WO2021246350A1 - Stud pin and tire comprising same - Google Patents

Stud pin and tire comprising same Download PDF

Info

Publication number
WO2021246350A1
WO2021246350A1 PCT/JP2021/020601 JP2021020601W WO2021246350A1 WO 2021246350 A1 WO2021246350 A1 WO 2021246350A1 JP 2021020601 W JP2021020601 W JP 2021020601W WO 2021246350 A1 WO2021246350 A1 WO 2021246350A1
Authority
WO
WIPO (PCT)
Prior art keywords
stud pin
shell
inner shell
outer shell
tire
Prior art date
Application number
PCT/JP2021/020601
Other languages
French (fr)
Japanese (ja)
Inventor
伸之 下條
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN202180035417.XA priority Critical patent/CN115666969A/en
Publication of WO2021246350A1 publication Critical patent/WO2021246350A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile

Definitions

  • the present invention relates to a stud pin and a tire equipped with the stud pin, and more particularly to a stud pin capable of enhancing the edge effect and improving the performance on ice and a tire equipped with the stud pin.
  • stud tires in which stud pins are driven into the tread portion are known (see, for example, Patent Documents 1 to 3).
  • the stud pin has a buried base embedded in the tread portion of the tire and a tip portion located on the distal end side of the buried base portion and in contact with the road surface.
  • the edge of the tip of the stud pin comes into contact with the icy road surface, and the edge effect is exerted to exhibit excellent on-ice performance.
  • An object of the present invention is to provide a stud pin capable of enhancing the edge effect and improving the performance on ice and a tire provided with the stud pin.
  • a stud pin of the present invention for achieving the above object is a stud pin having a buried base embedded in a tread portion of a tire and a tip portion located on the distal end side of the embedded base portion and in contact with a road surface.
  • the tip portion is characterized by including an outer shell formed in an annular shape, an inner shell surrounded by the outer shell, and a groove portion interposed between the outer shell and the inner shell.
  • the tire of the present invention for achieving the above object is characterized in that the above-mentioned stud pin is arranged in the tread portion.
  • the tip of the stud pin is provided with an outer shell formed in an annular shape, an inner shell surrounded by the outer shell, and a groove portion interposed between the outer shells, whereby the outer shell and the inner shell each form an edge. Therefore, the edge effect of the stud pin can be significantly enhanced and the on-ice performance of the tire can be effectively improved.
  • the tip of the stud pin is composed of an annular outer shell and an inner shell surrounded by the annular outer shell, it is possible to secure sufficient strength for each of the outer shell and the inner shell.
  • the groove portion is continuous in an annular shape around the inner shell.
  • the edge effect can be enhanced and the performance on ice can be effectively improved.
  • the tip portion of the stud pin includes at least one connecting portion for connecting the outer shell and the inner shell to each other, and the total length of the inner peripheral side of the groove portion is 50% or more of the outer peripheral length of the inner shell. .. In this case, the strength of the stud pin can be increased.
  • the inner shell preferably has an inner groove extending along the outer peripheral edge thereof. In this case, since the amount of edges is further increased, the performance on ice can be effectively improved.
  • the inner peripheral shape of the outer shell and the outer peripheral shape of the inner shell are different from each other.
  • the snow-removing ice property of the tip of the stud pin can be improved, and the on-ice performance can be further improved by increasing the amount of edges.
  • the inner peripheral shape of the outer shell and the outer peripheral shape of the inner shell may be similar to each other. In this case as well, sufficient edge effect can be expected.
  • the distance Ly between the outer shell and the inner shell measured in the direction orthogonal to the stud pin central axis is preferably in the range of 10% to 35% of the outer shell dimension Lx measured in the direction orthogonal to the stud pin central axis. ..
  • the inner hull includes the inner hull body located on the innermost side, and the dimension Lz of the inner hull body measured in the direction orthogonal to the stud pin central axis is the dimension of the outer hull measured in the direction orthogonal to the stud pin central axis. It is preferably in the range of 10% to 60% of Lx. As a result, the strength of the stud pin can be sufficiently ensured, and deterioration of snow-removal ice-removing property and workability can be avoided.
  • the tire of the present invention is preferably a pneumatic tire, but may be a non-pneumatic tire.
  • the inside thereof can be filled with an inert gas such as air or nitrogen or other gas.
  • FIG. 1 is a perspective view showing a stud pin according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the stud pin of FIG.
  • FIG. 3 is a side view showing the stud pin of FIG.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is a plan view showing a modified example of the stud pin.
  • FIG. 6 is a plan view showing another modification of the stud pin.
  • FIG. 7 is a plan view showing another modification of the stud pin.
  • FIG. 8 is a plan view showing another modification of the stud pin.
  • FIG. 9 is a cross-sectional view taken along the meridian showing an example of the pneumatic tire of the present invention.
  • 1 to 4 show stud pins according to an embodiment of the present invention.
  • the stud pin P of the present embodiment has a buried base 10 embedded in the tread portion of the tire and a tip portion located on the tip side of the buried base 10 and in contact with the road surface. It has 20 tires.
  • the buried base 10 is connected to a columnar body portion 11, a columnar shank portion 12 connected to the body portion 11 and having a smaller diameter than the body portion 11, and a shank connected to the shank portion 12. It is composed of a columnar bottom portion 13 having a diameter larger than that of the portion 12.
  • the metal material constituting the tip portion 20 has a higher hardness than the metal material constituting the buried base portion 10, and the buried base portion 10 and the tip portion 20 are integrally processed.
  • the tip portion 20 has an outer shell 21 formed in an annular shape, a columnar inner shell 22 surrounded by the outer shell 21, and a groove portion interposed between the outer shell 21 and the inner shell 22. It is equipped with 23. That is, edges are formed at the outer peripheral end and the inner peripheral end of the outer shell 21 on the ground plane, respectively, and edges are also formed at the outer peripheral end of the inner shell 22 on the ground plane.
  • the tip portion 20 of the stud pin P includes the outer shell 21 formed in an annular shape, the inner shell 22 surrounded by the outer shell 21, and the groove portion 23 interposed therein, whereby the outer shell 21 and the inner shell 21 and the inner shell 21 are provided. Since each of the 22 forms an edge, the edge effect of the stud pin P can be significantly enhanced and the on-ice performance of the tire can be effectively improved.
  • the tip of the stud pin P is composed of an annular outer shell 21 and an inner shell 22 surrounded by the annular outer shell 21, it is possible to secure sufficient strength for each of the outer shell 21 and the inner shell 22.
  • the groove portion 23 is preferably continuous in an annular shape around the inner shell 22.
  • the amount of edges at the inner peripheral end of the outer shell 21 and the outer peripheral end of the inner shell 22 can be maximized, the edge effect thereof can be enhanced, and the performance on ice can be effectively improved.
  • FIG. 5 shows a modified example of the stud pin.
