WO2021244562A1 - 射频功率放大器、射频前端模块及通信终端 - Google Patents

射频功率放大器、射频前端模块及通信终端 Download PDF

Info

Publication number
WO2021244562A1
WO2021244562A1 PCT/CN2021/097837 CN2021097837W WO2021244562A1 WO 2021244562 A1 WO2021244562 A1 WO 2021244562A1 CN 2021097837 W CN2021097837 W CN 2021097837W WO 2021244562 A1 WO2021244562 A1 WO 2021244562A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
circuit
bias
amplifying
power
Prior art date
Application number
PCT/CN2021/097837
Other languages
English (en)
French (fr)
Inventor
李�浩
白云芳
Original Assignee
唯捷创芯(天津)电子技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唯捷创芯(天津)电子技术股份有限公司 filed Critical 唯捷创芯(天津)电子技术股份有限公司
Priority to KR1020237000194A priority Critical patent/KR20230029755A/ko
Priority to JP2022574498A priority patent/JP2023529848A/ja
Priority to EP21817307.8A priority patent/EP4164121A1/en
Publication of WO2021244562A1 publication Critical patent/WO2021244562A1/zh
Priority to US18/061,479 priority patent/US20230105134A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/10Gain control characterised by the type of controlled element
    • H03G2201/103Gain control characterised by the type of controlled element being an amplifying element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/30Gain control characterized by the type of controlled signal
    • H03G2201/307Gain control characterized by the type of controlled signal being radio frequency signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to a radio frequency power amplifier, and also to a radio frequency front-end module including the radio frequency power amplifier and a corresponding communication terminal, belonging to the technical field of wireless communication.
  • the RF front-end module is an important RF component that cannot be integrated by the transceiver in the current wireless communication terminal.
  • the modulated radio frequency signal is amplified to a certain power value through the power amplifier, and then the amplified radio frequency signal is sent out through the antenna.
  • the gain of the radio frequency front-end module will gradually decrease, thereby affecting its linearity index.
  • linearized bias technology is generally used in the bias circuit of the power amplifier.
  • the adaptive bias circuit is difficult to adapt to the requirements of broadband frequencies.
  • the adjustment of the gain at different powers is not very flexible, so the linearity of the RF front-end module may not all be well optimized under different powers.
  • the primary technical problem to be solved by the present invention is to provide a radio frequency power amplifier.
  • Another technical problem to be solved by the present invention is to provide a radio frequency front-end module including a radio frequency power amplifier and a corresponding communication terminal.
  • a radio frequency power amplifier including a control unit, a power amplification unit, a detection and comparison unit, and a gain adjustment unit.
  • the output end of the control unit is connected to the detection and comparison unit and the gain adjustment unit.
  • the detection terminal of the power amplification unit is connected to the input terminal of the detection and comparison unit, the output terminal of the detection and comparison unit is connected to the input terminal of the control unit, and the output terminal of the gain adjustment unit is connected The bias end of the power amplifying unit;
  • the control unit controls whether the gain adjustment unit generates an adjustment current and outputs it to the power amplifier unit according to the comparison result of the reference current and the bias current of the power amplifier unit detected in real time by the detection and comparison unit, In order to ensure that the gain of the power amplifying unit working at different powers remains unchanged.
  • the control unit controls the gain adjustment unit to generate an adjustment current and output it to the power amplifier unit to ensure the power amplification
  • the gain of the unit working under different powers is unchanged;
  • the control unit controls the gain adjustment unit to stop outputting the adjustment current to the power amplifier unit.
  • the power amplifying unit includes at least one stage of amplifying circuit, each stage of amplifying circuit is respectively connected to a first bias circuit, and the first bias circuit of any one of the first stage of amplifying circuits is connected to the detection and comparison unit The output end of the detection and comparison unit is connected to the bias end of any first-stage amplifying circuit adjacent to the first-stage amplifying circuit through the gain adjustment unit controlled by the control unit.
  • the power amplifying unit includes two or more stages of amplifying circuits
  • the amplifying circuits of each stage are connected by an inter-stage matching circuit, and the input terminal of the first stage amplifying circuit is connected to the output terminal of the input matching unit,
  • the last-stage amplifying circuit matches impedance with the external antenna through the output matching circuit.
  • the detection and comparison unit includes a current acquisition circuit, a current magnitude comparison circuit, and a reference current generation circuit.
  • the input end of the current acquisition circuit is connected to the bias circuit of any one-stage amplifying circuit, and the current acquisition circuit
  • the output terminal of the reference current generating circuit is connected to the input terminal of the current magnitude comparison circuit
  • the output terminal of the current magnitude comparison circuit is connected to the input terminal of the control unit
  • the output terminal of the control unit is connected to the reference The input terminal of the current generating circuit.
  • the gain adjustment unit includes a bias current generating circuit
  • the input terminal of the bias current generating circuit is connected to the control unit, and the output terminal of the bias current generating circuit is connected to the bias terminal of the amplifying circuit to be detected;
  • the input end of the bias current generating circuit is connected to the control unit, and the output end of the bias current generating circuit is connected adjacent to the amplifying circuit to be detected The bias end of any one-stage amplifying circuit.
  • the gain adjustment unit includes a bias current generating circuit and a second bias circuit
  • the input terminal of the bias current generating circuit is connected to the control unit, and the output terminal of the bias current generating circuit is connected to the input terminal of the second bias circuit ,
  • the output terminal of the second bias circuit is connected to the bias terminal of the stage amplifying circuit;
  • the input terminal of the bias current generating circuit is connected to the control unit, and the output terminal of the bias current generating circuit is connected to the input of the second bias circuit Terminal, the output terminal of the second bias circuit is connected to the bias terminal of any one-stage amplifying circuit adjacent to the amplifying circuit to be detected.
  • the gain adjustment unit includes a bias current generating circuit and a third resistor;
  • the input terminal of the bias current generating circuit is connected to the control unit, and the output terminal of the bias current generating circuit is connected to one end of the third resistor, and the The other end of the third resistor is connected to the bias end of the stage amplifying circuit;
  • the input terminal of the bias current generating circuit is connected to the control unit, and the output terminal of the bias current generating circuit is connected to one end of the third resistor, so The other end of the third resistor is connected to the bias end of any one-stage amplifying circuit adjacent to the amplifying circuit to be detected.
  • the radio frequency power amplifier further includes a power supply unit, the input end of the power supply unit is connected to the output end of the control unit, and the output end of the power supply unit is connected to the power supply end of the power amplifying unit.
  • a radio frequency front-end module is provided, and the radio frequency front-end module includes the above-mentioned radio frequency power amplifier.
  • a communication terminal is provided, and the communication terminal includes the above-mentioned radio frequency power amplifier.
  • the radio frequency power amplifier provided by the present invention adjusts the function of the adjustment current generated by the gain adjustment unit and the bias current of the power amplifier unit through the control unit according to the function relationship between the gain of the power amplifier unit in different frequency bands and different power level modes and its output power
  • the detection and comparison unit compares the real-time detected bias current of the power amplifier unit with the reference current
  • the control unit controls whether the gain adjustment unit generates the adjusted current and outputs it to the power amplifier unit according to the comparison result, which is flexible and effective
  • the gain compensation of the power amplifier unit in different modes is realized, and the linearity index of the radio frequency front-end module is improved.
  • Figure 1 is a schematic diagram of the structure of a radio frequency power amplifier provided by the present invention
  • FIG. 2 is a flow chart of the working principle of the radio frequency power amplifier provided by the present invention.
  • FIG. 3 is a schematic diagram of the structure of the first type of gain adjustment unit combined with the power amplification unit, and the detection and comparison unit in the radio frequency power amplifier provided by the present invention
  • FIG. 4 is a schematic diagram of the structure of the second type of gain adjustment unit combined with the power amplification unit, and the detection and comparison unit in the radio frequency power amplifier provided by the present invention
  • FIG. 5 is a schematic diagram of the structure of the third type of gain adjustment unit combined with the power amplification unit, and the detection and comparison unit in the radio frequency power amplifier provided by the present invention
  • Fig. 6 is a schematic diagram of the curve of the regulation current changing with the output power of the power amplifying unit in the radio frequency power amplifier provided by the present invention
  • FIG. 7 is a schematic diagram showing the variation of the bias current of the power amplifier with its output power in the radio frequency power amplifier provided by the present invention.
  • FIG. 8 is a schematic diagram showing the change of the gain of the power amplifying unit with its output power when the radio frequency power amplifier provided by the present invention is used and when the radio frequency power amplifier is not used;
  • Fig. 9 is a schematic diagram of the comparison of ACPR vs. output power curve when the radio frequency power amplifier provided by the present invention is used and when the radio frequency power amplifier provided by the present invention is not used;
  • FIG. 10 is a schematic diagram of a structure of the radio frequency front-end module provided by the present invention.
  • the embodiment of the present invention provides a newly designed RF power
  • the amplifier includes a control unit 100, a power amplification unit 110, a power supply unit 120, a detection and comparison unit 130, and a gain adjustment unit 140; the output of the control unit 100 is connected to the input of the detection and comparison unit, the gain adjustment unit 140 and the power supply unit 120, respectively
