CN114614840B - 车用信号放大器、系统及信号传输方法 - Google Patents

车用信号放大器、系统及信号传输方法 Download PDF

Info

Publication number
CN114614840B
CN114614840B CN202210227543.1A CN202210227543A CN114614840B CN 114614840 B CN114614840 B CN 114614840B CN 202210227543 A CN202210227543 A CN 202210227543A CN 114614840 B CN114614840 B CN 114614840B
Authority
CN
China
Prior art keywords
signal
power
vehicle
transmission
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210227543.1A
Other languages
English (en)
Other versions
CN114614840A (zh
Inventor
林维泉
余吓群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuyao Glass Industry Group Co Ltd
Original Assignee
Fuyao Glass Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuyao Glass Industry Group Co Ltd filed Critical Fuyao Glass Industry Group Co Ltd
Priority to CN202210227543.1A priority Critical patent/CN114614840B/zh
Publication of CN114614840A publication Critical patent/CN114614840A/zh
Priority to PCT/CN2023/080295 priority patent/WO2023169466A1/zh
Application granted granted Critical
Publication of CN114614840B publication Critical patent/CN114614840B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3822Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving specially adapted for use in vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transmitters (AREA)

Abstract

本发明提供了一种车用信号放大器、系统及信号传输方法,所述车用信号放大器包括信号发送通路和自适应放大控制模块;其中,所述信号发送通路的一端与射频线缆耦接,另一端与车载天线耦接,接收射频线缆传输的车载终端发出的发送信号,根据功率调节参数对所述发送信号进行功率调节后发送至所述车载天线;所述自适应放大控制模块用于检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,将所述功率控制信号传输至所述信号发送通路以更新所述功率调节参数,本发明可解决不同车载终端与车载天线间通过长射频线缆传输信号时由于线缆长度不同需要不同的信号放大器以及信号放大器性能下降无法自动检测并恢复性能的问题。

Description

车用信号放大器、系统及信号传输方法
技术领域
本发明涉及无线通信技术领域,尤其涉及一种车用信号放大器、系统及信号传输方法。
背景技术
随着车联网技术的发展,新能源汽车等汽车上需要搭载OBU和TBOX等车载终端,汽车上进一步需要设置车载天线,车载终端可通过天线与其他车载终端或设备进行通信。其中,车载终端通过车载天线收发的信号需要用到V2X、LTE和5GNR等通信标准。为了避免车身钣金对天线信号的屏蔽,一般会选择将天线安装在靠近车窗玻璃部分区域。但是,车载终端通常安装在车身内部,车载终端与车载天线间的距离较远,需要通过长射频线缆的方式连接车载终端和车载天线。通过长射频线缆传输信号会导致信号损耗,进而导致车载终端的通信距离的缩短。
