WO2021245765A1 - Elevator system - Google Patents

Elevator system Download PDF

Info

Publication number
WO2021245765A1
WO2021245765A1 PCT/JP2020/021684 JP2020021684W WO2021245765A1 WO 2021245765 A1 WO2021245765 A1 WO 2021245765A1 JP 2020021684 W JP2020021684 W JP 2020021684W WO 2021245765 A1 WO2021245765 A1 WO 2021245765A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
elevator
primary response
information center
priority
Prior art date
Application number
PCT/JP2020/021684
Other languages
French (fr)
Japanese (ja)
Inventor
雅将 内藤
Original Assignee
三菱電機ビルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to JP2022529161A priority Critical patent/JP7206440B2/en
Priority to PCT/JP2020/021684 priority patent/WO2021245765A1/en
Priority to CN202080101574.1A priority patent/CN115697877B/en
Publication of WO2021245765A1 publication Critical patent/WO2021245765A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present invention relates to an elevator system, particularly an elevator system that assists a technician who performs elevator restoration work in the event of an earthquake.
  • a disaster activity support system Based on the advance team that acquires local information on the disaster area when a disaster occurs and the local information acquired by the advance team, identify the activity points that require disaster activities and calculate the travel route to the activity points. Therefore, a disaster activity support system has been proposed in which a disaster activity support system is transmitted to a mobile terminal of a latecomer who carries out a disaster activity (see, for example, Patent Document 1).
  • the elevator automatically stops on the nearest floor, opens the door, drops passengers, and then performs automatic diagnostic operation. If there are no abnormalities, the elevator automatically recovers and resumes operation. In many cases, the elevator does not stop operating. However, when the acceleration of the ground surface due to the S wave coming after the P wave is high, the operation is temporarily suspended for safety and restarted after the inspection by the technician. Therefore, when the acceleration of the ground surface due to the S wave is high, it is necessary to inspect the elevator by a technician.
  • the building where the elevator is installed may be damaged and the elevator may not be inspected, or even if the elevator is inspected, operation may not be resumed. ..
  • transportation infrastructure such as roads and bridges to buildings may be damaged, and it may not be possible to reach the building where the elevator is installed.
  • the technician who inspects and restores the elevator may not know which building is damaged, what kind of transportation infrastructure is damaged, and which building's elevator should be inspected. .. For this reason, it may be difficult to efficiently restart the operation of the elevator due to waste of travel time between buildings.
  • an object of the present invention is to support an engineer who performs restoration work of an elevator when a high acceleration of the ground surface is detected due to an earthquake, and to efficiently restart the operation of the elevator.
  • the elevator system of the present invention includes an elevator provided with an earthquake detector that detects acceleration on the ground surface, an information center that is connected to the elevator to monitor the elevator, and an information center that is connected to the information center and is connected to the elevator when an earthquake occurs.
  • An elevator system that includes a business establishment where a technician who performs restoration work works, and an unmanned vehicle equipped with a camera that is capable of autonomous flight and is deployed at the business establishment. The elevator is equipped with the earthquake detector. When a high acceleration or high seismic intensity exceeding the operation suspension threshold is detected, the operation is suspended and a high acceleration detection signal and an operation suspension signal are transmitted.
  • the unmanned vehicle When the operation suspension signal is received, the unmanned vehicle is made to fly toward the building where the elevator that transmits the high acceleration detection signal and the operation suspension signal in the area under the jurisdiction of the business establishment is installed. , The unmanned air vehicle transmits a damage situation image of the damage situation of the building and the damage situation of the traffic infrastructure in the district to the information center, and the information center receives the damage from the unmanned air vehicle. Based on the situation image, the damage situation of the building and the transportation infrastructure in the district is determined, and the primary response building for dispatching the engineer is extracted from the building, and the office and the mobile terminal of the engineer are used. It is characterized by transmitting to either one or both of the above.
  • the information center extracts the primary response building that dispatches the technician based on the damage situation image received from the unmanned aircraft, and the office or technician. Since it is sent to the mobile terminal of the technician, the technician can patrol only the buildings that can be used for the primary response. As a result, it is possible to assist the technician and efficiently restart the operation of the elevator.
  • the information center compares the disaster situation image received from the unmanned vehicle with the normal image of the building and the district in normal times, and the traffic in the building and the district. You may judge the damage situation of the infrastructure.
  • the damage situation of the building and the transportation infrastructure is judged by comparing the damage situation image and the normal time image, the damage situation can be judged in a short time by a simple method.
  • the elevator transmits a confinement generation signal to the information center when confinement occurs when the operation is stopped, and the information center confinees from the extracted primary corresponding building.
  • the building in which the elevator is installed may be extracted as a priority primary response building and transmitted to either or both of the business establishment and the mobile terminal of the engineer.
  • the technician can preferentially patrol the building where the elevator where the confinement has occurred and efficiently eliminate the confinement.
  • the information center provides a movement route from the primary response building or the priority primary response building to another primary response building or another priority primary response building from road traffic information and railway operation information. It may be set and transmitted to either or both of the business establishment and the mobile terminal of the technician.
  • the information center sets the movement route from one building to another and sends it to the office or the technician, so that the technician efficiently patrols the building where the elevator that needs inspection is installed. be able to.
  • the information center when there are a plurality of the primary response building and the priority primary response building, the information center prioritizes the primary response based on the use of each building, and based on the priority. Set the movement route from the primary correspondence building or the priority primary correspondence building to the other primary correspondence building or the other priority primary correspondence building, and either one of the business establishment and the mobile terminal of the technician or You may send to both.
  • the present invention can efficiently restart the operation of the elevator by assisting the technician who performs the restoration work of the elevator when a high acceleration of the ground surface is detected due to an earthquake.
  • the elevator system 100 includes an elevator 20, an information center 30 connected to the elevator 20, a business establishment 50 connected to the information center 30, and a drone 60.
  • the business establishment 50 is a building where engineers 53 and 54 who perform maintenance of the elevator 20 installed in the building 10 of the district 70 under the jurisdiction and restoration work in the event of an earthquake work.
  • a plurality of buildings 10 and a plurality of elevators 20 are installed in the district 70 under the jurisdiction of the business establishment 50.
  • FIG. 1 one building 10 and one elevator 20 are shown, and the other building 10 and the elevator are shown.
  • the illustration of 20 is omitted.
  • the elevator 20 is installed in a hoistway 12 in a building 10 such as an office building, a commercial building, a condominium, a hospital, or a school.
  • the elevator 20 includes a car 21, a weight 22, a rope 23, a drive device 24, a control device 25, an earthquake control device 26, and a monitoring device 28.
  • the car 21 on which passengers ride is connected to the weight 22 by a rope 23, and the rope 23 is wound around the drive device 24.
  • the drive device 24 rotates, the rope 23 moves up and down, and the car 21 moves up and down.
  • the drive device 24 and the car 21 are connected to the control device 25 installed in the hoistway 12.
  • the control device 25 drives the drive device 24 to move the car 21 in the vertical direction, and opens and closes the door of the car 21 and the door of the landing floor attached to the wall of the hoistway 12. In this way, the control device 25 controls the operation of the elevator 20.
  • the seismic control device 26 includes an earthquake detector 27 having a built-in acceleration sensor that detects accelerations on two ground surfaces, a P wave sensor 27p and an S wave sensor 27s.
  • the seismic control device 26 detects an earthquake with the earthquake detector 27, the seismic control device 26 automatically outputs a command to the control device 25 to stop the car 21 of the elevator 20 to the nearest floor.
  • the monitoring device 28 is connected to the control device 25 and acquires the operation information of the elevator 20 from the control device 25, and also acquires the earthquake detection information detected by the earthquake detector 27 of the seismic control device 26 via the control device 25. do.
  • the monitoring device 28 is connected to the information center 30 via the communication line 29, and transmits the operation information acquired from the control device 25 and the earthquake detection information acquired from the earthquake detector 27 to the information center 30. Further, when an earthquake occurs, the monitoring device 28 outputs a command to the control device 25 to execute automatic diagnosis operation and automatic recovery of the elevator 20 based on a command from the information center 30.
  • the information center 30 is composed of a server 31 that processes information, a monitoring board 37 connected to the server 31 by a LAN line 38, and is connected to the elevator 20 to monitor the elevator 20.
  • the server 31 includes a communication unit 32, an elevator monitoring unit 33, a damage status determination unit 41, a primary response building extraction unit 42, a priority primary response building extraction unit 43, a movement route setting unit 44, and an elevator attribute database 45. It includes each functional block of the map database 46, the normal image database 47, and the disaster situation image database 48.
  • the communication unit 32 includes a monitoring device 28 for an elevator 20, a drone 60, a road traffic information center 65, a railway operation information center 66, and a mobile terminal 55 of an engineer 54 via a communication line 29 such as a telephone line or the Internet. It is connected to and exchanges data with these devices and devices. Further, the communication unit 32 is connected to the elevator monitoring unit 33, the primary response building extraction unit 42, the priority primary response building extraction unit 43, the movement route setting unit 44, and the disaster status image database 48. Data is exchanged with each functional block.
  • the elevator monitoring unit 33 acquires operation information and earthquake detection information of the elevator 20 from the monitoring device 28 of the elevator 20 via the communication line 29, and outputs the information to the monitoring panel 37 while referring to the elevator attribute database 45.
  • the operation information of the elevator 20 and the earthquake detection information are displayed on the display 34 of the monitoring panel 37.
  • the observer 39 working at the information center 30 monitors the operating status of the elevator 20 displayed on the display 34, and if necessary, operates the keyboard 35, the mouse 36, etc. to transmit the command of the elevator 20. do.
  • the map database 46 is a database that stores map data showing the layout of buildings 10 and the layout of roads in the district 70 under the jurisdiction of the business establishment 50.
  • the elevator attribute database 45 is a database that stores the control number, model, date of manufacture, serial number, address, name, purpose, etc. of the building 10 installed in the elevator 20 in association with each other.
  • the normal image database 47 stores data in which the drone 60 is flown around the building 10 in the district 70 under the jurisdiction of the business establishment 50 in normal times without an earthquake, and the state of the building 10 and the surrounding transportation infrastructure is photographed. It is a database that is being used.
  • the image data in normal times is stored in association with the shooting time, the shooting location, and the shot image data.
  • the disaster situation image database 48 is a database in which data obtained by flying a drone 60 in the event of an earthquake and photographing the damage situation of the building 10 and the surrounding transportation infrastructure is stored.
  • the image data of the disaster situation is stored in association with the shooting time, the shooting location, and the shot image data.
  • the damage status determination unit 41 refers to the elevator attribute database 45, the map database 46, the normal image database 47, and the damage status image database 48, and determines the damage status of the building 10 in the district 70 under the jurisdiction of the business establishment 50.
  • the damage status of the transportation infrastructure in the district 70 is determined, and the result is output to the primary response building extraction unit 42.
  • the primary response building extraction unit 42 excludes the building 10 determined to be damaged by the damage status determination unit 41 or the building 10 determined to be unreachable due to the damage to the transportation infrastructure, and the engineers 53 and 54 are primary. Extract the building 10 to be dealt with. Then, the primary correspondence building extraction unit 42 outputs the primary correspondence building information to the priority primary correspondence building extraction unit 43, the movement route setting unit 44, and the communication unit 32.
  • the primary response is that the engineers 53 and 54 inspect each part of the elevator 20, determine whether it can be restored, and if it is determined that it can be restored, reset the control device 25 and the earthquake detector 27 to make the elevator. It means the correspondence to restart the operation of 20. Therefore, in the primary response, repairs and restorations that require parts replacement will not be performed.
  • the priority primary response building extraction unit 43 extracts the building 10 in which the elevator 20 in which the confinement has occurred is installed as the priority primary response building from the primary response buildings extracted by the primary response building extraction unit 42. Then, the priority primary correspondence building extraction unit 43 outputs the priority primary correspondence building information to the movement route setting unit 44 and the communication unit 32.
  • the movement route setting unit 44 refers to the elevator attribute database 45 and the map database 46, and refers to the primary correspondence building information, the priority primary correspondence building information, the road traffic information acquired from the road traffic information center 65, and the railway operation information center. Based on the railway operation information acquired from 66, the movement route from the building 10 of the engineers 53 and 54 to the other building 10 is set, and the movement route information is output to the communication unit 32.
  • the server 31 is composed of a general-purpose computer including a CPU, which is a processor that processes information internally, and a storage unit that stores programs and data.
  • the CPU of the communication unit 32, the elevator monitoring unit 33, the damage status determination unit 41, the primary response building extraction unit 42, the priority primary response building extraction unit 43, and the movement route setting unit 44 have a predetermined operation program. It is realized by executing it. Further, the elevator attribute database 45, the map database 46, the normal image database 47, and the damage situation image database 48 are realized by storing predetermined data in the storage unit.
  • the office 50 is a building where engineers 53 and 54 who perform maintenance of the elevator 20 installed in the building 10 of the district 70 under the jurisdiction and restoration work in the event of an earthquake work.
  • the office 50 is connected to the server 31 of the information center 30 by an in-house line 59 that ensures security, and is provided with a terminal 51 that exchanges information with the server 31 and stores and displays the received data.
  • the terminal 51 is a general-purpose computer composed of a CPU, which is a processor, and a storage unit for storing programs and data.
  • a drone 60 which is an unmanned aerial vehicle, is deployed at the business establishment 50.
  • a camera 61 is mounted on the drone 60, and autonomous flight is possible along a set flight route 79 (see FIG. 3).
  • the drone 60 is connected to the communication line 29, and transmits the image data taken by the camera 61 to the information center 30 via the communication line 29.
  • the drone 60 may be one capable of vertical takeoff and landing rate such as a helicopter, or may be an unmanned aerial vehicle.
  • the business establishment 50 is equipped with a drone operating device 52 for setting the flight route 79 of the drone 60 and performing remote control.
  • the drone operating device 52 is connected to the terminal 51 by a LAN line 58, and can set a flight route 79 based on information from the information center 30 or remotely control the drone 60.
  • the Road Traffic Information Center 65 is an organization that provides road traffic information for the district 70 under the jurisdiction of the business establishment 50. Further, the railway operation information center 66 is an organization that provides railway operation information of the district 70 under the jurisdiction of the business establishment 50.
  • FIG. 2 As an example, in the district 70 under the jurisdiction of the business establishment 50, there are eight buildings from A building 71 to H building 78, and an elevator 20 is installed in each building.
