WO2021244565A1 - 射频功率放大器、射频前端模块和通信终端 - Google Patents
射频功率放大器、射频前端模块和通信终端 Download PDFInfo
- Publication number
- WO2021244565A1 WO2021244565A1 PCT/CN2021/097884 CN2021097884W WO2021244565A1 WO 2021244565 A1 WO2021244565 A1 WO 2021244565A1 CN 2021097884 W CN2021097884 W CN 2021097884W WO 2021244565 A1 WO2021244565 A1 WO 2021244565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- input
- power
- output
- radio frequency
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 21
- 238000001514 detection method Methods 0.000 claims abstract description 75
- 230000003321 amplification Effects 0.000 claims abstract description 24
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 24
- 230000002596 correlated effect Effects 0.000 claims abstract description 8
- 239000003990 capacitor Substances 0.000 claims description 49
- 238000010586 diagram Methods 0.000 description 11
- PHLXSNIEQIKENK-UHFFFAOYSA-N 2-[[2-[5-methyl-3-(trifluoromethyl)pyrazol-1-yl]acetyl]amino]-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide Chemical compound CC1=CC(C(F)(F)F)=NN1CC(=O)NC1=C(C(N)=O)C(CCCC2)=C2S1 PHLXSNIEQIKENK-UHFFFAOYSA-N 0.000 description 7
- 101100230601 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HBT1 gene Proteins 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 101100440934 Candida albicans (strain SC5314 / ATCC MYA-2876) CPH1 gene Proteins 0.000 description 3
- 101100273252 Candida parapsilosis SAPP1 gene Proteins 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0261—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
- H03F1/0272—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A by using a signal derived from the output signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3247—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3282—Acting on the phase and the amplitude of the input signal
- H03F1/3288—Acting on the phase and the amplitude of the input signal to compensate phase shift as a function of the amplitude
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
- H03F1/565—Modifications of input or output impedances, not otherwise provided for using inductive elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/111—Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/222—A circuit being added at the input of an amplifier to adapt the input impedance of the amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/318—A matching circuit being used as coupling element between two amplifying stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/387—A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/393—A measuring circuit being coupled to the output of an amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/411—Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/465—Power sensing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the invention relates to a radio frequency power amplifier, and also to a radio frequency front-end module including the radio frequency power amplifier and a corresponding communication terminal, belonging to the technical field of wireless communication.
- the RF front-end module is an important RF component that cannot be integrated by the transceiver in the current wireless communication terminal.
- the modulated radio frequency signal is amplified to a certain power value through the power amplifier, and then the amplified radio frequency signal is sent out through the antenna.
- the operating point of the power amplifier will be affected by the high power and change, making the power amplifier The working state changes, which leads to changes in the characteristics of the power amplifier, including changes in the phase of the radio frequency signal under different output powers, which affects the linearity index of the radio frequency front-end module.
- the primary technical problem to be solved by the present invention is to provide a radio frequency power amplifier.
- Another technical problem to be solved by the present invention is to provide a radio frequency front-end module including the above radio frequency power amplifier and a corresponding communication terminal.
- a radio frequency power amplifier including a power amplifying unit, a detection unit, and an input matching unit, the output of the power amplifying unit is connected to the input of the detection unit, and the detection unit
- the output terminal of the input matching unit is connected to the input terminal, and the output terminal of the input matching unit is connected to the input terminal of the power amplification unit;
- the detection unit detects in real time the index parameters related to the output power of the power amplification unit, and converts them into a voltage that is positively correlated with the magnitude of the index parameter, and outputs the voltage to the input matching unit, so that the input is input to the power amplification unit.
- the phase change of the radio frequency signal of the unit is opposite to the phase change produced by the output signal of the power amplifying unit.
- a radio frequency power amplifier including a power amplifying unit, a detection unit, and an input matching unit, the bias end of the power amplifying unit is connected to the input end of the detection unit, and the detection The output end of the unit is connected to the input end of the input matching unit, and the output end of the input matching unit is connected to the input end of the power amplifying unit;
- the detection unit detects in real time the index parameters related to the output power of the power amplification unit, and converts them into a voltage that is positively correlated with the magnitude of the index parameter, and outputs the voltage to the input matching unit, so that the input is input to the power amplification unit.
- the phase change of the radio frequency signal of the unit is opposite to the phase change produced by the output signal of the power amplifying unit.
- the index parameter is the output power or working current of the power amplifying unit.
- the radio frequency power amplifier further includes a control unit and a power supply unit, the output ends of the control unit are respectively connected to the input ends of the power amplifying unit and the power supply unit, and the output ends of the power supply unit are respectively connected to The power supply terminals of the power amplifying unit and the detection unit.
- the power amplifying unit includes at least one stage of amplifying circuit, each stage of amplifying circuit is respectively connected to a bias circuit, and the output terminal of a certain stage of amplifying circuit is connected to the input terminal of the power detecting unit.
- the power amplifying unit includes two or more stages of amplifying circuits
- the amplifying circuits of each stage are connected through an inter-stage matching circuit, and the input end of the first-stage amplifying circuit is connected to the input matching unit.
- the last stage amplifying circuit is impedance matched with the external antenna through the output matching circuit.
- the detection unit adopts a power detection module, the input end of the power detection module is connected to the output end of a certain stage of the power amplification unit, and the output end of the power detection module is connected to the input matching The input terminal of the unit.
- the detection unit adopts a current acquisition circuit and a bias voltage generating circuit, the input end of the current acquisition circuit is connected to a bias circuit connected to a certain stage amplifying circuit, and the output end of the current acquisition circuit is connected The input terminal of the bias voltage generating circuit and the output terminal of the bias voltage generating circuit are connected to the input terminal of the input matching unit.
- the input matching unit includes at least one first LC matching circuit, the input end of each first LC matching circuit is connected to the output end of the detection unit, and the last one of the first LC matching circuit The output terminal is connected to the input terminal of the power amplifying unit.
- the input matching unit includes at least one second LC matching circuit, the input end of each second LC matching circuit is connected to the output end of the detection unit, and the last one of the second LC matching circuit The output terminal is connected to the input terminal of the power amplifying unit.
- the input matching unit includes at least one first LC matching circuit and a second LC matching circuit; the input terminals of each first LC matching circuit and each second LC matching circuit are respectively connected to the The output ends of the detection unit, the last output ends of the first LC matching circuit and the last second LC matching circuit are respectively connected to the input ends of the power amplifying unit.
- each of the first LC matching circuits is composed of a first inductance connected in parallel to the ground and a first voltage-controlled capacitor in series, and the non-grounded end of the first voltage-controlled capacitor is connected to the output end of the detection unit, The non-ground terminal of the first voltage-controlled capacitor of the last first LC matching circuit is also connected to the input terminal of the power amplifying unit.
- each of the second LC matching circuits is composed of a second inductor in series and a second voltage-controlled capacitor connected in parallel to the ground, and the non-grounded end of the second voltage-controlled capacitor is connected to the output end of the detection unit, The non-grounded end of the second voltage-controlled capacitor of the last second LC matching circuit is also connected to the input end of the power amplifying unit.
- a radio frequency front-end module including the aforementioned radio frequency power amplifier.
- a communication terminal including the above-mentioned radio frequency power amplifier.
- the radio frequency power amplifier provided by the present invention changes the function relationship between the output power of the power amplifying unit and the output voltage of the detection unit through the control unit according to different frequency bands and different power level modes, and uses the detection unit to change the output power of the detected power amplifying unit Or the working current is converted into a corresponding voltage and then input to the input matching unit, so that the phase change of the RF signal input to the power amplifying unit is opposite to the phase change produced by the power amplifying unit, so that the final output of the power amplifying unit is The phase remains unchanged, which effectively realizes the compensation of the phase distortion of the radio frequency signal output by the power amplifier unit in different modes, thereby improving the linearity index of the radio frequency front-end module.
- Figure 1 is a schematic diagram of the structure of a radio frequency power amplifier provided by the present invention
- FIG. 2 is a flow chart of the working principle of the radio frequency power amplifier provided by the present invention.
