WO2021245964A1 - マイクロエッチング剤および配線基板の製造方法 - Google Patents

マイクロエッチング剤および配線基板の製造方法 Download PDF

Info

Publication number
WO2021245964A1
WO2021245964A1 PCT/JP2020/046474 JP2020046474W WO2021245964A1 WO 2021245964 A1 WO2021245964 A1 WO 2021245964A1 JP 2020046474 W JP2020046474 W JP 2020046474W WO 2021245964 A1 WO2021245964 A1 WO 2021245964A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
ion source
polymer
microetching agent
micro
Prior art date
Application number
PCT/JP2020/046474
Other languages
English (en)
French (fr)
Inventor
啓佑 松本
真依 谷口
智美 四辻
薫 漆畑
Original Assignee
メック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メック株式会社 filed Critical メック株式会社
Priority to KR1020217033367A priority Critical patent/KR102404620B1/ko
Priority to CN202080005956.4A priority patent/CN113170585B/zh
Publication of WO2021245964A1 publication Critical patent/WO2021245964A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof

Definitions

  • the present invention relates to a copper microetching agent and a method for manufacturing a wiring board used for surface roughening of copper.
  • a general multilayer wiring board is manufactured by laminating and pressing an inner layer substrate having a conductive layer made of copper, a copper alloy, etc., with another inner layer substrate, a copper foil, etc. sandwiching a prepreg.
  • the conductive layers are electrically connected by through holes called through holes in which the hole walls are plated with copper.
  • a method of forming a fine uneven shape on the surface of the conductive layer with a microetching agent (roughening agent) is used.
  • Examples of the copper or copper alloy micro-etching agent include an organic acid-based micro-etching agent (see Patent Document 1), a sulfuric acid-hydrogen-based micro-etching agent (see Patent Document 2), and a hydrochloric acid-based micro-etching agent (see Patent Document 3). ) Etc. are known. Halogen, polymer, corrosion inhibitor, surfactant and the like are added to these micro-etching agents for the purpose of adjusting the roughened shape and etching rate.
  • an acidic aqueous solution containing an inorganic acid, a cupric ion source, a halide ion source, a sulfate ion source, and a polymer is known (see Patent Document 4).
  • Rolled copper foil and electrolytic copper foil are mainly used as the conductive layer of the printed wiring board, but the microscopic shape of the surface of rolled copper and electrolytic copper is different. Moreover, the crystal characteristics of the two are significantly different. Therefore, if the type of copper foil is different, the roughened shape formed on the surface by the etching process may be different. In particular, since the rolled copper foil has large crystal grains and high crystal plane orientation uniformity, it tends to be difficult to form an uneven shape. Therefore, with the conventional micro-etching agent, a roughened shape having excellent adhesion to the resin can be uniformly formed in the surface of the electrolytic copper foil, but an appropriate roughened shape is formed for the rolled copper foil. In some cases, it was not done or uneven roughening occurred. In such a case, it is necessary to change the micro-etching agent to be used according to the type of copper foil, which causes problems such as complicated process control.
  • Patent Document 4 exhibits an excellent roughening function, but as a result of diligent studies by the present inventors, there is room for further improvement especially in terms of the roughened shape after the roughening treatment of the rolled copper foil. It turned out to be.
  • the present invention has a particularly small difference in roughened shape due to the difference in crystallinity of copper, and has extremely excellent adhesion to a resin or the like for both electrolytic copper and rolled copper. It is an object of the present invention to provide a microetching agent capable of forming a shape.
  • the present inventors In order to develop a microetching agent capable of forming a roughened shape having extremely excellent adhesion to a resin or the like even if it is a rolled copper foil, the present inventors particularly make a molar concentration of a sulfate ion source and a halide. As a result of studying by paying attention to the ratio with the molar concentration of the ion source, the optimum ratio was found, and the present invention was completed.
  • the present invention is a copper microetching agent used for surface roughening of copper, which is an acidic aqueous solution containing an inorganic acid, a secondary copper ion source, a halide ion source, and a polymer, wherein the polymer is a side.
  • “copper” in this specification includes copper and a copper alloy. Further, the "copper layer” also includes a copper wiring pattern layer.
  • the microetching agent according to the present invention contains an inorganic acid, a cupric ion source, a halide ion source, and a polymer as essential components, and may contain a sulfate ion source as an optional component, but the molar concentration of the sulfate ion source.
  • Is Cs (mol / L) and when the molar concentration of the halide ion source is Ch (molar / L), it is designed so that 0 ⁇ (Cs / Ch) ⁇ 0.004.
  • the copper layer whose surface is roughened by contacting with the microetching agent designed in this way has fine irregularities formed on the entire surface and the uniformity in the surface is maintained. It has a high roughened shape.
  • the molar concentration of the second copper ion source is preferably 0.01 to 2 (mol / L). Further, in the microetching agent, the molar concentration of the halide ion source is preferably 0.05 to 5 (mol / L). Further, in the microetching agent, the weight concentration of the polymer is preferably 0.0005 to 2 (g / L).
  • the present invention is a method for manufacturing a wiring board including a copper layer, which comprises a roughening treatment step of contacting the surface of the copper layer with the microetching agent according to any one of the above to roughen the surface of the copper layer.
  • the present invention relates to a method for manufacturing a wiring board, which is characterized by having.
  • the surface of the surface of the copper layer in contact with the microetching agent is made of rolled copper.
  • a replenisher consisting of an acidic aqueous solution containing an inorganic acid, a halide ion source, and a polymer is added to the microetching agent, and the replenisher is contained in the replenisher.
  • the polymer is preferably a water-soluble polymer having an amino group or a quaternary ammonium group in the side chain and having a weight average molecular weight of 1000 or more.
  • the microetching agent of the present invention is used to form a roughened shape on the surface of copper.
  • the microetching agent is an acidic aqueous solution containing an inorganic acid, a cupric ion source, a halide ion source, and a polymer as essential components, and may contain a sulfate ion source as an optional component, but the content of the sulfate ion source may be adjusted. It is characterized in that it is designed within a specific range in relation to the halide ion source.
  • each component contained in the microetching agent of the present invention will be described.
  • the cupric ion source is one that produces cupric ions in an aqueous solution.
  • the secondary copper ion acts as an oxidant for oxidizing copper.
  • Copper ion sources include cupric halide such as cupric chloride and cupric bromide; inorganic acid salts such as cupric sulfate and cupric nitrate; cupric formate, cupric acetate and the like. Organic acid salts; cupric hydroxide; cupric oxide and the like can be mentioned. Since cupric halides generate double copper ions and halide ions in an aqueous solution, they can be used as having the functions of both a halide ion source and a double copper ion source.
  • cupric sulfate Since cupric sulfate generates sulfate ion, sulfate ion and hydrogen sulfate ion in an aqueous solution, it can be used as having the functions of both a sulfate ion source and a cupric ion source, but its content. Needs to be designed within a specific range in relation to the halide ion source. Two or more kinds of cupric ion sources may be used in combination.
  • the molar concentration of the cupric ion source is preferably 0.01 (mol / L) or more.
  • the molar concentration of the second copper ion source is the molar concentration of the copper atom contained in the second copper ion source, and is equal to the concentration of the second copper ion in the etching agent.
  • the molar concentration of the secondary copper ion source is 2 (molar / L) or less from the viewpoint of suppressing excessive etching and maintaining the solubility of copper ions when the copper ion concentration increases as the etching progresses. Is preferable.
  • the molar concentration of the cupric ion source is more preferably 0.1 to 1 (molar / L), still more preferably 0.2 to 0.7 (molar / L).
  • the acid has a function of dissolving copper oxidized by cupric ion in an aqueous solution and also has a function of adjusting pH.
  • the solubility of oxidized copper is enhanced, and the precipitation of other components when the copper ion concentration in the solution increases as the etching progresses tends to be suppressed.
  • an inorganic acid is used as the acid.
  • hydrohalic acid such as hydrochloric acid and hydrobromic acid
  • strong acid such as sulfuric acid and nitric acid are preferable.