  • the tip portion 20 of the stud pin P includes a plurality of connecting portions 24 that connect the outer shell 21 and the inner shell 22 to each other. These connecting portions 24 are arranged so as to extend radially with respect to the central axis of the stud pin P. Further, in providing the connecting portion 24 between the outer shell 21 and the inner shell 22, it is preferable that the total length of the inner peripheral side of the groove portion 23 is 50% or more of the outer peripheral length of the inner shell 22. For example, in FIG.
  • the outer peripheral length of 22 (the outer peripheral length when it is assumed that the connecting portion 24 does not exist) is Lb, it is preferable that La ⁇ 0.5 ⁇ Lb. In this case, the strength of the stud pin P can be increased.
  • the total length of the groove portion 23 on the inner peripheral side is less than 50% of the outer peripheral length of the inner shell 22, the effect of improving the performance on ice is reduced due to the decrease in the amount of edges.
  • FIGS. 6 to 8 show other modified examples of the stud pin, respectively.
  • the inner hull 22 has an inner groove portion 22C extending in an annular shape along the outer peripheral edge thereof, whereby the inner hull body 22A in which the inner hull 22 is located on the innermost side and the inner hull outer edge located on the outer peripheral side thereof. It is divided into parts 22B. By partitioning the inner shell 22 into the inner shell main body 22A and the inner shell outer edge portion 22B in this way, the amount of edges is further increased, so that the performance on ice can be effectively improved.
  • the inner peripheral shape of the outer shell 21 and the outer peripheral shape of the inner shell 22 are different from each other.
  • the inner peripheral shape of the outer shell 21 is circular, but the outer peripheral shape of the inner shell 22 is square.
  • the inner peripheral shape of the outer shell 21 is circular, but the outer peripheral shape of the inner shell 22 is elliptical.
  • the inner peripheral shape of the outer shell 21 and the outer peripheral shape of the inner shell 22 may be similar to each other (see FIG. 2). In this case as well, sufficient edge effect can be expected.
  • the inner peripheral shape of the outer shell 21 and the outer peripheral shape of the inner shell 22 are not particularly limited, and various shapes such as a circular shape, an elliptical shape, and a polygonal shape including a quadrangle can be adopted.
  • the distance Ly between the outer shell 21 and the inner shell 22 measured in the direction orthogonal to the central axis O of the stud pin P is the outer shell measured in the direction orthogonal to the central axis O of the stud pin P.
  • the dimension Lx of 21 is preferably in the range of 10% to 35%, more preferably in the range of 15% to 30%.
  • the dimension Lz of the inner shell body 22A measured in the direction orthogonal to the central axis O of the stud pin P is orthogonal to the central axis O of the stud pin P.
  • the dimension Lx of the outer shell 21 is measured in the range of 10% to 60%, more preferably 20% to 40%.
  • the dimension Lx of the outer shell 21 measured in the direction orthogonal to the central axis O of the stud pin P is preferably set in the range of 2 mm to 4 mm. Further, the thickness t of the outer shell 21 measured in the direction orthogonal to the central axis O of the stud pin P is preferably set in the range of 0.3 mm to 0.6 mm. As a result, the strength of the stud pin P can be sufficiently ensured, and deterioration of snow-removal ice-removing property and workability can be avoided.
  • the above-mentioned dimension Lx of the outer shell 21, the distance Ly between the outer shell 21 and the inner shell 22, the dimension Lz of the inner shell main body 22A, and the thickness t of the outer shell 21 are the positions where the outer shell 21 and the inner shell 22 are separated by the groove portion 23. It is measured at an arbitrary position around the central axis O of the stud pin P. When the outer shell 21 or the inner shell 22 is chamfered, the dimensions are measured assuming that the chamfered portion does not exist.
  • FIG. 9 shows an example of the pneumatic tire of the present invention.
  • the pneumatic tire T includes a tread portion 31 extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions 32, 32 arranged on both sides of the tread portion 31, and these. It includes a pair of bead portions 33, 33 arranged inside the sidewall portion 32 in the tire radial direction.
  • a carcass layer 4 is mounted between the pair of bead portions 33, 33.
  • the carcass layer 34 includes a plurality of reinforcing cords extending in the radial direction of the tire, and is folded back from the inside to the outside of the tire around the bead core 35 arranged in each bead portion 33.
  • a bead filler 36 made of a rubber composition having a triangular cross section is arranged on the outer periphery of the bead core 35.
  • a plurality of belt layers 37 are embedded on the outer peripheral side of the carcass layer 34 in the tread portion 31.
  • These belt layers 37 include a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to intersect each other between the layers.
  • the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set to, for example, in the range of 10 ° to 40 °.
  • a steel cord is preferably used as the reinforcing cord of the belt layer 37.
  • At least one belt cover layer 38 having reinforcing cords arranged at an angle of, for example, 5 ° or less with respect to the tire circumferential direction is arranged on the outer peripheral side of the belt layer 37 for the purpose of improving high-speed durability.
  • an organic fiber cord such as nylon or aramid is preferably used.
  • a main groove 41 extending in the tire circumferential direction is formed in the tread portion 31, and a plurality of land portions 42 are partitioned by these main grooves 41.
  • a plurality of implantation holes 43 for implanting the stud pin P are formed in the land portion 42 of the tread portion 31.
  • the stud pin P is arranged in the tread portion 31 so that the embedded base portion 10 is inserted into the implantation hole 43 and the tip portion 20 protrudes from the tread portion 31.
  • the inner diameter of the implantation hole 43 is slightly smaller than the outer diameter of the stud pin P, and the stud pin P implanted in the implantation hole 43 is firmly held against the tread portion 31.
  • the stud pin P having a predetermined structure By disposing the stud pin P having a predetermined structure on the tread portion 31 of the pneumatic tire T as described above, it is possible to exhibit excellent on-ice performance based on the edge effect of the stud pin P.
  • the reinforcing structure of the pneumatic tire T shown in FIG. 9 shows a typical example, but is not limited to this. Further, the tread pattern formed on the tread portion 31 of the pneumatic tire T is not particularly limited.
  • a stud pin having a buried base and a tip and having the tip processed into a columnar shape was used.
  • a stud pin having a buried base portion and a tip portion, the tip portion having an annular outer shell, an inner shell surrounded by the outer shell, and a groove portion interposed between the two was used.
  • the presence or absence of the inner groove portion in the inner shell, the inner peripheral shape of the outer shell, and the outer peripheral shape of the inner shell were set as shown in Table 1.
  • Performance on ice Each test tire is attached to a wheel with a rim size of 16 x 6.5J and mounted on a front-wheel drive vehicle with a displacement of 1400cc.
  • the air pressure is set to 250kPa, and the distance from a running state of 20km / h on ice to braking and stopping is measured. did.
  • the evaluation result is shown by an index of 100 in the conventional example using the reciprocal of the measured value. The larger this index value is, the better the performance on ice is.
  • the tip of the stud pin has an annular outer shell, an inner shell surrounded by the annular outer shell, and a groove portion interposed between the two, so that the comparison with the conventional example is made.
  • the comparison with the conventional example is made.