- FIG. 3 is a schematic diagram of the structure of the combination of the first detection unit and the first input matching unit in the radio frequency power amplifier provided by the present invention
- FIG. 4 is a schematic structural diagram of a combination of a second detection unit and a second input matching unit in the radio frequency power amplifier provided by the present invention
- FIG. 5 is a schematic structural diagram of the combination of a third type of detection unit and a third type of input matching unit in the radio frequency power amplifier provided by the present invention
- Fig. 6A is a schematic diagram of the change curve of the output power of the power amplifying unit and the phase of the radio frequency signal when the radio frequency power amplifier provided by the present invention is not used;
- Fig. 6B is a schematic diagram of the change curve of the output power of the power amplifying unit and the phase of the radio frequency signal when the radio frequency power amplifier provided by the present invention is used;
- FIG. 7 is a schematic diagram of the structure of the second detection unit in the radio frequency power amplifier provided by the present invention.
- FIG. 8 is a schematic diagram of the change curve of the current collected by the second detection unit with the output power of the power amplifying unit in the radio frequency power amplifier provided by the present invention
- Fig. 9 is a schematic diagram of the comparison of ACPR versus output power when the radio frequency power amplifier provided by the present invention is used and when the radio frequency power amplifier provided by the present invention is not used;
- FIG. 10 is a schematic diagram of a structure of a radio frequency front-end module provided by the present invention.
- FIG. 11 is a schematic diagram of another structure of the radio frequency front-end module provided by the present invention.
- an embodiment of the present invention provides a newly designed radio frequency power amplifier, which includes a control unit 100 and a power amplifier unit.
- the output end of the control unit 100 is respectively connected to the input end of the power amplifying unit 110 and the power supply unit 120, and the output or bias end of the power amplifying unit 110 is connected to the detection unit 130
- the output end of the detection unit 130 is connected to the input end of the input matching unit 150
- the output end of the input matching unit 150 is connected to the input end of the power amplifying unit 110
- the power ends of the power amplifying unit 110 and the detection unit 130 are respectively connected to the power supply unit 120 output terminal.
- the RF power amplifier detects the indicator parameters related to the output power of the power amplifying unit 110 in real time through the detection unit 130, and converts them into voltages that are positively correlated with the indicator parameters, and then outputs them to the input matching unit 150 for The phase of the radio frequency signal input to the power amplifying unit 110 is adjusted.
- the detection unit 130 detects in real time index parameters related to the output power of the power amplifying unit 110, including the output power or working current of the power amplifying unit 110.
- the present radio frequency power amplifier can convert the real-time detected output power of the power amplifying unit 110 through the detection unit 130 into a voltage that is positively correlated with the output power, and then output it to the input matching unit 150, so that the input is input to the power amplifier.
- the phase change of the radio frequency signal of the unit 110 is opposite to the phase change produced by the output signal of the power amplifying unit 110, which has the function of offsetting the phase change, so that the phase of the radio frequency signal finally output by the power amplifying unit 110 remains unchanged, thereby realizing power in different modes.
- the compensation of the phase distortion of the radio frequency signal output by the amplifying unit 110 improves the linearity index of the radio frequency front-end module.
- the present radio frequency power amplifier converts the real-time detected working current of the power amplifying unit 110 into a voltage positively correlated with the working current through the detection unit 130, and then inputs it to the input matching unit 150 so that the output is sent to the power amplifying unit
- the phase change of the radio frequency signal of 110 is opposite to the phase change produced by the output signal of the power amplifying unit 110, which has the effect of offsetting the phase change, so that the phase of the radio frequency signal finally output by the power amplifying unit 110 remains unchanged, thereby realizing power amplification in different modes
- the compensation of the phase distortion of the radio frequency signal output by the unit 110 improves the linearity index of the radio frequency front-end module.
- control unit 100 may be implemented by a central processing unit in a communication terminal.
- the control unit 100 can not only control the working state of the power supply unit 120, and the magnitude of the power supply voltage and current generated and output during operation; it can also change the output power of the power amplifier unit 110 and the detection unit 130 according to different frequency bands and different power levels. As a function of output voltage.
- the power amplifying unit 110 is used to amplify the modulated radio frequency signal to a preset power value.
- the power amplifying unit 110 includes at least one stage of amplifying circuit, each stage of amplifying circuit is respectively connected to a bias circuit, and the output terminal of any certain stage of amplifying circuit is connected to the input terminal of the power detecting unit 130; if the power amplifying unit 110 only There is a one-stage amplifying circuit, the input terminal of this stage amplifying circuit is connected to the output terminal of the input matching unit 150, and this stage amplifying circuit is impedance matched with the external antenna through the output matching circuit; if the power amplifying unit 110 includes two stages and two For amplifier circuits above the first stage, the amplifier circuits of each stage are connected through an inter-stage matching circuit.
- the input of the first stage amplifying circuit is connected to the output of the input matching unit 150, and the last stage amplifying circuit is connected to the external antenna through the output matching circuit. Impedance matching between.
- the first-stage amplifying circuit and the second-stage amplifying circuit are connected by an inter-stage matching circuit, and the input of the first-stage amplifying circuit is connected to the input
- the second-stage amplifying circuit is impedance matched with the external antenna through the output matching circuit.
- each stage of amplifying circuit 1101, inter-stage matching circuit and output matching circuit are conventional conventional circuits, which will not be repeated here.
- Bias circuit used to provide bias voltage and working current for the corresponding amplifying circuit. As shown in FIG. 3, taking a two-stage amplifying circuit as an example, the first-stage amplifying circuit and the second-stage amplifying circuit are respectively connected to a bias circuit 1103.
- Each bias circuit 1103 includes a first transistor HBT1, a second transistor HBT2, a third transistor HBT3, a capacitor C1, a first resistor R1, and a second resistor R2; the connection relationship between the parts of the bias circuit 1103 As follows: the collector of the first transistor HBT1 is connected to the power supply voltage Vdd, the emitter of the first transistor HBT1 is connected to the bias terminal of the corresponding amplifier circuit through the first resistor R1, and the base of the first transistor HBT1 is respectively connected to the capacitor C1 The collector of the second transistor HBT2 and one end of the second resistor R2, the other end of the capacitor C1 is grounded, the collector of the second transistor HBT2 is connected to its base, and the other end of the second resistor R2 is connected to the bias voltage Vreg, the emitter of the second transistor HBT2 is connected to the base and collector of the third transistor HBT3, and the emitter of the third transistor HBT3 is grounded.
- the power supply unit 120 is used to provide the power amplifying unit 110 and the detection unit 130 with required voltage and current.
- the power supply unit 120 is implemented by a linear stabilized power supply.
- the detection unit 130 adopts a power detection module 1301.
- the input end of the power detection module 1301 is connected to the output end of a certain stage of the power amplifying circuit of the power amplifying unit 110.
- the output terminal is connected to the input terminal of the input matching unit 150.
- the power detection module 1301 collects the output power of a certain stage amplifying circuit of the power amplifying unit 110 in real time, and converts it into a DC voltage that is directly related to the output power.
- the power detection module 1301 may be implemented by a wave detector, for example, it may be implemented by a logarithmic wave detector, an average wave detector, or a peak wave detector.
- the input matching unit 150 is not only used to match the input of the power amplifying unit 110, but also used to offset the phase change generated by the power amplifying unit 110, thereby realizing the phase of the radio frequency signal finally output by the power amplifying unit 110 constant.
- the input matching unit 150 has a variety of structural forms. 3, the first type of input matching unit 150 includes at least one first LC matching circuit, the input of each first LC matching circuit is connected to the output of the power detection module 1301, and the last one of the first LC matching circuit The output terminal is connected to the input terminal of the power amplifying unit 110.
- Each first LC matching circuit is composed of a first inductor L1 connected in parallel to the ground and a first voltage-controlled capacitor C1 connected in series, and the non-grounded end of the first voltage-controlled capacitor C1 is connected to the output end of the power detection module 1301.
- the non-grounded end of the first voltage-controlled capacitor C1 of the last first LC matching circuit is also connected to the input end of the power amplifying unit 110. According to the frequency and bandwidth of the radio frequency signal, the number of the first LC matching circuit is adjusted.