  • the hydrohalic acid can be used as having the action of both a halide ion source and an acid.
  • Sulfuric acid can be used as having the effects of both a sulfate ion source and an acid, but its content needs to be designed within a specific range in relation to the halide ion source.
  • hydrohalic acids hydrochloric acid (hydrogen chloride aqueous solution) is preferable.
  • the acid two or more kinds may be used in combination, or an organic acid may be used in addition to the inorganic acid.
  • the pH of the microetching agent is preferably 3 or less, more preferably 2 or less, from the viewpoint of suppressing the precipitation of other components when the concentration of cupric ion increases and enhancing the stability of the etching agent.
  • the concentration of the inorganic acid in the microetching agent is preferably adjusted so that the pH is in the above range.
  • the halide ion source produces a halide ion in an aqueous solution.
  • the halide ion has a function of assisting the dissolution of copper and forming a copper layer surface having excellent adhesion.
  • Examples of the halide ion include chloride ion and bromide ion. Of these, chloride ions are preferable from the viewpoint of uniformly forming a roughened shape having excellent adhesion. Two or more kinds of halide ions may be contained.
  • Halide ion sources include hydrogen halides such as hydrochloric acid and hydrobromic acid; sodium chloride, calcium chloride, potassium chloride, ammonium chloride, potassium bromide, sodium bromide, copper chloride, copper bromide, zinc chloride, etc. Examples thereof include metal salts such as iron chloride and tin bromide. Two or more types of halide ion sources may be used in combination. As mentioned above, hydrohalic acid has both a halide ion source and an acid action, and copper halide has both a halide ion source and a cupric ion source action.
  • the concentration of the halide ion in the microetching agent is 0.05 (mol / L).
  • the above is preferable.
  • the upper limit of the halide ion concentration is not particularly limited, but is preferably 5 (mol / L) or less from the viewpoint of solubility.
  • the concentration of the halide ion is more preferably 0.5 to 3 (molar / L), still more preferably 0.8 to 2 (molar / L).
  • the molar concentration of the halide ion source is preferably 3 times or less, more preferably 1 to 3 times the molar concentration of the cupric ion source.
  • ⁇ Sulfate ion source Ion source sulfate, in an aqueous solution Sulfate ion (SO 4 2-) and / or hydrogen sulfate ions - and generates a (HSO 4).
  • the sulfate ion source include sulfates such as potassium sulfate, sodium sulfate, calcium sulfate, magnesium sulfate, ferric sulfate, ferric sulfate and ammonium sulfate, and sulfuric acid and sodium hydrogen sulfate.
  • cupric sulfate has both the action of a sulfate ion source and the action of a cupric ion source
  • sulfuric acid has the action of both a sulfate ion source and an acid
  • the presence of sulfate ion and hydrogen sulfate ion can keep the pH in the liquid low and improve the stability of the aqueous solution.
  • the molar concentration Cs of the sulfate ion source It is necessary to design the molar / L) in a specific range in relation to the molar concentration Ch (molar / L) of the halide ion source, specifically, 0 ⁇ (Cs / Ch) ⁇ 0.004.
  • the electrolytic copper or the rolled copper is roughened by optimizing the molar concentration of the sulfate ion source in relation to the concentration of the second copper ion source, the resin or the like It is possible to obtain a roughened shape having extremely excellent adhesion to and from.
  • concentration of the cupric ion source is Cco (molar / L)
  • it is preferable to design with 0 ⁇ (Cs / Cco) ⁇ 0.012. Regardless of whether (Cs / Cco) 0 or 0 ⁇ (Cs / Ch) ⁇ 0.012, the roughened shape has extremely excellent adhesion between electrolytic copper and rolled copper and resin or the like. Can be obtained.
  • the microetching agent of the present invention contains a water-soluble polymer having an amino group or a quaternary ammonium group in the side chain and having a weight average molecular weight of 1000 or more.
  • the polymer, together with the halide ion, has an action of forming a roughened shape having excellent adhesion.
  • fine irregularities can be uniformly formed on the surface of the rolled copper.
  • the weight average molecular weight of the polymer is preferably 2000 or more, more preferably 5000 or more.
  • the weight average molecular weight of the polymer is preferably 5 million or less, more preferably 2 million or less.
  • the weight average molecular weight is a value obtained in terms of polyethylene glycol by gel permeation chromatography (GPC) analysis.
  • Examples of the polymer having a quaternary ammonium group in the side chain include a polymer having a repeating unit represented by the following formula (I).
  • R 1 to R 3 are chain or cyclic hydrocarbon groups that may independently have substituents, and two or more of R 1 to R 3 are bonded to each other. May form an annular structure.
  • R 4 is a hydrogen atom or a methyl group
  • X 1 is a single bond or a divalent linking group
  • Y ⁇ is a counter anion.
  • polymer having a repeating unit represented by the formula (I) examples include a quaternary ammonium salt type styrene polymer, a quaternary ammonium salt type aminoalkyl (meth) acrylate polymer, and the like.
  • a polymer having a quaternary ammonium group in the side chain is a repeating unit in which the carbon atom of the main chain and the quaternary ammonium group of the side chain form a cyclic structure, as represented by the following formula (II). It may have.
  • R 5 and R 6 are chain or cyclic hydrocarbon groups which may have a substituent, and R 5 and R 6 are bonded to each other to form a cyclic structure. May be good.
  • m is an integer of 0 to 2.
  • X 2 and X 3 are independently single-bonded or divalent linking groups, respectively.
  • Specific examples of the polymer having a repeating unit of the formula (IIa) include a quaternary ammonium salt type diallylamine polymer obtained by polymerizing a diallyldialkylammonium salt represented by the formula (IIa).
  • R 7 and R 8 are chain or cyclic hydrocarbon groups which may independently have a hydrogen atom or a substituent, and are preferably hydrogen atoms.
  • the quaternary ammonium group of the side chain may have a double bond between the nitrogen atom and the carbon atom, and may contain the nitrogen atom of the quaternary ammonium group as a constituent atom of the ring. Further, two polymer chains may be crosslinked by a quaternary ammonium group as in the repeating unit represented by the following formula (III).
  • X 4 ⁇ X 7 are each independently a single bond or a divalent linking group.
  • Counter anion Z quaternary ammonium salt - The, Cl -, Br -, I -, ClO 4 -, BF 4 -, CH 3 COO -, PF 6 -, HSO 4 -, C 2 H 5 SO 4 - Can be mentioned.
  • X 1 to X 7 are divalent linking groups, specific examples thereof include a methylene group, an alkylene group having 2 to 10 carbon atoms, an arylene group, a -CONH-R- group, and a -COO-R- group.
  • R may be a single bond, a methylene group, an alkylene group having 2 to 10 carbon atoms, or an ether group (alkyloxyalkyl group) having 2 to 10 carbon atoms).
  • Examples of the polymer having an amino group in the side chain include a polymer having a repeating unit represented by the following formula (IV).
  • R 11 and R 12 are chain or cyclic hydrocarbon groups that may independently have hydrogen atoms or substituents, respectively, and R 11 and R 12 are bonded to each other. May form an annular structure.
  • R 13 is a hydrogen atom or a methyl group
  • X 11 is a single bond or a divalent linking group.
  • the amino group may be primary, secondary or tertiary, and may form an ammonium salt. Examples of the counter anion of the ammonium salt include those described above as the counter anion Z ⁇ of the quaternary ammonium salt.
  • the polymer having an amino group in the side chain may have a repeating unit in which the carbon atom of the main chain and the amino group of the side chain form a cyclic structure, as represented by the following formula (V).
  • R 14 is a hydrogen atom or a chain or cyclic hydrocarbon group which may have a substituent.
  • m is an integer of 0 to 2.
  • X 12 and X 13 are independently single-bonded or divalent linking groups, respectively.
  • Specific examples of the polymer having the repeating unit of the formula (V) include a diallylamine polymer obtained by polymerizing a diallylamine or a diallylamine salt.
  • the polymer containing an amino group or a quaternary ammonium group in the side chain may be a copolymer.
  • the copolymer may contain repeating units containing an amino group or a quaternary ammonium group and repeating units containing neither an amino group nor a quaternary ammonium group.
  • the arrangement of the repeating units in the copolymer is not particularly limited, and may be any of an alternating copolymer, a block copolymer, and a random copolymer.
  • the ratio of the repeating unit containing an amino group or a quaternary ammonium group to the monomer unit of the whole polymer is preferably 20 mol% or more, preferably 30 mol% or more. Is more preferable, and 40 mol% or more is further preferable.
  • Repeating units containing neither amino groups nor quaternary ammonium groups contained in the copolymer include (meth) acrylic acid, (meth) alkyl acrylate, (meth) aminoalkyl acrylate, styrene derivatives, and sulfur dioxide.