  • the detection terminal of the power amplification unit 110 is connected to the input terminal of the detection and comparison unit 130, the output terminal of the detection and comparison unit 130 is connected to the input terminal of the control unit 100, and the output terminal of the gain adjustment unit 140 is connected to the bias of the power amplification unit 110.
  • the power terminal of the power amplifying unit 110 is connected to the output terminal of the power supply unit 120.
  • the control unit 100 controls whether the gain adjusting unit 140 generates an adjusted current and outputs it to the power amplifying unit 110 to ensure that the power amplifying unit
  • the gain of 110 works under different powers is unchanged, so as to ensure the optimal linearity of the RF front-end module. Specifically, as shown in FIG.
  • the control unit 100 controls the gain adjusting unit 140 to generate an adjusted current and output it to the power amplifying unit 110 to ensure that the gain of the power amplifying unit 110 at different powers remains unchanged; when the bias current of the power amplifying unit 110 detected by the detecting and comparing unit 130 in real time is less than the reference current, the control unit 100 controls the gain adjusting unit 140 to stop The regulated current is output to the power amplifying unit 110.
  • control unit 100 may be implemented by a central processing unit in a communication terminal.
  • the control unit 100 can not only control the working status of the power supply unit 120, and the magnitude of the power supply voltage and current generated and output during operation; it can also be based on the functional relationship that the gain of the power amplifying unit 110 decreases as its output power increases in the application, The adjustment of the function relationship between the adjustment current generated by the gain adjustment unit 140 and the bias current of the power amplifying unit 110 is controlled.
  • the power amplifying unit 110 is used to amplify the modulated radio frequency signal to a preset power value.
  • the power amplifying unit 110 includes at least one stage of amplifying circuit, and each stage of amplifying circuit is respectively connected to a first bias circuit, and the first bias circuit of any one of the amplifying circuits is connected to the input terminal of the detecting and comparing unit 130, and detecting
  • the output terminal of the comparison unit 130 is connected to the bias terminal of any one stage amplifying circuit adjacent to the stage amplifying circuit through the gain adjusting unit 140, and the bias terminal of the stage amplifying circuit serves as the detection terminal of the power amplifying unit 110.
  • the power amplifying unit 110 has only one stage of amplifying circuit, this stage of amplifying circuit matches impedance with the external antenna through the output matching circuit.
  • the output terminal of the comparison unit 130 is connected to the bias terminal of the stage amplifying circuit through the gain adjustment unit 140, and the bias terminal of the stage amplifying circuit is also used as the detection terminal of the power amplifying unit 110.
  • the power amplifying unit 110 includes two or more stages of amplifying circuits (including two stages, the same below), the amplifying circuits of each stage are connected through an inter-stage matching circuit, and the last stage of amplifying circuit is impedance between the output matching circuit and the external antenna.
  • Matching in which the first bias circuit of any one-stage amplifying circuit is connected to the input end of the detection and comparison unit 130, and the output end of the detection and comparison unit 130 is connected to any one-stage amplifying circuit adjacent to the first-stage amplifying circuit through the gain adjustment unit 140 ⁇ biased end.
  • the first-stage amplifying circuit and the second-stage amplifying circuit are connected by an inter-stage matching circuit, and the second-stage amplifying circuit is connected with the output matching circuit through an output matching circuit.
  • the impedance matching between the external antennas, wherein each stage amplifying circuit 1101, the inter-stage matching circuit, and the output matching circuit are conventional conventional circuits, which will not be repeated here.
  • the first bias circuit is used to provide bias voltage and bias current for the corresponding amplifying circuit; as shown in Figure 3, taking the two-stage amplifying circuit as an example, the first-stage amplifying circuit and the second-stage amplifying circuit are respectively connected to one The first bias circuit 1103.
  • Each first bias circuit 1103 includes a first transistor HBT1, a second transistor HBT2, a third transistor HBT3, a capacitor C1, a first resistor R1, and a second resistor R2; each part of the first bias circuit 1103
  • the connection relationship is as follows: the collector of the first transistor HBT1 is connected to the power supply voltage Vdd, the emitter of the first transistor HBT1 is connected to the bias end of the corresponding amplifier circuit through the first resistor R1, and the base of the first transistor HBT1 Connect one end of the capacitor C1, the collector of the second transistor HBT2 and one end of the second resistor R2, the other end of the capacitor C1 is grounded, the collector of the second transistor HBT2 is connected to its base, and the other end of the second resistor R2
  • the bias voltage Vreg is connected, the emitter of the second transistor HBT2 is connected to the base and collector of the third transistor HBT3, and the emitter of the third transistor HBT3 is grounded.
  • the power supply unit 120 is used to provide the required bias voltage and working current for the power amplifying unit 110.
  • the power supply unit 120 is implemented by a linear stabilized power supply.
  • the detection and comparison unit 130 includes a current acquisition circuit 1301, a current magnitude comparison circuit 1302, and a reference current generation circuit 1304.
  • the input terminal of the current acquisition circuit 1301 is connected to the bias circuit of any level of amplifier circuit
  • the output terminals of the current acquisition circuit 1301 and the reference current generation circuit 1304 are connected to the input terminal of the current magnitude comparison circuit 1302, and the output terminal of the current magnitude comparison circuit 1302 is connected
  • the input terminal of the control unit 100 and the output terminal of the control unit 100 are connected to the input terminal of the reference current generating circuit 1304.
  • the current acquisition circuit 1301, the current magnitude comparison circuit 1302, and the reference current generation circuit 1304 are conventional conventional circuits, and the results of each circuit will not be detailed one by one.
  • the working principle of the detection and comparison unit 130 is as follows: First, according to the actual application scenario, the control unit 100 controls the size of the reference current generated by the reference current generation circuit 1304. For example, the reference current is large in the high-power application scenario, and the reference current is Small; the reference current will be output to the current magnitude comparison circuit 1302.
  • the current acquisition circuit 1301 outputs the real-time detected bias current of a certain stage of the amplifier circuit in the power amplifier unit 110 to the current magnitude comparison circuit 1302, and the current acquisition circuit 1301 compares the bias current of the power amplifier unit 110 with the reference The current is compared, and the comparison result is fed back to the control unit 100, so that the control unit 100 further controls whether the gain adjustment unit 140 generates an adjusted current and outputs it to the power amplifying unit 110 according to the comparison result, so as to ensure that the power amplifying unit 110 operates at different powers.
  • the gain of the work remains unchanged, so as to ensure the optimal linearity of the RF front-end module.
  • the gain adjustment unit 140 includes a bias current generation circuit 1401; the input end of the bias current generation circuit 1401 is connected to the control unit 100, and the output of the bias current generation circuit 1401 The terminal is connected to the bias terminal of any one-stage amplifying circuit adjacent to the amplifying circuit to be detected. Alternatively, the output terminal of the bias current generating circuit 1401 is connected to the bias terminal of the amplifying circuit to be detected (for the case of only one amplifying circuit).
  • the control unit 100 controls the bias current generation circuit 1401 to work, thereby generating a regulated current (as shown in the second half of FIG. 6). Section has regulated current output), the regulated current is output to the corresponding amplifying circuit to increase the gain of the power amplifying unit 110, to make up for the problem of the decrease in the gain of the power amplifying unit 110 as the output power of the power amplifying unit 110 increases, and to ensure the power
  • the gain of the amplifying unit 110 at different powers is unchanged, so as to achieve the goal of optimizing the linearity of the radio frequency front-end module.
  • the control unit 100 controls the bias current generating circuit 1401 to stop working, that is, to stop the bias current generation circuit 1401.
  • the power amplifying unit 110 outputs a regulated current (as shown in Fig. 6 there is no regulated current output in the first half).
  • the power amplifying unit 110 includes a two-stage amplifying circuit 1101, and taking the current collecting circuit 1301 detecting the bias current of the second-stage amplifying circuit as an example, when the current collecting circuit 1301 detects that it corresponds to the second-stage amplifying in real time
  • the control unit 100 controls the bias current generating circuit 1401 to work to generate a regulated current, which is output to the first stage amplifying circuit to increase the gain of the power amplifying unit 110.
  • the current collecting circuit 1301 detects in real time the bias current of the first transistor HBT1 corresponding to the second-stage amplifying circuit, and the bias current increases as the input or output power of the power amplifying unit 110 increases; for example, As shown in FIG. 7, the bias current of the second-stage amplifying circuit increases as the input power of the power amplifying unit 110 increases, while the gain of the power amplifying unit 110 decreases as its output power increases, so
  • the bias current generating circuit 1401 is used to generate a regulating current and output to the first stage amplifying circuit.
  • the magnitude of the regulating current generated by the bias current generating circuit 1401 is positively correlated with the bias current of the first transistor HBT1 of the second stage amplifying circuit
  • the adjustment current generated by the bias current generating circuit 1401 is provided to the first-stage amplifying circuit, and the gain of the power amplifying unit 110 can be increased to compensate for the decrease in the gain of the power amplifying unit 110 as the output power of the power amplifying unit 110 increases. It also ensures that the gain of the power amplifying unit 110 works under different powers is unchanged, so as to achieve the goal of optimizing the linearity of the radio frequency front-end module.