- the input matching unit 150 may include a first LC matching circuit, and the first LC matching circuit is connected in parallel.
- the first inductor L1 to the ground is composed of the first voltage-controlled capacitor C1 in series.
- the first voltage-controlled capacitor C1 is implemented by CMOS technology, and its working characteristic is that the size of the capacitor changes according to the voltage difference between the two ends of the first voltage-controlled capacitor C1, thereby affecting the phase change of the radio frequency signal input through the matching unit 150.
- the phase change of the radio frequency signal is opposite to the change of the radio frequency signal phase caused by the power amplifying unit 110, so the phase change generated by the power amplifying unit 110 can be offset, so that the phase of the radio frequency signal finally output by the power amplifying unit 110 remains unchanged.
- the phase of the output radio frequency signal will change.
- the phase of the radio frequency signal output by the power amplifying unit 110 gradually increases, that is, the phase of the radio frequency signal output by the power amplifying unit 110 changes in a positive direction with its output power.
- the first voltage-controlled capacitor C1 is adjusted to have a positive polarity, so that the voltage difference between the two ends of the first voltage-controlled capacitor C1 is positive, and the phase of the radio frequency signal input to the matching unit 150 is equal to the voltage difference between the two ends of the first voltage-controlled capacitor C1.
- ⁇ represents the phase of the radio frequency signal passing through the input matching unit 150
- K represents the proportionality coefficient
- C1 represents the first voltage-controlled capacitor
- f represents the frequency of the radio frequency signal.
- the phase of the RF signal output by the power amplifying unit 110 may gradually decrease, that is, the phase of the RF signal output by the power amplifying unit 110 is proportional to its output power. Reverse change.
- the first voltage-controlled capacitor C1 adjusts to have a negative polarity, so that the voltage difference across the first voltage-controlled capacitor C1 is negative, and the phase of the radio frequency signal input to the matching unit 150 and the voltage difference between the two ends of the first voltage-controlled capacitor C1 are positive
- the output voltage of the power detection module 1301 will gradually increase, and the output voltage controls the voltage at the negative terminal of the first voltage-controlled capacitor C1 in the input matching unit 150,
- the voltage at the positive terminal of the first voltage-controlled capacitor C1 is zero (because the first inductor L1 is grounded), so the voltage difference between the two ends of the first voltage-controlled capacitor C1 decreases as the output power of the power amplifying unit 110 increases.
- the capacitance of the voltage-controlled capacitor C1 will decrease as the output power of the power amplifier unit increases, and the phase of the radio frequency signal passing through the input matching unit 150 will increase as the output power of the power amplifier unit increases, that is, through the input matching unit
- the phase of the radio frequency signal of 150 and the output power of the power amplifying unit changes in a positive direction.
- the phase change of the radio frequency signal input to the matching unit 150 is opposite to the change of the radio frequency signal phase caused by the power amplifying unit 110, which can offset the change of the radio frequency signal generated by the power amplifying unit 110.
- the phase changes, so that the phase of the RF signal finally output by the power amplifier unit 110 remains unchanged.
- FIG. 6B when the RF signal is input to the RF power amplifier, the phase change of the RF signal output by the RF power amplifier approaches zero. .
- the second type of input matching unit 150 includes at least one second LC matching circuit, the input of each second LC matching circuit is connected to the output of the power detection module 1301, and the output of the last second LC matching circuit The terminal is connected to the input terminal of the power amplifying unit 110.
- Each second LC matching circuit is composed of a second inductor L2 in series and a second voltage-controlled capacitor C2 connected in parallel to the ground, and the non-grounded end of the second voltage-controlled capacitor C2 is connected to the output end of the power detection module 1301.
- the non-grounded end of the second voltage-controlled capacitor C2 of the last second LC matching circuit is also connected to the input end of the power amplifying unit 110. According to the frequency and bandwidth of the radio frequency signal, the number of second LC matching circuits is adjusted.
- the input matching unit 150 may include a second LC matching circuit, and the second LC matching circuit is composed of A second inductor L2 connected in series and a second voltage-controlled capacitor C2 connected in parallel to the ground are formed.
- the second voltage-controlled capacitor C2 is also realized by CMOS technology, and its working characteristic is that the size of the capacitor changes according to the voltage difference between the two ends of the second voltage-controlled capacitor C2, thereby affecting the phase change of the radio frequency signal through the input matching unit 150
- the phase change of the radio frequency signal is opposite to the change of the radio frequency signal phase caused by the power amplifying unit 110, so the phase change generated by the power amplifying unit 110 can be offset, so that the phase of the radio frequency signal finally output by the power amplifying unit 110 remains unchanged.
- ⁇ represents the phase of the radio frequency signal passing through the input matching unit
- K1 and K2 represent the proportional coefficients
- C2 represents the second voltage-controlled capacitor.
- the third type of input matching unit 150 includes at least one first LC matching circuit and a second LC matching circuit; the input terminals of each first LC matching circuit and each second LC matching circuit are respectively connected to a power detection circuit.
- the output terminals of the module 1301, the output terminals of the last first LC matching circuit and the last second LC matching circuit are respectively connected to the input terminals of the power amplifying unit 110.
- the structure of the first LC matching circuit and the second LC matching circuit and the connection relationship with the power detection module 1301 and the power amplifying unit 110 are the same as above.
- the third input matching unit passes through the first LC matching circuit and the second LC matching circuit. The specific process for realizing that the phase of the radio frequency signal finally output by the power amplification unit 110 remains unchanged is the same as that of the first input matching unit 150, and will not be repeated here.
- the detection unit 130 uses a current acquisition circuit 1302 and a bias voltage generation circuit 1303; the input end of the current acquisition circuit 1302 is connected to a bias circuit connected to a certain stage of amplifying circuit.
- the output terminal of the voltage generating circuit 1303 is connected to the non-grounded terminal of the first voltage-controlled capacitor C1 and/or the second voltage-controlled capacitor C2 of the input matching unit 150.
- the current collecting circuit 1302 collects the working current of the power amplifying unit 110 in real time, and inputs the working current to the bias voltage generating circuit 1303 to convert it into a direct current voltage that is positively related to the working current.
- the current detection circuit 1302 and the bias voltage generation circuit 1303 can be implemented by existing conventional circuits, which will not be described in detail here.
- the working current on the first transistor HBT1 of the bias circuit connected to any one-stage amplifying circuit in the power amplifying unit 110 will increase as the output power of the power amplifying unit 110 increases.
- the current detection circuit 1302 detects the working current on the first transistor HBT1, and is converted into a direct current voltage directly related to the working current through the bias voltage generating circuit 1303. Therefore, as the output of the power amplifying unit 110 As the power increases, the DC voltage output by the bias voltage generating circuit 1303 will also increase.
- the output DC voltage is input to the input matching unit 150, so that the phase of the radio frequency signal passing through the input matching unit 150 will be the same as the output of the power amplifying unit.
- the power changes in a forward or reverse direction.
- the phase change of the radio frequency signal input to the matching unit 150 is opposite to the change of the radio frequency signal phase caused by the power amplifying unit 110, and the phase change generated by the power amplifying unit 110 can be offset, thereby achieving The phase of the radio frequency signal finally output by the power amplifying unit 110 remains unchanged, thereby ensuring the optimal linearity of the radio frequency front-end module.
- ACPR is an index describing the linearity of the RF power amplifier. The smaller the ACPR, the better the linearity of the RF power amplifier.
- the thicker curve shows that after using the RF power amplifier, as the output power of the RF power amplifier increases, its linearity is significantly higher than the linearity of the unused RF power amplifier indicated by the thinner curve.
- the specific process of the input matching unit 150 for realizing the phase change of the radio frequency signal finally output by the power amplifying unit 110 is the same as the above, and will not be repeated here.
- the radio frequency power amplifier provided by the present invention changes the function relationship between the output power of the power amplifier unit and the output voltage of the detection unit through the control unit according to different frequency bands and different power level modes, and uses the detection unit to change the output power of the detected power amplifier unit Or the working current is converted into a corresponding voltage and then input to the input matching unit, so that the phase change of the RF signal input to the power amplifying unit is opposite to the phase change produced by the power amplifying unit, so that the final output of the power amplifying unit is The phase remains unchanged, thereby realizing the compensation of the phase distortion of the radio frequency signal output by the power amplifier unit in different modes, and improving the linearity index of the radio frequency front-end module.