针对以上问题,射频线缆采用优质线材并加粗线缆等方式理论上可以缓解信号损耗的问题,但是会带来线缆成本急剧上升等效益问题以及粗线缆不易弯折等安装问题。此外,还可以采用对信号进行功率放大的方式解决长射频线缆信号损耗的问题,但是车载终端的安装位置等因素会导致射频线缆的长度不同,对于汽车生产来说,需要设置不同的信号放大器。并且,随着使用时间的增加和环境改变等因素的影响,放大器本身性能会减低,现有的信号放大器无法自动检测并恢复性能。
发明内容
本发明的一个目的在于提供一种车用信号放大器,以解决不同车载终端与车载天线间通过长射频线缆传输信号时由于线缆长度不同需要不同的信号放大器以及随着使用时间增加和环境变化等原因导致信号放大器不能灵活适用的问题。本发明的另一个目的在于提供一种车用信号放大系统。本发明的再一个目的在于提供一种信号传输方法。
为了达到以上目的,本发明一方面公开了一种车用信号放大器,包括信号发送通路和自适应放大控制模块;
其中,所述信号发送通路的一端与射频线缆耦接,另一端与车载天线耦接,接收射频线缆传输的车载终端发出的发送信号,根据功率调节参数对所述发送信号进行功率调节后发送至所述车载天线;
所述自适应放大控制模块用于检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,将所述功率控制信号传输至所述信号发送通路以更新所述功率调节参数。
优选的,进一步包括信号接收通路;
所述信号接收通路的一端与射频线缆耦接,另一端与车载天线耦接,接收车载天线传输的接收信号,对所述接收信号进行放大后发送至所述射频线缆以通过所述射频线缆将放大后的接收信号传输至所述车载终端。
优选的,所述信号接收通路包括低噪声放大器。
优选的,所述信号接收通路的一端通过射频开关与射频线缆耦接,另一端通过射频开关与车载天线耦接;或者,
所述信号接收通路的一端通过环形器与射频线缆耦接,另一端通过环形器与车载天线耦接。
优选的,所述信号发送通路的一端通过射频开关与射频线缆耦接,另一端通过射频开关与车载天线耦接;或者,
所述信号发送通路的一端通过环形器与射频线缆耦接,另一端通过环形器与车载天线耦接。
优选的,所述自适应放大控制模块包括信号采样模块、功率检测模块和功率控制模块;
所述信号采样模块用于对所述信号发送通路输出的功率调节后的发送信号进行采样得到采样信号;
所述功率检测模块用于对所述采样信号进行功率检测得到信号功率;
所述功率控制模块用于根据所述信号功率和预设输出功率确定参数调整值,根据所述参数调整值形成对应的功率控制信号,将所述功率控制信号传输至所述信号发送通路以更新所述功率调节参数。
优选的,所述信号采样模块包括设于信号发送通路与所述车载天线间的耦合器。
优选的,所述信号发送通路包括数控衰减器和第一功率放大器,所述功率调节参数为衰减数值;
所述数控衰减器用于接收射频线缆传输的车载终端发出的发送信号,根据衰减数值对所述发送信号进行功率衰减;
所述第一功率放大器用于对功率衰减后的发送信号进行功率放大得到功率调节后的发送信号并发送至所述车载天线;
所述自适应放大控制模块用于检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,将所述功率控制信号传输至所述数控衰减器以更新所述数控衰减器的衰减数值。
优选的,所述信号发送通路包括第二功率放大器,所述功率调节参数为第二功率放大器的偏置电压;
所述第二功率放大器用于接收射频线缆传输的车载终端发出的发送信号,根据所述偏置电压对所述发送信号进行功率放大得到功率调节后的发送信号并发送至所述车载天线;
所述自适应放大控制模块用于检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,将所述功率控制信号传输至所述第二功率放大器以调整所述第二功率放大器的偏置电压。
本发明还公开了一种车用信号放大系统,包括如上所述的车用信号放大器、射频线缆、车载终端和车载天线。
本发明还公开了一种信号传输方法,包括:
接收射频线缆传输的车载终端发出的发送信号,根据功率调节参数对所述发送信号进行功率调节后发送至车载天线;
检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,根据所述功率控制信号更新所述功率调节参数。
优选的,进一步包括:
接收车载天线传输的接收信号,对所述接收信号进行放大后发送至所述射频线缆以通过所述射频线缆将放大后的接收信号传输至所述车载终端。
优选的,所述检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号具体包括:
对功率调节后的发送信号进行采样得到采样信号;
对所述采样信号进行功率检测得到信号功率;