  • the thinner curve shows that after using the RF power amplifier, as the output power of the RF power amplifier increases, the gain of the power amplifier remains unchanged, thereby ensuring the optimal linearity of the RF front-end module.
  • ACPR is an indicator to describe the linearity of the RF power amplifier. The smaller the ACPR, the better the linearity of the RF power amplifier; The linearity of the increase in power is significantly higher than the linearity of the unused RF power amplifier indicated by the thicker curve.
  • the gain adjustment unit 140 includes a bias current generation circuit 1401 and a second bias circuit 1402; the input end of the bias current generation circuit 1401 is connected to the control unit 100, The output terminal of the bias current generating circuit 1401 is connected to the input terminal of the second bias circuit 1402, and the output terminal of the second bias circuit 1402 is connected to the bias terminal of any first-stage amplifying circuit adjacent to the amplifying circuit to be detected.
  • the output terminal of the second bias circuit 1402 is connected to the bias terminal of the amplifying circuit to be detected (for the case of only one amplifying circuit).
  • the structure of the second bias circuit 1402 is the same as that of the first bias circuit.
  • the other end of the second resistor of the second bias circuit 1402 is used as the input end of the second bias circuit 1402.
  • the other end of the resistor serves as the output end of the second bias circuit 1402.
  • the control unit 100 controls the bias current generation circuit 1401 to work, thereby generating a regulated current (as shown in the second half of FIG. 6).
  • Section has a regulated current output
  • the regulated current is output to the second bias circuit 1402 to provide a bias power for the second bias circuit 1402, thereby controlling the second bias circuit 1402 to generate a bias current and provide it to Corresponding amplifying circuit to increase the gain of the power amplifying unit 110, to make up for the problem that the gain of the power amplifying unit 110 decreases as the output power of the power amplifying unit 110 increases, and to ensure that the gain of the power amplifying unit 110 at different powers remains unchanged , So as to achieve the goal of optimal linearity of the RF front-end module.
  • the control unit 100 controls the bias current generating circuit 1401 to stop working, that is, to stop the bias current generation circuit 1401.
  • the power amplifying unit 110 outputs a regulated current (as shown in Fig. 6 there is no regulated current output in the first half).
  • the power amplifying unit 110 includes a two-stage amplifying circuit 1101, and taking the current collecting circuit 1301 detecting the bias current of the second-stage amplifying circuit as an example, when the current collecting circuit 1301 detects in real time that it corresponds to the second-stage amplifying
  • the control unit 100 controls the bias current generation circuit 1401 to work, thereby generating a regulated current, which is output to the second bias circuit 1402 for biasing the second
  • the circuit 1402 provides a bias power to control the second bias circuit 1402 to generate a bias current and provide it to the first-stage amplifying circuit to increase the gain of the power amplifying unit 110.
  • the current collecting circuit 1301 detects the bias current of the first transistor HBT1 corresponding to the second-stage amplifying circuit in real time, and the bias current increases as the input or output power of the power amplifying unit 110 increases.
  • the bias current of the second-stage amplifying circuit increases as the input power of the power amplifying unit 110 increases, while the gain of the power amplifying unit 110 decreases as its output power increases. Therefore,
  • the bias current generating circuit 1401 can be used to generate a regulating current and output to the second bias circuit 1402.
  • the magnitude of the regulating current generated by the bias current generating circuit 1401 and the bias current of the first transistor HBT1 of the second stage amplifying circuit can be used.
  • the bias current generated by the second bias circuit 1402 is provided to the first-stage amplifying circuit, and the gain of the power amplifying unit 110 can be increased to compensate for the increase in the output power of the power amplifying unit 110.
  • the gain of the unit 110 is reduced, and the gain of the power amplifying unit 110 at different powers is guaranteed to remain unchanged, so as to achieve the goal of optimizing the linearity of the radio frequency front-end module.
  • the gain adjusting unit 140 includes a bias current generating circuit 1401 and a third resistor R3; the input end of the bias current generating circuit 1401 is connected to the control unit 100, and the bias current generating circuit 1401 is connected to the control unit 100.
  • the output end of the current generating circuit 1401 is connected to one end of the third resistor R3, and the other end of the third resistor R3 is connected to the bias end of any one-stage amplifying circuit adjacent to the amplifying circuit to be detected.
  • the other end of the third resistor R3 is connected to the bias end of the amplifying circuit to be detected (for the case of only one amplifying circuit).
  • the control unit 100 controls the bias current generation circuit 1401 to work, thereby generating a regulated current (as shown in the second half of FIG. 6).
  • the regulation current is output to the first-stage amplifying circuit through the third resistor R3 to increase the gain of the power amplifying unit 110 and compensate for the decrease in the gain of the power amplifying unit 110 as the output power of the power amplifying unit 110 increases. It also ensures that the gain of the power amplifying unit 110 works under different powers is unchanged, so as to achieve the goal of optimizing the linearity of the radio frequency front-end module.
  • the third resistor R3 functions as a voltage divider for controlling the bias voltage input to the first amplifying circuit, and further ensuring that the gain of the power amplifying unit 110 is increased within a preset range.
  • the control unit 100 controls the bias current generating circuit 1401 to stop working, that is, to stop the bias current generation circuit 1401.
  • the power amplifying unit 110 outputs a regulated current (as shown in Fig. 6 there is no regulated current output in the first half).
  • the power amplifying unit 110 includes a two-stage amplifying circuit 1101, and taking the current collecting circuit 1301 detecting the bias current of the second-stage amplifying circuit as an example, when the current collecting circuit 1301 detects that it corresponds to the second-stage amplifying in real time
  • the control unit 100 controls the bias current generating circuit 1401 to work to generate a regulated current, which is output to the first-stage amplifying circuit through the third resistor R3 to increase power amplification Unit 110 gain.
  • the current collecting circuit 1301 detects in real time the bias current of the first transistor HBT1 corresponding to the second-stage amplifying circuit, and the bias current increases as the input or output power of the power amplifying unit 110 increases.
  • the bias current of the second-stage amplifying circuit increases as the input power of the power amplifying unit 110 increases, while the gain of the power amplifying unit 110 decreases as its output power increases. Therefore,
  • the bias current generating circuit 1401 can be used to generate the regulating current, which is output to the first stage amplifying circuit through the third resistor R3, and the magnitude of the regulating current generated by the bias current generating circuit 1401 and the first transistor HBT1 of the second stage amplifying circuit can be used.
  • the positive correlation of the bias current can increase the gain of the power amplifying unit 110 to compensate for the decrease in the gain of the power amplifying unit 110 as the output power of the power amplifying unit 110 increases, and to ensure that the power amplifying unit 110 operates at different powers.
  • the gain of the work remains unchanged, so as to achieve the goal of optimal linearity of the RF front-end module.
  • the radio frequency power amplifier provided by the present invention adjusts the function of the adjustment current generated by the gain adjustment unit and the bias current of the power amplifier unit through the control unit according to the function relationship between the gain of the power amplifier unit in different frequency bands and different power level modes and its output power
  • the detection and comparison unit compares the real-time detected bias current of the power amplifier unit with the reference current
  • the control unit controls whether the gain adjustment unit generates the adjusted current and outputs it to the power amplifier unit according to the comparison result, which is flexible and effective
  • the gain compensation of the power amplifier unit in different modes is realized, and the linearity index of the radio frequency front-end module is improved.
  • the radio frequency power amplifier provided by the present invention can be used in radio frequency front-end modules.
  • the RF front-end module includes but is not limited to Wifi RF front-end module and multi-mode and multi-frequency RF front-end module.
  • the RF front-end module may include a switch unit 150 in addition to the RF power amplifier.
  • the switch unit 150 is connected to the control unit 100, power supply unit 120, and power amplification unit 110 of the RF power amplifier, respectively.
  • the radio frequency signal amplified by the radio frequency power amplifier is transmitted to the antenna through the switch unit 150, and is sent to the base station through the antenna, so that the radio frequency front-end module transmits the radio frequency signal to the base station.
  • the switch unit 150 may be implemented by a single-pole multi-throw switch or a multi-pole multi-throw switch.
  • the operating mode of the switch unit 150 and the switch state of the output port are controlled by the control unit 100.
  • a low-noise amplifier can also be set in the RF front-end module, and the low-noise amplifier is connected to the switch unit; the RF signal transmitted from the base station is amplified by the low-noise amplifier. After that, it is sent to the transceiver for demodulation.
  • the radio frequency front-end module provided by the present invention can be used in radio frequency chips.
  • the specific structure of the radio frequency power amplifier in the radio frequency chip will not be detailed here.
  • the aforementioned RF power amplifier/RF front-end module can also be used in communication terminals as an important part of the RF circuit.
  • the communication terminal mentioned here refers to computer equipment that can be used in a mobile environment and supports multiple communication standards such as GSM, EDGE, TD_SCDMA, TDD_LTE, FDD_LTE, etc., including but not limited to mobile phones, notebook computers, tablet computers, car computers, etc.
  • the radio frequency power amplifier is also suitable for other communication technology applications, such as communication base stations compatible with multiple communication standards, etc., which will not be detailed here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