- the radio frequency power amplifier provided by the present invention can be used in radio frequency front-end modules.
- the RF front-end module includes but is not limited to Wifi RF front-end module and multi-mode and multi-frequency RF front-end module.
- the RF front-end module may include a switch unit 140 in addition to the RF power amplifier.
- the switch unit 140 is connected to the control unit 100, the power supply unit 120, and the power amplification unit 110 of the RF power amplifier, respectively.
- the radio frequency signal amplified by the radio frequency power amplifier is transmitted to the antenna through the switch unit 140, and sent to the base station through the antenna, so that the radio frequency front-end module transmits the radio frequency signal to the base station.
- the switch unit 140 may be implemented by a single-pole multi-throw switch or a multi-pole multi-throw switch.
- a low-noise amplifier 160 can also be provided in the radio-frequency front-end module, and the low-noise amplifier 160 is connected to the switch unit 140; After power-amplifying the radio frequency signal transmitted from the base station, it is sent to the transceiver for demodulation.
- the radio frequency front-end module provided by the present invention can be used in radio frequency chips.
- the specific structure of the radio frequency power amplifier in the radio frequency chip will not be detailed here.
- the aforementioned RF power amplifier/RF front-end module can also be used in communication terminals as an important part of the RF circuit.
- the communication terminal mentioned here refers to computer equipment that can be used in a mobile environment and supports multiple communication standards such as GSM, EDGE, TD_SCDMA, TDD_LTE, FDD_LTE, etc., including but not limited to mobile phones, notebook computers, tablet computers, car computers, etc.
- the radio frequency power amplifier is also suitable for other communication technology applications, such as communication base stations compatible with multiple communication standards, etc., which will not be detailed here.
- radio frequency power amplifier, radio frequency front-end module and communication terminal provided by the present invention have been described in detail above. For those of ordinary skill in the art, any obvious changes made to the present invention without departing from the essential content of the present invention will fall within the protection scope of the patent right of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Amplifiers (AREA)
Abstract
本发明公开了一种射频功率放大器、射频前端模块和通信终端。该射频功率放大器包括控制单元、功率放大单元、检测单元和输入匹配单元。该射频功率放大器中,检测单元实时检测和功率放大单元的输出功率相关的指标参数,并转化成与指标参数大小正相关的电压,输出到输入匹配单元,以使得输入到功率放大单元的射频信号的相位变化与功率放大单元输出信号产生的相位变化相反,从而有效实现不同模式下功率放大单元输出的射频信号的相位失真补偿,提高射频前端模块的线性度指标。
Description
本发明涉及一种射频功率放大器,同时也涉及包括该射频功率放大器的射频前端模块和相应的通信终端,属于无线通信技术领域。
随着科技的进步,Wifi通信标准经历了IEEE 802.11-1997、IEEE 802.11a、802.11b、802.11g、802.11n和802.11ac,直到IEEE 802.11ax。同样,移动通信技术经历了2G、3G,直到现在4G的广泛的应用,以及未来5G的积极部署,Wifi通信和移动通信的发展对射频前端线性度的要求越来越高。因此,对制作通信设备的厂商来说,需要设计出高线性度的通信装置。
射频前端模块是目前无线通信终端里无法被收发器集成的一个重要射频元件。在射频前端模块中,通过功率放大器将调制后的射频信号放大到一定的功率值,再将放大后的射频信号通过天线发送出去。
但是,现有射频前端模块的功率放大器在对射频信号的功率进行放大的过程中,随着输出功率的不断增大,该功率放大器的工作点会受到大功率的影响而改变,使得功率放大器的工作状态发生改变,从而导致功率放大器的特性发生改变,其中,包括不同输出功率射频信号下的相位会发生改变,从而影响射频前端模块的线性度指标。
发明内容
本发明所要解决的首要技术问题在于提供一种射频功率放大器。
本发明所要解决的另一技术问题在于提供一种包括上述射频功率放大器的射频前端模块和相应的通信终端。
为了实现上述目的,本发明采用下述的技术方案:
根据本发明实施例的第一方面,提供一种射频功率放大器,包括功率放大单元、检测单元和输入匹配单元,所述功率放大单元的输出端连接所述检测单元的输入端,所述检测单元的输出端连接所述输入匹配单元的输入端,所述输入匹配单元的输出端连接所述功率放大单元的输入端;
所述检测单元实时检测和所述功率放大单元的输出功率相关的指标参数,并转化成与所述指标参数大小正相关的电压,输出到所述输入匹配单元,以使得输入到所述功率放大单元的射频信号的相位变化与所述功率放大单元输出信号产生的相位变化相反。
根据本发明实施例的第二方面,提供一种射频功率放大器,包括功率放大单元、检测单元和输入匹配单元,所述功率放大单元的偏置端连接所述检测单元的输入端,所述检测单元的输出端连接所述输入匹配单元的输入端,所述输入匹配单元的输出端连接所述功率放大单元的输入端;
所述检测单元实时检测和所述功率放大单元的输出功率相关的指标参数,并转化成与所述指标参数大小正相关的电压,输出到所述输入匹配单元,以使得输入到所述功率放大单元的射频信号的相位变化与所述功率放大单元输出信号产生的相位变化相反。
其中较优地,所述指标参数为所述功率放大单元的输出功率或工作电流。
其中较优地,所述射频功率放大器还包括控制单元和电源单元,所述控制单元的输出端分别连接所述功率放大单元与所述电源单元的输入端,所述电源单元的输出端分别连接所述功率放大单元与所述检测单元的电源端。
其中较优地,所述功率放大单元包括至少一级放大电路,每一级放大电路分别连接一个偏置电路,某一级放大电路的输出端连接所述功率检测单元的输入端。
其中较优地,如果所述功率放大单元包括两级及两级以上放大电路,则各级放大电路之间通过级间匹配电路相连,第一级放大电路的输入端连接所述输入匹配单元的输出端,最后一级放大电路通过输出匹配电路与外部的天线之间阻抗匹配。
其中较优地,所述检测单元采用功率检测模块,所述功率检测模块的输入端连接所述功率放大单元某一级放大电路的输出端,所述功率检测模块的输出端连接所述输入匹配单元的输入端。
