    상기 메인 공진 회로, 상기 전력 생성 회로 및 상기 센싱 회로에 동작 가능하게 결합되는 제어 회로를 더 포함하는 무선 충전 시스템.
  6. 제5항에 있어서,
    상기 메인 공진 회로는, 직렬 연결된 메인 코일 및 가변 커패시터를 포함하고,
    상기 제어 회로는,
    서로 다른 제1 메인 커패시턴스, 제1 보조 커패시턴스, 제2 메인 커패시턴스 및 제2 보조 커패시턴스 중 하나와 동일하도록 상기 가변 커패시터의 커패시턴스를 조절하도록 구성되는 무선 충전 시스템.
  7. 제6항에 있어서,
    상기 제1 공진 주파수는, 상기 메인 코일의 메인 인덕턴스와 상기 제1 메인 커패시턴스에 의한 공진 주파수와 동일하고,
    상기 제1 보조 주파수는, 상기 메인 인덕턴스와 상기 제1 보조 커패시턴스에 의한 공진 주파수와 동일하고,
    상기 제2 공진 주파수는, 상기 메인 인덕턴스와 상기 제2 메인 커패시턴스에 의한 공진 주파수와 동일하고,
    상기 제2 보조 주파수는, 상기 메인 인덕턴스와 상기 제2 보조 커패시턴스에 의한 공진 주파수와 동일한 무선 충전 시스템.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 상기 무선 충전 시스템을 포함하는 전기 차량.
  9. 제1 공진 주파수를 가지는 제1 서브 공진 회로에 병렬 연결된 제1 배터리 및 제2 공진 주파수를 가지는 제2 서브 공진 회로에 병렬 연결된 제2 배터리를 위한 무선 충전 방법에 있어서,
    예비 충전 모드에서, 상기 제1 배터리 및 상기 제2 배터리 간의 충전 순서를 결정하는 단계;
    통상 충전 모드에서, 상기 충전 순서에 따라 상기 제1 배터리가 선택된 경우, 상기 제1 공진 주파수를 가지는 제1 교류 전력을 상기 제1 서브 공진 회로에게 무선으로 송신하는 단계; 및
    상기 통상 충전 모드에서, 상기 충전 순서에 따라 상기 제2 배터리가 선택된 경우, 상기 제2 공진 주파수를 가지는 제2 교류 전력을 상기 제2 서브 공진 회로에게 무선으로 송신하는 단계를 포함하는 무선 충전 방법.
  10. 제9항에 있어서,
    상기 충전 순서를 결정하는 단계는,
    상기 제1 교류 전력을 제1 메인 시간 동안 무선으로 송신하는 단계;
    상기 제1 교류 전력의 교류 전압 및 교류 전류를 나타내는 제1 메인 센싱 정보를 기록하는 단계;
    제1 보조 주파수를 가지는 제1 보조 전력을 제1 보조 시간 동안 무선으로 송신하는 단계;
    상기 제1 보조 전력의 교류 전압 및 교류 전류를 나타내는 제1 보조 센싱 정보를 기록하는 단계;
    상기 제1 메인 센싱 정보 및 상기 제1 보조 센싱 정보를 기초로, 상기 제1 배터리의 제1 직류 전압을 결정하는 단계;
    상기 제2 교류 전력을 제2 메인 시간 동안 무선으로 송신하는 단계;
    상기 제2 교류 전력의 교류 전압 및 교류 전류를 나타내는 제2 메인 센싱 정보를 기록하는 단계;
    제2 보조 주파수를 가지는 제2 보조 전력을 제2 보조 시간 동안 무선으로 송신하는 단계;
    상기 제2 보조 전력의 교류 전압 및 교류 전류를 나타내는 제2 보조 센싱 정보를 기록하는 단계;
    상기 제2 메인 센싱 정보 및 상기 제2 보조 센싱 정보를 기초로, 상기 제2 배터리의 제2 직류 전압을 결정하는 단계;
    상기 제1 직류 전압 및 상기 제2 직류 전압을 기초로, 상기 제1 배터리 및 상기 제2 배터리 간의 충전 순서를 결정하는 단계를 포함하는 무선 충전 방법.
PCT/KR2021/005770 2020-06-03 2021-05-07 무선 충전 시스템, 무선 충전 방법 및 전기 차량 WO2021246667A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/788,661 US20230035811A1 (en) 2020-06-03 2021-05-07 Wireless charging system, wireless charging method, and electric vehicle
JP2022526506A JP7383873B2 (ja) 2020-06-03 2021-05-07 無線充電システム、無線充電方法及び電気車両
EP21816667.6A EP4060865A4 (en) 2020-06-03 2021-05-07 WIRELESS CHARGING SYSTEM, WIRELESS CHARGING METHOD AND ELECTRIC VEHICLE
CN202180007290.0A CN114846720A (zh) 2020-06-03 2021-05-07 无线充电系统、无线充电方法和电动车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0067106 2020-06-03
KR1020200067106A KR20210150127A (ko) 2020-06-03 2020-06-03 무선 충전 시스템, 무선 충전 방법 및 전기 차량

Publications (1)

Publication Number Publication Date
WO2021246667A1 true WO2021246667A1 (ko) 2021-12-09

Family

ID=78831315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005770 WO2021246667A1 (ko) 2020-06-03 2021-05-07 무선 충전 시스템, 무선 충전 방법 및 전기 차량