本发明公开了一种射频功率放大器、射频前端模块及通信终端。该功率放大器包括控制单元、功率放大单元、检测与比较单元、增益调节单元。通过控制单元根据不同频段、不同功率等级模式下功率放大单元的增益与其输出功率的函数关系,调整增益调节单元产生的调节电流与功率放大单元的偏置电流的函数关系后,通过检测与比较单元将实时检测到的功率放大单元的偏置电流与基准电流进行比较,控制单元根据比较结果,控制增益调节单元是否产生调节电流并输出到功率放大单元,从而灵活有效地实现不同模式下功率放大单元增益的补偿,提高射频前端模块的线性度指标。

Description

射频功率放大器、射频前端模块及通信终端 技术领域
本发明涉及一种射频功率放大器,同时也涉及包括该射频功率放大器的射频前端模块及相应的通信终端,属于无线通信技术领域。
背景技术
随着科技的进步,Wifi通信标准经历了IEEE 802.11-1997、IEEE 802.11a、802.11b、802.11g、802.11n和802.11ac,直到IEEE 802.11ax。同样,移动通信技术经历了2G、3G,直到现在4G的广泛的应用,以及未来5G的积极部署,Wifi通信和移动通信的发展对射频前端线性度的要求越来越高。因此,对制作通信设备的厂商来说,需要设计出高线性度的通信装置。
射频前端模块是目前无线通信终端里无法被收发器集成的一个重要射频元件。在射频前端模块中,通过功率放大器将调制后的射频信号放大到一定的功率值,再将放大后的射频信号通过天线发送出去。
但是,现有射频前端模块的功率放大器在输出功率不断增大的过程中,该射频前端模块的增益会逐渐降低,从而影响其线性度指标。为了解决该问题,一般在功率放大器的偏置电路中采用线性化偏置技术。但是对于宽带射频前端模块,该自适应偏置电路很难适应宽带频率的要求。同时,对于不同功率下增益的调节也不是很灵活,因此会出现不同功率下,射频前端模块的线性度不能都得到很好的优化。
发明内容
本发明所要解决的首要技术问题在于提供一种射频功率放大器。
本发明所要解决的另一技术问题在于提供一种包括射频功率放大器的射频前端模块及相应的通信终端。
为了实现上述目的,本发明采用下述的技术方案:
根据本发明实施例的第一方面,提供一种射频功率放大器,包括控制单元、功率放大单元、检测与比较单元、增益调节单元,所述控制单元的输出端连接检测与比较单元、增益调节单元的输入端,所述功率放大单元的检测端连接所述检测与比较单元的输入端,所述检测 与比较单元的输出端连接所述控制单元的输入端,所述增益调节单元的输出端连接所述功率放大单元的偏置端;
所述控制单元根据基准电流与所述检测与比较单元实时检测到的所述功率放大单元的偏置电流的比较结果,控制所述增益调节单元是否产生调节电流并输出到所述功率放大单元,以保证所述功率放大单元在不同功率下工作的增益不变。
其中较优地,当所述功率放大单元的偏置电流大于所述基准电流时,所述控制单元控制所述增益调节单元产生调节电流并输出到所述功率放大单元,以保证所述功率放大单元在不同功率下工作的增益不变;
当所述功率放大单元的偏置电流小于所述基准电流时,所述控制单元控制所述增益调节单元停止向所述功率放大单元输出调节电流。
其中较优地,所述功率放大单元包括至少一级放大电路,每一级放大电路分别连接一个第一偏置电路,其中任意一级放大电路的第一偏置电路连接所述检测与比较单元的输入端,所述检测与比较单元输出端通过所述控制单元控制的所述增益调节单元连接与该级放大电路相邻的任意一级放大电路的偏置端。
其中较优地,当所述功率放大单元包括两级以上放大电路时,各级放大电路之间通过级间匹配电路相连,第一级放大电路的输入端连接所述输入匹配单元的输出端,最后一级放大电路通过输出匹配电路与外部的天线之间阻抗匹配。
其中较优地,所述检测与比较单元包括电流采集电路、电流大小比较电路和基准电流产生电路,所述电流采集电路的输入端连接任意一级放大电路的偏置电路,所述电流采集电路和所述基准电流产生电路的输出端连接所述电流大小比较电路的输入端,所述电流大小比较电路的输出端连接所述控制单元的输入端,所述控制单元的输出端连接所述基准电流产生电路的输入端。
其中较优地,所述增益调节单元包括偏置电流产生电路;
当所述功率放大单元包括一级放大电路时,所述偏置电流产生电路的输入端连接所述控制单元,所述偏置电流产生电路的输出端连接待检测放大电路的偏置端;
当所述功率放大单元包括两级以上放大电路时,所述偏置电流产生电路的输入端连接所述控制单元,所述偏置电流产生电路的输出端连接与所述待检测放大电路相邻的任意一级放大电路的偏置端。
其中较优地,所述增益调节单元包括偏置电流产生电路和第二偏置电路;
当所述功率放大单元包括一级放大电路时,所述偏置电流产生电路的输入端连接所述控制单元,所述偏置电流产生电路的输出端连接所述第二偏置电路的输入端,所述第二偏置电路的输出端连接该级放大电路的偏置端;
当所述功率放大单元包括两级以上放大电路时,所述偏置电流产生电路的输入端连接所述控制单元,所述偏置电流产生电路的输出端连接所述第二偏置电路的输入端,所述第二偏置电路的输出端连接与所述待检测放大电路相邻的任意一级放大电路的偏置端。
其中较优地,所述增益调节单元包括偏置电流产生电路和第三电阻;
当所述功率放大单元包括一级放大电路时,所述偏置电流产生电路的输入端连接所述控制单元,所述偏置电流产生电路的输出端连接所述第三电阻的一端,所述第三电阻的另一端连接该级放大电路的偏置端;
当所述功率放大单元包括两级以上放大电路时,所述偏置电流产生电路的输入端连接所述控制单元,所述偏置电流产生电路的输出端连接所述第三电阻的一端,所述第三电阻的另一端连接与所述待检测放大电路相邻的任意一级放大电路的偏置端。
其中较优地,所述射频功率放大器还包括电源单元,所述电源单元的输入端连接所述控制单元的输出端,所述电源单元的输出端连接所述功率放大单元的电源端。
根据本发明实施例的第二方面,提供一种射频前端模块,所述射频前端模块中包括上述的射频功率放大器。
根据本发明实施例的第三方面,提供一种通信终端,所述通信终端中包括上述的射频功率放大器。
本发明所提供的射频功率放大器通过控制单元根据不同频段、不 同功率等级模式下功率放大单元的增益与其输出功率的函数关系,调整增益调节单元产生的调节电流与功率放大单元的偏置电流的函数关系后,通过检测与比较单元将实时检测到的功率放大单元的偏置电流与基准电流进行比较,控制单元根据比较结果,控制增益调节单元是否产生调节电流并输出到功率放大单元,从而灵活有效的实现不同模式下功率放大单元增益的补偿,提高射频前端模块的线性度指标。
附图说明
图1为本发明所提供的射频功率放大器的结构示意图;
图2为本发明所提供的射频功率放大器的工作原理流程图;
图3为本发明所提供的射频功率放大器中,第一种增益调节单元与功率放大单元、检测与比较单元结合的结构示意图;
图4为本发明所提供的射频功率放大器中,第二种增益调节单元与功率放大单元、检测与比较单元结合的结构示意图;
图5为本发明所提供的射频功率放大器中,第三种增益调节单元与功率放大单元、检测与比较单元结合的结构示意图;
图6为本发明所提供的射频功率放大器中,调节电流随功率放大单元输出功率变化的曲线示意图;
图7为本发明所提供的射频功率放大器中,功率放大器的偏置电流随其输出功率变化的曲线示意图;
图8为采用和未采用本发明所提供的射频功率放大器时,功率放大单元的增益随其输出功率变化的曲线示意图;
图9为采用和未采用本发明所提供的射频功率放大器时,ACPR随输出功率变化的曲线的对比示意图;
图10为本发明所提供的射频前端模块的一种结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明的技术内容做进一步的详细说明。
为了解决因射频功率放大器在不同功率下的增益调节不灵活,导致射频前端模块的线性度不能得到很好优化的问题,如图1所示,本发明实施例提供了一种新设计的射频功率放大器,包括控制单元100、功率放大单元110、电源单元120、检测与比较单元130和增益调节单 元140;控制单元100的输出端分别连接检测与比较单元、增益调节单元140与电源单元120的输入端,功率放大单元110的检测端连接检测与比较单元130的输入端,检测与比较单元130的输出端连接控制单元100的输入端,增益调节单元140的输出端连接功率放大单元110的偏置端,功率放大单元110的电源端连接电源单元120的输出端。