根据所述信号功率和预设输出功率确定参数调整值,根据所述参数调整值形成对应的功率控制信号。
优选的,所述接收射频线缆传输的车载终端发出的发送信号,根据功率调节参数对所述发送信号进行功率调节后发送至所述车载天线具体包括:
接收射频线缆传输的车载终端发出的发送信号,根据衰减数值对所述发送信号进行功率衰减;
对功率衰减后的发送信号进行功率放大得到功率调节后的发送信号并发送至所述车载天线;
所述功率调节参数为衰减数值,所述根据所述功率控制信号更新所述功率调节参数具体包括:
根据所述功率控制信号更新所述衰减数值。
优选的,所述接收射频线缆传输的车载终端发出的发送信号,根据功率调节参数对所述发送信号进行功率调节后发送至所述车载天线具体包括:
接收射频线缆传输的车载终端发出的发送信号,根据偏置电压对所述发送信号进行功率放大;
所述功率调节参数为功率放大的偏置电压,所述根据所述功率控制信号更新所述功率调节参数具体包括:
根据所述功率控制信号调整所述功率放大的偏置电压。
本发明的车用信号放大器包括信号发送通路和自适应放大控制模块。其中,所述信号发送通路的一端与射频线缆耦接,另一端与车载天线耦接,接收射频线缆传输的车载终端发出的发送信号,根据功率调节参数对所述发送信号进行功率调节后发送至所述车载天线;所述自适应放大控制模块用于检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,将所述功率控制信号传输至所述信号发送通路以更新所述功率调节参数。从而,本发明通过信号发送通路对发送信号进行调节后发送至车载天线,对射频线缆传输的发送信号进行功率调节,补偿发送信号在长射频线缆中传输时信号射频性能的损失,避免长射频线缆传输信号导致的通信距离缩短的问题。进一步的,自适应放大控制模块可检测功率调节后的发送信号的功率,即检测信号发送通路传输至车载天线的信号的功率,根据功率形成功率控制信号,通过该功率控制信号更新信号发送通路的功率调节参数。进而,根据不同功率调节参数可实现对发送信号不同程度的功率调节,以适应发送信号在不同性能损失情况下需要不同功率调节的问题,解决不同车载终端与车载天线间通过长射频线缆传输信号时由于线缆长度不同需要不同的信号放大器以及随着使用时间的增加和环境改变等因素的影响,放大器本身性能会减低,现有的信号放大器无法自动检测并恢复性能的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本发明车用信号放大系统具体实施例的结构图;
图2示出本发明车用信号放大器具体实施例的结构图;
图3示出本发明车用信号放大器具体实施例包括信号接收通路的结构图;
图4示出本发明车用信号放大器具体实施例自适应放大控制模块的结构图;
图5示出本发明车用信号放大系统(TDD)一个实施例的结构图;
图6示出本发明车用信号放大系统(FDD)一个实施例的结构图;
图7示出本发明车用信号放大系统(TDD)另一个实施例的结构图;
图8示出本发明车用信号放大系统(FDD)另一个实施例的结构图;
图9示出本发明信号传输方法具体实施例的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有技术中,OBU和TBOX等车载终端安装在车身合适位置,通过长射频线缆的方式连接到车载天线,车载天线通常安装在车窗位置,以防止金属车身对信号的屏蔽。现有技术所需要用到的长射频线缆常常可达到5至6米,一般品质射频线缆的损耗在1.7GHz将达到7dB左右,对于V2X频段甚至可能达到12dB以上。对于车载终端发送信号来说,以V2X的5.915GHz频段为例,长射频线缆的传输将使发送信号的功率降低12dB左右,对于相同接收灵敏度的接收终端来说,现有技术与天线直接接入OBU和TBOX等终端这一理想情况相比,通信距离将缩短为理想状况的1/4。对于车载终端接收信号来说,现有技术将使终端的接收灵敏度恶化超过12dB,对于相同的发射功率的终端来说,现有技术与天线直接接入OBU和TBOX等终端的理想情况相比,通信距离也将缩短为理想状况的1/4。对于V2X中的车车通信场景来说,假设通信双方都采用长射频线缆进行通信,则通信距离与两车都直接将终端接入天线的理想情况相比,通信距离将缩短为1/16。
针对长射频线缆传输信号造成通信距离缩短的问题,射频线缆采用优质线材并加粗线缆等方式理论上可以缓解信号损耗的问题,但是会带来线缆成本急剧上升等效益问题以及粗线缆不易弯折等安装问题。此外,还可以采用对信号进行功率放大的方式解决长射频线缆信号损耗的问题,但是车载终端的安装位置等因素会导致射频线缆的长度不同,对于汽车生产来说,需要设置不同的信号放大器,对于汽车生产来说,难以管理。针对现有技术长射频线缆损耗引起的信号射频性能恶化导致的通信距离缩短的问题,本发明提供了一种在使用长射频线缆的情况下,不恶化射频指标,不缩短通信距离的车用信号放大器,根据功率调节后的发送信号的功率对功率调节参数进行对应的更新,以使根据功率调节参数进行功率调节后的发送信号满足功率要求。