Abstract

Provided are a stud pin that enhances edge effect and improves on-ice performance, and a tire comprising said stud pin. A stud pin P has an embedded base part 10 embedded in the tread section of a tire, and a tip-end part 20 that is positioned on the tip-end side of the embedded base part 10 and comes into contact with the road surface, wherein the tip-end part 20 is provided with an outer shell 21 formed into a ring, an inner shell 22 encircled by the outer shell 21, and a groove part 23 interposed between the outer shell 21 and the inner shell 22. In a tire T, the stud pin P is placed in a tread section 31.

Description

スタッドピン及びそれを備えたタイヤStud pins and tires with them
 本発明は、スタッドピン及びそれを備えたタイヤに関し、更に詳しくは、エッジ効果を高めて氷上性能を改善することを可能にしたスタッドピン及びそれを備えたタイヤに関する。 The present invention relates to a stud pin and a tire equipped with the stud pin, and more particularly to a stud pin capable of enhancing the edge effect and improving the performance on ice and a tire equipped with the stud pin.
 氷雪路面上での走行性能を改善した空気入りタイヤにおいて、トレッド部にスタッドピンが打ち込まれたスタッドタイヤ(スパイクタイヤ)が知られている(例えば、特許文献1~3参照)。スタッドピンは、タイヤのトレッド部に埋設される埋設基部と、該埋設基部の先端側に位置していて路面と接触する先端部とを有している。そして、スタッドタイヤの走行時には、スタッドピンの先端部のエッジが氷路面と接触し、そのエッジ効果を発揮することにより優れた氷上性能を発揮する。 Among pneumatic tires with improved running performance on ice and snow road surfaces, stud tires (spike tires) in which stud pins are driven into the tread portion are known (see, for example, Patent Documents 1 to 3). The stud pin has a buried base embedded in the tread portion of the tire and a tip portion located on the distal end side of the buried base portion and in contact with the road surface. When the stud tire is running, the edge of the tip of the stud pin comes into contact with the icy road surface, and the edge effect is exerted to exhibit excellent on-ice performance.
 しかしながら、従来のスタッドピン及びそれを備えたタイヤでは、個々のスタッドピンのエッジ効果が十分ではないため、氷上性能が必ずしも十分ではない。そのため、氷上性能の更なる改善が求められている。 However, with conventional stud pins and tires equipped with them, the edge effect of each stud pin is not sufficient, so the performance on ice is not always sufficient. Therefore, further improvement of on-ice performance is required.
日本国特許第5702817号公報Japanese Patent No. 5702817 日本国特許第5997518号公報Japanese Patent No. 5997518 日本国特許第6111010号公報Japanese Patent No. 6111010
 本発明の目的は、エッジ効果を高めて氷上性能を改善することを可能にしたスタッドピン及びそれを備えたタイヤを提供することにある。 An object of the present invention is to provide a stud pin capable of enhancing the edge effect and improving the performance on ice and a tire provided with the stud pin.
 上記目的を達成するための本発明のスタッドピンは、タイヤのトレッド部に埋設される埋設基部と、該埋設基部の先端側に位置していて路面と接触する先端部とを有するスタッドピンにおいて、前記先端部が、環状に形成された外郭と、該外郭により囲まれた内郭と、前記外郭と前記内郭との間に介在する溝部とを備えることを特徴とするものである。 A stud pin of the present invention for achieving the above object is a stud pin having a buried base embedded in a tread portion of a tire and a tip portion located on the distal end side of the embedded base portion and in contact with a road surface. The tip portion is characterized by including an outer shell formed in an annular shape, an inner shell surrounded by the outer shell, and a groove portion interposed between the outer shell and the inner shell.
 また、上記目的を達成するための本発明のタイヤは、上述のスタッドピンがトレッド部に配設されていることを特徴とするものである。 Further, the tire of the present invention for achieving the above object is characterized in that the above-mentioned stud pin is arranged in the tread portion.
 本発明では、スタッドピンの先端部が、環状に形成された外郭と、該外郭により囲まれた内郭と、その間に介在する溝部とを備えることにより、外郭及び内郭がそれぞれエッジを形成するので、スタッドピンのエッジ効果を格段に高めてタイヤの氷上性能を効果的に改善することができる。特に、スタッドピンの先端部を環状の外郭及びそれに囲まれた内郭で構成した場合、外郭及び内郭の各々に十分な強度を確保することが可能である。 In the present invention, the tip of the stud pin is provided with an outer shell formed in an annular shape, an inner shell surrounded by the outer shell, and a groove portion interposed between the outer shells, whereby the outer shell and the inner shell each form an edge. Therefore, the edge effect of the stud pin can be significantly enhanced and the on-ice performance of the tire can be effectively improved. In particular, when the tip of the stud pin is composed of an annular outer shell and an inner shell surrounded by the annular outer shell, it is possible to secure sufficient strength for each of the outer shell and the inner shell.
 本発明において、溝部は内郭の周囲で環状に連続することが好ましい。この場合、エッジ効果を高めて氷上性能を効果的に改善することができる。また、スタッドピンの先端部が外郭と内郭とを互いに連結する少なくとも1つの繋ぎ部を備え、溝部の内周側の長さの総和が内郭の外周長の50%以上であることが好ましい。この場合、スタッドピンの強度を増大させることができる。 In the present invention, it is preferable that the groove portion is continuous in an annular shape around the inner shell. In this case, the edge effect can be enhanced and the performance on ice can be effectively improved. Further, it is preferable that the tip portion of the stud pin includes at least one connecting portion for connecting the outer shell and the inner shell to each other, and the total length of the inner peripheral side of the groove portion is 50% or more of the outer peripheral length of the inner shell. .. In this case, the strength of the stud pin can be increased.
 内郭はその外周縁に沿って延びる内側溝部を有することが好ましい。この場合、エッジ量が更に増加するので、氷上性能を効果的に改善することができる。 The inner shell preferably has an inner groove extending along the outer peripheral edge thereof. In this case, since the amount of edges is further increased, the performance on ice can be effectively improved.
 外郭の内周形状と内郭の外周形状とは互いに異なることが好ましい。この場合、スタッドピンの先端部の排雪氷性を改善すると共に、エッジ量の増加により氷上性能の更に改善することができる。外郭の内周形状と内郭の外周形状とは互いに相似していても良い。この場合も、十分なエッジ効果を期待することができる。 It is preferable that the inner peripheral shape of the outer shell and the outer peripheral shape of the inner shell are different from each other. In this case, the snow-removing ice property of the tip of the stud pin can be improved, and the on-ice performance can be further improved by increasing the amount of edges. The inner peripheral shape of the outer shell and the outer peripheral shape of the inner shell may be similar to each other. In this case as well, sufficient edge effect can be expected.
 スタッドピン中心軸と直交する方向に測定される外郭と内郭との間隔Lyはスタッドピン中心軸と直交する方向に測定される外郭の寸法Lxの10%~35%の範囲にあることが好ましい。これにより、スタッドピンの強度を十分に確保すると共に、排雪氷性及び加工性の悪化を回避することができる。 The distance Ly between the outer shell and the inner shell measured in the direction orthogonal to the stud pin central axis is preferably in the range of 10% to 35% of the outer shell dimension Lx measured in the direction orthogonal to the stud pin central axis. .. As a result, the strength of the stud pin can be sufficiently ensured, and deterioration of snow-removal ice-removing property and workability can be avoided.