  • the structure derived from the above can be mentioned.
  • the polymer having a structure derived from the quaternary ammonium salt type diallylamine represented by the general formula (II) and the polymer having a structure derived from the diallylamine represented by the general formula (IV) are copolymers.
  • As the repeating unit it is preferable to have a structural unit derived from sulfur dioxide represented by the following formula.
  • the polymer may have both an amino group and a quaternary ammonium group in the side chain. Further, two or more kinds of polymers may be used in combination, or a polymer having an amino group in the side chain and a polymer having a quaternary ammonium group in the side chain may be used in combination.
  • the concentration of the polymer in the microetching agent is preferably 0.0005 to 2 g / L, more preferably 0.005 to 1 g / L, and more preferably 0.008 to 0.008 to form a copper layer surface having excellent adhesion.
  • 0.5 g / L is more preferable, and 0.01 to 0.2 g / L is particularly preferable.
  • the micro-etching agent of the present invention can be prepared by dissolving each of the above components in ion-exchanged water or the like.
  • the microetching agent may contain components other than the above.
  • a nonionic surfactant as an antifoaming agent or a complexing agent such as pyridine may be added to improve the dissolution stability of copper.
  • various additives may be added as needed. When these additives are added, the concentration of the additives in the microetching agent is preferably about 0.0001 to 20% by weight.
  • the concentration of hydrogen peroxide in the microetching agent is most preferably 0. On the other hand, it is permissible to mix a small amount of hydrogen peroxide contained in the raw material.
  • the hydrogen peroxide concentration of the microetching agent is preferably 0.1% by weight or less, more preferably 0.01% by weight or less.
  • micro-etching agent can be widely used for roughening the surface of the copper layer. Fine irregularities are uniformly formed on the surface of the treated copper layer, and the adhesion to resins such as prepreg, plating resist, etching resist, solder resist, electrodeposition resist, and coverlay is good. Further, since the surface has excellent solderability, it is particularly useful for manufacturing various wiring boards including those for a pin grid array (PGA) and those for a ball grid array (BGA). It is also useful for surface treatment of lead frames.
  • PGA pin grid array
  • BGA ball grid array
  • the micro-etching agent of the present invention has a small difference in roughened shape due to the difference in crystallinity of copper, and has a roughened shape having excellent adhesion to a resin or the like for both electrolytic copper and rolled copper. Can be formed. Therefore, even if the copper foils to be treated are different, it is not necessary to replace the etching agent, and the same etching agent can be used repeatedly.
  • the surface of copper is roughened by bringing the above-mentioned microetching agent into contact with the surface of the copper layer.
  • the conventional micro-etching agent is mainly used for surface roughening of electrolytic copper foil
  • the above-mentioned micro-etching agent forms a uniform roughened shape on the surface of both electrolytic copper and rolled copper. can. Therefore, the micro-etching agent of the present invention can also be suitably used for roughening a copper layer whose surface to be treated (the surface in contact with the micro-etching agent) is made of rolled copper.
  • the method of bringing the micro-etching agent into contact with the surface of the copper layer is not particularly limited.
  • a method of immersing in a copper can be mentioned.
  • the temperature of the microetching agent is 10 to 40 ° C. and the etching is performed at a spray pressure of 0.03 to 0.3 MPa for 5 to 120 seconds.
  • immersion it is preferable to set the temperature of the microetching agent to 10 to 40 ° C. and etch under the condition of 5 to 120 seconds.
  • the microetching agent does not substantially contain hydrogen peroxide, the waste liquid treatment after use is easy, and the treatment can be performed by a general simple method using, for example, neutralization or a polymer flocculant.
  • the etching amount in the roughening treatment is not particularly limited, but is preferably 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m or more, from the viewpoint of forming a uniform uneven shape regardless of the crystallinity of copper. If the etching amount is excessively large, problems such as disconnection due to the complete etching of the copper layer and an increase in resistance due to a decrease in the wiring cross-sectional area may occur. Therefore, the etching amount is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the "etching amount” refers to the average etching amount (dissolved amount) in the depth direction, and is calculated from the weight, specific gravity, and front projected area of the copper surface of copper melted by the microetching agent.
  • the acidic aqueous solution used for cleaning hydrochloric acid, sulfuric acid aqueous solution, nitric acid aqueous solution and the like can be used.
  • Hydrochloric acid is preferable because it has little effect on the roughened shape and has high smut removal property.
  • the acid concentration of the acidic aqueous solution is preferably 0.3 to 35% by weight, more preferably 1 to 10% by weight.
  • the cleaning method is not particularly limited, and examples thereof include a method of spraying an acidic aqueous solution on the surface of the roughened copper layer, a method of immersing the roughened copper layer in the acidic aqueous solution, and the like.
  • spraying it is preferable to set the temperature of the acidic aqueous solution to 15 to 35 ° C. and wash at a spray pressure of 0.03 to 0.3 MPa for 3 to 30 seconds.
  • immersion it is preferable to set the temperature of the acidic aqueous solution to 15 to 35 ° C. and wash under the conditions of 3 to 30 seconds.
  • the replenisher is an aqueous solution containing an inorganic acid, a cupric ion source, a halide ion source and the polymer.
  • the amount of the replenisher to be added and the timing of the replenishment to be added can be appropriately set according to the concentration control range of each component and the like.
  • Each component in the replenisher is the same as the component contained in the above-mentioned microetching agent.
  • the concentration of each component in the replenisher is appropriately adjusted according to the initial concentration of the microetching agent used for the treatment and the like.
  • the treatment with the micro-etching agent After the treatment with the micro-etching agent, it may be treated with an aqueous solution of azoles or an alcohol solution in order to further improve the adhesion with the resin. Further, after the treatment with the microetching agent, an oxidation treatment called a brown oxide treatment or a black oxide treatment may be performed.
  • a base material having a rolled copper foil (HA foil made of JX metal) was prepared.
  • Each of these substrates was sprayed with each micro-etching agent (30 ° C.) shown in Table 1 on the copper foil of the test substrate under the condition of a spray pressure of 0.1 MPa, and the etching amount of copper was 1.0 ⁇ m.
  • the etching time was adjusted so as to be. Then, it was washed with water, and the etched surface was immersed in hydrochloric acid (hydrogen chloride concentration: 3.5% by weight) at a temperature of 25 ° C. for 15 seconds. Then, it was washed with water and dried.
  • hydrochloric acid hydrochloric acid
  • test substrate a glass cloth epoxy resin-impregnated copper-clad laminated board (manufactured by Hitachi Kasei Co., Ltd., product name: MCL-E-67, 10 cm ⁇ 10 cm, thickness) in which electrolytic copper foil having a thickness of 35 ⁇ m is laminated on both sides of an insulating base material.
  • test substrate with 18 ⁇ m copper plating on 0.2 mm
  • etching agents of Examples 1 to 8 and Comparative Examples 1 to 2, 5, 8 to 9, etching and acid cleaning in the same manner as above. , Washed with water and dried.
  • Polymer A Dialyldialkylammonium (quaternary ammonium) hydrochloride / sulfur dioxide alternating copolymer having the following repeating units (weight average molecular weight about 5000)
  • Polymer B Dialylamine (secondary amine) hydrochloride / sulfur dioxide alternating copolymer having the following repeating units (weight average molecular weight about 5000)
  • Polymer C Dialylamine (secondary amine) acetate / sulfur dioxide alternating copolymer having the following repeating units (weight average molecular weight about 5000)
  • Polymer D Vinylpyrrolidone / N, N-dimethylaminoethylmethacrylamide diethyl sulfate random copolymer having the following structure (weight average molecular weight: about 800,000)
  • microetching agents according to Comparative Examples 6 to 7 and 9 do not have a halide ion source, it can be seen that the roughened shape is bad when these are used for the roughening treatment.
  • micro-etching agent according to Comparative Example 8 uses an organic acid instead of an inorganic acid, it can be seen that the roughened shape is bad when this is used for the roughening treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