  • a building 71 and G building 77 are buildings containing commercial facilities
  • B building 72 and H building 78 are office buildings
  • C building 73 is a building of a public institution such as a government office.
  • the D building 74 and the E building 75 are middle-rise condominiums.
  • F Building 76 is a hospital.
  • Elevators 20 similar to those described above with reference to FIG. 1 are installed in each of the buildings 71 to 78, and each elevator 20 is connected to the information center 30 via a communication line 29.
  • a building 71 to G building 77 the illustration of the connection state is omitted.
  • step S101 of FIG. 5 the elevators 20 installed in each building 71 to 78 stand by until the P wave sensor 27p in the seismic detector 27 of the seismic control device 26 operates. Then, when the P wave sensor 27p is activated, the seismic control device 26 proceeds to step S102 in FIG. 5 to transmit a P wave detection signal to the control device 25.
  • the control device 25 stops the car 21 of the elevator 20 on the nearest floor and opens the door so that the passengers get off the elevator 20 as shown in step S103 of FIG. Announce.
  • step S104 of FIG. 5 the seismic control device 26 stands by until the S wave sensor 27s operates. Then, when the S wave sensor 27s operates, the process proceeds to step S105 in FIG. 5, and it is determined whether or not the S wave sensor 27s has detected a high acceleration exceeding the operation suspension threshold value. If the seismic control device 26 determines YES in step S105 of FIG. 5, the seismic control device 26 proceeds to step S106 of FIG. 5 and outputs a high acceleration detection signal and an operation suspension signal to the control device 25. When the high acceleration detection signal and the operation suspension signal are input, the control device 25 outputs the high acceleration detection signal and the operation suspension signal to the monitoring device 28. As shown in FIG. 2, the monitoring device 28 transmits a high acceleration detection signal and an operation suspension signal to the information center 30 via the communication line 29. Further, the control device 25 suspends the operation of the elevator 20 in step S107 of FIG.
  • control device 25 determines in step S108 of FIG. 5 whether or not the car 21 is stopped between the landing floors and the passengers are trapped in the car 21. Then, if the control device 25 determines YES in step S108 of FIG. 5, the control device 25 proceeds to step S109 of FIG. 5 and outputs a confinement generation signal to the monitoring device 28. As shown in FIG. 2, the monitoring device 28 transmits the confinement generation signal input via the communication line 29 to the information center 30.
  • step S105 of FIG. 5 If the seismic control device 26 determines NO in step S105 of FIG. 5, it proceeds to step S110 of FIG. 5 and outputs a low acceleration detection signal to the control device 25.
  • the control device 25 outputs the input low acceleration detection signal to the monitoring device 28.
  • the monitoring device 28 transmits a low acceleration detection signal to the information center 30 via the communication line 29.
  • the control device 25 causes the control device 25 to execute the automatic diagnosis operation, and the result is transmitted to the information center 30. Further, when the monitoring device 28 receives the automatic recovery command from the information center 30 in step S112 of FIG. 5, the monitoring device 28 outputs the automatic recovery command to the control device 25 to automatically recover the elevator 20.
  • the elevator 20 installed in the E building 75 does not detect the high acceleration exceeding the operation suspension threshold, but transmits the low acceleration detection signal to the information center 30, and the other A building 71 to D building 74.
  • Each elevator 20 installed in the F building 76 to the H building 78 detects a high acceleration exceeding the operation suspension threshold, and transmits the high acceleration detection signal and the operation suspension signal to the information center 30.
  • step S201 of FIG. 6 the server 31 of the information center 30 waits until the high acceleration detection signal and the operation suspension signal are received from the monitoring device 28 of each elevator 20 installed in each building 71 to 78. ing. Then, when the server 31 receives the high acceleration detection signal and the operation suspension signal from the elevators 20 installed in the A building 71 to the D building 74 and the F building 76 to the H building 78, in step S201 of FIG. If YES, the process proceeds to step S202 of FIG. Then, in step S202 of FIG. 6, the server 31 transmits the high acceleration detection signal and the operation suspension signal received via the in-house line 59 to the business establishment 50 as shown in FIG. Further, when the server 31 of the information center 30 receives the confinement generation signal from the monitoring device 28 of the elevator 20, the confinement generation signal is transmitted to the business establishment 50 in step S202 of FIG.
  • step S301 of FIG. 7 the terminal 51 of the business establishment 50 waits until the high acceleration detection signal and the operation suspension signal are received from the information center 30. Then, if the terminal 51 determines YES in step S301 of FIG. 7, the terminal 51 proceeds to step S302 of FIG. 7, and the elevator 20 that transmits the high acceleration detection signal and the operation suspension signal of the district 70 under its jurisdiction is installed.
  • the position information of the building 71 to D building 74 and the F building 76 to H building 78 is output to the drone operation device 52.
  • the drone operating device 52 sets the flight route 79 based on the position information between the A building 71 to the D building 74 and the F building 76 to the H building 78 input in step S302 of FIG. Then, the drone operating device 52 transmits the drone 60 as shown in step S303 and FIG. 2 of FIG.
  • the drone 60 flies around the A building 71 to the D building 74 and the F building 76 to the H building 78 along the set flight route 79, and becomes the A building 71 to the D building 74.
  • the damage situation of F building 76 to H building 78 and the damage situation of the transportation infrastructure in the district 70 are photographed and transmitted to the information center 30 as a damage situation image.
  • the disaster situation image may be a moving image or a still image.
  • the drone 60 does not fly around the E building 75 to which the high acceleration detection signal and the operation suspension signal are not transmitted from the elevator 20.
  • the communication unit 32 of the server 31 of the information center 30 receives the damage situation image transmitted by the drone 60 and stores it in the damage situation image database 48.
  • the disaster status determination unit 41 of the server 31 refers to the elevator attribute database 45, the map database 46, the normal image database 47, and the disaster status image database 48, and refers to the buildings A 71 to D.
  • the damage status of the building 74 and the F building 76 to the H building 78 and the damage status of the transportation infrastructure in the district 70 are determined.
  • the disaster situation determination unit 41 reads out the normal image including the image of the A building 71 in normal time and the image of the traffic infrastructure around it from the normal image database 47. Further, the disaster situation determination unit 41 reads out the disaster situation image including the image of the damage situation of the A building 71 after the earthquake and the image of the damage situation of the transportation infrastructure around the disaster situation image database 48. Then, the disaster status determination unit 41 determines the damage status of the transportation infrastructure in and around the A building 71 by comparing the normal image and the disaster status image.
  • the disaster situation determination unit 41 compares the normal image of the B building 72 to D building 74, the F building 76 to H building 78 and its surroundings with the disaster situation image, and sets the B building 72 to D building 74. , The damage situation of F building 76 to H building 78, and the damage situation of the transportation infrastructure around it are determined.
  • the damage situation determination unit 41 cannot reach the B building 72 because the surrounding roads cannot pass through the B building 72, the D building 74 is in a half-destroyed state, and the other A building 71 and C building 73. , F building 76 to H building 78 are judged not to be damaged. Then, the disaster situation determination unit 41 outputs the determination result to the primary corresponding building extraction unit 42.
  • the primary correspondence building extraction unit 42 extracts the primary correspondence building for which the engineers 53 and 54 are heading for the primary correspondence.
  • the primary response building extraction unit 42 was determined to be non-damaged, excluding the D building 74, which was determined to be damaged by the damage status determination unit 41, and the B building 72, which was determined to be unreachable due to the damage to the transportation infrastructure. Extracted as A building 71, C building 73, F building 76 to H building 78 primary correspondence building.
  • the primary correspondence building extraction unit 42 outputs the primary correspondence building information to the priority primary correspondence building extraction unit 43, the movement route setting unit 44, and the communication unit 32.
  • the priority primary response building extraction unit 43 is confined from each elevator 20 installed in the A building 71, the C building 73, and the F building 76 to the H building 78 extracted as the primary response building in step S206 of FIG. Determine if a signal is being transmitted. If the priority primary correspondence building extraction unit 43 determines YES in step S205 of FIG. 6, the priority primary correspondence building extraction unit 43 extracts the building as the priority primary correspondence building in step S207 of FIG. As shown in FIG. 3, since confinement has occurred in the C building 73 and the H building 78, the priority primary corresponding building extraction unit 43 extracts the C building 73 and the H building 78 as the priority primary corresponding building. Then, the priority primary correspondence building extraction unit 43 outputs the priority primary correspondence building information to the movement route setting unit 44 and the communication unit 32.
  • step S208 of FIG. 6 the movement route setting unit 44 acquires the input primary correspondence building information, priority primary correspondence building information, and road traffic information center 65 while referring to the elevator attribute database 45 and the map database 46. From the road traffic information of the district 70 and the railway operation information of the district 70 acquired from the railway operation information center 66, the movement route from the primary response building or the priority primary response building to another primary response building or another priority primary response building. To set.
  • the movement route setting unit 44 assigns a priority of primary correspondence based on the use of each building 10 and sets a movement route based on the priority. You may.
  • the travel time between each building is calculated and the travel time is minimized. You may set a route.
  • the movement route setting unit 44 sets two movement routes, a first route and a second route.
  • the movement route setting unit 44 together with the first route and the second route, first heads for the priority primary response building, and then the primary response.
  • the priority for visiting the primary building is set in the order of hospital, public institution, commercial facility, office building, and housing.
  • the order of going around the primary correspondence building may be made to go around sequentially from the vicinity of the priority primary correspondence building, or a route with the shortest travel time may be set by a combination of these.
  • the movement route setting unit 44 first goes to the C building 73, which is the priority primary correspondence building, and then goes to the A building 71, which is the nearby primary correspondence building, and returns to the office 50. Set as the first route.
  • the movement route setting unit 44 first goes to the H building 78, which is the priority primary response building, then to the F building 76, which has the highest priority hospital among the primary response buildings, and then to the commercial facility.
  • the route that goes around the G building 77 and returns to the office 50 is set as the second route. Then, the set movement route information is output to the communication unit 32.
  • the communication unit 32 transmits the input primary correspondence building information, priority primary correspondence building information, and movement route information to the business establishment 50 and the mobile terminals 55 of the engineers 53 and 54 in step S209 of FIG. do.
  • step S304 of FIG. 7 the terminal 51 of the business establishment 50 displays the primary correspondence building information, the priority primary correspondence building information, and the movement route information from the information center 30 on the display of the terminal 51.
  • step S305 of FIG. 7 the business establishment 50 heads to the site on the first route and the second route based on the primary response building information input from the information center 30, the priority primary response building information, and the movement route information. Select engineers 53 and 54 and dispatch engineers 53 and 54 to the site.
  • the engineer 53 first heads for the C building 73, then goes around the A building 71 and returns to the office 50 according to the first route. Further, the technician 54 first heads for the H building 78 according to the second route, then goes around the F building 76 and the G building 77 and returns to the office 50. Further, the engineers 53 and 54 may go around the priority primary corresponding building and the primary corresponding building while receiving the information from the information center 30 by the mobile terminal 55.
  • step S401 of FIG. 8 the engineers 53 and 54 arriving at the elevators 20 installed in the A building 71, the C building 73, and the F building 76 to the H building 78 are as shown in step S401 of FIG. If it is determined whether the building is a priority primary corresponding building and YES is determined in step S401 of FIG. 8, the process proceeds to step S402 of FIG. 8 to release the confinement.
  • the confinement opening for example, the door may be opened from the outside of the car 21 of the elevator 20 with a key, and the passengers may be unloaded from the car 21 to unload the passengers. If there is a large step between the floor of the car 21 and the floor of the landing floor, release the brake and move the car 21 up and down to eliminate the step, then open the door with the key and passengers. May be removed from the basket 21.
  • the engineers 53 and 54 proceed to step S403 in FIG. 8 to inspect each part of the elevator 20 and determine whether the elevator 20 can be restored. Then, if the engineers 53 and 54 determine YES in step S403 of FIG. 8, they reset the control device 25 and the earthquake detector 27 as shown in steps S404 and S405 of FIG. As a result, the restoration work of the elevator 20 is completed as shown in step S406 of FIG.
  • the restoration work time of the engineers 53 and 54 in each elevator 20 is about 30 to 40 minutes.
  • the engineers 53 and 54 perform completion registration from the mobile terminal 55 to the information center 30 and move to the next building 10.
  • step S403 of FIG. the restoration work is completed without resetting the control device 25 and the earthquake detector 27, and the user moves to the next building 10.
  • the information center 30 transmits an automatic diagnosis operation command signal and an automatic recovery command signal to the elevator 20 installed in the E building 75 that has transmitted the low acceleration detection signal to the information center 30. Based on this command, the elevator 20 performs automatic diagnosis operation and automatic recovery as shown in steps S111 and S112 of FIG.
  • the engineers 53, 54 are based on the damage situation image received from the drone 60 by the information center 30.
  • the primary response building to be dispatched is extracted and transmitted to the business establishment 50 or the mobile terminal 55 of the engineers 53 and 54.
  • the engineers 53 and 54 patrol only the buildings 10 capable of primary response, and do not need to patrol the damaged buildings 10 and the unreachable buildings 10, reducing the loss of travel time and efficiently.
  • the operation of the elevator 20 can be restarted.
  • the damage status of the traffic infrastructure of the building 10 and the district 70 is determined by comparing the damage status image received from the drone 60 with the normal image of the building 10 and the district 70 in normal times. Therefore, it is possible to determine the damage situation in a short time by a simple method.
  • the building 10 in which the elevator 20 in which the confinement has occurred is extracted as the priority primary response building, and the engineers 53 and 54 are preferentially dispatched, so that the time is short. It is possible to open the confinement.
  • the information center 30 sets a movement route from the building 10 to another building 10 and transmits it to the business establishment 50 and the engineers 53, 54 to support the engineers 53, 54. Therefore, the engineers 53 and 54 can efficiently patrol the building 10 in which the elevator 20 that needs to be inspected is installed.
  • the movement route setting unit 44 first goes to the C building 73, which is a high-priority public institution, for the C building 73, which has a public institution, which is a priority primary response building, and the H building 78, which is an office building.
  • the route is set so as to go to the H building 78, which is an office building.
  • the route is set so as to go to the F building 76 with the high priority hospital first.
  • the route is set so as to go to the G building 77, which has a short travel distance from the F building 76, and then to the A building 71.
  • the seismic control device 26 of the elevator 20 described above includes an earthquake detector 27 that detects the acceleration of the ground surface, and suspends the operation when the seismic detector 27 detects a high acceleration exceeding the operation suspension threshold.
  • the elevator 20 transmits a high acceleration detection signal and an operation suspension signal
  • the present invention is not limited to this. For example, using a seismic intensity meter that converts the acceleration detected by the earthquake detector 27 into seismic intensity and outputs it, when the seismic detector 27 detects a high seismic intensity exceeding the operation suspension threshold, the operation is suspended and a high acceleration detection signal is used.
  • the operation suspension signal may be transmitted.