控制单元100根据基准电流与检测与比较单元130实时检测到的功率放大单元110的偏置电流的比较结果,控制增益调节单元140是否产生调节电流并输出到功率放大单元110,以保证功率放大单元110在不同功率下工作的增益不变,从而保证射频前端模块的线性度最优。具体地说,如图2所示,当检测与比较单元130实时检测到的功率放大单元110的偏置电流大于基准电流时,控制单元100控制增益调节单元140产生调节电流并输出到功率放大单元110,以保证功率放大单元110在不同功率下工作的增益不变;当检测与比较单元130实时检测到的功率放大单元110的偏置电流小于基准电流时,控制单元100控制增益调节单元140停止向功率放大单元110输出调节电流。
其中,控制单元100可以采用通信终端中的中央处理器实现。该控制单元100不仅可以控制电源单元120的工作状态,以及工作时产生和输出电源电压和电流的大小;还可以根据应用中功率放大单元110的增益随着其输出功率增加而降低的函数关系,控制增益调节单元140产生的调节电流与功率放大单元110的偏置电流的函数关系的调整。
功率放大单元110,用于将调制后的射频信号放大到预设功率值。该功率放大单元110,包括至少一级放大电路,每一级放大电路分别连接一个第一偏置电路,其中任意一级放大电路的第一偏置电路连接检测与比较单元130的输入端,检测与比较单元130输出端通过增益调节单元140连接与该级放大电路相邻的任意一级放大电路的偏置端,该级放大电路的偏置端作为功率放大单元110的检测端。
如果功率放大单元110仅有一级放大电路,该级放大电路通过输出匹配电路与外部的天线之间阻抗匹配,该级放大电路的第一偏置电路连接检测与比较单元130的输入端,检测与比较单元130输出端通过增益调节单元140连接与该级放大电路的偏置端,同样该级放大电 路的偏置端作为功率放大单元110的检测端。
如果功率放大单元110包括两级以上放大电路(包括两级,下同),则各级放大电路之间通过级间匹配电路相连,最后一级放大电路通过输出匹配电路与外部的天线之间阻抗匹配,其中任意一级放大电路的第一偏置电路连接检测与比较单元130的输入端,检测与比较单元130输出端通过增益调节单元140连接与该级放大电路相邻的任意一级放大电路的偏置端。
如图3所示,以功率放大单元110包括两级放大电路1101为例,第一级放大电路和第二级放大电路之间通过级间匹配电路相连,第二级放大电路通过输出匹配电路与外部的天线之间阻抗匹配,其中,每一级放大电路1101、级间匹配电路及输出匹配电路为现有常规电路,在此不再赘述。
第一偏置电路,用于为相应的放大电路提供偏置电压和偏置电流;如图3所示,以两级放大电路为例,第一级放大电路和第二级放大电路分别连接一个第一偏置电路1103。每个第一偏置电路1103,包括第一晶体三极管HBT1、第二晶体三极管HBT2、第三晶体三极管HBT3、电容C1、第一电阻R1和第二电阻R2;第一偏置电路1103各部分之间的连接关系如下:第一晶体三极管HBT1的集电极连接电源电压Vdd,第一晶体三极管HBT1的发射极通过第一电阻R1连接对应的放大电路的偏置端,第一晶体三极管HBT1的基极分别连接电容C1的一端、第二晶体三极管HBT2的集电极及第二电阻R2的一端,电容C1的另一端接地,第二晶体三极管HBT2的集电极连接其基极,第二电阻R2的另一端连接偏置电压Vreg,第二晶体三极管HBT2的发射极分别连接第三晶体三极管HBT3的基极和集电极,第三晶体三极管HBT3的发射极接地。
电源单元120,用于为功率放大单元110提供所需的偏置电压和工作电流。该电源单元120采用线性稳压电源实现。
如图3所示,检测与比较单元130,包括电流采集电路1301、电流大小比较电路1302和基准电流产生电路1304。电流采集电路1301的输入端连接任意一级放大电路的偏置电路,电流采集电路1301和基准电流产生电路1304的输出端连接电流大小比较电路1302的输入端, 电流大小比较电路1302的输出端连接控制单元100的输入端,控制单元100的输出端连接基准电流产生电路1304的输入端。其中,电流采集电路1301、电流大小比较电路1302和基准电流产生电路1304为现有常规电路,各电路的结果就不一一详述了。
检测与比较单元130的工作原理为:先根据实际应用场景,控制单元100控制基准电流产生电路1304产生的基准电流的大小,如大功率应用场景下基准电流大,小功率应用场景下,基准电流小;该基准电流会输出到电流大小比较电路1302中。然后电流采集电路1301将实时检测到的功率放大单元110中某一级放大电路的偏置电流,输出到电流大小比较电路1302中,电流采集电路1301会将功率放大单元110的偏置电流与基准电流进行比较,并将比较结果反馈给控制单元100,以便于控制单元100根据比较结果进一步控制增益调节单元140是否产生调节电流并输出到功率放大单元110,以保证功率放大单元110在不同功率下工作的增益不变,从而保证射频前端模块的线性度最优。
如图3所示,在本发明的一个实施例中,增益调节单元140,包括偏置电流产生电路1401;偏置电流产生电路1401的输入端连接控制单元100,偏置电流产生电路1401的输出端连接与待检测放大电路相邻的任意一级放大电路的偏置端。或者,偏置电流产生电路1401的输出端连接待检测放大电路的偏置端(针对只有一个放大电路的情况而言)。
具体地说,当检测与比较单元130实时检测到的功率放大单元110的偏置电流大于基准电流时,控制单元100控制偏置电流产生电路1401工作,从而产生调节电流(如图6中后半段有调节电流输出),该调节电流输出到相应的放大电路,以增加功率放大单元110的增益,弥补随着功率放大单元110输出功率的增加,功率放大单元110增益下降的问题,并保证功率放大单元110在不同功率下工作的增益不变,从而达到射频前端模块的线性度最优的目的。
当检测与比较单元130实时检测到的功率放大单元110的偏置电流小于基准电流时,说明功率放大单元110的增益满足需求,则控制单元100控制偏置电流产生电路1401停止工作,即停止向功率放大单 元110输出调节电流(如图6中前半段无调节电流输出)。
下面,针对检测与比较单元130实时检测到的功率放大单元110的偏置电流大于基准电流的情况进行详细说明。
如图3所示,功率放大单元110包括两级放大电路1101,并且以电流采集电路1301检测第二级放大电路的偏置电流为例,当电流采集电路1301实时检测到对应于第二级放大电路的第一晶体三极管HBT1的偏置电流大于基准电流时,控制单元100控制偏置电流产生电路1401工作,从而产生调节电流,输出到第一级放大电路,以增加功率放大单元110的增益。
具体地说,电流采集电路1301实时检测到对应于第二级放大电路的第一晶体三极管HBT1的偏置电流,该偏置电流随着功率放大单元110的输入或输出功率的增加而增加;例如,如图7所示,第二级放大电路的偏置电流随着功率放大单元110的输入功率的增加而增加,而功率放大单元110的增益却随着其输出功率的增加而下降,因此可以利用偏置电流产生电路1401产生调节电流,输出到第一级放大电路,利用偏置电流产生电路1401产生的调节电流的大小和第二级放大电路的第一晶体三极管HBT1的偏置电流正相关的关系,将偏置电流产生电路1401产生的调节电流提供给第一级放大电路,可以增加功率放大单元110的增益,以弥补随着功率放大单元110输出功率的增加,功率放大单元110增益下降的问题,并保证功率放大单元110在不同功率下工作的增益不变,从而达到射频前端模块的线性度最优的目的。
如图8所示,较细曲线为使用本射频功率放大器后,随着射频功率放大器的输出功率的增加,功率放大器的增益不变,从而保证射频前端模块的线性度最优。如图9所示,ACPR是描述射频功率放大器线性度的一个指标,ACPR越小射频功率放大器线性度越好;图9中较细曲线为使用本射频功率放大器后,随着射频功率放大器的输出功率的增加,其线性度明显高于较粗曲线表示的未使用本射频功率放大器的线性度。