为了便于理解本申请提供的技术方案,下面先对本申请技术方案的相关内容进行说明。本发明实施例提供的车用信号放大器可检测信号发送通路功率调节后的发送信号的功率,即检测信号发送通路传输至车载天线的信号的功率,根据功率形成功率控制信号,通过该功率控制信号更新信号发送通路的功率调节参数。进而,根据不同功率调节参数可实现对发送信号不同程度的功率调节,以适应发送信号在性能损失情况下需要不同功率调节的问题,实现不同车载终端与车载天线间通过不同长度射频线缆传输信号时需要不同的功率调节的问题。
图1是本发明实施例提供的车用信号放大系统的结构示意图,如图1所示,本发明实施例提供的车用信号放大系统包括车载终端1、射频线缆2、车用信号放大器3和车载天线4。
其中,车用信号放大器3的一端与射频线缆2的一端耦接,另一端与车载天线4耦接,射频线缆2的另一端与车载终端1耦接,车用信号放大器3可接收射频线缆2传输的车载终端1发出的发送信号,即车载终端1通过射频线缆2将发送信号发送至车用信号放大器3,车用信号放大器3可根据功率调节参数对所述发送信号进行功率调节后发送至所述车载天线4,车载天线4进一步可将接收的发送信号转换为无线电信号发送出去。
车用信号放大器3还可检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,根据所述功率控制信号更新所述功率调节参数,基于信号放大器发送至车载天线4的信号的功率的大小对发送信号进行不同的功率调节,从而可实现对发送信号的自适应功率调节的功能。
下面以车用信号放大器3作为执行主体为例,说明本发明实施例提供的信号传输方法的实现过程。可理解的是,本发明实施例提供的信号传输方法的执行主体包括但不限于该车用信号放大器3。
根据本发明的一个方面,本实施例公开了一种车用信号放大器3。如图2所示,车用信号放大器3包括信号发送通路31和自适应放大控制模块32。
其中,所述信号发送通路31的一端与射频线缆2耦接,另一端与车载天线4耦接,接收射频线缆2传输的车载终端1发出的发送信号,根据功率调节参数对所述发送信号进行功率调节后发送至所述车载天线4。
所述自适应放大控制模块32用于检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,将所述功率控制信号传输至所述信号发送通路31以更新所述功率调节参数。
本发明通过信号发送通路31对发送信号进行调节后发送至车载天线4,对射频线缆2传输的发送信号进行功率调节,补偿发送信号在长射频线缆2中传输时信号射频性能的损失,避免长射频线缆2传输信号导致的通信距离缩短的问题。进一步的,自适应放大控制模块32可检测功率调节后的发送信号的功率,即检测信号发送通路31传输至车载天线4的信号的功率,根据功率形成功率控制信号,通过该功率控制信号更新信号发送通路31的功率调节参数。进而,根据不同功率调节参数可实现对发送信号不同程度的功率调节,以适应发送信号在不同程度的性能损失情况下需要不同功率调节的情况,解决不同车载终端1与车载天线4间通过长射频线缆2传输信号时由于线缆长度不同需要不同的信号放大器以及随着使用时间的增加和环境改变等因素的影响,放大器本身性能会减低,现有的信号放大器无法自动检测并恢复性能的问题,不同车载终端1与车载天线4间通过长射频线缆2传输信号时可使用相同的车用信号放大器3。
在优选的实施方式中,如图3所示,所述车用信号放大器3进一步包括信号接收通路33。该信号接收通路33的一端与射频线缆2耦接,另一端与车载天线4耦接,接收车载天线4传输的接收信号,对所述接收信号进行放大后发送至所述射频线缆2以通过所述射频线缆2将放大后的接收信号传输至所述车载终端1。
具体的,车载天线4可将车载终端1通过射频线缆2和信号放大器传输的发送信号转换为无线电信号发送出去,该无线电信号可被车载天线4或其他终端的天线接收并转换为电信号传输至对应的车载终端1,实现车载终端1与其他终端的通信。同理的,车载天线4可感应其他天线传输的无线电信号,并将接收的无线电信号转换为电信号,将该电信号形式的接收信号传输至车用信号放大器3,通过车用信号放大器3的信号接收通路33对该接收信号进行放大,将放大后的接收信号发送至射频线缆2,进而传输至车载终端1。从而,通过信号放大器的信号发送通路31和信号接收通路33可实现车载终端1与外部其他终端的双向通信。并且,信号接收通路33可对接收信号进行放大,避免小信号经过长射频线缆2后质量下降而导致车载终端1无法识别,车载终端1识别灵敏度降低的问题。