Abstract

This elevator system 100 comprises: an elevator 20 including an earthquake detector 27, an information center 30, an office 50, and a drone 60 equipped with a camera 61, wherein: the elevator 20 pauses the operation when the earthquake detector 27 detects high acceleration and transmits a high acceleration detection signal and an operation pausing signal; when receiving the high acceleration detection signal and the operation pausing signal, the office 50 allows the drone 60 to fly toward a building 10 where the elevator 20 is installed; the drone 60 transmits, to the information center 30, a disaster situation image obtained by photographing a disaster situation of the building 10 and a disaster situation of a transportation infrastructure in a district 70; the drone 60 transmits, to the information center 30, the disaster situation image obtained by photographing the disaster situation of the building 10 and the disaster situation of the transportation infrastructure in the district 70; and the information center 30 determines the disaster situations of the building 10 and the district 70 on the basis of the disaster situation image received from the drone 60, extracts a primary response building, to which a technician is dispatched, from the building 10, and transmits the extracted information to the office 50 and a portable terminal 55 of the technician 54.

Description

エレベーターシステムElevator system
 本発明は、エレベーターシステム、特に、地震発生の際にエレベーターの復旧作業を行う技術者を支援するエレベーターシステムに関する。 The present invention relates to an elevator system, particularly an elevator system that assists a technician who performs elevator restoration work in the event of an earthquake.
 災害が発生した際に災害地の現地情報を取得する先遣隊と、先遣隊が取得した現地情報に基づいて、災害活動が必要な活動地点を特定するとともに、活動地点までの移動ルートを算出して、災害活動を行う後発隊の携帯端末に送信する災害活動支援システムが提案されている(例えば、特許文献1参照)。 Based on the advance team that acquires local information on the disaster area when a disaster occurs and the local information acquired by the advance team, identify the activity points that require disaster activities and calculate the travel route to the activity points. Therefore, a disaster activity support system has been proposed in which a disaster activity support system is transmitted to a mobile terminal of a latecomer who carries out a disaster activity (see, for example, Patent Document 1).
 また、災害発生時にヘリコプターで災害が発生した地区の地上の画像を取得し、取得した画像と平常時の画像とから災害によって変異した部位の三次元座標を取得し、被災構造物を特定する方法が提案されている(例えば、特許文献2参照)。 In addition, a method of acquiring the ground image of the area where the disaster occurred by a helicopter at the time of the disaster, acquiring the three-dimensional coordinates of the part mutated by the disaster from the acquired image and the image in normal times, and identifying the damaged structure. Has been proposed (see, for example, Patent Document 2).
特開2013-134663号公報Japanese Unexamined Patent Publication No. 2013-134663 国際出願公開第2013/051300号パンフレットInternational Application Publication No. 2013/051300 Pamphlet
 ところで、エレベーターは、地震時にP波センサが動作すると最寄階に自動停止してドアを開放して乗客を降ろした後に、自動診断運転を行い、異常がなければ自動復旧して運転再開してエレベーターが運転停止しないようにしている場合が多い。しかし、P波の後に来るS波による地表面の加速度が高い場合には、安全のために一旦運転を休止し、技術者の点検後に運転を再開することとなっている。従って、S波による地表面の加速度が高い場合には、必ず、技術者によるエレベーターの点検が必要となる。 By the way, when the P wave sensor operates during an earthquake, the elevator automatically stops on the nearest floor, opens the door, drops passengers, and then performs automatic diagnostic operation. If there are no abnormalities, the elevator automatically recovers and resumes operation. In many cases, the elevator does not stop operating. However, when the acceleration of the ground surface due to the S wave coming after the P wave is high, the operation is temporarily suspended for safety and restarted after the inspection by the technician. Therefore, when the acceleration of the ground surface due to the S wave is high, it is necessary to inspect the elevator by a technician.
 このため、多くのエレベーターで地表面の高い加速度が検知された場合には、技術者が多くのエレベーターを効率的に巡回点検して、短時間にエレベーターの運転を再開させる必要がある。 For this reason, when high acceleration on the ground surface is detected in many elevators, it is necessary for engineers to efficiently patrol and inspect many elevators and restart the operation of the elevators in a short time.
 しかし、地表面の高い加速度が検知された場合には、エレベーターが設置されている建物が被災しており、エレベーターの点検を行えない場合や、エレベーターを点検しても運転を再開できない場合がある。また、建物への道路や橋等の交通インフラが被災しており、エレベーターが設置されている建物までたどり着けない場合がある。 However, if high acceleration on the ground surface is detected, the building where the elevator is installed may be damaged and the elevator may not be inspected, or even if the elevator is inspected, operation may not be resumed. .. In addition, transportation infrastructure such as roads and bridges to buildings may be damaged, and it may not be possible to reach the building where the elevator is installed.
 この場合、エレベーターの点検、復旧を行う技術者は、どの建物が被災しているか、どのような交通インフラが被災しているのかわからず、どの建物のエレベーターから点検すればよいのかわからない場合がある。このため、建物間の移動時間の無駄が発生し、効率的にエレベーターの運転を再開することが困難となる場合があった。 In this case, the technician who inspects and restores the elevator may not know which building is damaged, what kind of transportation infrastructure is damaged, and which building's elevator should be inspected. .. For this reason, it may be difficult to efficiently restart the operation of the elevator due to waste of travel time between buildings.
 そこで、本発明は、地震により地表面の高い加速度が検知された場合に、エレベーターの復旧作業を行う技術者を支援して効率的にエレベーターの運転を再開させることを目的とする。 Therefore, an object of the present invention is to support an engineer who performs restoration work of an elevator when a high acceleration of the ground surface is detected due to an earthquake, and to efficiently restart the operation of the elevator.
 本発明のエレベーターシステムは、地表面の加速度を検知する地震検知器を備えるエレベーターと、前記エレベーターと接続されて前記エレベーターを監視する情報センタと、前記情報センタと接続され、地震発生時に前記エレベーターの復旧作業を行う技術者の勤務する事業所と、前記事業所に配備された自律飛行可能でカメラを搭載した無人飛行体と、を含むエレベーターシステムであって、前記エレベーターは、前記地震検知器が運転休止閾値を超える高加速度又は高震度を検知した際に運転を休止し、高加速度検知信号と運転休止信号とを発信し、前記事業所は、前記エレベーターが発信した前記高加速度検知信号と前記運転休止信号とを受信した際に、前記事業所が管轄する地区の前記高加速度検知信号と前記運転休止信号とを発信した前記エレベーターが設置されている建物に向けて前記無人飛行体を飛行させ、前記無人飛行体は、前記建物の被災状況と前記地区の交通インフラの被災状況とを撮影した被災状況画像を前記情報センタに送信し、前記情報センタは、前記無人飛行体から受信した前記被災状況画像に基づいて前記建物と前記地区の前記交通インフラの被災状況を判定し、前記建物の中から前記技術者を出動させる一次対応建物を抽出して前記事業所と前記技術者の携帯端末とのいずれか一方又は両方に送信すること、を特徴とする。 The elevator system of the present invention includes an elevator provided with an earthquake detector that detects acceleration on the ground surface, an information center that is connected to the elevator to monitor the elevator, and an information center that is connected to the information center and is connected to the elevator when an earthquake occurs. An elevator system that includes a business establishment where a technician who performs restoration work works, and an unmanned vehicle equipped with a camera that is capable of autonomous flight and is deployed at the business establishment. The elevator is equipped with the earthquake detector. When a high acceleration or high seismic intensity exceeding the operation suspension threshold is detected, the operation is suspended and a high acceleration detection signal and an operation suspension signal are transmitted. When the operation suspension signal is received, the unmanned vehicle is made to fly toward the building where the elevator that transmits the high acceleration detection signal and the operation suspension signal in the area under the jurisdiction of the business establishment is installed. , The unmanned air vehicle transmits a damage situation image of the damage situation of the building and the damage situation of the traffic infrastructure in the district to the information center, and the information center receives the damage from the unmanned air vehicle. Based on the situation image, the damage situation of the building and the transportation infrastructure in the district is determined, and the primary response building for dispatching the engineer is extracted from the building, and the office and the mobile terminal of the engineer are used. It is characterized by transmitting to either one or both of the above.
 このように、地震により地表面の高い加速度が検知された場合に、情報センタが無人飛行体から受信した被災状況画像に基づいて技術者を出動させる一次対応建物を抽出して事業所又は技術者の携帯端末に送信するので、技術者は、一次対応が可能な建物のみを巡回することができる。これにより、技術者を支援して効率的にエレベーターの運転を再開させることができる。 In this way, when a high acceleration on the ground surface is detected due to an earthquake, the information center extracts the primary response building that dispatches the technician based on the damage situation image received from the unmanned aircraft, and the office or technician. Since it is sent to the mobile terminal of the technician, the technician can patrol only the buildings that can be used for the primary response. As a result, it is possible to assist the technician and efficiently restart the operation of the elevator.
 本発明のエレベーターシステムにおいて、前記情報センタは、前記無人飛行体から受信した前記被災状況画像と平常時の前記建物と前記地区との平常時画像とを対比して前記建物と前記地区の前記交通インフラの被災状況を判定してもよい。 In the elevator system of the present invention, the information center compares the disaster situation image received from the unmanned vehicle with the normal image of the building and the district in normal times, and the traffic in the building and the district. You may judge the damage situation of the infrastructure.
 このように、被災状況画像と平常時画像とを対比して建物と交通インフラの被災状況を判定するので、簡便な方法で短時間に被災状況の判定を行うことができる。 In this way, since the damage situation of the building and the transportation infrastructure is judged by comparing the damage situation image and the normal time image, the damage situation can be judged in a short time by a simple method.
 本発明のエレベーターシステムにおいて、前記エレベーターは、運転を休止した際に閉じ込めが発生した場合には閉じ込め発生信号を前記情報センタに発信し、前記情報センタは、抽出した前記一次対応建物の中から閉じ込めが発生した前記エレベーターが設置されている建物を優先一次対応建物として抽出して前記事業所と前記技術者の携帯端末とのいずれか一方又は両方に送信してもよい。 In the elevator system of the present invention, the elevator transmits a confinement generation signal to the information center when confinement occurs when the operation is stopped, and the information center confinees from the extracted primary corresponding building. The building in which the elevator is installed may be extracted as a priority primary response building and transmitted to either or both of the business establishment and the mobile terminal of the engineer.
 これにより、技術者は閉じ込めが発生したエレベーターが設置されている建物を優先的に巡回して効率的に閉じ込めの解消を行うことができる。 As a result, the technician can preferentially patrol the building where the elevator where the confinement has occurred and efficiently eliminate the confinement.
 本発明のエレベーターシステムにおいて、前記情報センタは、道路交通情報及び鉄道運行情報から前記一次対応建物又は前記優先一次対応建物から他の前記一次対応建物又は他の前記優先一次対応建物への移動ルートを設定して前記事業所と前記技術者の携帯端末とのいずれか一方又は両方に送信してもよい。 In the elevator system of the present invention, the information center provides a movement route from the primary response building or the priority primary response building to another primary response building or another priority primary response building from road traffic information and railway operation information. It may be set and transmitted to either or both of the business establishment and the mobile terminal of the technician.
 このように、情報センタが建物から他の建物への移動ルートを設定して事業所又は技術者に送信するので、技術者は効率的に点検の必要なエレベーターが設置されている建物を巡回することができる。 In this way, the information center sets the movement route from one building to another and sends it to the office or the technician, so that the technician efficiently patrols the building where the elevator that needs inspection is installed. be able to.
 本発明のエレベーターシステムにおいて、前記情報センタは、前記一次対応建物と前記優先一次対応建物がそれぞれ複数ある場合に、各建物の用途に基づいて一次対応の優先順位をつけ、前記優先順位に基づいて前記一次対応建物又は前記優先一次対応建物から他の前記一次対応建物又は他の前記優先一次対応建物への前記移動ルートを設定して前記事業所と前記技術者の携帯端末とのいずれか一方又は両方に送信してもよい。 In the elevator system of the present invention, when there are a plurality of the primary response building and the priority primary response building, the information center prioritizes the primary response based on the use of each building, and based on the priority. Set the movement route from the primary correspondence building or the priority primary correspondence building to the other primary correspondence building or the other priority primary correspondence building, and either one of the business establishment and the mobile terminal of the technician or You may send to both.