銅の表面粗化に用いられる、銅のマイクロエッチング剤であって、無機酸、第二銅イオン源、ハロゲン化物イオン源、およびポリマーを含む酸性水溶液であり、ポリマーは、側鎖にアミノ基または第四級アンモニウム基を含む重量平均分子量が1000以上の水溶性ポリマーであり、硫酸イオン源のモル濃度をCs(モル/L)、ハロゲン化物イオン源のモル濃度をCh(モル/L)としたとき、0≦(Cs/Ch)≦0.004であり、ハロゲン化物イオン源のモル濃度は、第二銅イオン源のモル濃度の3.875倍以下であるマイクロエッチング剤。

Description

マイクロエッチング剤および配線基板の製造方法
 本発明は、銅の表面粗化に用いられる、銅のマイクロエッチング剤および配線基板の製造方法に関する。
 一般的な多層配線板は、銅や銅合金等からなる導電層を有する内層基板が、プリプレグを挟んで他の内層基板や銅箔等と積層プレスされて製造されている。導電層間は、孔壁が銅メッキされたスルーホールとよばれる貫通孔により、電気的に接続されている。導電層とプリプレグ等の樹脂やはんだとの接着性を高めるために、マイクロエッチング剤(粗化剤)により導電層の表面に微細な凹凸形状を形成する方法が用いられている。金属表面にマイクロエッチング剤を接触させると、金属の結晶粒の結晶方位によるエッチングレートの相違や、金属の結晶粒と結晶粒界部分とのエッチングレートの相違等に起因して、凹凸形状が形成され、表面が粗化される。
 銅または銅合金のマイクロエッチング剤としては、有機酸系マイクロエッチング剤(特許文献1参照)、硫酸-過酸化水素系マイクロエッチング剤(特許文献2参照)、塩酸系マイクロエッチング剤(特許文献3参照)等が知られている。これらのマイクロエッチング剤には、粗化形状やエッチング速度の調整等を目的として、ハロゲン、ポリマー、腐食防止剤、界面活性剤等が添加されている。さらに、銅または銅合金のマイクロエッチング剤として、無機酸、第二銅イオン源、ハロゲン化物イオン源、硫酸イオン源、およびポリマーを含む酸性水溶液が知られている(特許文献4参照)。
特開平9-41163号公報 特開2002-47583号公報 WO2007/024312号パンフレット 特開2017-150069号公報
 プリント配線板の導電層としては、主に圧延銅箔および電解銅箔が用いられているが、圧延銅と電解銅は表面の微視的形状が異なっている。また、両者の結晶特性は大きく相違する。そのため、銅箔の種類が異なると、エッチング処理によって表面に形成される粗化形状が異なる場合がある。特に、圧延銅箔は結晶粒が大きく結晶面方位の均一性が高いため、凹凸形状が形成され難い傾向がある。そのため、従来のマイクロエッチング剤では、電解銅箔の表面に樹脂との密着性に優れる粗化形状を面内に均一に形成できるものの、圧延銅箔に対しては、適切な粗化形状が形成されない場合や粗化ムラを生じる場合があった。このような場合、銅箔の種類に応じて使用するマイクロエッチング剤を変更する必要があり、工程管理が煩雑になる等の問題を生じる。
 前記特許文献4に記載の技術は優れた粗化機能を発揮するが、本発明者らが鋭意検討した結果、特に圧延銅箔の粗化処理後の粗化形状の点でさらなる改良の余地があることが判明した。
 上記に鑑み、本発明は、銅の結晶性の相違に起因する粗化形状の差が特に小さく、電解銅および圧延銅のいずれに対しても、樹脂等との密着性に極めて優れた粗化形状を形成可能なマイクロエッチング剤の提供を目的とする。
 本発明者らは、圧延銅箔であっても、樹脂等との密着性に極めて優れた粗化形状を形成可能なマイクロエッチング剤を開発するために、特に硫酸イオン源のモル濃度とハロゲン化物イオン源のモル濃度との比に着目し検討を行った結果、その最適比を見出し、本発明を完成するに至った。
 本発明は、銅の表面粗化に用いられる、銅のマイクロエッチング剤であって、無機酸、第二銅イオン源、ハロゲン化物イオン源、およびポリマーを含む酸性水溶液であり、前記ポリマーは、側鎖にアミノ基または第四級アンモニウム基を含む重量平均分子量が1000以上の水溶性ポリマーであり、硫酸イオン源のモル濃度をCs(モル/L)、前記ハロゲン化物イオン源のモル濃度をCh(モル/L)としたとき、0≦(Cs/Ch)≦0.004であることを特徴とするマイクロエッチング剤に関する。なお、本明細書における「銅」は、銅および銅合金を含む。また、「銅層」は、銅配線パターン層も含む。
 本発明に係るマイクロエッチング剤は、必須成分として無機酸、第二銅イオン源、ハロゲン化物イオン源、およびポリマーを含み、任意成分として硫酸イオン源を含んでもよいが、前記硫酸イオン源のモル濃度をCs(モル/L)、前記ハロゲン化物イオン源のモル濃度をCh(モル/L)としたとき、0≦(Cs/Ch)≦0.004となるように設計されている。このように設計されたマイクロエッチング剤を接触させて表面が粗化された銅層は、後述する走査型電子顕微鏡写真が示すとおり、表面全体に微細な凹凸が形成され、面内の均一性が高い粗化形状を有する。
 前記マイクロエッチング剤において、前記第二銅イオン源のモル濃度が0.01~2(モル/L)であることが好ましい。また、前記マイクロエッチング剤において、前記ハロゲン化物イオン源のモル濃度が0.05~5(モル/L)であることが好ましい。さらに、前記マイクロエッチング剤において、前記ポリマーの重量濃度が0.0005~2(g/L)であることが好ましい。
 また、本発明は銅層を含む配線基板の製造方法であって、銅層の表面に前記いずれかに記載のマイクロエッチング剤を接触させて前記銅層の表面を粗化する粗化処理工程を有することを特徴とする配線基板の製造方法に関する。
 前記配線基板の製造方法において、前記銅層は、前記マイクロエッチング剤と接触させる面の表面が圧延銅からなることが好ましい。また、前記配線基板の製造方法において、前記粗化処理工程において、無機酸、ハロゲン化物イオン源、およびポリマーを含む酸性水溶液からなる補給液が、前記マイクロエッチング剤に添加され、前記補給液中の前記ポリマーは、側鎖にアミノ基または第四級アンモニウム基を含む重量平均分子量が1000以上の水溶性ポリマーであることが好ましい。
 本発明によれば、圧延銅に対しても、樹脂等との密着性に極めて優れる粗化形状を均一に形成できる。
実施例1のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例1のマイクロエッチング剤により粗化処理された電解銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例2のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例2のマイクロエッチング剤により粗化処理された電解銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例3のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例3のマイクロエッチング剤により粗化処理された電解銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例4のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例4のマイクロエッチング剤により粗化処理された電解銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例5のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例5のマイクロエッチング剤により粗化処理された電解銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例6のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例6のマイクロエッチング剤により粗化処理された電解銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例7のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例7のマイクロエッチング剤により粗化処理された電解銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例8のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例8のマイクロエッチング剤により粗化処理された電解銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例9のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例10のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例11のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例12のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例13のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 