Country Status (6)

Country Link
US (1) US20230035811A1 (ko)
EP (1) EP4060865A4 (ko)
JP (1) JP7383873B2 (ko)
KR (1) KR20210150127A (ko)
CN (1) CN114846720A (ko)
WO (1) WO2021246667A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3920373A4 (en) * 2019-08-07 2023-01-25 Huawei Digital Power Technologies Co., Ltd. WIRELESS CHARGING DEVICE, AND POSITION DETECTION METHOD AND SYSTEM
CN115986960B (zh) * 2023-02-15 2023-11-10 合肥有感科技有限责任公司 无线充电系统配置方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110121623A (ko) * 2009-03-30 2011-11-07 후지쯔 가부시끼가이샤 무선 전력 공급 시스템, 무선 송전 장치, 및 무선 수전 장치
US20150298560A1 (en) * 2014-04-18 2015-10-22 Qualcomm Incorporated Base magnetics and sequence design for dynamic systems
KR20160011994A (ko) * 2014-07-23 2016-02-02 현대자동차주식회사 무선 충전 방법
KR20160023019A (ko) * 2014-08-20 2016-03-03 엘에스전선 주식회사 전기 이동 수단용 멀티 충전 장치 및 멀티 충전 방법
KR20160051931A (ko) * 2014-10-30 2016-05-12 두산중공업 주식회사 자기 공진 방식을 이용한 무선 충전 시스템
KR20200067106A (ko) 2018-12-03 2020-06-11 콘티 테믹 마이크로일렉트로닉 게엠베하 전기 전환 장치의 정확한 작동을 식별하기 위한 방법, 이러한 방법을 실행시키기 위한 컴퓨터 프로그램 제품, 및 이러한 방법을 실행시키기 위한 제어 디바이스를 가진 풀 브리지 회로

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110121623A (ko) * 2009-03-30 2011-11-07 후지쯔 가부시끼가이샤 무선 전력 공급 시스템, 무선 송전 장치, 및 무선 수전 장치
US20150298560A1 (en) * 2014-04-18 2015-10-22 Qualcomm Incorporated Base magnetics and sequence design for dynamic systems
KR20160011994A (ko) * 2014-07-23 2016-02-02 현대자동차주식회사 무선 충전 방법
KR20160023019A (ko) * 2014-08-20 2016-03-03 엘에스전선 주식회사 전기 이동 수단용 멀티 충전 장치 및 멀티 충전 방법
KR20160051931A (ko) * 2014-10-30 2016-05-12 두산중공업 주식회사 자기 공진 방식을 이용한 무선 충전 시스템
KR20200067106A (ko) 2018-12-03 2020-06-11 콘티 테믹 마이크로일렉트로닉 게엠베하 전기 전환 장치의 정확한 작동을 식별하기 위한 방법, 이러한 방법을 실행시키기 위한 컴퓨터 프로그램 제품, 및 이러한 방법을 실행시키기 위한 제어 디바이스를 가진 풀 브리지 회로

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060865A4

Also Published As

Publication number Publication date
JP7383873B2 (ja) 2023-11-21
EP4060865A4 (en) 2023-06-21
CN114846720A (zh) 2022-08-02
JP2023502207A (ja) 2023-01-23
US20230035811A1 (en) 2023-02-02
EP4060865A1 (en) 2022-09-21
KR20210150127A (ko) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2021246667A1 (ko) 무선 충전 시스템, 무선 충전 방법 및 전기 차량
WO2012128445A1 (ko) 배터리 팩 연결 제어 장치 및 방법
WO2020105903A1 (ko) 무선 제어 시스템, 무선 제어 방법 및 배터리 팩
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
KR101364459B1 (ko) 에너지 저장 시스템에서의 셀 모니터링
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
JP4974593B2 (ja) 車両用の電源装置
CN103081288A (zh) 电池模块的充电系统
WO2020226441A1 (ko) 배터리 컨트롤러, 무선 배터리 제어 시스템, 배터리 팩 및 배터리 밸런싱 방법
WO2020105869A1 (ko) 무선 제어 시스템, 무선 연결 방법 및 배터리 팩
WO2019088746A1 (ko) 배터리 soc 추정 장치 및 방법
CN101527463A (zh) 锂离子动力电池组均充系统
WO2022092612A1 (ko) 충전 관리 장치, 충전 관리 방법, 및 전기 차량
WO2021033956A1 (ko) 배터리 시스템 및 배터리 시스템의 운용 방법
WO2022039505A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2022145830A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 전기 차량
WO2014157844A2 (ko) 다수의 외부 장치에 유선으로 전원공급이 가능한 무선 전력 수신 장치
WO2022149958A1 (ko) 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법
WO2022065676A1 (ko) 배터리 저항 산출 장치 및 방법
WO2021256864A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2020045968A1 (ko) 배터리 팩과 접지 간의 절연 상태를 진단하기 위한 장치 및 방법과, 상기 장치를 포함하는 배터리 팩
JP4108339B2 (ja) リチウムイオン二次電池の充電方法及び装置
WO2019107935A1 (ko) 배터리 팩
WO2021112459A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2022014953A1 (ko) 배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526506

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021816667

Country of ref document: EP

Effective date: 20220616

NENP Non-entry into the national phase

Ref country code: DE