 これにより、多くの建物を効率的に巡回して効率的に閉じ込めの開放、エレベーターの復旧を行うことができる。 This makes it possible to efficiently patrol many buildings, efficiently open the confinement, and restore the elevator.
 本発明は、地震により地表面の高い加速度が検知された場合に、エレベーターの復旧作業を行う技術者を支援して効率的にエレベーターの運転を再開させることができる。 The present invention can efficiently restart the operation of the elevator by assisting the technician who performs the restoration work of the elevator when a high acceleration of the ground surface is detected due to an earthquake.
実施形態のエレベーターシステムの構成を示す系統図である。It is a system diagram which shows the structure of the elevator system of an embodiment. 実施形態のエレベーターシステムにおいて、地震発生時のエレベーターから発信される信号の流れを示す説明図である。It is explanatory drawing which shows the flow of the signal transmitted from the elevator at the time of an earthquake in the elevator system of embodiment. 実施形態のエレベーターシステムにおいて、飛行中のドローンから送信される画像と道路交通情報センタと鉄道運行情報センタとから入力される情報との流れを示す説明図である。It is explanatory drawing which shows the flow of the image transmitted from the drone in flight, and the information input from a road traffic information center and a railroad operation information center in the elevator system of embodiment. 実施形態のエレベーターシステムにおいて、情報センタから発信される情報の流れを示す説明図である。It is explanatory drawing which shows the flow of the information transmitted from the information center in the elevator system of embodiment. 実施形態のエレベーターシステムのエレベーターの動作を示すフローチャートである。It is a flowchart which shows the operation of the elevator of the elevator system of embodiment. 実施形態のエレベーターシステムの情報センタの動作を示すフローチャートである。It is a flowchart which shows the operation of the information center of the elevator system of embodiment. 実施形態のエレベーターシステムの事業所の動作を示すフローチャートである。It is a flowchart which shows the operation of the establishment of the elevator system of embodiment. 実施形態のエレベーターシステムにおいて、技術者が行うエレベーターの復旧動作を示すフローチャートである。It is a flowchart which shows the restoration operation of the elevator performed by the technician in the elevator system of embodiment.
 以下、図面を参照しながら実施形態のエレベーターシステム100について説明する。エレベーターシステム100は、エレベーター20と、エレベーター20と接続された情報センタ30と、情報センタ30と接続された事業所50と、ドローン60とで構成されている。事業所50は、管轄する地区70の建物10に設置されているエレベーター20のメンテナンスや地震発生時の復旧作業を行う技術者53,54が勤務するビルである。事業所50の管轄する地区70には複数の建物10と複数のエレベーター20とが設置されているが、図1では、建物10、エレベーター20はそれぞれ一つずつ図示し、他の建物10、エレベーター20の図示は省略する。 Hereinafter, the elevator system 100 of the embodiment will be described with reference to the drawings. The elevator system 100 includes an elevator 20, an information center 30 connected to the elevator 20, a business establishment 50 connected to the information center 30, and a drone 60. The business establishment 50 is a building where engineers 53 and 54 who perform maintenance of the elevator 20 installed in the building 10 of the district 70 under the jurisdiction and restoration work in the event of an earthquake work. A plurality of buildings 10 and a plurality of elevators 20 are installed in the district 70 under the jurisdiction of the business establishment 50. In FIG. 1, one building 10 and one elevator 20 are shown, and the other building 10 and the elevator are shown. The illustration of 20 is omitted.
 図1に示すように、エレベーター20は、事務所ビル、商業ビル、マンション、病院、学校等の建物10の中の昇降路12の中に設置されている。エレベーター20は、かご21と、錘22と、ロープ23と、駆動装置24と、制御装置25と、地震管制装置26と、監視装置28とを備えている。 As shown in FIG. 1, the elevator 20 is installed in a hoistway 12 in a building 10 such as an office building, a commercial building, a condominium, a hospital, or a school. The elevator 20 includes a car 21, a weight 22, a rope 23, a drive device 24, a control device 25, an earthquake control device 26, and a monitoring device 28.
 乗客が乗るかご21は、ロープ23で錘22と接続されており、ロープ23は駆動装置24に巻き掛けられている。駆動装置24が回転するとロープ23が上下に動いてかご21が上下動する。駆動装置24、かご21は、昇降路12の中に設置された制御装置25に接続されている。制御装置25は、駆動装置24を駆動してかご21を上下方向に移動させるとともに、かご21のドアと昇降路12の壁に取付けられている乗り場階のドアとを開閉させる。このように、制御装置25はエレベーター20の運行制御を行う。 The car 21 on which passengers ride is connected to the weight 22 by a rope 23, and the rope 23 is wound around the drive device 24. When the drive device 24 rotates, the rope 23 moves up and down, and the car 21 moves up and down. The drive device 24 and the car 21 are connected to the control device 25 installed in the hoistway 12. The control device 25 drives the drive device 24 to move the car 21 in the vertical direction, and opens and closes the door of the car 21 and the door of the landing floor attached to the wall of the hoistway 12. In this way, the control device 25 controls the operation of the elevator 20.
 昇降路12の中には、地震管制装置26と、監視装置28とが設置されている。地震管制装置26は、内部にP波センサ27pとS波センサ27sの2つの地表面の加速度を検知する加速度センサが内蔵された地震検知器27を備えている。地震管制装置26は、地震検知器27で地震を検知すると、エレベーター20のかご21を自動的に最寄階に停止させる指令を制御装置25に出力する。監視装置28は、制御装置25に接続されて、制御装置25からエレベーター20の運行情報を取得するとともに、制御装置25を介して地震管制装置26の地震検知器27が検知した地震検知情報を取得する。また、監視装置28は、通信回線29を介して情報センタ30と接続されており、制御装置25から取得した運行情報や地震検知器27から取得した地震検知情報を情報センタ30に送信する。また、監視装置28は、地震発生時には、情報センタ30からの指令に基づいて制御装置25にエレベーター20の自動診断運転、自動復旧を実行させる指令を出力する。 An earthquake control device 26 and a monitoring device 28 are installed in the hoistway 12. The seismic control device 26 includes an earthquake detector 27 having a built-in acceleration sensor that detects accelerations on two ground surfaces, a P wave sensor 27p and an S wave sensor 27s. When the earthquake control device 26 detects an earthquake with the earthquake detector 27, the seismic control device 26 automatically outputs a command to the control device 25 to stop the car 21 of the elevator 20 to the nearest floor. The monitoring device 28 is connected to the control device 25 and acquires the operation information of the elevator 20 from the control device 25, and also acquires the earthquake detection information detected by the earthquake detector 27 of the seismic control device 26 via the control device 25. do. Further, the monitoring device 28 is connected to the information center 30 via the communication line 29, and transmits the operation information acquired from the control device 25 and the earthquake detection information acquired from the earthquake detector 27 to the information center 30. Further, when an earthquake occurs, the monitoring device 28 outputs a command to the control device 25 to execute automatic diagnosis operation and automatic recovery of the elevator 20 based on a command from the information center 30.
 情報センタ30は、情報処理を行うサーバ31と、サーバ31とLAN回線38で接続された監視盤37とで構成され、エレベーター20と接続されてエレベーター20を監視する。 The information center 30 is composed of a server 31 that processes information, a monitoring board 37 connected to the server 31 by a LAN line 38, and is connected to the elevator 20 to monitor the elevator 20.
 サーバ31は、通信部32と、エレベーター監視部33と、被災状況判定部41と、一次対応建物抽出部42と、優先一次対応建物抽出部43と、移動ルート設定部44と、エレベーター属性データベース45と、地図データベース46と、平常時画像データベース47と、被災状況画像データベース48の各機能ブロックを含んでいる。 The server 31 includes a communication unit 32, an elevator monitoring unit 33, a damage status determination unit 41, a primary response building extraction unit 42, a priority primary response building extraction unit 43, a movement route setting unit 44, and an elevator attribute database 45. It includes each functional block of the map database 46, the normal image database 47, and the disaster situation image database 48.
 通信部32は、電話回線或いはインターネット等の通信回線29を介してエレベーター20の監視装置28と、ドローン60と、道路交通情報センタ65と、鉄道運行情報センタ66と、技術者54の携帯端末55と接続されており、これらの機器、装置との間でデータの授受を行う。また、通信部32は、エレベーター監視部33と、一次対応建物抽出部42と、優先一次対応建物抽出部43と、移動ルート設定部44と、被災状況画像データベース48と接続されており、これらの各機能ブロックとの間でデータの授受を行う。 The communication unit 32 includes a monitoring device 28 for an elevator 20, a drone 60, a road traffic information center 65, a railway operation information center 66, and a mobile terminal 55 of an engineer 54 via a communication line 29 such as a telephone line or the Internet. It is connected to and exchanges data with these devices and devices. Further, the communication unit 32 is connected to the elevator monitoring unit 33, the primary response building extraction unit 42, the priority primary response building extraction unit 43, the movement route setting unit 44, and the disaster status image database 48. Data is exchanged with each functional block.
 エレベーター監視部33は、通信回線29を介してエレベーター20の監視装置28からエレベーター20の運行情報や地震検知情報を取得してエレベーター属性データベース45を参照しながら監視盤37に出力する。エレベーター20の運行情報や地震検知情報は、監視盤37のディスプレイ34に表示される。情報センタ30に勤務している監視員39は、ディスプレイ34に表示されるエレベーター20の運行状態を監視し、必要な場合には、キーボード35、マウス36等を操作してエレベーター20の指令を送信する。 The elevator monitoring unit 33 acquires operation information and earthquake detection information of the elevator 20 from the monitoring device 28 of the elevator 20 via the communication line 29, and outputs the information to the monitoring panel 37 while referring to the elevator attribute database 45. The operation information of the elevator 20 and the earthquake detection information are displayed on the display 34 of the monitoring panel 37. The observer 39 working at the information center 30 monitors the operating status of the elevator 20 displayed on the display 34, and if necessary, operates the keyboard 35, the mouse 36, etc. to transmit the command of the elevator 20. do.
 地図データベース46は、事業所50が管轄する地区70の建物10の配置や道路の配置を示す地図データを格納したデータベースである。 The map database 46 is a database that stores map data showing the layout of buildings 10 and the layout of roads in the district 70 under the jurisdiction of the business establishment 50.
 エレベーター属性データベース45は、エレベーター20の管理番号、機種、製造日、製造番号、設置されている建物10の住所、名称、用途等を関連付けて格納したデータベースである。 The elevator attribute database 45 is a database that stores the control number, model, date of manufacture, serial number, address, name, purpose, etc. of the building 10 installed in the elevator 20 in association with each other.
 平常時画像データベース47は、地震のない平常時にドローン60を事業所50が管轄する地区70の建物10の周辺に飛行させて、建物10、及び周囲の交通インフラの状況を撮影したデータが格納されているデータベースである。平常時の画像データは、撮影時間と、撮影場所と、撮影した画像データとを関連付けて格納されている。 The normal image database 47 stores data in which the drone 60 is flown around the building 10 in the district 70 under the jurisdiction of the business establishment 50 in normal times without an earthquake, and the state of the building 10 and the surrounding transportation infrastructure is photographed. It is a database that is being used. The image data in normal times is stored in association with the shooting time, the shooting location, and the shot image data.
 被災状況画像データベース48は、地震発生時にドローン60を飛行させて、建物10、及び周囲の交通インフラの被災状況を撮影したデータが格納されているデータベースである。被災状況の画像データは、撮影時間と、撮影場所と、撮影した画像データとを関連付けて格納されている。 The disaster situation image database 48 is a database in which data obtained by flying a drone 60 in the event of an earthquake and photographing the damage situation of the building 10 and the surrounding transportation infrastructure is stored. The image data of the disaster situation is stored in association with the shooting time, the shooting location, and the shot image data.
 被災状況判定部41は、エレベーター属性データベース45と、地図データベース46と、平常時画像データベース47と、被災状況画像データベース48を参照しながら、事業所50の管轄する地区70の建物10の被災状況とその地区70の交通インフラの被災状況の判定を行い、結果を一次対応建物抽出部42に出力する。 The damage status determination unit 41 refers to the elevator attribute database 45, the map database 46, the normal image database 47, and the damage status image database 48, and determines the damage status of the building 10 in the district 70 under the jurisdiction of the business establishment 50. The damage status of the transportation infrastructure in the district 70 is determined, and the result is output to the primary response building extraction unit 42.
 一次対応建物抽出部42は、被災状況判定部41で被災ありと判断された建物10、或いは、交通インフラの被災により到達不可と判断された建物10を除外して、技術者53,54が一次対応を行う建物10を抽出する。そして、一次対応建物抽出部42は、一次対応建物情報を優先一次対応建物抽出部43と移動ルート設定部44と通信部32とに出力する。 The primary response building extraction unit 42 excludes the building 10 determined to be damaged by the damage status determination unit 41 or the building 10 determined to be unreachable due to the damage to the transportation infrastructure, and the engineers 53 and 54 are primary. Extract the building 10 to be dealt with. Then, the primary correspondence building extraction unit 42 outputs the primary correspondence building information to the priority primary correspondence building extraction unit 43, the movement route setting unit 44, and the communication unit 32.