其中较优地,所述检测单元采用电流采集电路和偏置电压产生电路,所述电流采集电路的输入端连接与某一级放大电路连接的偏置电 路,所述电流采集电路的输出端连接所述偏置电压产生电路的输入端,所述偏置电压产生电路的输出端连接所述输入匹配单元的输入端。
其中较优地,所述输入匹配单元包括至少一个第一LC匹配电路,每个所述第一LC匹配电路的输入端连接所述检测单元的输出端,最后一个所述第一LC匹配电路的输出端连接所述功率放大单元的输入端。
其中较优地,所述输入匹配单元包括至少一个第二LC匹配电路,每个所述第二LC匹配电路的输入端连接所述检测单元的输出端,最后一个所述第二LC匹配电路的输出端连接所述功率放大单元的输入端。
其中较优地,所述输入匹配单元包括至少一个第一LC匹配电路和第二LC匹配电路;每个所述第一LC匹配电路和每个所述第二LC匹配电路的输入端分别连接所述检测单元的输出端,最后一个所述第一LC匹配电路和最后一个所述第二LC匹配电路的输出端分别连接所述功率放大单元的输入端。
其中较优地,每个所述第一LC匹配电路由并联到地第一电感和串联第一压控电容组成,所述第一压控电容的非接地端连接所述检测单元的输出端,最后一个所述第一LC匹配电路的第一压控电容的非接地端还连接所述功率放大单元的输入端。
其中较优地,每个所述第二LC匹配电路由串联第二电感和并联到地第二压控电容组成,所述第二压控电容的非接地端连接所述检测单元的输出端,最后一个所述第二LC匹配电路的第二压控电容的非接地端还连接所述功率放大单元的输入端。
根据本发明实施例的第三方面,提供一种射频前端模块,包括上述的射频功率放大器。
根据本发明实施例的第四方面,提供一种通信终端,包括上述的射频功率放大器。
本发明所提供的射频功率放大器通过控制单元根据不同频段,不同功率等级模式,改变功率放大单元的输出功率与检测单元的输出电压的函数关系,并利用检测单元将检测的功率放大单元的输出功率或工作电流,转化成相应的电压后,输入到输入匹配单元,以使得输入到功率放大单元的射频信号的相位变化与功率放大单元产生的相位变化相反,使得功率放大单元最终输出的射频信号的相位不变,有效的 实现不同模式下功率放大单元输出的射频信号的相位失真的补偿,从而提高射频前端模块的线性度指标。
图1为本发明所提供的射频功率放大器的结构示意图;
图2为本发明所提供的射频功率放大器的工作原理流程图;
图3为本发明所提供的射频功率放大器中,第一种检测单元与第一种输入匹配单元结合的结构示意图;
图4为本发明所提供的射频功率放大器中,第二种检测单元与第二种输入匹配单元结合的结构示意图;
图5为本发明所提供的射频功率放大器中,第三种检测单元与第三种输入匹配单元结合的结构示意图;
图6A为未采用本发明所提供的射频功率放大器时,功率放大单元输出功率和射频信号相位的变化曲线示意图;
图6B为采用本发明所提供的射频功率放大器时,功率放大单元输出功率和射频信号相位的变化曲线示意图;
图7为本发明所提供的射频功率放大器中,第二种检测单元的结构示意图;
图8为本发明所提供的射频功率放大器中,第二种检测单元采集的电流随功率放大单元输出功率的变化曲线示意图;
图9为采用和未采用本发明所提供的射频功率放大器时,ACPR随输出功率的变化曲线的对比示意图;
图10为本发明所提供的射频前端模块的一种结构示意图;
图11为本发明所提供的射频前端模块的另一种结构示意图。
下面结合附图和具体实施例对本发明的技术内容做进一步的详细说明。
为了解决射频功率放大器导致的射频信号相位随其输出功率增大而变化的问题,如图1所示,本发明实施例提供了一种新设计的射频功率放大器,包括控制单元100、功率放大单元110、电源单元120、检测单元130和输入匹配单元150;控制单元100的输出端分别连接功率放大单元110与电源单元120的输入端,功率放大单元110的输 出端或偏置端连接检测单元130的输入端,检测单元130的输出端连接输入匹配单元150的输入端,输入匹配单元150的输出端连接功率放大单元110的输入端,功率放大单元110与检测单元130的电源端分别连接电源单元120的输出端。
如图2所示,本射频功率放大器通过检测单元130实时检测和功率放大单元110输出功率相关的指标参数,并转化成与该指标参数大小正相关的电压后,输出到输入匹配单元150,以调节输入到功率放大单元110的射频信号的相位。其中,检测单元130实时检测和功率放大单元110输出功率相关的指标参数,包括功率放大单元110的输出功率或工作电流。
因此,本射频功率放大器可以通过检测单元130将实时检测到的功率放大单元110的输出功率,转化成与该输出功率大小正相关的电压后,输出到输入匹配单元150,以使得输入到功率放大单元110的射频信号的相位变化与功率放大单元110输出信号产生的相位变化相反,起到相位变化抵消的功能,使功率放大单元110最终输出的射频信号的相位不变,从而实现不同模式下功率放大单元110输出的射频信号的相位失真的补偿,提高射频前端模块的线性度指标。
或者,本射频功率放大器通过检测单元130将实时检测到的功率放大单元110的工作电流,转化成与该工作电流大小正相关的电压后,输入到输入匹配单元150,以使得输出到功率放大单元110的射频信号的相位变化与功率放大单元110输出信号产生的相位变化相反,起到相位变化抵消的作用,使功率放大单元110最终输出的射频信号的相位不变,从而实现不同模式下功率放大单元110输出的射频信号的相位失真的补偿,提高射频前端模块的线性度指标。
其中,控制单元100可以采用通信终端中的中央处理器实现。该控制单元100不仅可以控制电源单元120的工作状态,以及工作时产生和输出电源电压和电流的大小;还可以根据不同频段,不同功率等级模式,改变功率放大单元110的输出功率与检测单元130的输出电压的函数关系。
功率放大单元110,用于将调制后的射频信号放大到预设功率值。该功率放大单元110,包括至少一级放大电路,每一级放大电路分别 连接一个偏置电路,其中任意某一级放大电路的输出端连接功率检测单元130的输入端;如果功率放大单元110仅有一级放大电路,则该该级放大电路的输入端连接输入匹配单元150的输出端,该级放大电路通过输出匹配电路与外部的天线之间阻抗匹配;如果功率放大单元110包括两级及两级以上放大电路,则各级放大电路之间通过级间匹配电路相连,第一级放大电路的输入端连接输入匹配单元150的输出端,最后一级放大电路通过输出匹配电路与外部的天线之间阻抗匹配。如图3所示,以功率放大单元110包括两级放大电路1101为例,第一级放大电路和第二级放大电路之间通过级间匹配电路相连,第一级放大电路的输入端连接输入匹配单元150的输出端,第二级放大电路通过输出匹配电路与外部的天线之间阻抗匹配。其中,每一级放大电路1101、级间匹配电路及输出匹配电路为现有常规电路,在此不再赘述。
偏置电路,用于为相应的放大电路提供偏置电压和工作电流。如图3所示,以两级放大电路为例,第一级放大电路和第二级放大电路分别连接一个偏置电路1103。每个偏置电路1103,包括第一晶体三极管HBT1、第二晶体三极管HBT2、第三晶体三极管HBT3、电容C1、第一电阻R1和第二电阻R2;偏置电路1103各部分之间的连接关系如下:第一晶体三极管HBT1的集电极连接电源电压Vdd,第一晶体三极管HBT1的发射极通过第一电阻R1连接对应的放大电路的偏置端,第一晶体三极管HBT1的基极分别连接电容C1的一端、第二晶体三极管HBT2的集电极及第二电阻R2的一端,电容C1的另一端接地,第二晶体三极管HBT2的集电极连接其基极,第二电阻R2的另一端连接偏置电压Vreg,第二晶体三极管HBT2的发射极分别连接第三晶体三极管HBT3的基极和集电极,第三晶体三极管HBT3的发射极接地。
电源单元120,用于为功率放大单元110与检测单元130提供所需的电压和电流。该电源单元120采用线性稳压电源实现。
如图3所示,在本发明的一个实施例中,检测单元130采用功率检测模块1301,功率检测模块1301的输入端连接功率放大单元110某一级放大电路的输出端,功率检测模块1301的输出端连接输入匹配单元150的输入端。通过功率检测模块1301实时采集功率放大单元110的某一级放大电路的输出功率,并转化成与该输出功率大小正相 关的直流电压。功率检测模块1301可以采用检波器实现,例如可以采用对数检波器、均值检波器或者峰值检波器实现。
如图3~图5所示,输入匹配单元150不仅用于功率放大单元110的输入匹配,还用于抵消功率放大单元110产生的相位变化,从而实现功率放大单元110最终输出的射频信号的相位不变。输入匹配单元150具有多种结构形式。具体参照图3所示,第一种输入匹配单元150包括至少一个第一LC匹配电路,每个第一LC匹配电路的输入端连接功率检测模块1301的输出端,最后一个第一LC匹配电路的输出端连接功率放大单元110的输入端。每个第一LC匹配电路由并联到地第一电感L1和串联第一压控电容C1组成,并且第一压控电容C1的非接地端连接功率检测模块1301的输出端。并且,最后一个第一LC匹配电路的第一压控电容C1的非接地端还连接功率放大单元110的输入端。根据射频信号的频率、带宽,调整第一LC匹配电路的数量。
如图3所示,为了便于对本发明实施例的理解,以射频信号的频率和带宽较小为例,则输入匹配单元150可以包括一个第一LC匹配电路,而该第一LC匹配电路由并联到地第一电感L1和串联第一压控电容C1组成。其中,第一压控电容C1采用CMOS工艺实现,其工作特点是电容的大小根据该第一压控电容C1两端的电压差不同而变化,从而影响通过输入匹配单元150的射频信号的相位变化,该射频信号的相位变化和功率放大单元110导致的射频信号相位的变化相反,因此可以抵消功率放大单元110产生的相位变化,实现功率放大单元110最终输出的射频信号的相位不变。