 また、内郭は最内側に位置する内郭本体を含み、スタッドピン中心軸と直交する方向に測定される内郭本体の寸法Lzがスタッドピン中心軸と直交する方向に測定される外郭の寸法Lxの10%~60%の範囲にあることが好ましい。これにより、スタッドピンの強度を十分に確保すると共に、排雪氷性及び加工性の悪化を回避することができる。 Further, the inner hull includes the inner hull body located on the innermost side, and the dimension Lz of the inner hull body measured in the direction orthogonal to the stud pin central axis is the dimension of the outer hull measured in the direction orthogonal to the stud pin central axis. It is preferably in the range of 10% to 60% of Lx. As a result, the strength of the stud pin can be sufficiently ensured, and deterioration of snow-removal ice-removing property and workability can be avoided.
 本発明のタイヤは、空気入りタイヤであることが好ましいが、非空気式タイヤであっても良い。空気入りタイヤの場合、その内部には空気、窒素等の不活性ガス又はその他の気体を充填することができる。 The tire of the present invention is preferably a pneumatic tire, but may be a non-pneumatic tire. In the case of a pneumatic tire, the inside thereof can be filled with an inert gas such as air or nitrogen or other gas.
図1は本発明の実施形態からなるスタッドピンを示す斜視図である。FIG. 1 is a perspective view showing a stud pin according to an embodiment of the present invention. 図2は図1のスタッドピンを示す平面図である。FIG. 2 is a plan view showing the stud pin of FIG. 図3は図1のスタッドピンを示す側面図である。FIG. 3 is a side view showing the stud pin of FIG. 図4は図2のIV-IV矢視断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 図5はスタッドピンの変形例を示す平面図である。FIG. 5 is a plan view showing a modified example of the stud pin. 図6はスタッドピンの他の変形例を示す平面図である。FIG. 6 is a plan view showing another modification of the stud pin. 図7はスタッドピンの他の変形例を示す平面図である。FIG. 7 is a plan view showing another modification of the stud pin. 図8はスタッドピンの他の変形例を示す平面図である。FIG. 8 is a plan view showing another modification of the stud pin. 図9は本発明の空気入りタイヤの一例を示す子午線断面図である。FIG. 9 is a cross-sectional view taken along the meridian showing an example of the pneumatic tire of the present invention.
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1~図4は本発明の実施形態からなるスタッドピンを示すものである。 Hereinafter, the configuration of the present invention will be described in detail with reference to the attached drawings. 1 to 4 show stud pins according to an embodiment of the present invention.
 図1~図4に示すように、本実施形態のスタッドピンPは、タイヤのトレッド部に埋設される埋設基部10と、該埋設基部10の先端側に位置していて路面と接触する先端部20とを備えている。埋設基部10は、円柱状の胴体部11と、該胴体部11に連接されていて該胴体部11よりも小径となる円柱状のシャンク部12と、該シャンク部12に連接されていて該シャンク部12よりも大径となる円柱状の底部13とから構成されている。先端部20を構成する金属材料は埋設基部10を構成する金属材料よりも高硬度であり、これら埋設基部10及び先端部20は一体的に加工されている。 As shown in FIGS. 1 to 4, the stud pin P of the present embodiment has a buried base 10 embedded in the tread portion of the tire and a tip portion located on the tip side of the buried base 10 and in contact with the road surface. It has 20 tires. The buried base 10 is connected to a columnar body portion 11, a columnar shank portion 12 connected to the body portion 11 and having a smaller diameter than the body portion 11, and a shank connected to the shank portion 12. It is composed of a columnar bottom portion 13 having a diameter larger than that of the portion 12. The metal material constituting the tip portion 20 has a higher hardness than the metal material constituting the buried base portion 10, and the buried base portion 10 and the tip portion 20 are integrally processed.
 上記スタッドピンPにおいて、先端部20は、円環状に形成された外郭21と、該外郭21により囲まれた円柱状の内郭22と、これら外郭21と内郭22との間に介在する溝部23とを備えている。つまり、外郭21の接地面での外周端及び内周端にはそれぞれエッジが形成され、内郭22の接地面での外周端にもエッジが形成されている。 In the stud pin P, the tip portion 20 has an outer shell 21 formed in an annular shape, a columnar inner shell 22 surrounded by the outer shell 21, and a groove portion interposed between the outer shell 21 and the inner shell 22. It is equipped with 23. That is, edges are formed at the outer peripheral end and the inner peripheral end of the outer shell 21 on the ground plane, respectively, and edges are also formed at the outer peripheral end of the inner shell 22 on the ground plane.
 このようにスタッドピンPの先端部20が、環状に形成された外郭21と、該外郭21により囲まれた内郭22と、その間に介在する溝部23とを備えることにより、外郭21及び内郭22がそれぞれエッジを形成するので、スタッドピンPのエッジ効果を格段に高めてタイヤの氷上性能を効果的に改善することができる。特に、スタッドピンPの先端部を環状の外郭21及びそれに囲まれた内郭22で構成した場合、外郭21及び内郭22の各々に十分な強度を確保することが可能である。 As described above, the tip portion 20 of the stud pin P includes the outer shell 21 formed in an annular shape, the inner shell 22 surrounded by the outer shell 21, and the groove portion 23 interposed therein, whereby the outer shell 21 and the inner shell 21 and the inner shell 21 are provided. Since each of the 22 forms an edge, the edge effect of the stud pin P can be significantly enhanced and the on-ice performance of the tire can be effectively improved. In particular, when the tip of the stud pin P is composed of an annular outer shell 21 and an inner shell 22 surrounded by the annular outer shell 21, it is possible to secure sufficient strength for each of the outer shell 21 and the inner shell 22.
 図2に示すように、スタッドピンPにおいて、溝部23は内郭22の周囲で環状に連続していると良い。この場合、外郭21の内周端及び内郭22の外周端におけるエッジ量を最大化し、そのエッジ効果を高めて氷上性能を効果的に改善することができる。 As shown in FIG. 2, in the stud pin P, the groove portion 23 is preferably continuous in an annular shape around the inner shell 22. In this case, the amount of edges at the inner peripheral end of the outer shell 21 and the outer peripheral end of the inner shell 22 can be maximized, the edge effect thereof can be enhanced, and the performance on ice can be effectively improved.
 図5はスタッドピンの変形例を示すものである。図5において、スタッドピンPの先端部20は、外郭21と内郭22とを互いに連結する複数の繋ぎ部24を備えている。これら繋ぎ部24は、スタッドピンPの中心軸に対して放射状に延在するように配置されている。また、外郭21と内郭22との間に繋ぎ部24を設けるにあたって、溝部23の内周側の長さの総和が内郭22の外周長の50%以上であると良い。例えば、図5において、繋ぎ部24により分断された溝部23の4つの分割片の内周側の長さをL1,L2,L3,L4とし、その総和をLa(La=L1+L2+L3+L4)とし、内郭22の外周長(繋ぎ部24が存在しないと想定したときの外周長)をLbとしたとき、La≧0.5×Lbであるとことが好ましい。この場合、スタッドピンPの強度を増大させることができる。ここで、溝部23の内周側の長さの総和が内郭22の外周長の50%未満であると、エッジ量の減少により氷上性能の改善効果が低下することになる。 FIG. 5 shows a modified example of the stud pin. In FIG. 5, the tip portion 20 of the stud pin P includes a plurality of connecting portions 24 that connect the outer shell 21 and the inner shell 22 to each other. These connecting portions 24 are arranged so as to extend radially with respect to the central axis of the stud pin P. Further, in providing the connecting portion 24 between the outer shell 21 and the inner shell 22, it is preferable that the total length of the inner peripheral side of the groove portion 23 is 50% or more of the outer peripheral length of the inner shell 22. For example, in FIG. 5, the lengths of the four divided pieces of the groove portion 23 divided by the connecting portion 24 on the inner peripheral side are L1, L2, L3, L4, and the total sum thereof is La (La = L1 + L2 + L3 + L4). When the outer peripheral length of 22 (the outer peripheral length when it is assumed that the connecting portion 24 does not exist) is Lb, it is preferable that La ≧ 0.5 × Lb. In this case, the strength of the stud pin P can be increased. Here, if the total length of the groove portion 23 on the inner peripheral side is less than 50% of the outer peripheral length of the inner shell 22, the effect of improving the performance on ice is reduced due to the decrease in the amount of edges.