 ここで、一次対応とは、技術者53,54がエレベーター20の各部を点検し、復旧可能か判断し、復旧可能と判断した場合に、制御装置25と地震検知器27とをリセットしてエレベーター20の運行再開させる対応をいう。従って、一次対応では、部品交換の必要がある修理、復旧対応は行わない。 Here, the primary response is that the engineers 53 and 54 inspect each part of the elevator 20, determine whether it can be restored, and if it is determined that it can be restored, reset the control device 25 and the earthquake detector 27 to make the elevator. It means the correspondence to restart the operation of 20. Therefore, in the primary response, repairs and restorations that require parts replacement will not be performed.
 優先一次対応建物抽出部43は、一次対応建物抽出部42が抽出した一次対応建物の内、閉じ込めが発生しているエレベーター20が設置されている建物10を優先一次対応建物として抽出する。そして、優先一次対応建物抽出部43は、優先一次対応建物情報を移動ルート設定部44と通信部32とに出力する。 The priority primary response building extraction unit 43 extracts the building 10 in which the elevator 20 in which the confinement has occurred is installed as the priority primary response building from the primary response buildings extracted by the primary response building extraction unit 42. Then, the priority primary correspondence building extraction unit 43 outputs the priority primary correspondence building information to the movement route setting unit 44 and the communication unit 32.
 移動ルート設定部44は、エレベーター属性データベース45と地図データベース46を参照しながら、一次対応建物情報と、優先一次対応建物情報と、道路交通情報センタ65から取得した道路交通情報と、鉄道運行情報センタ66から取得した鉄道運行情報とに基づいて、技術者53,54の建物10から他の建物10への移動ルートを設定し、移動ルート情報を通信部32に出力する。 The movement route setting unit 44 refers to the elevator attribute database 45 and the map database 46, and refers to the primary correspondence building information, the priority primary correspondence building information, the road traffic information acquired from the road traffic information center 65, and the railway operation information center. Based on the railway operation information acquired from 66, the movement route from the building 10 of the engineers 53 and 54 to the other building 10 is set, and the movement route information is output to the communication unit 32.
 サーバ31は、内部に情報処理を行うプロセッサであるCPUと、プログラムやデータを格納する記憶部とを含む汎用コンピュータで構成される。通信部32と、エレベーター監視部33と、被災状況判定部41と、一次対応建物抽出部42と、優先一次対応建物抽出部43と、移動ルート設定部44とは、CPUが所定の動作プログラムを実行することで実現される。また、エレベーター属性データベース45と、地図データベース46と、平常時画像データベース47と、被災状況画像データベース48は、記憶部に所定のデータを格納することにより実現される。 The server 31 is composed of a general-purpose computer including a CPU, which is a processor that processes information internally, and a storage unit that stores programs and data. The CPU of the communication unit 32, the elevator monitoring unit 33, the damage status determination unit 41, the primary response building extraction unit 42, the priority primary response building extraction unit 43, and the movement route setting unit 44 have a predetermined operation program. It is realized by executing it. Further, the elevator attribute database 45, the map database 46, the normal image database 47, and the damage situation image database 48 are realized by storing predetermined data in the storage unit.
 事業所50は、先に説明した様に、管轄する地区70の建物10に設置されているエレベーター20のメンテナンスや地震発生時の復旧作業を行う技術者53,54が勤務するビルである。事業所50にはセキュリティが確保された社内回線59で情報センタ30のサーバ31と接続されており、サーバ31との間で情報の授受を行うとともに受信したデータを蓄積、表示する端末51が設けられている。端末51は、内部にプロセッサであるCPUとプログラムやデータを格納する記憶部とで構成されている汎用コンピュータである。 As explained earlier, the office 50 is a building where engineers 53 and 54 who perform maintenance of the elevator 20 installed in the building 10 of the district 70 under the jurisdiction and restoration work in the event of an earthquake work. The office 50 is connected to the server 31 of the information center 30 by an in-house line 59 that ensures security, and is provided with a terminal 51 that exchanges information with the server 31 and stores and displays the received data. Has been done. The terminal 51 is a general-purpose computer composed of a CPU, which is a processor, and a storage unit for storing programs and data.
 また、事業所50には、無人飛行体であるドローン60が配備されている。ドローン60にはカメラ61が搭載されており、設定された飛行ルート79(図3参照)に沿って自律飛行が可能である。ドローン60は、通信回線29と接続されており、通信回線29を介してカメラ61が撮影した画像データを情報センタ30に送信する。ドローン60は、ヘリコプターの様に垂直離着率可能なものでもよいし、無人飛行機でもよい。 In addition, a drone 60, which is an unmanned aerial vehicle, is deployed at the business establishment 50. A camera 61 is mounted on the drone 60, and autonomous flight is possible along a set flight route 79 (see FIG. 3). The drone 60 is connected to the communication line 29, and transmits the image data taken by the camera 61 to the information center 30 via the communication line 29. The drone 60 may be one capable of vertical takeoff and landing rate such as a helicopter, or may be an unmanned aerial vehicle.
 事業所50は、ドローン60の飛行ルート79の設定や、遠隔操縦を行うドローン運行装置52を備えている。ドローン運行装置52は、端末51とLAN回線58で接続され、情報センタ30からの情報に基づいて飛行ルート79を設定したり、ドローン60を遠隔操縦したりできる。 The business establishment 50 is equipped with a drone operating device 52 for setting the flight route 79 of the drone 60 and performing remote control. The drone operating device 52 is connected to the terminal 51 by a LAN line 58, and can set a flight route 79 based on information from the information center 30 or remotely control the drone 60.
 道路交通情報センタ65は、事業所50が管轄する地区70の道路交通情報を提供する組織である。また、鉄道運行情報センタ66は、事業所50が管轄する地区70の鉄道の運行情報を提供する組織である。 The Road Traffic Information Center 65 is an organization that provides road traffic information for the district 70 under the jurisdiction of the business establishment 50. Further, the railway operation information center 66 is an organization that provides railway operation information of the district 70 under the jurisdiction of the business establishment 50.
 次に、図2~図8を参照しながら、エレベーターシステム100の動作について説明する。以下の説明では、一例として図2に示す様に、事業所50の管轄する地区70には、Aビル71~Hビル78まで8つのビルがあり、各ビルにはそれぞれエレベーター20が設置されているとして説明する。ここで、Aビル71とGビル77とは商業施設が入っているビルであり、Bビル72とHビル78とはオフィスビルであり、Cビル73は役所等の公共機関のビルである。また、Dビル74とEビル75は中層マンションである。Fビル76は病院である。各ビル71~78には先に図1を参照して説明したと同様のエレベーター20が設置されており、各エレベーター20は通信回線29を介して情報センタ30に接続されている。なおAビル71~Gビル77については、接続状態の図示は省略する。 Next, the operation of the elevator system 100 will be described with reference to FIGS. 2 to 8. In the following explanation, as shown in FIG. 2, as an example, in the district 70 under the jurisdiction of the business establishment 50, there are eight buildings from A building 71 to H building 78, and an elevator 20 is installed in each building. Explain that it is. Here, A building 71 and G building 77 are buildings containing commercial facilities, B building 72 and H building 78 are office buildings, and C building 73 is a building of a public institution such as a government office. The D building 74 and the E building 75 are middle-rise condominiums. F Building 76 is a hospital. Elevators 20 similar to those described above with reference to FIG. 1 are installed in each of the buildings 71 to 78, and each elevator 20 is connected to the information center 30 via a communication line 29. For A building 71 to G building 77, the illustration of the connection state is omitted.
 各ビル71~78に設置されているエレベーター20は、図5のステップS101に示す様に、地震管制装置26の地震検知器27の中のP波センサ27pが作動するまで待機する。そして、P波センサ27pが作動したら、地震管制装置26は、図5のステップS102に進んでP波検知信号を制御装置25に発信する。制御装置25は、P波検知信号が入力されたら、図5のステップS103に示す様に、エレベーター20のかご21を最寄階に停止させてドアを開放し、乗客がエレベーター20を降りる様にアナウンスする。 As shown in step S101 of FIG. 5, the elevators 20 installed in each building 71 to 78 stand by until the P wave sensor 27p in the seismic detector 27 of the seismic control device 26 operates. Then, when the P wave sensor 27p is activated, the seismic control device 26 proceeds to step S102 in FIG. 5 to transmit a P wave detection signal to the control device 25. When the P wave detection signal is input, the control device 25 stops the car 21 of the elevator 20 on the nearest floor and opens the door so that the passengers get off the elevator 20 as shown in step S103 of FIG. Announce.
 地震管制装置26は、図5のステップS104に示す様に、S波センサ27sが動作するまで待機する。そして、S波センサ27sが動作したら、図5のステップS105に進んで、S波センサ27sが運転休止閾値を超える高加速度を検知したかどうかを判断する。地震管制装置26は、図5のステップS105でYESと判断したら、図5のステップS106に進んで制御装置25に高加速度検知信号と運転休止信号とを出力する。制御装置25は、高加速度検知信号と運転休止信号とが入力されたら、高加速度検知信号と運転休止信号とを監視装置28に出力する。監視装置28は、図2に示す様に、通信回線29を介して高加速度検知信号と運転休止信号とを情報センタ30に発信する。また、制御装置25は、図5のステップS107でエレベーター20の運転を休止する。 As shown in step S104 of FIG. 5, the seismic control device 26 stands by until the S wave sensor 27s operates. Then, when the S wave sensor 27s operates, the process proceeds to step S105 in FIG. 5, and it is determined whether or not the S wave sensor 27s has detected a high acceleration exceeding the operation suspension threshold value. If the seismic control device 26 determines YES in step S105 of FIG. 5, the seismic control device 26 proceeds to step S106 of FIG. 5 and outputs a high acceleration detection signal and an operation suspension signal to the control device 25. When the high acceleration detection signal and the operation suspension signal are input, the control device 25 outputs the high acceleration detection signal and the operation suspension signal to the monitoring device 28. As shown in FIG. 2, the monitoring device 28 transmits a high acceleration detection signal and an operation suspension signal to the information center 30 via the communication line 29. Further, the control device 25 suspends the operation of the elevator 20 in step S107 of FIG.
 また、制御装置25は、図5のステップS108で、かご21が乗り場階の間で停止しており、かご21の中に乗客が閉じ込められている閉じ込めが発生しているかどうかを判断する。そして、制御装置25は、図5のステップS108でYESと判断した場合には、図5のステップS109に進んで閉じ込め発生信号を監視装置28に出力する。監視装置28は、図2に示す様に、通信回線29を介して入力された閉じ込め発生信号を情報センタ30に発信する。 Further, the control device 25 determines in step S108 of FIG. 5 whether or not the car 21 is stopped between the landing floors and the passengers are trapped in the car 21. Then, if the control device 25 determines YES in step S108 of FIG. 5, the control device 25 proceeds to step S109 of FIG. 5 and outputs a confinement generation signal to the monitoring device 28. As shown in FIG. 2, the monitoring device 28 transmits the confinement generation signal input via the communication line 29 to the information center 30.
 また、地震管制装置26は図5のステップS105でNOと判断したら、図5のステップS110に進んで低加速度検知信号を制御装置25に出力する。制御装置25は、入力された低加速度検知信号を監視装置28に出力する。監視装置28は、通信回線29を介して低加速度検知信号を情報センタ30に発信する。 If the seismic control device 26 determines NO in step S105 of FIG. 5, it proceeds to step S110 of FIG. 5 and outputs a low acceleration detection signal to the control device 25. The control device 25 outputs the input low acceleration detection signal to the monitoring device 28. The monitoring device 28 transmits a low acceleration detection signal to the information center 30 via the communication line 29.
 監視装置28は、図5のステップS111で情報センタ30から自動診断運転指令を受信したら制御装置25に自動診断運転を実行させ、その結果を情報センタ30に送信する。また、監視装置28は、図5のステップS112で情報センタ30から自動復旧指令を受信したら制御装置25に自動復旧指令を出力して、エレベーター20を自動復旧させる。 When the monitoring device 28 receives the automatic diagnosis operation command from the information center 30 in step S111 of FIG. 5, the control device 25 causes the control device 25 to execute the automatic diagnosis operation, and the result is transmitted to the information center 30. Further, when the monitoring device 28 receives the automatic recovery command from the information center 30 in step S112 of FIG. 5, the monitoring device 28 outputs the automatic recovery command to the control device 25 to automatically recover the elevator 20.
 以下の説明では、Eビル75に設置されているエレベーター20は運転休止閾値を超える高加速度を検知せず、低加速度検知信号を情報センタ30に発信し、他のAビル71~Dビル74と、Fビル76~Hビル78に設置されている各エレベーター20は運転休止閾値を超える高加速度を検知して、高加速度検知信号と運転休止信号とを情報センタ30に発信したとして説明する。 In the following explanation, the elevator 20 installed in the E building 75 does not detect the high acceleration exceeding the operation suspension threshold, but transmits the low acceleration detection signal to the information center 30, and the other A building 71 to D building 74. , Each elevator 20 installed in the F building 76 to the H building 78 detects a high acceleration exceeding the operation suspension threshold, and transmits the high acceleration detection signal and the operation suspension signal to the information center 30.