実施例14のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例1のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例1のマイクロエッチング剤により粗化処理された電解銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例2のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例2のマイクロエッチング剤により粗化処理された電解銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例3のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例4のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例5のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例5のマイクロエッチング剤により粗化処理された電解銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例6のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例7のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例8のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例8のマイクロエッチング剤により粗化処理された電解銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例9のマイクロエッチング剤により粗化処理された圧延銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。 比較例9のマイクロエッチング剤により粗化処理された電解銅表面の走査型電子顕微鏡写真(撮影角度45°、倍率5000倍)。
 本発明のマイクロエッチング剤は、銅の表面に粗化形状を形成するために用いられる。マイクロエッチング剤は、必須成分として無機酸、第二銅イオン源、ハロゲン化物イオン源、およびポリマーを含む酸性水溶液であり、任意成分として硫酸イオン源を含んでもよいが、硫酸イオン源の含有量をハロゲン化物イオン源との関係で特定の範囲内に設計している点に特徴がある。以下、本発明のマイクロエッチング剤に含まれる各成分について説明する。
 <第二銅イオン>
 第二銅イオン源は水溶液中で第二銅イオンを生成するものである。第二銅イオンは、銅を酸化するための酸化剤として作用する。第二銅イオン源としては、塩化第二銅、臭化第二銅等のハロゲン化銅;硫酸第二銅、硝酸第二銅等の無機酸塩;ギ酸第二銅、酢酸第二銅等の有機酸塩;水酸化第二銅;酸化第二銅等が挙げられる。ハロゲン化第二銅は水溶液中で第二銅イオンとハロゲン化物イオンを生成するため、ハロゲン化物イオン源と第二銅イオン源の両方の作用を有するものとして使用できる。なお、硫酸第二銅は水溶液中で第二銅イオンと硫酸イオンおよび硫酸水素イオンを生成するため、硫酸イオン源と第二銅イオン源の両方の作用を有するものとして使用できるが、その含有量は、ハロゲン化物イオン源との関係で特定の範囲内に設計される必要がある。第二銅イオン源は、2種以上を併用してもよい。
 第二銅イオン源の濃度を高めることにより、エッチング速度が適正に維持されるとともに、圧延銅のように銅の結晶粒が大きく結晶面方位の均一が高い銅層に対しても、表面全体に均一な粗化形状を形成できる。第二銅イオン源のモル濃度は、0.01(モル/L)以上が好ましい。なお、第二銅イオン源のモル濃度は、第二銅イオン源に含まれる銅原子のモル濃度であり、エッチング剤中の第二銅イオンの濃度に等しい。過度のエッチングを抑制するとともに、エッチングの進行に伴って銅イオン濃度が上昇した際の銅イオンの溶解性を維持する観点から、第二銅イオン源のモル濃度は、2(モル/L)以下が好ましい。第二銅イオン源のモル濃度は、0.1~1(モル/L)がより好ましく、0.2~0.7(モル/L)がさらに好ましい。
<無機酸>
 酸は、第二銅イオンによって酸化された銅を水溶液中に溶解させる機能を有すると共に、pH調整の機能も有する。マイクロエッチング剤のpHを低くすることにより、酸化された銅の溶解性が高められるとともに、エッチングの進行に伴って液中の銅イオン濃度が上昇した際の他の成分の析出が抑制される傾向がある。マイクロエッチング剤のpHを低く保つ観点から、酸として無機酸が用いられる。無機酸としては、塩酸、臭化水素酸等のハロゲン化水素酸、硫酸、硝酸等の強酸が好ましい。ハロゲン化水素酸は、ハロゲン化物イオン源と酸の両方の作用を有するものとして使用できる。なお、硫酸は、硫酸イオン源と酸の両方の作用を有するものとして使用できるが、その含有量は、ハロゲン化物イオン源との関係で特定の範囲内に設計される必要がある。ハロゲン化水素酸の中でも、塩酸(塩化水素水溶液)が好ましい。
 酸は、2種以上を併用してもよく、無機酸に加えて有機酸を用いてもよい。第二銅イオン濃度が上昇した場合における他の成分の析出を抑制し、エッチング剤の安定性を高める観点から、マイクロエッチング剤のpHは、3以下が好ましく、2以下がさらに好ましい。マイクロエッチング剤の無機酸の濃度は、pHが上記範囲となるように調整することが好ましい。
<ハロゲン化物イオン>
 ハロゲン化物イオン源は水溶液中でハロゲン化物イオンを生成するものである。ハロゲン化物イオンは、銅の溶解を補助し、密着性に優れた銅層表面を形成する機能を有する。ハロゲン化物イオンとしては、塩化物イオン、臭化物イオン等を例示できる。中でも、密着性に優れた粗化形状を均一に形成する観点から、塩化物イオンが好ましい。ハロゲン化物イオンは2種以上が含まれていてもよい。
 ハロゲン化物イオン源としては、塩酸、臭化水素酸等のハロゲン化水素酸;塩化ナトリウム、塩化カルシウム、塩化カリウム、塩化アンモニウム、臭化カリウム、臭化ナトリウム、塩化銅、臭化銅、塩化亜鉛、塩化鉄、臭化錫等の金属塩等が挙げられる。ハロゲン化物イオン源は2種以上を併用してもよい。前述のように、ハロゲン化水素酸はハロゲン化物イオン源と酸の両方の作用を有し、ハロゲン化銅はハロゲン化物イオン源と第二銅イオン源の両方の作用を有する。
 銅層の表面への粗化形状の形成を促進する観点から、マイクロエッチング剤中のハロゲン化物イオンの濃度、すなわちエッチング剤中で電離したハロゲン化物イオンの濃度は、0.05(モル/L)以上が好ましい。ハロゲン化物イオン濃度の上限は特に制限されないが、溶解性の観点から、5(モル/L)以下が好ましい。ハロゲン化物イオンの濃度は、0.5~3(モル/L)がより好ましく、0.8~2(モル/L)がさらに好ましい。
 ハロゲン化物イオン源のモル濃度は、第二銅イオン源のモル濃度の3倍以下であることが好ましく、1~3倍であることがより好ましい。ハロゲン化物イオン源と第二銅イオン源との濃度比を調整することにより、電解銅および圧延銅の両方に対して、樹脂等との密着性に優れた均一な粗化形状が形成されやすくなる傾向がある。
<硫酸イオン源>
 硫酸イオン源は、水溶液中で硫酸イオン(SO 2-)および/または硫酸水素イオン(HSO )を生成するものである。硫酸イオン源としては、硫酸カリウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸第二銅、硫酸第二鉄、硫酸アンモニウム等の硫酸塩や、硫酸、硫酸水素ナトリウム等が挙げられる。前述のように、硫酸第二銅は硫酸イオン源と第二銅イオン源の両方の作用を有し、硫酸は硫酸イオン源と酸の両方の作用を有する。
 硫酸イオンおよび硫酸水素イオンの存在により、液中のpHを低く保ち水溶液の安定性を高めることができる。ただし、本発明においては、電解銅および圧延銅のいずれを粗化処理した場合であっても、樹脂等との密着性に極めて優れた粗化形状を得るため、硫酸イオン源のモル濃度Cs(モル/L)を、ハロゲン化物イオン源のモル濃度Ch(モル/L)との関係で特定の範囲、具体的には、0≦(Cs/Ch)≦0.004に設計する必要がある。
 (Cs/Ch)=0のとき、電解銅および圧延銅のいずれを粗化処理した場合であっても、樹脂等との密着性に極めて優れた粗化形状を得ることができる。また、0<(Cs/Ch)≦0.004であっても、電解銅および圧延銅と、樹脂等との密着性に極めて優れた粗化形状を得ることができる。