 図6~図8はそれぞれスタッドピンの他の変形例を示すものである。図6において、内郭22はその外周縁に沿って環状に延びる内側溝部22Cを有し、それによって、内郭22が最内側に位置する内郭本体22Aとその外周側に位置する内郭外縁部22Bとに区画されている。このように内郭22を内郭本体22Aと内郭外縁部22Bとに区画することにより、エッジ量が更に増加するので、氷上性能を効果的に改善することができる。 FIGS. 6 to 8 show other modified examples of the stud pin, respectively. In FIG. 6, the inner hull 22 has an inner groove portion 22C extending in an annular shape along the outer peripheral edge thereof, whereby the inner hull body 22A in which the inner hull 22 is located on the innermost side and the inner hull outer edge located on the outer peripheral side thereof. It is divided into parts 22B. By partitioning the inner shell 22 into the inner shell main body 22A and the inner shell outer edge portion 22B in this way, the amount of edges is further increased, so that the performance on ice can be effectively improved.
 図7及び図8において、外郭21の内周形状と内郭22の外周形状とは互いに異なっている。図7では、外郭21の内周形状は円形であるが、内郭22の外周形状は正方形になっている。図8では、外郭21の内周形状は円形であるが、内郭22の外周形状は楕円形になっている。このように外郭21の内周形状と内郭22の外周形状とは互いに異ならせることにより、スタッドピンPの先端部20の排雪氷性を改善すると共に、エッジ量の増加により氷上性能の更に改善することができる。 In FIGS. 7 and 8, the inner peripheral shape of the outer shell 21 and the outer peripheral shape of the inner shell 22 are different from each other. In FIG. 7, the inner peripheral shape of the outer shell 21 is circular, but the outer peripheral shape of the inner shell 22 is square. In FIG. 8, the inner peripheral shape of the outer shell 21 is circular, but the outer peripheral shape of the inner shell 22 is elliptical. By making the inner peripheral shape of the outer shell 21 and the outer peripheral shape of the inner shell 22 different from each other in this way, the snow-removing ice property of the tip portion 20 of the stud pin P is improved, and the on-ice performance is further improved by increasing the edge amount. can do.
 なお、外郭21の内周形状と内郭22の外周形状とは互いに相似していても良い(図2参照)。この場合も、十分なエッジ効果を期待することができる。外郭21の内周形状及び内郭22の外周形状は、特に限定されるものではなく、円形、楕円形、四角形を含む多角形等の種々の形状を採用することが可能である。 The inner peripheral shape of the outer shell 21 and the outer peripheral shape of the inner shell 22 may be similar to each other (see FIG. 2). In this case as well, sufficient edge effect can be expected. The inner peripheral shape of the outer shell 21 and the outer peripheral shape of the inner shell 22 are not particularly limited, and various shapes such as a circular shape, an elliptical shape, and a polygonal shape including a quadrangle can be adopted.
 図4に示すように、スタッドピンPの中心軸Oと直交する方向に測定される外郭21と内郭22との間隔Lyは、スタッドピンPの中心軸Oと直交する方向に測定される外郭21の寸法Lxの10%~35%の範囲、より好ましくは、15%~30%の範囲にあると良い。これにより、スタッドピンPの強度を十分に確保すると共に、排雪氷性及び加工性の悪化を回避することができる。ここで、外郭21と内郭22との間隔Lyが小さ過ぎると排雪氷性や加工性が悪化し、逆に大き過ぎるとスタッドピンPの強度が低下する。 As shown in FIG. 4, the distance Ly between the outer shell 21 and the inner shell 22 measured in the direction orthogonal to the central axis O of the stud pin P is the outer shell measured in the direction orthogonal to the central axis O of the stud pin P. The dimension Lx of 21 is preferably in the range of 10% to 35%, more preferably in the range of 15% to 30%. As a result, the strength of the stud pin P can be sufficiently ensured, and deterioration of snow-removal ice-removing property and workability can be avoided. Here, if the distance Ly between the outer shell 21 and the inner shell 22 is too small, the snow-removal ice-removing property and workability deteriorate, and conversely, if it is too large, the strength of the stud pin P decreases.
 また、内郭22において最内側に位置する内郭本体22Aについて、スタッドピンPの中心軸Oと直交する方向に測定される内郭本体22Aの寸法Lzは、スタッドピンPの中心軸Oと直交する方向に測定される外郭21の寸法Lxの10%~60%の範囲、より好ましくは、20%~40%の範囲にあると良い。これにより、スタッドピンPの強度を十分に確保すると共に、排雪氷性及び加工性の悪化を回避することができる。ここで、内郭本体22Aの寸法Lzが小さ過ぎるとスタッドピンPの強度が低下し、逆に大き過ぎると排雪氷性や加工性が悪化する。 Further, for the inner shell body 22A located on the innermost side of the inner shell 22, the dimension Lz of the inner shell body 22A measured in the direction orthogonal to the central axis O of the stud pin P is orthogonal to the central axis O of the stud pin P. It is preferable that the dimension Lx of the outer shell 21 is measured in the range of 10% to 60%, more preferably 20% to 40%. As a result, the strength of the stud pin P can be sufficiently ensured, and deterioration of snow-removal ice-removing property and workability can be avoided. Here, if the dimension Lz of the inner shell main body 22A is too small, the strength of the stud pin P decreases, and conversely, if it is too large, the snow-removal ice-removing property and workability deteriorate.
 スタッドピンPの中心軸Oと直交する方向に測定される外郭21の寸法Lxは、2mm~4mmの範囲に設定されることが好ましい。また、スタッドピンPの中心軸Oと直交する方向に測定される外郭21の厚さtは、0.3mm~0.6mmの範囲に設定されることが好ましい。これにより、スタッドピンPの強度を十分に確保すると共に、排雪氷性及び加工性の悪化を回避することができる。 The dimension Lx of the outer shell 21 measured in the direction orthogonal to the central axis O of the stud pin P is preferably set in the range of 2 mm to 4 mm. Further, the thickness t of the outer shell 21 measured in the direction orthogonal to the central axis O of the stud pin P is preferably set in the range of 0.3 mm to 0.6 mm. As a result, the strength of the stud pin P can be sufficiently ensured, and deterioration of snow-removal ice-removing property and workability can be avoided.
 上述した外郭21の寸法Lx、外郭21と内郭22との間隔Ly、内郭本体22Aの寸法Lz及び外郭21の厚さtは、外郭21と内郭22とが溝部23によって分断される位置であって、スタッドピンPの中心軸Oの周りの任意の位置で測定されるものである。また、外郭21又は内郭22が面取り加工されている場合、その面取り部は存在しないものとして寸法が測定される。 The above-mentioned dimension Lx of the outer shell 21, the distance Ly between the outer shell 21 and the inner shell 22, the dimension Lz of the inner shell main body 22A, and the thickness t of the outer shell 21 are the positions where the outer shell 21 and the inner shell 22 are separated by the groove portion 23. It is measured at an arbitrary position around the central axis O of the stud pin P. When the outer shell 21 or the inner shell 22 is chamfered, the dimensions are measured assuming that the chamfered portion does not exist.
 図9は本発明の空気入りタイヤの一例を示すものである。図5に示すように、空気入りタイヤTは、タイヤ周方向に延在して環状をなすトレッド部31と、該トレッド部31の両側に配置された一対のサイドウォール部32,32と、これらサイドウォール部32のタイヤ径方向内側に配置された一対のビード部33,33とを備えている。 FIG. 9 shows an example of the pneumatic tire of the present invention. As shown in FIG. 5, the pneumatic tire T includes a tread portion 31 extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions 32, 32 arranged on both sides of the tread portion 31, and these. It includes a pair of bead portions 33, 33 arranged inside the sidewall portion 32 in the tire radial direction.