 図6のステップS201に示す様に、情報センタ30のサーバ31は、各ビル71~78に設置された各エレベーター20の監視装置28から高加速度検知信号と運転休止信号とを受信するまで待機している。そして、サーバ31は、Aビル71~Dビル74と、Fビル76~Hビル78に設置されている各エレベーター20から高加速度検知信号と運転休止信号とを受信したら、図6のステップS201でYESと判断して、図6のステップS202に進む。そして、図6のステップS202において、サーバ31は図2に示す様に社内回線59を介して受信した高加速度検知信号と運転休止信号とを事業所50に発信する。また、情報センタ30のサーバ31は、エレベーター20の監視装置28から閉じ込め発生信号を受信している場合には、図6のステップS202で閉じ込め発生信号を事業所50に発信する。 As shown in step S201 of FIG. 6, the server 31 of the information center 30 waits until the high acceleration detection signal and the operation suspension signal are received from the monitoring device 28 of each elevator 20 installed in each building 71 to 78. ing. Then, when the server 31 receives the high acceleration detection signal and the operation suspension signal from the elevators 20 installed in the A building 71 to the D building 74 and the F building 76 to the H building 78, in step S201 of FIG. If YES, the process proceeds to step S202 of FIG. Then, in step S202 of FIG. 6, the server 31 transmits the high acceleration detection signal and the operation suspension signal received via the in-house line 59 to the business establishment 50 as shown in FIG. Further, when the server 31 of the information center 30 receives the confinement generation signal from the monitoring device 28 of the elevator 20, the confinement generation signal is transmitted to the business establishment 50 in step S202 of FIG.
 事業所50の端末51は、図7のステップS301に示す様に、情報センタ30から高加速度検知信号と運転休止信号とを受信するまで待機する。そして、端末51は、図7のステップS301でYESと判断したら図7のステップS302に進んで、管轄する地区70の高加速度検知信号と運転休止信号とを発信したエレベーター20が設置されているAビル71~Dビル74と、Fビル76~Hビル78との位置情報をドローン運行装置52に出力する。 As shown in step S301 of FIG. 7, the terminal 51 of the business establishment 50 waits until the high acceleration detection signal and the operation suspension signal are received from the information center 30. Then, if the terminal 51 determines YES in step S301 of FIG. 7, the terminal 51 proceeds to step S302 of FIG. 7, and the elevator 20 that transmits the high acceleration detection signal and the operation suspension signal of the district 70 under its jurisdiction is installed. The position information of the building 71 to D building 74 and the F building 76 to H building 78 is output to the drone operation device 52.
 ドローン運行装置52は、図7のステップS302で入力されたAビル71~Dビル74と、Fビル76~Hビル78との位置情報に基づいて飛行ルート79を設定する。そして、ドローン運行装置52は、図7のステップS303、図2に示す様に、ドローン60を発信させる。 The drone operating device 52 sets the flight route 79 based on the position information between the A building 71 to the D building 74 and the F building 76 to the H building 78 input in step S302 of FIG. Then, the drone operating device 52 transmits the drone 60 as shown in step S303 and FIG. 2 of FIG.
 図3に示す様に、ドローン60は、設定された飛行ルート79に沿ってAビル71~Dビル74と、Fビル76~Hビル78の周辺を飛行してAビル71~Dビル74と、Fビル76~Hビル78の被災状況と地区70の交通インフラの被災状況とを撮影して被災状況画像として情報センタ30に送信する。被災状況画像は動画でもよいし静止画でもよい。この際、ドローン60は、エレベーター20から高加速度検知信号と運転休止信号とが発信されていないEビル75の周辺は飛行しない。 As shown in FIG. 3, the drone 60 flies around the A building 71 to the D building 74 and the F building 76 to the H building 78 along the set flight route 79, and becomes the A building 71 to the D building 74. , The damage situation of F building 76 to H building 78 and the damage situation of the transportation infrastructure in the district 70 are photographed and transmitted to the information center 30 as a damage situation image. The disaster situation image may be a moving image or a still image. At this time, the drone 60 does not fly around the E building 75 to which the high acceleration detection signal and the operation suspension signal are not transmitted from the elevator 20.
 図6のステップS203に示す様に、情報センタ30のサーバ31の通信部32はドローン60が送信した被災状況画像を受信して被災状況画像データベース48に格納する。 As shown in step S203 of FIG. 6, the communication unit 32 of the server 31 of the information center 30 receives the damage situation image transmitted by the drone 60 and stores it in the damage situation image database 48.
 サーバ31の被災状況判定部41は、図6のステップS204において、エレベーター属性データベース45と、地図データベース46と、平常時画像データベース47と、被災状況画像データベース48を参照しながら、Aビル71~Dビル74と、Fビル76~Hビル78との被災状況と地区70の交通インフラの被災状況を判定する。 In step S204 of FIG. 6, the disaster status determination unit 41 of the server 31 refers to the elevator attribute database 45, the map database 46, the normal image database 47, and the disaster status image database 48, and refers to the buildings A 71 to D. The damage status of the building 74 and the F building 76 to the H building 78 and the damage status of the transportation infrastructure in the district 70 are determined.
 被災状況判定部41は、平常時画像データベース47から平常時のAビル71の画像とその周辺の交通インフラの画像とを含む平常時画像を読み出す。また、被災状況判定部41は、被災状況画像データベース48から地震後のAビル71の被災状況の画像とその周辺の交通インフラの被災状況の画像とを含む被災状況画像を読み出す。そして、被災状況判定部41は、平常時画像と被災状況画像とを対比してAビル71及びその周辺の交通インフラの被災状況を判定する。 The disaster situation determination unit 41 reads out the normal image including the image of the A building 71 in normal time and the image of the traffic infrastructure around it from the normal image database 47. Further, the disaster situation determination unit 41 reads out the disaster situation image including the image of the damage situation of the A building 71 after the earthquake and the image of the damage situation of the transportation infrastructure around the disaster situation image database 48. Then, the disaster status determination unit 41 determines the damage status of the transportation infrastructure in and around the A building 71 by comparing the normal image and the disaster status image.
 同様に、被災状況判定部41は、Bビル72~Dビル74と、Fビル76~Hビル78とその周辺の平常時画像と被災状況画像とを対比してBビル72~Dビル74と、Fビル76~Hビル78の被災状況、及びその周辺の交通インフラの被災状況を判定する。 Similarly, the disaster situation determination unit 41 compares the normal image of the B building 72 to D building 74, the F building 76 to H building 78 and its surroundings with the disaster situation image, and sets the B building 72 to D building 74. , The damage situation of F building 76 to H building 78, and the damage situation of the transportation infrastructure around it are determined.
 被災状況判定部41は、図2に示す様に、Bビル72は周辺道路が通行できず、Bビル72への到達は不可、Dビル74は半壊状態、他のAビル71、Cビル73、Fビル76~Hビル78は被災なしと判定する。そして、被災状況判定部41は、判定結果を一次対応建物抽出部42に出力する。 As shown in FIG. 2, the damage situation determination unit 41 cannot reach the B building 72 because the surrounding roads cannot pass through the B building 72, the D building 74 is in a half-destroyed state, and the other A building 71 and C building 73. , F building 76 to H building 78 are judged not to be damaged. Then, the disaster situation determination unit 41 outputs the determination result to the primary corresponding building extraction unit 42.
 一次対応建物抽出部42は、図6のステップS205において、技術者53,54が一次対応に向かう一次対応建物の抽出を行う。一次対応建物抽出部42は、被災状況判定部41で被災ありと判断されたDビル74と、交通インフラの被災により到達不可と判断されたBビル72を除外して、被災なしと判定されたAビル71、Cビル73、Fビル76~Hビル78一次対応建物として抽出する。そして、一次対応建物抽出部42は、一次対応建物情報を優先一次対応建物抽出部43と移動ルート設定部44と通信部32とに出力する。 In step S205 of FIG. 6, the primary correspondence building extraction unit 42 extracts the primary correspondence building for which the engineers 53 and 54 are heading for the primary correspondence. The primary response building extraction unit 42 was determined to be non-damaged, excluding the D building 74, which was determined to be damaged by the damage status determination unit 41, and the B building 72, which was determined to be unreachable due to the damage to the transportation infrastructure. Extracted as A building 71, C building 73, F building 76 to H building 78 primary correspondence building. Then, the primary correspondence building extraction unit 42 outputs the primary correspondence building information to the priority primary correspondence building extraction unit 43, the movement route setting unit 44, and the communication unit 32.
 優先一次対応建物抽出部43は、図6のステップS206で一次対応建物として抽出されたAビル71、Cビル73、Fビル76~Hビル78の中に設置されている各エレベーター20から閉じ込め発生信号が発信されているかどうか判断する。そして、優先一次対応建物抽出部43は、図6のステップS205でYESと判断した場合には、図6のステップS207で、そのビルを優先一次対応建物として抽出する。図3に示す様、Cビル73とHビル78とで閉じ込めが発生しているので、優先一次対応建物抽出部43は、Cビル73と、Hビル78とを優先一次対応建物として抽出する。そして、優先一次対応建物抽出部43は、優先一次対応建物情報を移動ルート設定部44と通信部32とに出力する。 The priority primary response building extraction unit 43 is confined from each elevator 20 installed in the A building 71, the C building 73, and the F building 76 to the H building 78 extracted as the primary response building in step S206 of FIG. Determine if a signal is being transmitted. If the priority primary correspondence building extraction unit 43 determines YES in step S205 of FIG. 6, the priority primary correspondence building extraction unit 43 extracts the building as the priority primary correspondence building in step S207 of FIG. As shown in FIG. 3, since confinement has occurred in the C building 73 and the H building 78, the priority primary corresponding building extraction unit 43 extracts the C building 73 and the H building 78 as the priority primary corresponding building. Then, the priority primary correspondence building extraction unit 43 outputs the priority primary correspondence building information to the movement route setting unit 44 and the communication unit 32.
 移動ルート設定部44は、図6のステップS208において、エレベーター属性データベース45と地図データベース46を参照しながら、入力された一次対応建物情報と、優先一次対応建物情報と、道路交通情報センタ65から取得した地区70の道路交通情報と、鉄道運行情報センタ66から取得した地区70の鉄道運行情報とから一次対応建物又は優先一次対応建物から他の一次対応建物又は他の優先一次対応建物への移動ルートを設定する。 In step S208 of FIG. 6, the movement route setting unit 44 acquires the input primary correspondence building information, priority primary correspondence building information, and road traffic information center 65 while referring to the elevator attribute database 45 and the map database 46. From the road traffic information of the district 70 and the railway operation information of the district 70 acquired from the railway operation information center 66, the movement route from the primary response building or the priority primary response building to another primary response building or another priority primary response building. To set.
 この際、移動ルート設定部44は、一次対応建物と優先一次対応建物がそれぞれ複数ある場合に、各建物10の用途に基づいて一次対応の優先順位をつけ、優先順位に基づいて移動ルートを設定してもよい。 At this time, when there are a plurality of primary correspondence buildings and priority primary correspondence buildings, the movement route setting unit 44 assigns a priority of primary correspondence based on the use of each building 10 and sets a movement route based on the priority. You may.
 また、同一の優先順位の一次対応建物が複数あり、同一の優先順位の優先一次対応建物が複数ある場合には、各建物の間の移動時間を算出して移動時間が最短となるように移動ルートを設定してもよい。 In addition, if there are multiple primary response buildings with the same priority and there are multiple priority primary response buildings with the same priority, the travel time between each building is calculated and the travel time is minimized. You may set a route.
 以下の例では、事業所50には、2人の技術者53、54が勤務しており、2人が別々のルートでエレベーター20の復旧に向かうとして説明する。この場合、移動ルート設定部44は、第1ルート、第2ルートの2つの移動ルートを設定する。 In the following example, it is explained that two engineers 53 and 54 are working at the business establishment 50, and the two engineers are heading for the restoration of the elevator 20 by different routes. In this case, the movement route setting unit 44 sets two movement routes, a first route and a second route.
 先に説明したように、地区70には、2つの優先一次対応建物があるので、移動ルート設定部44は、第1ルート、第2ルーとともに、最初に優先一次対応建物に向かい、その後、一次対応建物を廻って事業所50に戻るルートを設定する。一次対応建物を廻る優先順位は、病院、公共機関、商業施設、オフィスビル、住宅の順に設定する。なお、一次対応建物を廻る順番は、優先一次対応建物の近傍から順次廻るようにしてもよいし、これらの組合わせで移動時間が最短となるルートを設定してもよい。 As explained earlier, since there are two priority primary response buildings in the district 70, the movement route setting unit 44, together with the first route and the second route, first heads for the priority primary response building, and then the primary response. Set a route to go around the corresponding building and return to the office 50. The priority for visiting the primary building is set in the order of hospital, public institution, commercial facility, office building, and housing. In addition, the order of going around the primary correspondence building may be made to go around sequentially from the vicinity of the priority primary correspondence building, or a route with the shortest travel time may be set by a combination of these.