如图4所示,在本发明的另一个实施例中,增益调节单元140,包括偏置电流产生电路1401和第二偏置电路1402;偏置电流产生电路1401的输入端连接控制单元100,偏置电流产生电路1401的输出 端连接第二偏置电路1402的输入端,第二偏置电路1402的输出端连接与待检测放大电路相邻的任意一级放大电路的偏置端。或者,第二偏置电路1402的输出端连接待检测放大电路的偏置端(针对只有一个放大电路的情况而言)。其中,第二偏置电路1402的结构同第一偏置电路,第二偏置电路1402的第二电阻的另一端作为第二偏置电路1402的输入端,第二偏置电路1402的第一电阻的另一端作为第二偏置电路1402的输出端。
具体地说,当检测与比较单元130实时检测到的功率放大单元110的偏置电流大于基准电流时,控制单元100控制偏置电流产生电路1401工作,从而产生调节电流(如图6中后半段有调节电流输出),该调节电流输出到第二偏置电路1402,用于为该第二偏置电路1402提供偏置电源,从而控制第二偏置电路1402产生偏置电流,并提供给相应的放大电路,以增加功率放大单元110的增益,弥补随着功率放大单元110输出功率的增加,功率放大单元110增益下降的问题,并保证功率放大单元110在不同功率下工作的增益不变,从而达到射频前端模块的线性度最优的目的。
当检测与比较单元130实时检测到的功率放大单元110的偏置电流小于基准电流时,说明功率放大单元110的增益满足需求,则控制单元100控制偏置电流产生电路1401停止工作,即停止向功率放大单元110输出调节电流(如图6中前半段无调节电流输出)。
下面,针对检测与比较单元130实时检测到的功率放大单元110的偏置电流大于基准电流的情况进行详细说明。
如图4所示,功率放大单元110包括两级放大电路1101,并且以电流采集电路1301检测第二级放大电路的偏置电流为例,当电流采集电路1301实时检测到对应于第二级放大电路的第一晶体三极管HBT1的偏置电流大于基准电流时,控制单元100控制偏置电流产生电路1401工作,从而产生调节电流,输出到第二偏置电路1402,用于为该第二偏置电路1402提供偏置电源,从而控制第二偏置电路1402产生偏置电流,并提供给第一级放大电路,以增加功率放大单元110的增益。
具体地说,电流采集电路1301实时检测到对应于第二级放大电路 的第一晶体三极管HBT1的偏置电流,该偏置电流随着功率放大单元110的输入或输出功率的增加而增加。例如,如图7所示,第二级放大电路的偏置电流随着功率放大单元110的输入功率的增加而增加,而功率放大单元110的增益却随着其输出功率的增加而下降,因此可以利用偏置电流产生电路1401产生调节电流,输出到第二偏置电路1402,利用偏置电流产生电路1401产生的调节电流的大小和第二级放大电路的第一晶体三极管HBT1的偏置电流正相关的关系,将第二偏置电路1402产生的偏置电流,提供给第一级放大电路,可以增加功率放大单元110的增益,以弥补随着功率放大单元110输出功率的增加,功率放大单元110增益下降的问题,并保证功率放大单元110在不同功率下工作的增益不变,从而达到射频前端模块的线性度最优的目的。
如图5所示,在本发明的再一个实施例中,增益调节单元140,包括偏置电流产生电路1401和第三电阻R3;偏置电流产生电路1401的输入端连接控制单元100,偏置电流产生电路1401的输出端连接第三电阻R3的一端,第三电阻R3的另一端连接与待检测放大电路相邻的任意一级放大电路的偏置端。或者,第三电阻R3的另一端连接待检测放大电路的偏置端(针对只有一个放大电路的情况而言)。
具体地说,当检测与比较单元130实时检测到的功率放大单元110的偏置电流大于基准电流时,控制单元100控制偏置电流产生电路1401工作,从而产生调节电流(如图6中后半段有调节电流输出),该调节电流通过第三电阻R3输出到第一级放大电路,以增加功率放大单元110的增益,弥补随着功率放大单元110输出功率的增加,功率放大单元110增益下降的问题,并保证功率放大单元110在不同功率下工作的增益不变,从而达到射频前端模块的线性度最优的目的。其中,第三电阻R3起到分压的作用,用于控制输入到第一放大电路的偏置电压,进一步保证功率放大单元110的增益在预设范围内增加。
当检测与比较单元130实时检测到的功率放大单元110的偏置电流小于基准电流时,说明功率放大单元110的增益满足需求,则控制单元100控制偏置电流产生电路1401停止工作,即停止向功率放大单元110输出调节电流(如图6中前半段无调节电流输出)。
下面,针对检测与比较单元130实时检测到的功率放大单元110 的偏置电流大于基准电流的情况进行详细说明。
如图5所示,功率放大单元110包括两级放大电路1101,并且以电流采集电路1301检测第二级放大电路的偏置电流为例,当电流采集电路1301实时检测到对应于第二级放大电路的第一晶体三极管HBT1的偏置电流大于基准电流时,控制单元100控制偏置电流产生电路1401工作,从而产生调节电流,通过第三电阻R3输出到第一级放大电路,以增加功率放大单元110的增益。
具体地说,电流采集电路1301实时检测到对应于第二级放大电路的第一晶体三极管HBT1的偏置电流,该偏置电流随着功率放大单元110的输入或输出功率的增加而增加。例如,如图7所示,第二级放大电路的偏置电流随着功率放大单元110的输入功率的增加而增加,而功率放大单元110的增益却随着其输出功率的增加而下降,因此可以利用偏置电流产生电路1401产生调节电流,通过第三电阻R3输出到第一级放大电路,利用偏置电流产生电路1401产生的调节电流的大小和第二级放大电路的第一晶体三极管HBT1的偏置电流正相关的关系,可以增加功率放大单元110的增益,以弥补随着功率放大单元110输出功率的增加,功率放大单元110增益下降的问题,并保证功率放大单元110在不同功率下工作的增益不变,从而达到射频前端模块的线性度最优的目的。
本发明所提供的射频功率放大器通过控制单元根据不同频段、不同功率等级模式下功率放大单元的增益与其输出功率的函数关系,调整增益调节单元产生的调节电流与功率放大单元的偏置电流的函数关系后,通过检测与比较单元将实时检测到的功率放大单元的偏置电流与基准电流进行比较,控制单元根据比较结果,控制增益调节单元是否产生调节电流并输出到功率放大单元,从而灵活有效的实现不同模式下功率放大单元增益的补偿,提高射频前端模块的线性度指标。
本发明所提供的射频功率放大器可以应用在射频前端模块中。该射频前端模块包括不限于Wifi射频前端模块和多模多频射频前端模块。
其中,如图10所示,该射频前端模块除了包括本射频功率放大器以外,还可以包括开关单元150,开关单元150分别连接射频功率放 大器的控制单元100、电源单元120和功率放大单元110。通过开关单元150将经射频功率放大器放大后的射频信号传输至天线,通过天线发送至基站,以实现射频前端模将射频信号发送至基站。开关单元150可以采用单刀多掷开关或多刀多掷开关实现。并且,通过控制单元100控制开关单元150的工作模式和输出端口的开关状态。
当需要将射频前端模块与基站之间实现双向传输射频信号时,还可以在射频前端模块中设置低噪声放大器,低噪声放大器连接开关单元;通过低噪声放大器将来自基站发射的射频信号进行功率放大后,发送至收发器进行解调。
本发明所提供的射频前端模块可以被用在射频芯片中。对于该射频芯片中的射频功率放大器的具体结构,在此就不再一一详述了。
另外,上述的射频功率放大器/射频前端模块还可以被用在通信终端中,作为射频电路的重要组成部分。这里所说的通信终端指可以在移动环境中使用、支持GSM,EDGE、TD_SCDMA、TDD_LTE、FDD_LTE等多种通信制式的计算机设备,包括但不限于移动电话、笔记本电脑、平板电脑、车载电脑等。此外,该射频功率放大器也适用于其他通信技术应用的场合,例如兼容多种通信制式的通信基站等,在此就不一一详述了。
以上对本发明所提供的射频功率放大器、射频前端模块及通信终端进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质精神的前提下对它所做的任何显而易见的改动,都将属于本发明专利权的保护范围。