具体地说,功率放大单元110在其输出功率逐渐增大的过程中,输出的射频信号的相位会发生改变。一种情况,随着功率放大单元110输出功率逐渐增大,其输出的射频信号的相位逐渐增大,即功率放大单元110输出的射频信号的相位与其输出功率成正向变化。此时,调整第一压控电容C1为正极性,使得第一压控电容C1两端的电压差为正,通过输入匹配单元150的射频信号的相位与第一压控电容C1两端的电压差成反向变化;因此,随着功率放大单元110输出功率逐渐增大,功率检测模块1301的输出电压会逐渐增大,该输出电压控制输入匹配单元150中的第一压控电容C1正极端的电压,而第一压控电容 C1负极端的电压为零(因为第一电感L1接地),结合公式(1)不难得出:在固定射频信号的频率下,第一压控电容C1两端的电压差随着功率放大单元110输出功率的增大而增大,第一压控电容C1的电容会随着功率放大单元输出功率增大而增大,而通过输入匹配单元150的射频信号的相位会随着功率放大单元输出功率增大而减小,即通过输入匹配单元150的射频信号的相位与功率放大单元输出功率成反向变化,通过输入匹配单元150的射频信号的相位的变化与功率放大单元110导致的射频信号相位的变化相反,可以抵消功率放大单元110产生的相位变化,从而实现功率放大单元110最终输出的射频信号的相位不变。
其中,θ表示通过输入匹配单元150的射频信号的相位,K表示比例系数,C1表示第一压控电容,f表示射频信号的频率。
另一种情况,如图6A所示,随着功率放大单元110输出功率逐渐增大,其输出的射频信号的相位可以逐渐减小,即功率放大单元110输出的射频信号的相位与其输出功率成反向变化。此时,调整第一压控电容C1为负极性,使得第一压控电容C1两端的电压差为负,通过输入匹配单元150的射频信号的相位与第一压控电容C1两端的电压差成正向变化;同样,随着功率放大单元110输出功率逐渐增大,功率检测模块1301的输出电压会逐渐增大,该输出电压控制输入匹配单元150中的第一压控电容C1负极端的电压,而第一压控电容C1正极端的电压为零(因为第一电感L1接地),因此第一压控电容C1两端的电压差随着功率放大单元110输出功率的增大而减小,第一压控电容C1的电容会随着功率放大单元输出功率增大而减小,而通过输入匹配单元150的射频信号的相位会随着功率放大单元输出功率增大而增大,即通过输入匹配单元150的射频信号的相位与功率放大单元输出功率成正向变化,通过输入匹配单元150的射频信号的相位的变化与功率放大单元110导致的射频信号相位的变化相反,可以抵消功率放大单元110产生的相位变化,从而实现功率放大单元110最终输出的射频信号的相位不变,如图6B所示,当射频信号输入到本射频功率放大器后,射频功率放大器输出的射频信号的相位变化趋近于零。
如图4所示,第二种输入匹配单元150包括至少一个第二LC匹配电路,每个第二LC匹配电路的输入端连接功率检测模块1301的输出端,最后一个第二LC匹配电路的输出端连接功率放大单元110的输入端。每个第二LC匹配电路由串联第二电感L2和并联到地第二压控电容C2组成,并且第二压控电容C2的非接地端连接功率检测模块1301的输出端。并且,最后一个第二LC匹配电路的第二压控电容C2的非接地端还连接功率放大单元110的输入端。根据射频信号的频率、带宽,调整第二LC匹配电路的数量。
如图4所示,为了便于对本发明实施例的理解,同样以射频信号的频率和带宽较小为例,则输入匹配单元150可以包括一个第二LC匹配电路,而该第二LC匹配电路由串联第二电感L2和并联到地第二压控电容C2组成。其中,第二压控电容C2也是采用CMOS工艺实现,其工作特点是电容的大小根据该第二压控电容C2两端的电压差不同而变化,从而影响通过输入匹配单元150的射频信号的相位变化,该射频信号的相位变化和功率放大单元110导致的射频信号相位的变化相反,因此可以抵消功率放大单元110产生的相位变化,从而实现功率放大单元110最终输出的射频信号的相位不变。具体地说,在固定射频信号的频率下,如公式(2),其中(1-K2*C2)为正值,因此第二压控电容C2变大,通过输入匹配单元150的射频信号的相位θ减小。第二种输入匹配单元150实现功率放大单元110最终输出的射频信号的相位不变的具体过程同第一种种输入匹配单元150,在此就不再赘述了。
其中,θ表示通过输入匹配单元的射频信号的相位,K1、K2表示比例系数,C2表示第二压控电容。
如图5所示,第三种输入匹配单元150包括至少一个第一LC匹配电路和第二LC匹配电路;每个第一LC匹配电路和每个第二LC匹配电路的输入端分别连接功率检测模块1301的输出端,最后一个第一LC匹配电路和最后一个第二LC匹配电路的输出端分别连接功率放大单元110的输入端。其中,第一LC匹配电路和第二LC匹配电路的结构及分别与功率检测模块1301、功率放大单元110的连接关系同上,第 三种输入匹配单元通过第一LC匹配电路和第二LC匹配电路实现功率放大单元110最终输出的射频信号的相位不变的具体过程同第一种输入匹配单元150,在此就不一一赘述了。
如图7所示,在本发明的另一个实施例中,检测单元130采用电流采集电路1302和偏置电压产生电路1303;电流采集电路1302的输入端连接与某一级放大电路连接的偏置电路的第一晶体三极管HBT1的集电极,电流采集电路1302的输出端连接偏置电压产生电路1303的输入端,偏置电压产生电路1303的输出端连接输入匹配单元150的输入端,即偏置电压产生电路1303的输出端连接输入匹配单元150的第一压控电容C1和/或第二压控电容C2的非接地端。通过电流采集电路1302实时采集功率放大单元110的工作电流,并将该工作电流输入到偏置电压产生电路1303,转化成与该工作电流大小正相关的直流电压。其中,电流检测电路1302和偏置电压产生电路1303可以用现有的常规电路实现,在此不再详述。
具体地说,功率放大单元110中任意一级放大电路所连接的偏置电路的第一晶体三极管HBT1上的工作电流会随着功率放大单元110的输出功率的增大而增大。如图8所示,电流检测电路1302检测第一晶体三极管HBT1上的工作电流,经过偏置电压产生电路1303转化为与该工作电流大小正相关的直流电压,因此随着功率放大单元110的输出功率的增大,偏置电压产生电路1303输出的直流电压也会增大,该输出的直流电压输入到输入匹配单元150,使得通过输入匹配单元150的射频信号的相位会与功率放大单元的输出功率成正向或反向变化。通过改变相应的压控电容的极性,使得输入匹配单元150的射频信号的相位的变化与功率放大单元110导致的射频信号相位的变化相反,可以抵消功率放大单元110产生的相位变化,从而实现功率放大单元110最终输出的射频信号的相位不变,从而保证本射频前端模块的线性度最优。如图9所示,ACPR是描述射频功率放大器线性度的一个指标,ACPR越小射频功率放大器线性度越好。图9中,较粗曲线为使用本射频功率放大器后,随着射频功率放大器的输出功率的增加,其线性度明显高于较细曲线表示的未使用本射频功率放大器的线性度。其中,输入匹配单元150实现功率放大单元110最终输出的射频信号的 相位不变的具体过程同上,在此不再赘述。
本发明所提供的射频功率放大器通过控制单元根据不同频段、不同功率等级模式,改变功率放大单元的输出功率与检测单元的输出电压的函数关系,并利用检测单元将检测的功率放大单元的输出功率或工作电流,转化成相应的电压后,输入到输入匹配单元,以使得输入到功率放大单元的射频信号的相位变化与功率放大单元产生的相位变化相反,使得功率放大单元最终输出的射频信号的相位不变,从而实现不同模式下功率放大单元输出的射频信号的相位失真的补偿,提高射频前端模块的线性度指标。
本发明所提供的射频功率放大器可以应用在射频前端模块中。该射频前端模块包括不限于Wifi射频前端模块和多模多频射频前端模块。
其中,如图10所示,该射频前端模块除了包括本射频功率放大器以外,还可以包括开关单元140,开关单元140分别连接射频功率放大器的控制单元100、电源单元120和功率放大单元110。通过开关单元140将经射频功率放大器放大后的射频信号传输至天线,通过天线发送至基站,以实现射频前端模将射频信号发送至基站。开关单元140可以采用单刀多掷开关或多刀多掷开关实现。
当需要在射频前端模块与基站之间实现双向传输射频信号时,如图11所示,还可以在射频前端模块中设置低噪声放大器160,低噪声放大器160连接开关单元140;通过低噪声放大器160将来自基站发射的射频信号进行功率放大后,发送至收发器进行解调。
本发明所提供的射频前端模块可以被用在射频芯片中。对于该射频芯片中的射频功率放大器的具体结构,在此就不再一一详述了。
另外,上述的射频功率放大器/射频前端模块还可以被用在通信终端中,作为射频电路的重要组成部分。这里所说的通信终端指可以在移动环境中使用、支持GSM,EDGE、TD_SCDMA、TDD_LTE、FDD_LTE等多种通信制式的计算机设备,包括但不限于移动电话、笔记本电脑、平板电脑、车载电脑等。此外,该射频功率放大器也适用于其他通信技术应用的场合,例如兼容多种通信制式的通信基站等,在此就不一一详述了。
以上对本发明所提供的射频功率放大器、射频前端模块和通信终端进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质内容的前提下对它所做的任何显而易见的改动,都将属于本发明专利权的保护范围。
Claims (15)
- 一种射频功率放大器,其特征在于包括功率放大单元、检测单元和输入匹配单元,所述功率放大单元的输出端连接所述检测单元的输入端,所述检测单元的输出端连接所述输入匹配单元的输入端,所述输入匹配单元的输出端连接所述功率放大单元的输入端;所述检测单元实时检测和所述功率放大单元的输出功率相关的指标参数,并转化成与所述指标参数大小正相关的电压,输出到所述输入匹配单元,以使得输入到所述功率放大单元的射频信号的相位变化与所述功率放大单元输出信号产生的相位变化相反。
- 一种射频功率放大器,其特征在于包括功率放大单元、检测单元和输入匹配单元,所述功率放大单元的偏置端连接所述检测单元的输入端,所述检测单元的输出端连接所述输入匹配单元的输入端,所述输入匹配单元的输出端连接所述功率放大单元的输入端;所述检测单元实时检测和所述功率放大单元的输出功率相关的指标参数,并转化成与所述指标参数大小正相关的电压,输出到所述输入匹配单元,以使得输入到所述功率放大单元的射频信号的相位变化与所述功率放大单元输出信号产生的相位变化相反。