 本発明においては、第二銅イオン源の濃度との関係でも、硫酸イオン源のモル濃度を最適化することで、電解銅および圧延銅のいずれを粗化処理した場合であっても、樹脂等との密着性に極めて優れた粗化形状を得ることができる。第二銅イオン源の濃度をCco(モル/L)としたとき、0≦(Cs/Cco)≦0.012に設計することが好ましい。なお、(Cs/Cco)=0であっても、0<(Cs/Ch)≦0.012であっても、電解銅および圧延銅と、樹脂等との密着性に極めて優れた粗化形状を得ることができる。
<ポリマー>
 本発明のマイクロエッチング剤は、側鎖にアミノ基または第四級アンモニウム基を有する重量平均分子量が1000以上の水溶性ポリマーを含有する。ポリマーは、ハロゲン化物イオンと共に、密着性に優れた粗化形状を形成する作用を有する。マイクロエッチング剤中にハロゲン化物イオンと側鎖にアミノ基または第四級アンモニウム基を有するポリマーとが共存することにより、圧延銅の表面に、細かい凹凸を均一に形成できる。均一な粗化形状を形成する観点から、ポリマーの重量平均分子量は2000以上が好ましく、5000以上がより好ましい。水溶性の観点から、ポリマーの重量平均分子量は、500万以下が好ましく、200万以下がより好ましい。重量平均分子量は、ゲル浸透クロマトグラフ(GPC)分析によりポリエチレングリコール換算で得られる値である。
 側鎖に第四級アンモニウム基を有するポリマーとしては、例えば下記式(I)で表される繰り返し単位を有するポリマーが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(I)において、R~Rは、それぞれ独立に、置換基を有していてもよい鎖状または環状の炭化水素基であり、R~Rのうち2つ以上が互いに結合して環状構造を形成していてもよい。Rは水素原子またはメチル基であり、Xは単結合または2価の連結基であり、Yは対アニオンである。
 式(I)で表される繰り返し単位を有するポリマーの具体例としては、第四級アンモニウム塩型スチレン重合体、第四級アンモニウム塩型アミノアルキル(メタ)アクリレート重合体等が挙げられる。
 側鎖に第四級アンモニウム基を有するポリマーは、下記式(II)で表されるように、主鎖の炭素原子と側鎖の第四級アンモニウム基が環状構造を形成している繰り返し単位を有するものでもよい。
Figure JPOXMLDOC01-appb-C000002
 上記式(II)において、RおよびRは置換基を有していてもよい鎖状または環状の炭化水素基であり、RとRが互いに結合して環状構造を形成していてもよい。mは0~2の整数である。XおよびXは、それぞれ独立に、単結合または2価の連結基である。式(II)の繰り返し単位を有するポリマーの具体例としては、式(IIa)で表されるジアリルジアルキルアンモニウム塩の重合により得られる第四級アンモニウム塩型ジアリルアミン重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記式(IIa)において、RおよびRは、それぞれ独立に、水素原子または置換基を有していてもよい鎖状もしくは環状の炭化水素基であり、水素原子であることが好ましい。
 側鎖の第四級アンモニウム基は、窒素原子と炭素原子の間に二重結合を有していてもよく、環の構成原子として第四級アンモニウム基の窒素原子が含まれていてもよい。また、下記式(III)で表される繰り返し単位の様に、第四級アンモニウム基により、2本のポリマー鎖が架橋されていてもよい。
Figure JPOXMLDOC01-appb-C000004
 上記式(III)において、X~Xは、それぞれ独立に、単結合または2価の連結基である。
 第四級アンモニウム塩の対アニオンZとしては、Cl、Br、I、ClO 、BF 、CHCOO、PF 、HSO 、CSO が挙げられる。X~Xが二価の連結基である場合、その具体例としては、メチレン基、炭素数2~10のアルキレン基、アリーレン基、-CONH-R-基、-COO-R-基(ただし、Rは単結合、メチレン基、炭素数2~10のアルキレン基、または炭素数2~10のエーテル基(アルキルオキシアルキル基)である)等が挙げられる。
 側鎖にアミノ基を有するポリマーとしては、例えば下記式(IV)で表される繰り返し単位を有するポリマーが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式(IV)において、R11およびR12は、それぞれ独立に、水素原子、または置換基を有していてもよい鎖状もしくは環状の炭化水素基であり、R11とR12が互いに結合して環状構造を形成していてもよい。R13は水素原子またはメチル基であり、X11は単結合または2価の連結基である。アミノ基は第一級、第二級および第三級のいずれでもよく、アンモニウム塩を形成していてもよい。アンモニウム塩の対アニオンとしては、第四級アンモニウム塩の対アニオンZとして前述したものが挙げられる。
 側鎖にアミノ基を有するポリマーは、下記式(V)で表されるように、主鎖の炭素原子と側鎖のアミノ基が環状構造を形成している繰り返し単位を有するものでもよい。
Figure JPOXMLDOC01-appb-C000006
 上記式(V)において、R14は、水素原子、または置換基を有していてもよい鎖状もしくは環状の炭化水素基である。mは0~2の整数である。X12およびX13は、それぞれ独立に、単結合または2価の連結基である。式(V)の繰り返し単位を有するポリマーの具体例としては、ジアリルアミンまたはジアリルアミン塩の重合により得られるジアリルアミン重合体が挙げられる。
 上記式(IV)および式(V)におけるX11~X13が二価の連結基である場合、その具体例としては、X~Xの具体例として前述したものが挙げられる。
 側鎖にアミノ基または第四級アンモニウム基を含むポリマーは、共重合体でもよい。ポリマーが共重合体である場合、共重合体は、アミノ基または第四級アンモニウム基を含む繰り返し単位とアミノ基および第四級アンモニウム基のいずれも含まない繰り返し単位を含んでいてもよい。共重合体における繰り返し単位の並びは特に限定されず、交互共重合体、ブロック共重合体、ランダム共重合体のいずれでもよい。共重合体がブロック共重合体またはランダム共重合体である場合、ポリマー全体のモノマー単位に対するアミノ基または第四級アンモニウム基を含む繰り返し単位の割合は、20モル%以上が好ましく、30モル%以上がより好ましく、40モル%以上がさらに好ましい。
 共重合体に含まれるアミノ基および第四級アンモニウム基のいずれも含まない繰り返し単位としては、(メタ)アクリル酸、(メタ)アクリル酸アルキル、(メタ)アクリル酸アミノアルキル、スチレン誘導体、二酸化硫黄等に由来する構造が挙げられる。上記一般式(II)で表される第四級アンモニウム塩型ジアリルアミンに由来する構造を有するポリマー、および上記一般式(IV)で表されるジアリルアミンに由来する構造を有するポリマーは、共重合体の繰り返し単位として、下記式で表される二酸化硫黄に由来する構造単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000007
 ポリマーは、側鎖にアミノ基と第四級アンモニウム基の両方を有していてもよい。また、ポリマーは2種以上を併用してもよく、側鎖にアミノ基を有するポリマーと側鎖に第四級アンモニウム基を有するポリマーとを併用してもよい。
 マイクロエッチング剤中の前記ポリマーの濃度は、密着性に優れた銅層表面を形成する観点から、0.0005~2g/Lが好ましく、0.005~1g/Lがより好ましく、0.008~0.5g/Lがさらに好ましく、0.01~0.2g/Lが特に好ましい。
<他の添加剤>
 本発明のマイクロエッチング剤は、上記の各成分をイオン交換水等に溶解させることにより調製できる。マイクロエッチング剤には、上記以外の成分が含まれていてもよい。例えば、消泡剤としてのノニオン性界面活性剤や、銅の溶解安定性を向上させるためにピリジン等の錯化剤を添加してもよい。その他、必要に応じて種々の添加剤を添加してもよい。これらの添加剤を添加する場合、マイクロエッチング剤中の添加剤の濃度は、0.0001~20重量%程度が好ましい。
 マイクロエッチング剤中に過酸化水素が含まれていると、過酸化水素の酸化力による銅の溶解が進行するため、圧延銅のように銅の結晶粒が大きく結晶面方位の均一が高い銅層に対する粗化形状の形成が妨げられる場合がある。また、過酸化水素を含まないことにより、溶液の濃度管理や廃液処理を簡素化できるとの利点もある。そのため、マイクロエッチング剤中の過酸化水素濃度は0であることが最も好ましい。一方、原料中に含まれる微量の過酸化水素の混入等は許容できる。マイクロエッチング剤の過酸化水素濃度は、0.1重量%以下が好ましく、0.01重量%以下がより好ましい。
[マイクロエッチング剤の用途]