 一対のビード部33,33間にはカーカス層4が装架されている。このカーカス層34は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部33に配置されたビードコア35の廻りにタイヤ内側から外側へ折り返されている。ビードコア35の外周上には断面三角形状のゴム組成物からなるビードフィラー36が配置されている。 A carcass layer 4 is mounted between the pair of bead portions 33, 33. The carcass layer 34 includes a plurality of reinforcing cords extending in the radial direction of the tire, and is folded back from the inside to the outside of the tire around the bead core 35 arranged in each bead portion 33. A bead filler 36 made of a rubber composition having a triangular cross section is arranged on the outer periphery of the bead core 35.
 一方、トレッド部31におけるカーカス層34の外周側には複数層のベルト層37が埋設されている。これらベルト層37はタイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。ベルト層37において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°~40°の範囲に設定されている。ベルト層37の補強コードとしては、スチールコードが好ましく使用される。ベルト層37の外周側には、高速耐久性の向上を目的として、補強コードをタイヤ周方向に対して例えば5°以下の角度で配列してなる少なくとも1層のベルトカバー層38が配置されている。ベルトカバー層38の補強コードとしては、ナイロンやアラミド等の有機繊維コードが好ましく使用される。 On the other hand, a plurality of belt layers 37 are embedded on the outer peripheral side of the carcass layer 34 in the tread portion 31. These belt layers 37 include a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to intersect each other between the layers. In the belt layer 37, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set to, for example, in the range of 10 ° to 40 °. As the reinforcing cord of the belt layer 37, a steel cord is preferably used. At least one belt cover layer 38 having reinforcing cords arranged at an angle of, for example, 5 ° or less with respect to the tire circumferential direction is arranged on the outer peripheral side of the belt layer 37 for the purpose of improving high-speed durability. There is. As the reinforcing cord of the belt cover layer 38, an organic fiber cord such as nylon or aramid is preferably used.
  上記空気入りタイヤTにおいて、トレッド部31には、タイヤ周方向に延びる主溝41が形成されており、これら主溝41により複数の陸部42が区画されている。トレッド部31の陸部42には、スタッドピンPを植え込みための複数の植え込み穴43が形成されている。スタッドピンPは、その埋設基部10が植え込み穴43に挿入され、先端部20がトレッド部31から突き出すようにトレッド部31に配設されている。植え込み穴43の内径はスタッドピンPの外径よりも若干小さくなっており、植え込み穴43に植え込まれたスタッドピンPはトレッド部31に対して強固に保持される。 In the pneumatic tire T, a main groove 41 extending in the tire circumferential direction is formed in the tread portion 31, and a plurality of land portions 42 are partitioned by these main grooves 41. A plurality of implantation holes 43 for implanting the stud pin P are formed in the land portion 42 of the tread portion 31. The stud pin P is arranged in the tread portion 31 so that the embedded base portion 10 is inserted into the implantation hole 43 and the tip portion 20 protrudes from the tread portion 31. The inner diameter of the implantation hole 43 is slightly smaller than the outer diameter of the stud pin P, and the stud pin P implanted in the implantation hole 43 is firmly held against the tread portion 31.
 上述のように空気入りタイヤTのトレッド部31に所定の構造を有するスタッドピンPを配設することにより、スタッドピンPのエッジ効果に基づいて優れた氷上性能を発揮することが可能となる。 By disposing the stud pin P having a predetermined structure on the tread portion 31 of the pneumatic tire T as described above, it is possible to exhibit excellent on-ice performance based on the edge effect of the stud pin P.
 なお、図9に示す空気入りタイヤTの補強構造は代表的な例を示すものであるが、これに限定されるものではない。また、空気入りタイヤTのトレッド部31に形成されるトレッドパターンも特に限定されるものではない。 The reinforcing structure of the pneumatic tire T shown in FIG. 9 shows a typical example, but is not limited to this. Further, the tread pattern formed on the tread portion 31 of the pneumatic tire T is not particularly limited.
 タイヤサイズ205/55R16 94Tである空気入りタイヤにおいて、トレッド部に配設されるスタッドピンの構造だけを異ならせた従来例及び実施例1~4のタイヤを製作した。 For pneumatic tires with a tire size of 205 / 55R16 94T, the tires of the conventional example and Examples 1 to 4 in which only the structure of the stud pin arranged in the tread portion was different were manufactured.
 従来例では、埋設基部と先端部とを有し、先端部が円柱状に加工されたスタッドピンを使用した。実施例1~4では、埋設基部と先端部とを有し、先端部が環状の外郭とそれによって囲まれた内郭と両者間に介在する溝部を備えたスタッドピンを使用した。実施例1~4について、内郭における内側溝部の有無、外郭の内周形状、内郭の外周形状を表1のように設定した。 In the conventional example, a stud pin having a buried base and a tip and having the tip processed into a columnar shape was used. In Examples 1 to 4, a stud pin having a buried base portion and a tip portion, the tip portion having an annular outer shell, an inner shell surrounded by the outer shell, and a groove portion interposed between the two was used. For Examples 1 to 4, the presence or absence of the inner groove portion in the inner shell, the inner peripheral shape of the outer shell, and the outer peripheral shape of the inner shell were set as shown in Table 1.
  これら試験タイヤについて、下記試験方法により、氷上性能を評価し、その結果を表1に併せて示した。 The performance on ice of these test tires was evaluated by the following test method, and the results are also shown in Table 1.
 氷上性能:
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて排気量1400ccの前輪駆動車に装着し、空気圧を250kPaとし、氷上において20km/hの走行状態から制動し、停止するまでの距離を計測した。評価結果は、測定値の逆数を用い、従来例を100とする指数にて示した。この指数値が大きいほど氷上性能が優れていることを意味する。
Performance on ice:
Each test tire is attached to a wheel with a rim size of 16 x 6.5J and mounted on a front-wheel drive vehicle with a displacement of 1400cc. The air pressure is set to 250kPa, and the distance from a running state of 20km / h on ice to braking and stopping is measured. did. The evaluation result is shown by an index of 100 in the conventional example using the reciprocal of the measured value. The larger this index value is, the better the performance on ice is.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表1から判るように、実施例1~4では、スタッドピンの先端部が環状の外郭とそれによって囲まれた内郭と両者間に介在する溝部を備えているため、従来例との対比において、改良されたスタッドピンのエッジ効果に基づいて優れた氷上性能を発揮することができた。 As can be seen from Table 1, in Examples 1 to 4, the tip of the stud pin has an annular outer shell, an inner shell surrounded by the annular outer shell, and a groove portion interposed between the two, so that the comparison with the conventional example is made. Was able to demonstrate excellent on-ice performance based on the improved edge effect of the stud pins.
 10 埋設基部
 11 胴体部
 12 シャンク部
 13 底部
 20 先端部
 21 外郭
 22 内郭
 22A 内郭本体
 22B 内郭外縁部
 22C 内側溝部
 23 溝部
 24 繋ぎ部
 31 トレッド部
 P スタッドピン
 T 空気入りタイヤ
10 Buried base 11 Body 12 Shank 13 Bottom 20 Tip 21 Outer 22 Inner 22A Inner body 22B Inner outer edge 22C Inner groove 23 Groove 24 Connection 31 Tread P Stud pin T Pneumatic tire