- 如权利要求1或2所述的射频功率放大器,其特征在于:所述指标参数为所述功率放大单元的输出功率或工作电流。
- 如权利要求1或2所述的射频功率放大器,其特征在于还包括控制单元和电源单元,所述控制单元的输出端分别连接所述功率放大单元与所述电源单元的输入端,所述电源单元的输出端分别连接所述功率放大单元与所述检测单元的电源端。
- 如权利要求1或2所述的射频功率放大器,其特征在于:所述功率放大单元包括至少一级放大电路,每一级放大电路分别连接一个偏置电路,某一级放大电路的输出端连接所述功率检测单元的输入端。
- 如权利要求5所述的射频功率放大器,其特征在于:如果所述功率放大单元包括两级及两级以上放大电路,则各级放大电路之间通过级间匹配电路相连,第一级放大电路的输入端连接所 述输入匹配单元的输出端,最后一级放大电路通过输出匹配电路与外部的天线之间阻抗匹配。
- 如权利要求5所述的射频功率放大器,其特征在于:所述检测单元采用功率检测模块,所述功率检测模块的输入端连接所述功率放大单元某一级放大电路的输出端,所述功率检测模块的输出端连接所述输入匹配单元的输入端。
- 如权利要求5所述的射频功率放大器,其特征在于:所述检测单元采用电流采集电路和偏置电压产生电路,所述电流采集电路的输入端连接与某一级放大电路连接的偏置电路,所述电流采集电路的输出端连接所述偏置电压产生电路的输入端,所述偏置电压产生电路的输出端连接所述输入匹配单元的输入端。
- 如权利要求1或2所述的射频功率放大器,其特征在于:所述输入匹配单元包括至少一个第一LC匹配电路,每个所述第一LC匹配电路的输入端连接所述检测单元的输出端,最后一个所述第一LC匹配电路的输出端连接所述功率放大单元的输入端。
- 如权利要求1或2所述的射频功率放大器,其特征在于:所述输入匹配单元包括至少一个第二LC匹配电路,每个所述第二LC匹配电路的输入端连接所述检测单元的输出端,最后一个所述第二LC匹配电路的输出端连接所述功率放大单元的输入端。
- 如权利要求1或2所述的射频功率放大器,其特征在于:所述输入匹配单元包括至少一个第一LC匹配电路和第二LC匹配电路;每个所述第一LC匹配电路和每个所述第二LC匹配电路的输入端分别连接所述检测单元的输出端,最后一个所述第一LC匹配电路和最后一个所述第二LC匹配电路的输出端分别连接所述功率放大单元的输入端。
- 如权利要求9或11所述的射频功率放大器,其特征在于:每个所述第一LC匹配电路由并联到地第一电感和串联第一压控电容组成,所述第一压控电容的非接地端连接所述检测单元的输出端,最后一个所述第一LC匹配电路的第一压控电容的非接地端还连接所述功率放大单元的输入端。
- 如权利要求10或11所述的射频功率放大器,其特征在于:每个所述第二LC匹配电路由串联第二电感和并联到地第二压控电容组成,所述第二压控电容的非接地端连接所述检测单元的输出端,最后一个所述第二LC匹配电路的第二压控电容的非接地端还连接所述功率放大单元的输入端。
- 一种射频前端模块,其特征在于所述射频前端模块中包括权利要求1~13中任意一项所述的射频功率放大器。
- 一种通信终端,其特征在于所述通信终端中包括权利要求1~13中任意一项所述的射频功率放大器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21819012.2A EP4164122A4 (en) | 2020-06-03 | 2021-06-02 | RADIO FREQUENCY POWER AMPLIFIER, RADIO FREQUENCY FRONT MODULE AND COMMUNICATION TERMINAL |
KR1020237000186A KR20230031283A (ko) | 2020-06-03 | 2021-06-02 | 무선 주파수 전력 증폭기, 무선 주파수 프런트엔드 모듈 및 통신 단말기 |
JP2022574496A JP2023529847A (ja) | 2020-06-03 | 2021-06-02 | 高周波パワーアンプ、高周波フロントエンドモジュール及び通信端末 |
US18/061,480 US20230098158A1 (en) | 2020-06-03 | 2022-12-05 | Radio-frequency power amplifier, radio-frequency front-end module and communication terminal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010492691.7 | 2020-06-03 | ||
CN202010492691.7A CN111740710A (zh) | 2020-06-03 | 2020-06-03 | 射频功率放大器、射频前端模块和通信终端 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/061,480 Continuation US20230098158A1 (en) | 2020-06-03 | 2022-12-05 | Radio-frequency power amplifier, radio-frequency front-end module and communication terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021244565A1 true WO2021244565A1 (zh) | 2021-12-09 |
Family
ID=72648224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/097884 WO2021244565A1 (zh) | 2020-06-03 | 2021-06-02 | 射频功率放大器、射频前端模块和通信终端 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230098158A1 (zh) |
EP (1) | EP4164122A4 (zh) |
JP (1) | JP2023529847A (zh) |
KR (1) | KR20230031283A (zh) |
CN (1) | CN111740710A (zh) |
WO (1) | WO2021244565A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116633383A (zh) * | 2023-07-18 | 2023-08-22 | 唯捷创芯(天津)电子技术股份有限公司 | 一种优化devm的射频前端模块及电子设备 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111740710A (zh) * | 2020-06-03 | 2020-10-02 | 唯捷创芯(天津)电子技术股份有限公司 | 射频功率放大器、射频前端模块和通信终端 |
CN112803905B (zh) * | 2021-04-14 | 2021-09-28 | 广州慧智微电子有限公司 | 一种补偿电路 |
CN114070212A (zh) * | 2022-01-18 | 2022-02-18 | 唯捷创芯(天津)电子技术股份有限公司 | 一种带有电流保护功能的射频前端模块及相应的电子设备 |
CN115825529B (zh) * | 2022-12-25 | 2023-11-17 | 北京屹唐半导体科技股份有限公司 | 射频探头、射频匹配器、射频电源及射频测量仪 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120208476A1 (en) * | 2005-05-11 | 2012-08-16 | Renesas Electronics Corporation | High frequency power amplifier, transmitter and mobile communication terminal using the power amplifier |
JP2014033404A (ja) * | 2012-08-06 | 2014-02-20 | Toshiba Corp | 増幅装置 |
WO2015186569A1 (ja) * | 2014-06-03 | 2015-12-10 | 学校法人上智学院 | 電力増幅装置 |
CN105846301A (zh) * | 2016-06-04 | 2016-08-10 | 清华大学深圳研究生院 | 一种大功率小体积射频电源 |
WO2016191984A1 (zh) * | 2015-05-29 | 2016-12-08 | 华为技术有限公司 | 一种射频功率放大器及一种射频功率放大方法 |
CN106788484A (zh) * | 2016-11-16 | 2017-05-31 | 力同科技股份有限公司 | 一种功率放大器 |
CN111740710A (zh) * | 2020-06-03 | 2020-10-02 | 唯捷创芯(天津)电子技术股份有限公司 | 射频功率放大器、射频前端模块和通信终端 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100325420B1 (ko) * | 2000-02-15 | 2002-02-21 | 강인호 | 개선된 이득을 갖는 포락선 추적 증폭기, 이를 이용한 이동 통신 단말기 및 그에 관한 이득 개선 방법 |