Claims (11)

  1. 一种射频功率放大器,其特征在于包括控制单元、功率放大单元、检测与比较单元、增益调节单元,所述控制单元的输出端连接检测与比较单元、增益调节单元的输入端,所述功率放大单元的检测端连接所述检测与比较单元的输入端,所述检测与比较单元的输出端连接所述控制单元的输入端,所述增益调节单元的输出端连接所述功率放大单元的偏置端;
    所述控制单元根据基准电流与所述检测与比较单元实时检测到的所述功率放大单元的偏置电流的比较结果,控制所述增益调节单元是否产生调节电流并输出到所述功率放大单元,以保证所述功率放大单元在不同功率下工作的增益不变。
  2. 如权利要求1所述的射频功率放大器,其特征在于:
    当所述功率放大单元的偏置电流大于所述基准电流时,所述控制单元控制所述增益调节单元产生调节电流并输出到所述功率放大单元,以保证所述功率放大单元在不同功率下工作的增益不变;
    当所述功率放大单元的偏置电流小于所述基准电流时,所述控制单元控制所述增益调节单元停止向所述功率放大单元输出调节电流。
  3. 如权利要求1所述的射频功率放大器,其特征在于:
    所述功率放大单元包括至少一级放大电路,每一级放大电路分别连接一个第一偏置电路,其中任意一级放大电路的第一偏置电路连接所述检测与比较单元的输入端,所述检测与比较单元输出端通过所述控制单元控制的所述增益调节单元连接与该级放大电路相邻的任意一级放大电路的偏置端。
  4. 如权利要求3所述的射频功率放大器,其特征在于:
    当所述功率放大单元包括两级以上放大电路时,各级放大电路之间通过级间匹配电路相连,第一级放大电路的输入端连接所述输入匹配单元的输出端,最后一级放大电路通过输出匹配电路与外部的天线之间阻抗匹配。
  5. 如权利要求4所述的射频功率放大器,其特征在于:
    所述检测与比较单元包括电流采集电路、电流大小比较电路和基 准电流产生电路,所述电流采集电路的输入端连接任意一级放大电路的偏置电路,所述电流采集电路和所述基准电流产生电路的输出端连接所述电流大小比较电路的输入端,所述电流大小比较电路的输出端连接所述控制单元的输入端,所述控制单元的输出端连接所述基准电流产生电路的输入端。
  6. 如权利要求5所述的射频功率放大器,其特征在于:
    所述增益调节单元包括偏置电流产生电路;
    当所述功率放大单元包括一级放大电路时,所述偏置电流产生电路的输入端连接所述控制单元,所述偏置电流产生电路的输出端连接待检测放大电路的偏置端;
    当所述功率放大单元包括两级以上放大电路时,所述偏置电流产生电路的输入端连接所述控制单元,所述偏置电流产生电路的输出端连接与所述待检测放大电路相邻的任意一级放大电路的偏置端。
  7. 如权利要求5所述的射频功率放大器,其特征在于:
    所述增益调节单元包括偏置电流产生电路和第二偏置电路;
    当所述功率放大单元包括一级放大电路时,所述偏置电流产生电路的输入端连接所述控制单元,所述偏置电流产生电路的输出端连接所述第二偏置电路的输入端,所述第二偏置电路的输出端连接该级放大电路的偏置端;
    当所述功率放大单元包括两级以上放大电路时,所述偏置电流产生电路的输入端连接所述控制单元,所述偏置电流产生电路的输出端连接所述第二偏置电路的输入端,所述第二偏置电路的输出端连接与所述待检测放大电路相邻的任意一级放大电路的偏置端。
  8. 如权利要求5所述的射频功率放大器,其特征在于:
    所述增益调节单元包括偏置电流产生电路和第三电阻;
    当所述功率放大单元包括一级放大电路时,所述偏置电流产生电路的输入端连接所述控制单元,所述偏置电流产生电路的输出端连接所述第三电阻的一端,所述第三电阻的另一端连接该级放大电路的偏置端;
    当所述功率放大单元包括两级以上放大电路时,所述偏置电流产生电路的输入端连接所述控制单元,所述偏置电流产生电路的输出端 连接所述第三电阻的一端,所述第三电阻的另一端连接与所述待检测放大电路相邻的任意一级放大电路的偏置端。
  9. 如权利要求1所述的射频功率放大器,其特征在于还包括电源单元,所述电源单元的输入端连接所述控制单元的输出端,所述电源单元的输出端连接所述功率放大单元的电源端。
  10. 一种射频前端模块,其特征在于所述射频前端模块中包括权利要求1~9中任意一项所述的射频功率放大器。
  11. 一种通信终端,其特征在于所述通信终端中包括权利要求1~9中任意一项所述的射频功率放大器。
PCT/CN2021/097837 2020-06-03 2021-06-02 射频功率放大器、射频前端模块及通信终端 WO2021244562A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237000194A KR20230029755A (ko) 2020-06-03 2021-06-02 무선 주파수 전력 증폭기, 무선 주파수 프런트엔드 모듈 및 통신 단말기
JP2022574498A JP2023529848A (ja) 2020-06-03 2021-06-02 高周波パワーアンプ、高周波フロントエンドモジュール及び通信端末
EP21817307.8A EP4164121A1 (en) 2020-06-03 2021-06-02 Radio frequency power amplifier, radio frequency front-end module, and communication terminal
US18/061,479 US20230105134A1 (en) 2020-06-03 2022-12-05 Radio frequency power amplifier, radio frequency front-end module, and communication terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010492838.2A CN111711423B (zh) 2020-06-03 2020-06-03 射频功率放大器、射频前端模块及通信终端
CN202010492838.2 2020-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/061,479 Continuation US20230105134A1 (en) 2020-06-03 2022-12-05 Radio frequency power amplifier, radio frequency front-end module, and communication terminal