 図4に示す様に、移動ルート設定部44は、最初に優先一次対応建物であるCビル73に行き、次に近傍の一次対応建物であるAビル71に行って事業所50に戻るルートを第1ルートとして設定する。また、移動ルート設定部44は、最初に優先一次対応建物であるHビル78に行き、次に一次対応建物の内で優先順位が一番高い病院のあるFビル76に廻り、その後、商業施設のあるGビル77を廻って事業所50に戻るルートを第2ルートに設定する。そして、設定した移動ルート情報を通信部32に出力する As shown in FIG. 4, the movement route setting unit 44 first goes to the C building 73, which is the priority primary correspondence building, and then goes to the A building 71, which is the nearby primary correspondence building, and returns to the office 50. Set as the first route. In addition, the movement route setting unit 44 first goes to the H building 78, which is the priority primary response building, then to the F building 76, which has the highest priority hospital among the primary response buildings, and then to the commercial facility. The route that goes around the G building 77 and returns to the office 50 is set as the second route. Then, the set movement route information is output to the communication unit 32.
 通信部32は、図6のステップS209において、入力された一次対応建物情報と、優先一次対応建物情報と、移動ルート情報とを事業所50と、技術者53,54の携帯端末55とに送信する。 The communication unit 32 transmits the input primary correspondence building information, priority primary correspondence building information, and movement route information to the business establishment 50 and the mobile terminals 55 of the engineers 53 and 54 in step S209 of FIG. do.
 事業所50の端末51は、図7のステップS304において、情報センタ30から一次対応建物情報と、優先一次対応建物情報と、移動ルート情報とを受信したラ、端末51のディスプレイに表示させる。 In step S304 of FIG. 7, the terminal 51 of the business establishment 50 displays the primary correspondence building information, the priority primary correspondence building information, and the movement route information from the information center 30 on the display of the terminal 51.
 事業所50は、図7のステップS305において、情報センタ30から入力された一次対応建物情報と、優先一次対応建物情報と、移動ルート情報に基づいて、第1ルート、第2ルートで現場に向かう技術者53,54を選び、技術者53、54を現場に出動させる。 In step S305 of FIG. 7, the business establishment 50 heads to the site on the first route and the second route based on the primary response building information input from the information center 30, the priority primary response building information, and the movement route information. Select engineers 53 and 54 and dispatch engineers 53 and 54 to the site.
 技術者53は、第1ルートに従って、最初にCビル73に向かい、次にAビル71を廻って事業所50に戻る。また、技術者54は、第2ルートに従って、最初にHビル78に向かい、その後、Fビル76、Gビル77を廻って事業所50に戻る。また、技術者53,54は携帯端末55で情報センタ30からの情報を受信しながら優先一次対応建物、一次対応建物を廻ってもよい。 The engineer 53 first heads for the C building 73, then goes around the A building 71 and returns to the office 50 according to the first route. Further, the technician 54 first heads for the H building 78 according to the second route, then goes around the F building 76 and the G building 77 and returns to the office 50. Further, the engineers 53 and 54 may go around the priority primary corresponding building and the primary corresponding building while receiving the information from the information center 30 by the mobile terminal 55.
 図8に示す様に、Aビル71、Cビル73、Fビル76~Hビル78に設置されている各エレベーター20に到着した技術者53,54は、図8のステップS401に示すうように、ビルが優先一次対応建物であるかを判断し、図8のステップS401でYESと判断した場合には、図8のステップS402に進んで閉じ込め開放を行う。閉じ込め開放は、例えば、エレベーター20のかご21の外側からキーでドアを開放し乗客をかご21から降ろして乗客を降ろしてもよい。また、かご21の床面と乗り場階の床面との間の段差が大きい場合には、ブレーキを開放してかご21を上下に移動させて段差をなくしてからキーでドアを開放し、乗客をかご21から降ろしてもよい。 As shown in FIG. 8, the engineers 53 and 54 arriving at the elevators 20 installed in the A building 71, the C building 73, and the F building 76 to the H building 78 are as shown in step S401 of FIG. If it is determined whether the building is a priority primary corresponding building and YES is determined in step S401 of FIG. 8, the process proceeds to step S402 of FIG. 8 to release the confinement. For the confinement opening, for example, the door may be opened from the outside of the car 21 of the elevator 20 with a key, and the passengers may be unloaded from the car 21 to unload the passengers. If there is a large step between the floor of the car 21 and the floor of the landing floor, release the brake and move the car 21 up and down to eliminate the step, then open the door with the key and passengers. May be removed from the basket 21.
 閉じ込め開放を終了したら、技術者53,54は、図8のステップS403に進んでエレベーター20の各部の点検を行い、エレベーター20が復旧可能か判断する。そして、技術者53,54は、図8のステップS403でYESと判断した場合には、図8のステップS404,ステップS405に示す様に、制御装置25と地震検知器27とをリセットする。これにより、図8のステップS406に示す様にエレベーター20の復旧作業が完了する。各エレベーター20での技術者53,54の復旧作業時間は、30~40分程度である。技術者53,54は、復旧作業が完了したら携帯端末55から情報センタ30に完了登録を行い、次の建物10に移動する。 After completing the confinement release, the engineers 53 and 54 proceed to step S403 in FIG. 8 to inspect each part of the elevator 20 and determine whether the elevator 20 can be restored. Then, if the engineers 53 and 54 determine YES in step S403 of FIG. 8, they reset the control device 25 and the earthquake detector 27 as shown in steps S404 and S405 of FIG. As a result, the restoration work of the elevator 20 is completed as shown in step S406 of FIG. The restoration work time of the engineers 53 and 54 in each elevator 20 is about 30 to 40 minutes. When the restoration work is completed, the engineers 53 and 54 perform completion registration from the mobile terminal 55 to the information center 30 and move to the next building 10.
 また、技術者53,54は、ロープ23の交換などが必要で、制御装置25と地震検知器27とのリセットのみでは復旧できないと判断した場合には、図8のステップS403でNOと判断し、制御装置25と地震検知器27とのリセットを行わずに復旧作業を完了して次の建物10に移動する。 Further, when the engineers 53 and 54 determine that the rope 23 needs to be replaced and cannot be restored only by resetting the control device 25 and the earthquake detector 27, they determine NO in step S403 of FIG. , The restoration work is completed without resetting the control device 25 and the earthquake detector 27, and the user moves to the next building 10.
 なお、情報センタ30は、低加速度検知信号を情報センタ30に発信したEビル75に設置されているエレベーター20に自動診断運転指令信号と自動復旧指令信号とを発信する。エレベーター20は、この指令に基づいて、図5のステップS111、ステップS112に示す様に自動診断運転と自動復旧とを行う。 The information center 30 transmits an automatic diagnosis operation command signal and an automatic recovery command signal to the elevator 20 installed in the E building 75 that has transmitted the low acceleration detection signal to the information center 30. Based on this command, the elevator 20 performs automatic diagnosis operation and automatic recovery as shown in steps S111 and S112 of FIG.
 以上説明したように、実施形態のエレベーターシステム100は、地震により運転休止閾値を超える高加速度が検知された場合に、情報センタ30がドローン60から受信した被災状況画像に基づいて技術者53,54を出動させる一次対応建物を抽出して事業所50又は技術者53,54の携帯端末55に送信する。これにより、技術者53,54は、一次対応が可能な建物10のみを巡回し、被災した建物10や到達不可の建物10を巡回する必要がなくなり、移動時間のロスを低減して効率的にエレベーター20の運転を再開させることができる。 As described above, in the elevator system 100 of the embodiment, when a high acceleration exceeding the operation suspension threshold value is detected due to an earthquake, the engineers 53, 54 are based on the damage situation image received from the drone 60 by the information center 30. The primary response building to be dispatched is extracted and transmitted to the business establishment 50 or the mobile terminal 55 of the engineers 53 and 54. As a result, the engineers 53 and 54 patrol only the buildings 10 capable of primary response, and do not need to patrol the damaged buildings 10 and the unreachable buildings 10, reducing the loss of travel time and efficiently. The operation of the elevator 20 can be restarted.
 また、実施形態のエレベーターシステム100では、ドローン60から受信した被災状況画像と平常時の建物10と地区70との平常時画像とを対比して建物10と地区70の交通インフラの被災状況を判定するので、簡便な方法で短時間に被災状況の判定を行うことができる。 Further, in the elevator system 100 of the embodiment, the damage status of the traffic infrastructure of the building 10 and the district 70 is determined by comparing the damage status image received from the drone 60 with the normal image of the building 10 and the district 70 in normal times. Therefore, it is possible to determine the damage situation in a short time by a simple method.
 また、実施形態のエレベーターシステム100では、閉じ込めが発生したエレベーター20が設置されている建物10を優先一次対応建物として抽出し、優先的に技術者53,54を出動させるようにしたので、短時間に閉じ込めの開放を行うことができる。 Further, in the elevator system 100 of the embodiment, the building 10 in which the elevator 20 in which the confinement has occurred is extracted as the priority primary response building, and the engineers 53 and 54 are preferentially dispatched, so that the time is short. It is possible to open the confinement.
 また、実施形態のエレベーターシステム100は、情報センタ30が建物10から他の建物10への移動ルートを設定して事業所50と技術者53,54とに送信して技術者53,54を支援するので、技術者53,54は効率的に点検の必要なエレベーター20が設置されている建物10を巡回することができる。 Further, in the elevator system 100 of the embodiment, the information center 30 sets a movement route from the building 10 to another building 10 and transmits it to the business establishment 50 and the engineers 53, 54 to support the engineers 53, 54. Therefore, the engineers 53 and 54 can efficiently patrol the building 10 in which the elevator 20 that needs to be inspected is installed.
 以上説明した実施形態では、2人の技術者53,54で各エレベーター20の復旧作業を行うとして説明したが、一人の技術者53が各エレベーター20の復旧作業を行ってもよい。 In the embodiment described above, it has been described that two engineers 53 and 54 perform the restoration work of each elevator 20, but one engineer 53 may perform the restoration work of each elevator 20.
 その際、移動ルート設定部44は、優先一次対応建物である公共機関のあるCビル73とオフィスビルであるHビル78について、優先順位の高い公共機関の用途のCビル73に最初に行き、次にオフィスビルであるHビル78に向かう様にルートを設定する。そして、商業施設のあるAビル71と、病院のあるFビル76と、商業施設のあるGビル77については、最初に優先順位の高い病院のあるFビル76に行く様にルート設定する。そして、優先順位が同一の商業施設のあるAビル71とGビル77については、Fビル76からの移動距離が短いGビル77に行った後にAビル71に廻る様にルート設定する。 At that time, the movement route setting unit 44 first goes to the C building 73, which is a high-priority public institution, for the C building 73, which has a public institution, which is a priority primary response building, and the H building 78, which is an office building. Next, the route is set so as to go to the H building 78, which is an office building. Then, for the A building 71 with the commercial facility, the F building 76 with the hospital, and the G building 77 with the commercial facility, the route is set so as to go to the F building 76 with the high priority hospital first. Then, for the A building 71 and the G building 77, which have the same commercial facilities in the same priority, the route is set so as to go to the G building 77, which has a short travel distance from the F building 76, and then to the A building 71.
 これにより、多くの建物10を効率的に巡回して効率的に閉じ込めの開放、エレベーター20の復旧を行うことができる。 This makes it possible to efficiently patrol many buildings 10 and efficiently open the confinement and restore the elevator 20.
 また、以上説明したエレベーター20の地震管制装置26は、地表面の加速度を検知する地震検知器27を備え、地震検知器27が運転休止閾値を超える高加速度を検知した際に運転を休止し、エレベーター20が高加速度検知信号と運転休止信号とを発信するとして説明したがこれに限らない。例えば、地震検知器27として検出した加速度を震度に変換して出力する震度計を用い、地震検知器27が運転休止閾値を超える高震度を検知した際に運転を休止して高加速度検知信号と運転休止信号とを発信する様にしてもよい。 Further, the seismic control device 26 of the elevator 20 described above includes an earthquake detector 27 that detects the acceleration of the ground surface, and suspends the operation when the seismic detector 27 detects a high acceleration exceeding the operation suspension threshold. Although it has been described that the elevator 20 transmits a high acceleration detection signal and an operation suspension signal, the present invention is not limited to this. For example, using a seismic intensity meter that converts the acceleration detected by the earthquake detector 27 into seismic intensity and outputs it, when the seismic detector 27 detects a high seismic intensity exceeding the operation suspension threshold, the operation is suspended and a high acceleration detection signal is used. The operation suspension signal may be transmitted.
 10 建物、12 昇降路、20 エレベーター、22 錘、23 ロープ、24 駆動装置、25 制御装置、26 地震管制装置、27 地震検知器、27p P波センサ、27s S波センサ、28 監視装置、29 通信回線、30 情報センタ、31 サーバ、32 通信部、33 エレベーター監視部、34 ディスプレイ、35 キーボード、36 マウス、37 監視盤、38,58 LAN回線、39 監視員、41 被災状況判定部、42 一次対応建物抽出部、43 優先一次対応建物抽出部、44 移動ルート設定部、45 エレベーター属性データベース、46 地図データベース、47 平常時画像データベース、48 被災状況画像データベース、50 事業所、51 端末、52 ドローン運行装置、53,54 技術者、55 携帯端末、59 社内回線、60 ドローン、61 カメラ、65 道路交通情報センタ、66 鉄道運行情報センタ、70 地区、71 Aビル、72 Bビル、73 Cビル、74 Dビル、75 Eビル、76 Fビル、77 Gビル、78 Hビル、79 飛行ルート、100 エレベーターシステム。
 