US7792181B2 (en) * | 2004-06-23 | 2010-09-07 | Nec Corporation | Linearity evaluation method using integrations weighted by probability density function, and circuit simulator, evaluation device, communication circuit, and program using the method |
CN101009491A (zh) * | 2006-01-27 | 2007-08-01 | 络达科技股份有限公司 | 具有温度补偿增益的发射器 |
JP2010041233A (ja) * | 2008-08-01 | 2010-02-18 | Panasonic Corp | 検波回路及び無線通信システム |
CN101656511A (zh) * | 2009-09-04 | 2010-02-24 | 惠州市正源微电子有限公司 | 射频功率放大器温度补偿电路 |
JP2011172206A (ja) * | 2010-01-21 | 2011-09-01 | Panasonic Corp | 高周波電力増幅器及びそれを備える無線通信装置 |
CN101938258B (zh) * | 2010-08-27 | 2013-06-05 | 华为终端有限公司 | 一种控制射频功率放大器发射信号的方法和装置 |
WO2015006505A1 (en) * | 2013-07-09 | 2015-01-15 | Oleksandr Gorbachov | Power amplifier with input power protection circuits |
CN207490871U (zh) * | 2017-09-29 | 2018-06-12 | 成都腾诺科技有限公司 | 一种多频段射频功率放大器 |
CN110855254B (zh) * | 2019-11-15 | 2023-06-20 | 唯捷创芯(天津)电子技术股份有限公司 | 一种射频功率放大器、芯片及通信终端 |
-
2020
- 2020-06-03 CN CN202010492691.7A patent/CN111740710A/zh active Pending
-
2021
- 2021-06-02 KR KR1020237000186A patent/KR20230031283A/ko active Search and Examination
- 2021-06-02 EP EP21819012.2A patent/EP4164122A4/en active Pending
- 2021-06-02 WO PCT/CN2021/097884 patent/WO2021244565A1/zh unknown
- 2021-06-02 JP JP2022574496A patent/JP2023529847A/ja active Pending
-
2022
- 2022-12-05 US US18/061,480 patent/US20230098158A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120208476A1 (en) * | 2005-05-11 | 2012-08-16 | Renesas Electronics Corporation | High frequency power amplifier, transmitter and mobile communication terminal using the power amplifier |
JP2014033404A (ja) * | 2012-08-06 | 2014-02-20 | Toshiba Corp | 増幅装置 |
WO2015186569A1 (ja) * | 2014-06-03 | 2015-12-10 | 学校法人上智学院 | 電力増幅装置 |
WO2016191984A1 (zh) * | 2015-05-29 | 2016-12-08 | 华为技术有限公司 | 一种射频功率放大器及一种射频功率放大方法 |
CN105846301A (zh) * | 2016-06-04 | 2016-08-10 | 清华大学深圳研究生院 | 一种大功率小体积射频电源 |
CN106788484A (zh) * | 2016-11-16 | 2017-05-31 | 力同科技股份有限公司 | 一种功率放大器 |
CN111740710A (zh) * | 2020-06-03 | 2020-10-02 | 唯捷创芯(天津)电子技术股份有限公司 | 射频功率放大器、射频前端模块和通信终端 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4164122A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116633383A (zh) * | 2023-07-18 | 2023-08-22 | 唯捷创芯(天津)电子技术股份有限公司 | 一种优化devm的射频前端模块及电子设备 |
CN116633383B (zh) * | 2023-07-18 | 2023-10-17 | 唯捷创芯(天津)电子技术股份有限公司 | 一种优化动态误差向量幅度的射频前端模块及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
JP2023529847A (ja) | 2023-07-12 |
US20230098158A1 (en) | 2023-03-30 |
CN111740710A (zh) | 2020-10-02 |
EP4164122A1 (en) | 2023-04-12 |
KR20230031283A (ko) | 2023-03-07 |
EP4164122A4 (en) | 2024-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021244565A1 (zh) | 射频功率放大器、射频前端模块和通信终端 | |
WO2021244562A1 (zh) | 射频功率放大器、射频前端模块及通信终端 | |
US10224917B2 (en) | Power amplifier saturation detection | |
US5995814A (en) | Single-stage dual-band low-noise amplifier for use in a wireless communication system receiver | |
US10365308B2 (en) | Wide dynamic range broadband current mode linear detector circuits for high power radio frequency power amplifier | |
CN103534940A (zh) | 正反馈共栅极低噪声放大器 | |
US11990877B2 (en) | Power amplifier output matching with suppressed harmonics | |
US11115071B2 (en) | Multimode and multi-frequency radio frequency front end module, chip, and communication terminal | |
US20230336134A1 (en) | Radio frequency power amplifier that reduces load change sensitivity, chip, and communication terminal | |
CN103199802B (zh) | 单芯片低噪声放大器 | |
CN211063579U (zh) | 一种x波段低噪声放大器 | |
CN203734623U (zh) | X频段低噪声放大器 | |
Peng et al. | A 100MHz—2GHz wireless receiver in 40-nm CMOS for software-defined radio | |
CN219802326U (zh) | 射频前端模组、二极管偏置模块、芯片和设备 | |
Zhao et al. | A 55uW BLE Wake-up Receiver with Offset-based Peak Detection Achieving− 90dBm Sensitivity | |
CN203135797U (zh) | 一种单芯片低噪声放大器 | |
CN104378071A (zh) | 一种用于雷达系统的宽带功率放大器芯片及放大器 | |
CN117498816A (zh) | 匹配电路、功率放大器及射频前端模组 | |
KR20040079040A (ko) | 광대역 전력 증폭 회로 | |
Yeo et al. | A fully integrated 0.18 µm SiGe BiCMOS low power 60 GHz receiver & transmitter for high data rate wireless communications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21819012 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022574496 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021819012 Country of ref document: EP Effective date: 20230103 |