Claims (9)

  1.  タイヤのトレッド部に埋設される埋設基部と、該埋設基部の先端側に位置していて路面と接触する先端部とを有するスタッドピンにおいて、前記先端部が、環状に形成された外郭と、該外郭により囲まれた内郭と、前記外郭と前記内郭との間に介在する溝部とを備えることを特徴とするスタッドピン。 In a stud pin having a buried base embedded in a tread portion of a tire and a tip portion located on the tip end side of the buried base portion and in contact with a road surface, the tip portion thereof is an outer shell formed in an annular shape and the said portion. A stud pin including an inner shell surrounded by an outer shell and a groove portion interposed between the outer shell and the inner shell.
  2.  前記溝部が前記内郭の周囲で環状に連続することを特徴とする請求項1に記載のスタッドピン。 The stud pin according to claim 1, wherein the groove portion is continuous in an annular shape around the inner shell.
  3.  前記先端部が前記外郭と前記内郭とを互いに連結する少なくとも1つの繋ぎ部を備え、前記溝部の内周側の長さの総和が前記内郭の外周長の50%以上であることを特徴とする請求項1に記載のスタッドピン。 The tip portion includes at least one connecting portion that connects the outer shell and the inner shell to each other, and the total length of the inner peripheral side of the groove portion is 50% or more of the outer peripheral length of the inner shell. The stud pin according to claim 1.
  4.  前記内郭がその外周縁に沿って延びる内側溝部を有することを特徴とする請求項1~3のいずれかに記載のスタッドピン。 The stud pin according to any one of claims 1 to 3, wherein the inner shell has an inner groove portion extending along the outer peripheral edge thereof.
  5.  前記外郭の内周形状と前記内郭の外周形状とが互いに異なることを特徴とする請求項1~4のいずれかに記載のスタッドピン。 The stud pin according to any one of claims 1 to 4, wherein the inner peripheral shape of the outer shell and the outer peripheral shape of the inner shell are different from each other.
  6.  前記外郭の内周形状と前記内郭の外周形状とが互いに相似することを特徴とする請求項1~4のいずれかに記載のスタッドピン。 The stud pin according to any one of claims 1 to 4, wherein the inner peripheral shape of the outer shell and the outer peripheral shape of the inner shell are similar to each other.
  7.  スタッドピン中心軸と直交する方向に測定される前記外郭と前記内郭との間隔Lyがスタッドピン中心軸と直交する方向に測定される前記外郭の寸法Lxの10%~35%の範囲にあることを特徴とする請求項1~6のいずれかに記載のスタッドピン。 The distance Ly between the outer shell and the inner shell measured in the direction orthogonal to the stud pin central axis is in the range of 10% to 35% of the dimension Lx of the outer shell measured in the direction orthogonal to the stud pin central axis. The stud pin according to any one of claims 1 to 6, characterized in that.
  8.  前記内郭が最内側に位置する内郭本体を含み、スタッドピン中心軸と直交する方向に測定される前記内郭本体の寸法Lzがスタッドピン中心軸と直交する方向に測定される前記外郭の寸法Lxの10%~60%の範囲にあることを特徴とする請求項1~7のいずれかに記載のスタッドピン。 Including the inner shell body in which the inner shell is located on the innermost side, the outer shell whose dimension Lz measured in the direction orthogonal to the stud pin central axis is measured in the direction orthogonal to the stud pin central axis. The stud pin according to any one of claims 1 to 7, wherein the stud pin is in the range of 10% to 60% of the dimension Lx.
  9.  請求項1~8のいずれかに記載されたスタッドピンがトレッド部に配設されていることを特徴とするタイヤ。 A tire characterized in that the stud pin according to any one of claims 1 to 8 is arranged on the tread portion.
PCT/JP2021/020601 2020-06-01 2021-05-31 Stud pin and tire comprising same WO2021246350A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180035417.XA CN115666969A (en) 2020-06-01 2021-05-31 Stud and tire with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020095497A JP7063350B2 (en) 2020-06-01 2020-06-01 Stud pins and tires with them
JP2020-095497 2020-06-01