 上記のマイクロエッチング剤は銅層表面の粗化に広く使用することができる。処理された銅層の表面には微細な凹凸が均一に形成されており、プリプレグ、めっきレジスト、エッチングレジスト、ソルダーレジスト、電着レジスト、カバーレイ等の樹脂との密着性が良好である。また、はんだ付け性にも優れた表面であるため、ピングリッドアレイ(PGA)用やボールグリッドアレイ(BGA)用を含む種々の配線基板の製造に特に有用である。さらにリードフレームの表面処理にも有用である。
 本発明のマイクロエッチング剤は、銅の結晶性の相違に起因する粗化形状の差が小さく、電解銅および圧延銅のいずれに対しても、樹脂等との密着性に優れた粗化形状を形成できる。そのため、処理対象の銅箔が異なる場合でも、エッチング剤を交換する必要がなく、同一のエッチング剤を繰り返して使用できる。
[配線基板の製造方法]
 配線基板の製造においては、銅層の表面に、上述のマイクロエッチング剤を接触させることにより、銅の表面が粗化される。銅層を複数層含む配線基板を製造する場合は、複数の銅層のうち一層だけを上記のマイクロエッチング剤で処理してもよく、二層以上の銅層を上記のマイクロエッチング剤で処理してもよい。従来のマイクロエッチング剤は主に電解銅箔の表面粗化に用いられるのに対して、上述のマイクロエッチング剤は、電解銅および圧延銅のいずれに対しても表面に均一な粗化形状を形成できる。そのため、本発明のマイクロエッチング剤は、被処理面(マイクロエッチング剤と接触させる面)の表面が圧延銅からなる銅層の粗化にも好適に使用できる。
 粗化処理において、銅層の表面にマイクロエッチング剤を接触させる方法は特に限定されないが、例えば処理対象の銅層表面にマイクロエッチング剤をスプレーする方法や、処理対象の銅層をマイクロエッチング剤中に浸漬する方法等があげられる。スプレーする場合は、マイクロエッチング剤の温度を10~40℃とし、スプレー圧0.03~0.3MPaで5~120秒間の条件でエッチングすることが好ましい。浸漬する場合は、マイクロエッチング剤の温度を10~40℃とし、5~120秒間の条件でエッチングすることが好ましい。なお、浸漬する場合には、銅のエッチングによってマイクロエッチング剤中に生成した第一銅イオンを第二銅イオンに酸化するために、バブリング等によりマイクロエッチング剤中に空気の吹き込みを行うことが好ましい。マイクロエッチング剤が過酸化水素を実質的に含まない場合は、使用後の廃液処理が容易であり、例えば中和、高分子凝集剤等を利用する一般的な簡便な方法で処理できる。
 粗化処理におけるエッチング量は特に限定されないが、銅の結晶性に関わらず均一な凹凸形状を形成する観点から、0.05μm以上が好ましく、0.1μm以上がより好ましい。エッチング量が過度に大きいと、銅層が完全にエッチングされることによる断線や、配線断面積の低下による抵抗の増大等の不具合が生じる場合がある。そのため、エッチング量は5μm以下が好ましく、3μm以下がより好ましい。なお、「エッチング量」とは、深さ方向の平均エッチング量(溶解量)を指し、マイクロエッチング剤により溶解した銅の重量、比重及び銅表面の前面投影面積から算出される。
 粗化処理工程後には、生成したスマットを除去するために、粗化した銅層の表面を酸性水溶液で洗浄することが好ましい。洗浄に使用する酸性水溶液としては、塩酸、硫酸水溶液、硝酸水溶液等が使用できる。粗化形状への影響が少なく、スマットの除去性も高いことから塩酸が好ましい。スマットの除去性の観点から、酸性水溶液の酸濃度は、0.3~35重量%が好ましく、1~10重量%がより好ましい。洗浄方法は特に限定されず、粗化した銅層表面に酸性水溶液をスプレーする方法や、粗化した銅層を酸性水溶液中に浸漬する方法等があげられる。スプレーする場合は、酸性水溶液の温度を15~35℃とし、スプレー圧0.03~0.3MPaで3~30秒間の条件で洗浄することが好ましい。浸漬する場合は、酸性水溶液の温度を15~35℃とし、3~30秒間の条件で洗浄することが好ましい。
 マイクロエッチング剤を連続使用する場合、補給液を添加しながら粗化処理を実施することが好ましい。補給液を添加しながら粗化処理を行うことにより、処理中のマイクロエッチング剤中の各成分の濃度を適正に維持できる。補給液は、無機酸、第二銅イオン源、ハロゲン化物イオン源および前記ポリマーを含む水溶液である。補給液の添加量や補給液の添加のタイミングは、各成分の濃度管理幅等に応じて適宜設定できる。補給液中の各成分は、上述のマイクロエッチング剤に含まれる成分と同様である。補給液中の各成分の濃度は、処理に用いるマイクロエッチング剤の初期濃度等に応じて適宜調整される。
 マイクロエッチング剤による処理の後、樹脂との密着性をさらに向上させるために、アゾール類の水溶液やアルコール溶液で処理してもよい。また、マイクロエッチング剤による処理の後、ブラウンオキサイド処理やブラックオキサイド処理とよばれる酸化処理を行ってもよい。
 次に、本発明の実施例について比較例と併せて説明する。なお、本発明は下記の実施例に限定して解釈されるものではない。
<マイクロエッチング剤による処理>
 試験基板として、圧延銅箔(JX金属製  HA箔)を有する基材を用意した。これらの基板のそれぞれに、表1に示す各マイクロエッチング剤(30℃)を用いて、スプレー圧0.1MPaの条件で上記試験基板の銅箔上にスプレーし、銅のエッチング量が1.0μmとなるようにエッチング時間を調整してエッチングした。次いで、水洗を行い、温度25℃の塩酸(塩化水素濃度:3.5重量%)にエッチング処理面を15秒間浸漬した。その後、水洗を行い、乾燥させた。
 また、試験基板として、厚み35μmの電解銅箔を絶縁基材の両面に張り合わせたガラス布エポキシ樹脂含浸銅張積層板(日立化成社製、製品名:MCL-E-67、10cm×10cm、厚み0.2mm)に18μmの銅めっきを行った試験基板を用い、実施例1~8、および比較例1~2、5、8~9のエッチング剤を用いて、上記と同様にエッチング、酸洗浄、水洗および乾燥を実施した。
 表1および表2に示すポリマーA~Dの詳細は下記の通りである。これらのポリマーは、エッチング剤中のポリマー濃度が表1に示す配合量となるように用いた。表1および表2に示す各エッチング剤の配合成分の残部はイオン交換水である。
 ポリマーA:以下の繰り返し単位を有するジアリルジアルキルアンモニウム(第四級アンモニウム)塩酸塩・二酸化硫黄交互共重合体(重量平均分子量約5000)
Figure JPOXMLDOC01-appb-C000008
 ポリマーB:以下の繰り返し単位を有するジアリルアミン(第二級アミン)塩酸塩・二酸化硫黄交互共重合体(重量平均分子量約5000)
Figure JPOXMLDOC01-appb-C000009
 ポリマーC:以下の繰り返し単位を有するジアリルアミン(第二級アミン)酢酸塩・二酸化硫黄交互共重合体(重量平均分子量約5000)
Figure JPOXMLDOC01-appb-C000010
 ポリマーD:以下の構造を有するビニルピロリドン・N,N-ジメチルアミノエチルメタクリルアミドジエチル硫酸塩ランダム共重合体(重量平均分子量約80万)
Figure JPOXMLDOC01-appb-C000011
<走査型電子顕微鏡観察による粗化の均一性評価>
 上記処理後の試験基板の銅層の表面を、走査型電子顕微鏡(SEM)(型式JSM-7000F、日本電子社製)で観察した。SEM観察像を図1~25に示す。各実施例・比較例とSEM観察像の対応を表1および表2に示す。表1および表2では、下記の基準による圧延銅表面の粗化形状の評点も合せて示している。
<評価基準>
  1:表面に凹凸が形成されていないもの
  2:表面に凹凸が形成されているが粗化されていないもの
  3:表面に凹凸が形成され粗化されているが、凹凸が大きく粗化ムラがあるもの
  4:表面全体に微細な凹凸が形成されているもの
  5:表面全体に微細な凹凸が形成され、面内の均一性が高いもの
Figure JPOXMLDOC01-appb-T000012
 実施例1~14に係るマイクロエッチング剤を粗化処理に使用した場合、圧延銅および電解銅のいずれであっても、表面に均一な粗化形状が形成されていることが分かる。特に、圧延銅においては、表1に記載のとおり評価基準も総じて高いことが分かる。
Figure JPOXMLDOC01-appb-T000013
 一方、比較例1に係るマイクロエッチング剤は(Cs/Ch)=0.0042であるため、これを粗化処理に使用した場合、粗化形状悪いことが分かる。さらに、比較例2~5に係るマイクロエッチング剤についても、(Cs/Ch)が大きいため、これらを粗化処理に使用した場合、粗化形状悪いことが分かる。
 また、比較例6~7、9に係るマイクロエッチング剤は、ハロゲン化物イオン源を有しないため、これらを粗化処理に使用した場合、粗化形状悪いことが分かる。
 また、比較例8に係るマイクロエッチング剤は、無機酸ではなく有機酸を使用しているため、これを粗化処理に使用した場合、粗化形状悪いことが分かる。