需要说明的是,本发明中,车用信号放大器3设置在射频线缆2和车载天线4之间,使发送信号首先经过射频线缆2再经过信号放大器,避免经过信号放大器输出的发送信号再经过射频线缆2导致发送至车载天线4的发送信号受各种因素影响而功率不可控的问题。此外,使发送信号首先经过射频线缆2再经过信号放大器,发送至车载天线4的发送信号的最高功率仅受信号放大器的性能限制,而发送信号首先经过信号放大器再经过射频线缆2,发送至车载天线4的发送信号在信号放大器的性能限制基础上还要再考虑射频线缆2的损耗,会导致发送信号功率调节的最高功率变低。并且,在接收信号时,若天线传输的接收信号先经过射频线缆2再经过放大,可能会导致接收信号在射频线缆2传输过程中信噪比已经降低,即使再经过后续的放大也无法有效改善接收信号的信噪比。
在优选的实施方式中,如图4~图8所示,所述信号接收通路33包括低噪声放大器331。
具体的,可通过低噪声放大器331对接收信号进行信号放大。例如,在一个具体例子中,对于终端接收信号来说,现有技术方案下,车载终端与天线仅通过长射频线缆直接连接,从而,接收信号从天线传输至车载终端的通路的整体噪声系数等于长射频线缆的损耗,该过程的噪声系数可达到12dB。在该优选的实施方式中,设置低噪声放大器331对接收信号进行放大。其中,低噪声放大器331增益为15dB,噪声系数为1dB,射频开关5或者环形器6的损耗均为0.3dB。以上数值均以dB为单位进行表示,计算噪声系数时需要先利用公式Y(dB)=10log10(X(数值))将dB换算为数值。
经过上述公式换算,分别得到与车载天线4连接的射频开关5或环形器6的增益为G1=-0.933,噪声为NF1=1.071;信号接收通路33的增益为G2=31.623,噪声为NF2=1.259;与长射频线缆2连接的射频开关5或环形器6的增益为G3=-0.933,噪声为NF3=1.071;长射频线缆2的增益为G4=-15.849,噪声为NF4=15.849.
则在该优选的实施方式中,车载终端1的信号接收通路33的整体噪声系数可通过如下公式计算得到。
由此,计算得到的整体噪声系数为1.89,换算为dB即2.76dB,比现有技术的噪声系数值优化了9.24dB,则通信距离是现有技术的2.9倍。
在可选的实施方式中,所述信号接收通路33的一端通过射频开关5与射频线缆2耦接,另一端通过射频开关5与车载天线4耦接;或者,所述信号接收通路33的一端通过环形器6与射频线缆2耦接,另一端通过环形器6与车载天线4耦接。
其中,可以理解的是,如图4~图8所示,对于TDD(时分双工通信)来说,可选用射频开关5将射频线缆2与信号接收通路33以及车载天线4与信号接收通路33连接;对于FDD(频分双工通信)来说,可选用环形器6将射频线缆2与信号接收通路33以及车载天线4与信号接收通路33连接。
在可选的实施方式中,所述信号发送通路31的一端通过射频开关5与射频线缆2耦接,另一端通过射频开关5与车载天线4耦接;或者,所述信号发送通路31的一端通过环形器6与射频线缆2耦接,另一端通过环形器6与车载天线4耦接。
其中,可以理解的是,如图4~图8所示,对于TDD来说,可选用射频开关5将射频线缆2与信号发送通路31以及车载天线4与信号接收发送连接;对于FDD来说,可选用环形器6将射频线缆2与信号发送通路31以及车载天线4与信号发送通路31连接。
在优选的实施方式中,如图4所示,所述自适应放大控制模块32包括信号采样模块321、功率检测模块322和功率控制模块323。
其中,所述信号采样模块321用于对所述信号发送通路31输出的功率调节后的发送信号进行采样得到采样信号。
所述功率检测模块322用于对所述采样信号进行功率检测得到信号功率。
所述功率控制模块323用于根据所述信号功率和预设输出功率确定参数调整值,根据所述参数调整值形成对应的功率控制信号,将所述功率控制信号传输至所述信号发送通路31以更新所述功率调节参数。
具体的,在该优选的实施方式中,为了实现自适应调节发送信号的功率的目的,通过信号采样模块321对信号发送通路31输出的经过功率调节后的发送信号进行采样得到采样信号,该采样信号与功率调节后的发送信号对应,可用于表征信号发送通路31输出的发送信号的功率放大量。进一步的,通过功率检测模块322对采样信号进行功率检测可得到信号功率,对采样信号的功率检测方法为本领域的公知常识,在此不再赘述。