Publications (1)

Publication Number Publication Date
WO2021246350A1 true WO2021246350A1 (en) 2021-12-09

Family

ID=78830303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020601 WO2021246350A1 (en) 2020-06-01 2021-05-31 Stud pin and tire comprising same

Country Status (3)

Country Link
JP (1) JP7063350B2 (en)
CN (1) CN115666969A (en)
WO (1) WO2021246350A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328705A (en) * 1986-07-21 1988-02-06 Agency Of Ind Science & Technol Spike pin
WO2013014900A1 (en) * 2011-07-22 2013-01-31 株式会社ブリヂストン Stud for tire, and studded tire
WO2015107864A1 (en) * 2014-01-15 2015-07-23 横浜ゴム株式会社 Stud pin and pneumatic tire
KR101977293B1 (en) * 2017-12-11 2019-05-10 넥센타이어 주식회사 Stud pin and tire having the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328705A (en) * 1986-07-21 1988-02-06 Agency Of Ind Science & Technol Spike pin
WO2013014900A1 (en) * 2011-07-22 2013-01-31 株式会社ブリヂストン Stud for tire, and studded tire
WO2015107864A1 (en) * 2014-01-15 2015-07-23 横浜ゴム株式会社 Stud pin and pneumatic tire
KR101977293B1 (en) * 2017-12-11 2019-05-10 넥센타이어 주식회사 Stud pin and tire having the same

Also Published As

Publication number Publication date
JP2021187342A (en) 2021-12-13
JP7063350B2 (en) 2022-05-09
CN115666969A (en) 2023-01-31

Similar Documents

Publication Publication Date Title
EP2263888B1 (en) Pneumatic tire for running on rough terrain
RU2643899C1 (en) Pneumatic tire
CN108349330B (en) Anti-skid stud and stud tire
CN107336569B (en) Stud, pneumatic tire, manufacturing method thereof, and stud mounting method
WO2021246350A1 (en) Stud pin and tire comprising same
WO2022030610A1 (en) Stud pin and tire comprising same
WO2015107864A1 (en) Stud pin and pneumatic tire
CN110290940B (en) Anti-skid nail and nail-embedded tire
CN111936324B (en) Stud and studded tyre
CN109774385B (en) Pneumatic tire
WO2024004901A1 (en) Tire
WO2022024541A1 (en) Stud pin and tire comprising same
RU2807196C1 (en) Stud and pneumatic tire equipped with stud
US20220185028A1 (en) Winter tire with studs
CN110290941B (en) Anti-skid nail and nail-embedded tire
EP3722110B1 (en) Tire tread with stud arrangement
CN110290942B (en) Anti-skid nail and nail-embedded tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022133583

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 21816732

Country of ref document: EP

Kind code of ref document: A1