Publications (1)

Publication Number Publication Date
WO2021244562A1 true WO2021244562A1 (zh) 2021-12-09

Family

ID=72537605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097837 WO2021244562A1 (zh) 2020-06-03 2021-06-02 射频功率放大器、射频前端模块及通信终端

Country Status (6)

Country Link
US (1) US20230105134A1 (zh)
EP (1) EP4164121A1 (zh)
JP (1) JP2023529848A (zh)
KR (1) KR20230029755A (zh)
CN (1) CN111711423B (zh)
WO (1) WO2021244562A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882795A (zh) * 2023-02-03 2023-03-31 成都明夷电子科技有限公司 一种具备线性化补偿结构的功率放大器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711423B (zh) * 2020-06-03 2024-02-02 唯捷创芯(天津)电子技术股份有限公司 射频功率放大器、射频前端模块及通信终端
CN112886932B (zh) * 2021-01-22 2024-04-12 上海华虹宏力半导体制造有限公司 一种线性化设计的功率放大器
CN114039555B (zh) * 2021-09-30 2022-08-12 锐石创芯(深圳)科技股份有限公司 功率放大系统及射频前端模组
CN114614840B (zh) * 2022-03-08 2023-08-25 福耀玻璃工业集团股份有限公司 车用信号放大器、系统及信号传输方法
CN115567005B (zh) * 2022-10-31 2023-04-28 电子科技大学 一种功率自适应Doherty功率放大器结构及设计方法
CN116131780B (zh) * 2023-04-18 2023-08-04 江苏卓胜微电子股份有限公司 功率放大电路和功率放大方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160241209A1 (en) * 2015-02-15 2016-08-18 Skyworks Solutions, Inc. Doherty power amplifier having am-am compensation
CN106788484A (zh) * 2016-11-16 2017-05-31 力同科技股份有限公司 一种功率放大器
CN106803747A (zh) * 2015-12-01 2017-06-06 唯捷创芯(天津)电子技术股份有限公司 多模功率放大器模组、芯片及通信终端
US20180034414A1 (en) * 2015-02-15 2018-02-01 Shanghai Vanchip Technologies Co., Ltd. Active bias circuit for power amplifier, and mobile terminal
CN110855254A (zh) * 2019-11-15 2020-02-28 唯捷创芯(天津)电子技术股份有限公司 一种射频功率放大器、芯片及通信终端
CN111711423A (zh) * 2020-06-03 2020-09-25 唯捷创芯(天津)电子技术股份有限公司 射频功率放大器、射频前端模块及通信终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545800B (zh) * 2010-12-29 2015-09-23 意法半导体研发(深圳)有限公司 放大信号的电路及其方法
CN106169915B (zh) * 2016-06-30 2020-07-31 唯捷创芯(天津)电子技术股份有限公司 多增益模式功率放大器、芯片及通信终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160241209A1 (en) * 2015-02-15 2016-08-18 Skyworks Solutions, Inc. Doherty power amplifier having am-am compensation
US20180034414A1 (en) * 2015-02-15 2018-02-01 Shanghai Vanchip Technologies Co., Ltd. Active bias circuit for power amplifier, and mobile terminal
CN106803747A (zh) * 2015-12-01 2017-06-06 唯捷创芯(天津)电子技术股份有限公司 多模功率放大器模组、芯片及通信终端
CN106788484A (zh) * 2016-11-16 2017-05-31 力同科技股份有限公司 一种功率放大器
CN110855254A (zh) * 2019-11-15 2020-02-28 唯捷创芯(天津)电子技术股份有限公司 一种射频功率放大器、芯片及通信终端
CN111711423A (zh) * 2020-06-03 2020-09-25 唯捷创芯(天津)电子技术股份有限公司 射频功率放大器、射频前端模块及通信终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882795A (zh) * 2023-02-03 2023-03-31 成都明夷电子科技有限公司 一种具备线性化补偿结构的功率放大器
CN115882795B (zh) * 2023-02-03 2023-04-28 成都明夷电子科技有限公司 一种具备线性化补偿结构的功率放大器

Also Published As

Publication number Publication date
US20230105134A1 (en) 2023-04-06
EP4164121A1 (en) 2023-04-12
KR20230029755A (ko) 2023-03-03
JP2023529848A (ja) 2023-07-12
CN111711423A (zh) 2020-09-25
CN111711423B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2021244562A1 (zh) 射频功率放大器、射频前端模块及通信终端
US10224917B2 (en) Power amplifier saturation detection
US6615028B1 (en) System and method for selecting amplifiers in a communications device
US8213888B2 (en) Power control circuit, semiconductor device and transceiver circuit using the same
US9515621B2 (en) Multimode RF amplifier system
US7123094B2 (en) High frequency power amplifier circuit and radio communication system
US6151509A (en) Dual band cellular phone with two power amplifiers and a current detector for monitoring the consumed power
CN1838530B (zh) 高频功率放大器电路
WO2021244565A1 (zh) 射频功率放大器、射频前端模块和通信终端
US7330072B2 (en) Circuit for power amplification
US20060192616A1 (en) Electronics parts for high frequency power amplifier
WO2018001380A1 (zh) 多增益模式功率放大器、芯片及通信终端
CN103493368A (zh) 用于包络跟踪校准的装置和方法
CN110855254B (zh) 一种射频功率放大器、芯片及通信终端
US20170141734A1 (en) Circuits and methods for controlling power amplifiers
EP1387485B1 (en) Circuit for power amplification
US9002312B1 (en) Dynamic biasing for an active circuit
US7282995B2 (en) Variable gain amplifier
US11394353B2 (en) Power amplifier circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021817307

Country of ref document: EP

Effective date: 20230103