10 buildings, 12 hoistways, 20 elevators, 22 weights, 23 ropes, 24 drives, 25 controls, 26 seismic control devices, 27 seismic detectors, 27p P wave sensors, 27s S wave sensors, 28 monitoring devices, 29 communications. Line, 30 information center, 31 server, 32 communication unit, 33 elevator monitoring unit, 34 display, 35 keyboard, 36 mouse, 37 monitoring panel, 38,58 LAN line, 39 observer, 41 damage status determination unit, 42 primary response Building extraction unit, 43 priority primary response building extraction unit, 44 movement route setting unit, 45 elevator attribute database, 46 map database, 47 normal image database, 48 disaster situation image database, 50 offices, 51 terminals, 52 drone operation equipment , 53, 54 technician, 55 mobile terminal, 59 in-house line, 60 drone, 61 camera, 65 road traffic information center, 66 railroad operation information center, 70 district, 71 A building, 72 B building, 73 C building, 74 D Buildings, 75 E Buildings, 76 F Buildings, 77 G Buildings, 78 H Buildings, 79 Flight Routes, 100 Elevator Systems.

Claims (5)

  1.  地表面の加速度を検知する地震検知器を備えるエレベーターと、
     前記エレベーターと接続されて前記エレベーターを監視する情報センタと、
     前記情報センタと接続され、地震発生時に前記エレベーターの復旧作業を行う技術者の勤務する事業所と、
     前記事業所に配備された自律飛行可能でカメラを搭載した無人飛行体と、を含むエレベーターシステムであって、
     前記エレベーターは、前記地震検知器が運転休止閾値を超える高加速度又は高震度を検知した際に運転を休止し、高加速度検知信号と運転休止信号とを発信し、
     前記事業所は、前記エレベーターが発信した前記高加速度検知信号と前記運転休止信号とを受信した際に、前記事業所が管轄する地区の前記高加速度検知信号と前記運転休止信号とを発信した前記エレベーターが設置されている建物に向けて前記無人飛行体を飛行させ、
     前記無人飛行体は、前記建物の被災状況と前記地区の交通インフラの被災状況とを撮影した被災状況画像を前記情報センタに送信し、
     前記情報センタは、
     前記無人飛行体から受信した前記被災状況画像に基づいて前記建物と前記地区の前記交通インフラの被災状況を判定し、前記建物の中から前記技術者を出動させる一次対応建物を抽出して前記事業所と前記技術者の携帯端末とのいずれか一方又は両方に送信すること、
     を特徴とするエレベーターシステム。
    An elevator equipped with an earthquake detector that detects the acceleration of the ground surface,
    An information center that is connected to the elevator and monitors the elevator,
    The office where the engineer who is connected to the information center and performs the restoration work of the elevator in the event of an earthquake works,
    An elevator system that includes an autonomously flyable, camera-equipped unmanned aircraft deployed at the office.
    The elevator suspends operation when the seismic detector detects high acceleration or high seismic intensity exceeding the operation suspension threshold value, and transmits a high acceleration detection signal and an operation suspension signal.
    When the business establishment receives the high acceleration detection signal and the operation suspension signal transmitted by the elevator, the business establishment transmits the high acceleration detection signal and the operation suspension signal in the area under the jurisdiction of the business establishment. Fly the unmanned vehicle toward the building where the elevator is installed,
    The unmanned aircraft transmits a disaster situation image of the damage situation of the building and the damage situation of the transportation infrastructure in the district to the information center.
    The information center is
    Based on the damage situation image received from the unmanned aircraft, the damage situation of the building and the transportation infrastructure in the district is determined, and the primary response building to dispatch the engineer is extracted from the building and the business. Sending to one or both of the office and the technician's mobile terminal,
    Elevator system featuring.
  2.  請求項1に記載のエレベーターシステムであって、
     前記情報センタは、
     前記無人飛行体から受信した前記被災状況画像と平常時の前記建物と前記地区との平常時画像とを対比して前記建物と前記地区の前記交通インフラの被災状況を判定すること、
     を特徴とするエレベーターシステム。
    The elevator system according to claim 1.
    The information center is
    To determine the damage status of the traffic infrastructure of the building and the district by comparing the disaster situation image received from the unmanned aircraft with the normal image of the building and the district in normal times.
    Elevator system featuring.
  3.  請求項1又は2に記載のエレベーターシステムであって、
     前記エレベーターは、運転を休止した際に閉じ込めが発生した場合には閉じ込め発生信号を前記情報センタに発信し、
     前記情報センタは、抽出した前記一次対応建物の中から閉じ込めが発生した前記エレベーターが設置されている建物を優先一次対応建物として抽出して前記事業所と前記技術者の携帯端末とのいずれか一方又は両方に送信すること、
     を特徴とするエレベーターシステム。
    The elevator system according to claim 1 or 2.
    The elevator sends a confinement generation signal to the information center when confinement occurs when the operation is stopped.
    The information center extracts the building in which the elevator that has been confined is installed as the priority primary response building from the extracted primary response building, and either the office or the technician's mobile terminal. Or send to both,
    Elevator system featuring.
  4.  請求項3に記載のエレベーターシステムであって、
     前記情報センタは、
     道路交通情報及び鉄道運行情報から前記一次対応建物又は前記優先一次対応建物から他の前記一次対応建物又は他の前記優先一次対応建物への移動ルートを設定して前記事業所と前記技術者の携帯端末とのいずれか一方又は両方に送信すること、
     を特徴とするエレベーターシステム。
    The elevator system according to claim 3.
    The information center is
    From the road traffic information and railroad operation information, set the movement route from the primary response building or the priority primary response building to the other primary response building or the other priority primary response building, and carry the business office and the engineer. Sending to one or both of the terminals,
    Elevator system featuring.
  5.  請求項4に記載のエレベーターシステムであって、
     前記情報センタは、前記一次対応建物と前記優先一次対応建物がそれぞれ複数ある場合に、各建物の用途に基づいて一次対応の優先順位をつけ、前記優先順位に基づいて前記一次対応建物又は前記優先一次対応建物から他の前記一次対応建物又は他の前記優先一次対応建物への前記移動ルートを設定して前記事業所と前記技術者の携帯端末とのいずれか一方又は両方に送信すること、
     を特徴とするエレベーターシステム。
    The elevator system according to claim 4.
    When there are a plurality of the primary response building and the priority primary response building, the information center prioritizes the primary response based on the use of each building, and the primary response building or the priority primary response building based on the priority. Setting the travel route from the primary response building to the other primary response building or the other priority primary response building and transmitting it to either or both of the business establishment and the technician's mobile terminal.
    Elevator system featuring.
PCT/JP2020/021684 2020-06-02 2020-06-02 Elevator system WO2021245765A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022529161A JP7206440B2 (en) 2020-06-02 2020-06-02 elevator system
PCT/JP2020/021684 WO2021245765A1 (en) 2020-06-02 2020-06-02 Elevator system
CN202080101574.1A CN115697877B (en) 2020-06-02 2020-06-02 Elevator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/021684 WO2021245765A1 (en) 2020-06-02 2020-06-02 Elevator system

Publications (1)

Publication Number Publication Date
WO2021245765A1 true WO2021245765A1 (en) 2021-12-09

Family

ID=78830198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021684 WO2021245765A1 (en) 2020-06-02 2020-06-02 Elevator system

Country Status (3)

Country Link
JP (1) JP7206440B2 (en)
CN (1) CN115697877B (en)
WO (1) WO2021245765A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106709A1 (en) * 2017-11-28 2019-06-06 三菱電機ビルテクノサービス株式会社 Elevator system
JP2019104594A (en) * 2017-12-12 2019-06-27 東芝エレベータ株式会社 Disaster information support system, and method thereof
WO2019235415A1 (en) * 2018-06-04 2019-12-12 全力機械株式会社 Disaster state determination system and disaster determination flight system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254039A (en) * 2006-03-20 2007-10-04 Toshiba Elevator Co Ltd Restoration system for elevator
JP6598904B2 (en) * 2018-03-05 2019-10-30 東芝エレベータ株式会社 Disaster information processing apparatus and disaster information notification method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106709A1 (en) * 2017-11-28 2019-06-06 三菱電機ビルテクノサービス株式会社 Elevator system
JP2019104594A (en) * 2017-12-12 2019-06-27 東芝エレベータ株式会社 Disaster information support system, and method thereof
WO2019235415A1 (en) * 2018-06-04 2019-12-12 全力機械株式会社 Disaster state determination system and disaster determination flight system

Also Published As

Publication number Publication date
JP7206440B2 (en) 2023-01-17
CN115697877A (en) 2023-02-03
CN115697877B (en) 2023-10-03
JPWO2021245765A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
US11875665B2 (en) Augmented reality of a building
AU2016302407B2 (en) Evacuation of buildings with elevator systems
AU2016302412B2 (en) Sequence of levels in buildings to be evacuated by elevator systems
KR101765235B1 (en) FACILITY MAINTENANCE SYSTEM USING INTERNET OF THINGS (IoT) BASED SENSOR AND UNMANNED AIR VEHICLE (UAV), AND METHOD FOR THE SAME
JP6222162B2 (en) Elevator apparatus and elevator restoration method
JP6080568B2 (en) Monitoring system
JP2008150186A (en) Monitoring system of building
JP6720382B1 (en) Elevator system, unmanned aerial vehicle used therefor, and elevator pretreatment method
EP3398895A1 (en) Passenger-initiated dynamic elevator service request
JP6172958B2 (en) Shooting system
CN108698789B (en) Elevator control device, elevator remote monitoring server, evacuation support system, and evacuation support method using elevator
WO2021124405A1 (en) Elevator control system and elevator control method
WO2021245765A1 (en) Elevator system
US20190325548A1 (en) Unmanned aerial vehicle people detection and evacuation systems
KR102165158B1 (en) Disaster response robot and control device and methods thereof for first response
JP7145691B2 (en) Elevator, information equipment, elevator system, elevator recovery method, and image display program
KR20220093482A (en) Notification system and method of providing location and number of people to be rescued in building fire
EP3604194A1 (en) Tracking service mechanic status during entrapment
KR20200078736A (en) Method for safely managing and monitoring railroad station and the periphery zone
JPWO2021245765A5 (en)
WO2022195858A1 (en) Elevator device
JP2012020824A (en) Service operation system of elevator
JP2007119130A (en) Elevator failure informing device
TW202203166A (en) Support system for elevator entrapment rescue, mobile terminal, and support program for elevator entrapment rescue
CN115724308A (en) Construction elevator system and control method and alarm method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939040

Country of ref document: EP

Kind code of ref document: A1