功率控制模块323基于功率检测模块322传输的信号功率以及预设的输出功率可确定参数调整值,根据参数调整值形成对应的功率控制信号,并将功率控制信号传输至信号发送通路31实现对功率调节参数的调整。由此,该优选的实施方式中,通过对传输至车载天线4的发送信号进行采样和功率检测,并根据预设输出功率确定输出信号的功率调节是否满足要求,若不满足要求,可通过功率控制信号更新功率调节参数以调节信号发送通路31对发送信号的功率调节程度,直至功率调节后的发送信号满足预设输出功率的要求,从而,对于经过不同射频线缆2而存在不同功率损失的发送信号,可快速确定发送至天线的发送信号的功率,并调整功率调节参数,使后续传输至天线的发送信号的功率满足预设输出功率的要求,实现发送信号的自适应功率调节。
在优选的实施方式中,所述信号采样模块321包括设于信号发送通路31与所述车载天线4间的耦合器3211。
可以理解的是,利用耦合器3211可耦合部分发送信号的射频能量,且基本不改变最终输出的发送信号的幅度。
在一个可选的实施方式中,所述信号发送通路31包括数控衰减器311和第一功率放大器312,所述功率调节参数为衰减数值。其中,所述数控衰减器311用于接收射频线缆2传输的车载终端1发出的发送信号,根据衰减数值对所述发送信号进行功率衰减。所述第一功率放大器312用于对功率衰减后的发送信号进行功率放大得到功率调节后的发送信号并发送至所述车载天线4。所述自适应放大控制模块32用于检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,将所述功率控制信号传输至所述数控衰减器311以更新所述数控衰减器311的衰减数值。
具体的,在该可选的实施方式中,车载终端1通过射频线缆2传输的发送信号通过数控衰减器311和第一功率放大器312的功率调节后再发送至车载天线4。自适应放大控制模块32检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,将所述功率控制信号传输至所述数控衰减器311以更新所述数控衰减器311的衰减数值。
在该可选的实施方式中,第一功率放大器312能够对发送信号放大的功率放大量为固定值,放大的功率放大量由选用和设置的第一功率放大器312决定。自适应放大控制模块32输出功率控制信号至数控衰减器311,以调整数控衰减器311的衰减数值,从而调节输入第一功率放大器312的信号的衰减量,使数控衰减器311基于调节后的衰减数值对发送信号进行适当衰减后再经过第一功率放大器312进行固定功率放大量的放大,实现最终输出至车载天线4的发送信号的功率满足预设输出功率的要求。
在该可选的实施方式中,可采用固定放大功率或可调节放大功率的放大器,功率放大器的选用范围较广。优选的可采用高线性的大功率放大器,这类放大器的特点是在输入功率较小的时候能够保证信号质量基本无损的同时对输入信号功率进行放大,在不恶化其他射频性能的情况下提高信号的发射功率,更好的补偿现有技术方案中射频线缆2对发射信号功率的损耗。在具体例子中,信号损耗为12dB,考虑到所选功率放大器的1dB功率压缩点为35dBm,在保证信号质量的前提下,能够输出的最大功率为28dBm左右,射频开关5或者环形器6的损耗均为0.3dB,故在天线的输入口可以达到27.7dBm的发射功率。可以很好地满足车载终端1对发送信号的发射功率的要求,与现有技术相比,能够完全弥补线缆产生的12dB损耗,通信距离是现有技术方案的4倍。
图5和图6分别示出了TDD和FDD的信号放大系统。在图5和图6中,信号发送通路31包括数控衰减器311和第一功率放大器312。自适应放大控制模块32包括设于信号发送通路31与所述车载天线4间的耦合器3211、功率检测模块322和功率控制模块323。其中,功率放大器312、耦合器3211、功率检测模块322和功率控制模块323可分别通过芯片实现,为本领域的常规技术手段,在此不再赘述。
其中,利用耦合器3211耦合部分发送信号的射频能量得到采样信号,该过程基本不改变最终输出的发送信号的幅度。然后,利用功率检测模块322实现采样信号的功率检测,将信号功率的检测结果传输至功率控制模块323。功率控制模块323可接收功率检测模块322的检测结果,并根据信号功率和预设输出功率对衰减器的衰减数值做出判定并根据需要衰减的数值形成功率控制信号后发给数控衰减器311。数控衰减器311接收功率控制信号,对待输入第一功率放大器312的输入信号进行适当衰减,使信号发送通路31最终输出的发送信号的功率稳定在预设输出功率。
在可选的实施方式中,可选用具有信号采样功能和功率检测功能的功率放大器。即信号采样模块和功率检测模块可集成在功率放大器中,功率放大器直接输出检测的功率值。
在另一个可选的实施方式中,所述信号发送通路31包括第二功率放大器313,所述功率调节参数为第二功率放大器313的偏置电压。