Claims (7)

  1.  銅の表面粗化に用いられる、銅のマイクロエッチング剤であって、
     無機酸、第二銅イオン源、ハロゲン化物イオン源、およびポリマーを含む酸性水溶液であり、
     前記ポリマーは、側鎖にアミノ基または第四級アンモニウム基を含む重量平均分子量が1000以上の水溶性ポリマーであり、
     硫酸イオン源のモル濃度をCs(モル/L)、前記ハロゲン化物イオン源のモル濃度をCh(モル/L)としたとき、
     0≦(Cs/Ch)≦0.004
    であり、
     前記ハロゲン化物イオン源のモル濃度は、前記第二銅イオン源のモル濃度の3.875倍以下であることを特徴とするマイクロエッチング剤。
  2.  前記第二銅イオン源のモル濃度が0.01~2(モル/L)である請求項1に記載のマイクロエッチング剤。
  3.  前記ハロゲン化物イオン源のモル濃度が0.05~5(モル/L)である請求項1または2に記載のマイクロエッチング剤。
  4.  前記ポリマーの重量濃度が0.0005~2(g/L)である請求項1~3のいずれかに記載のマイクロエッチング剤。
  5.  銅層を含む配線基板の製造方法であって、
     銅層の表面に請求項1~4のいずれか1項に記載のマイクロエッチング剤を接触させて前記銅層の表面を粗化する粗化処理工程を有することを特徴とする配線基板の製造方法。
  6.  前記銅層は、前記マイクロエッチング剤と接触させる面の表面が圧延銅からなる請求項5に記載の配線基板の製造方法。
  7.  前記粗化処理工程において、無機酸、ハロゲン化物イオン源、およびポリマーを含む酸性水溶液からなる補給液が、前記マイクロエッチング剤に添加され、
     前記補給液中の前記ポリマーは、側鎖にアミノ基または第四級アンモニウム基を含む重量平均分子量が1000以上の水溶性ポリマーである請求項5または6に記載の配線基板の製造方法。
PCT/JP2020/046474 2020-06-02 2020-12-14 マイクロエッチング剤および配線基板の製造方法 WO2021245964A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217033367A KR102404620B1 (ko) 2020-06-02 2020-12-14 마이크로 에칭제 및 배선 기판의 제조 방법
CN202080005956.4A CN113170585B (zh) 2020-06-02 2020-12-14 微蚀刻剂和配线基板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-096037 2020-06-02
JP2020096037A JP6799347B1 (ja) 2020-06-02 2020-06-02 マイクロエッチング剤および配線基板の製造方法

Publications (1)

Publication Number Publication Date
WO2021245964A1 true WO2021245964A1 (ja) 2021-12-09

Family

ID=73741076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046474 WO2021245964A1 (ja) 2020-06-02 2020-12-14 マイクロエッチング剤および配線基板の製造方法

Country Status (3)

Country Link
JP (1) JP6799347B1 (ja)
TW (1) TWI732727B (ja)
WO (1) WO2021245964A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340948A (ja) * 1999-06-01 2000-12-08 Mec Kk 銅と樹脂との接着性を向上させる方法およびそれを用いて製造される多層配線板
JP2017150069A (ja) * 2016-02-19 2017-08-31 メック株式会社 銅のマイクロエッチング剤および配線基板の製造方法
JP6333455B1 (ja) * 2017-08-23 2018-05-30 メック株式会社 銅のマイクロエッチング剤および配線基板の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219008B1 (ja) * 2012-07-24 2013-06-26 メック株式会社 銅のマイクロエッチング剤及びその補給液、並びに配線基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340948A (ja) * 1999-06-01 2000-12-08 Mec Kk 銅と樹脂との接着性を向上させる方法およびそれを用いて製造される多層配線板
JP2017150069A (ja) * 2016-02-19 2017-08-31 メック株式会社 銅のマイクロエッチング剤および配線基板の製造方法
JP6333455B1 (ja) * 2017-08-23 2018-05-30 メック株式会社 銅のマイクロエッチング剤および配線基板の製造方法

Also Published As

Publication number Publication date
TW202146705A (zh) 2021-12-16
JP6799347B1 (ja) 2020-12-16
JP2021188100A (ja) 2021-12-13
TWI732727B (zh) 2021-07-01

Similar Documents

Publication Publication Date Title
JP6218000B2 (ja) 銅のマイクロエッチング剤および配線基板の製造方法
US9932678B2 (en) Microetching solution for copper, replenishment solution therefor and method for production of wiring board
JP6333455B1 (ja) 銅のマイクロエッチング剤および配線基板の製造方法
US5965036A (en) Microetching composition for copper or copper alloy
CN111094628B (zh) 微蚀刻剂、铜表面的粗化方法以及配线基板的制造方法
US9011712B2 (en) Microetching solution for copper, replenishment solution therefor and method for production of wiring board
WO2021245964A1 (ja) マイクロエッチング剤および配線基板の製造方法
WO2017141799A1 (ja) 銅のマイクロエッチング剤および配線基板の製造方法
CN113170585B (zh) 微蚀刻剂和配线基板的制造方法
KR19980066842A (ko) 구리 또는 구리합금에 대한 마이크로에칭 조성물

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20217033367

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938941

Country of ref document: EP

Kind code of ref document: A1