所述第二功率放大器313用于接收射频线缆2传输的车载终端1发出的发送信号,根据所述偏置电压对所述发送信号进行功率放大得到功率调节后的发送信号并发送至所述车载天线4。所述自适应放大控制模块32用于检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,将所述功率控制信号传输至所述第二功率放大器313以调整所述第二功率放大器313的偏置电压。
具体的,在该可选的实施方式中,车载终端1通过射频线缆2传输的发送信号通过第二功率放大器313的功率调节后再发送至车载天线4。自适应放大控制模块32检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,将所述功率控制信号传输至所述第二功率放大器313以调整所述第二功率放大器313的偏置电压。
在该可选的实施方式中,第二功率放大器313对发送信号的功率放大效果可调,自适应放大控制模块32可通过调节输出的功率控制信号的方式调节第二功率放大器313的偏置电压,进而调节第二功率放大器313的放大效果,实现最终输出至车载天线4的发送信号的功率满足预设输出功率的要求。
图7和图8分别示出了TDD和FDD的信号放大系统。在图7和图8中,信号发送通路31包括第二功率放大器313。自适应放大控制模块32包括设于信号发送通路31与所述车载天线4间的耦合器3211、功率检测模块322和功率控制模块323。其中,功率放大器、耦合器3211、功率检测模块322和功率控制模块323可分别通过芯片实现,为本领域的常规技术手段,在此不再赘述。
其中,利用耦合器3211耦合部分发送信号的射频能量得到采样信号,该过程基本不改变最终输出的发送信号的幅度。然后,利用功率检测模块322实现采样信号的功率检测,将信号功率的检测结果传输至功率控制模块323。功率控制模块323可接收功率检测模块322的检测结果,并根据信号功率和预设输出功率对需要修正的放大器偏置电压做出判定并形成功率控制信号后对放大器的偏置电压进行设置,使第二功率放大器313输出的功率放大后的发送信号的功率稳定在预设输出功率。
需要说明的是,根据选用的功率放大器的放大芯片的不同,本发明的车用信号放大器可以应用在基于包括但不限于V2X、5GNR、LTE、WIFI和蓝牙等各种通信标准的车用信号放大系统中。
综上,本发明可在不改变车载终端1和车载天线4位置,保持现有采用线缆连接终端和天线的安装便捷性与经济性的基础上,解决由于射频线缆2传输信号导致通信距离降低的问题,在终端发送信号的场景下通信距离可提高300%,在终端接收信号的场景下通信距离可提高190%。不同终端和天线安装条件下可采用同一个信号放大器,有效提高了不同型号车型的放大器的通用性,降低了生产和管理成本。
基于相同原理,本实施例还公开了一种信号传输方法。如图9所示,本实施例中,所述方法包括:
S100:接收射频线缆2传输的车载终端1发出的发送信号,根据功率调节参数对所述发送信号进行功率调节后发送至所述车载天线4。
S200:检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,根据所述功率控制信号更新所述功率调节参数。
在优选的实施方式中,所述方法进一步包括:
S300:接收车载天线4传输的接收信号,对所述接收信号进行放大后发送至所述射频线缆2以通过所述射频线缆2将放大后的接收信号传输至所述车载终端1。
本发明通过信号发送通路31对发送信号进行调节后发送至车载天线4,对射频线缆2传输的发送信号进行功率调节,补偿发送信号在长射频线缆2中传输时信号射频性能的损失,避免长射频线缆2传输信号导致的通信距离缩短的问题。进一步的,自适应放大控制模块32可检测功率调节后的发送信号的功率,即检测信号发送通路31传输至车载天线4的信号的功率,根据功率形成功率控制信号,通过该功率控制信号更新信号发送通路31的功率调节参数。进而,根据不同功率调节参数可实现对发送信号不同程度的功率调节,以适应发送信号在不同性能损失情况下需要不同功率调节的问题,解决不同车载终端1与车载天线4间通过长射频线缆2传输信号时由于线缆长度不同需要不同的信号放大器以及随着使用时间的增加和环境改变等因素的影响,放大器本身性能会减低,现有的信号放大器无法自动检测并恢复性能的问题,不同车载终端1与车载天线4间通过不同长射频线缆2传输信号时可使用相同的车用信号放大器3。
在优选的实施方式中,所述S200检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号具体包括。
S210:对所述信号发送通路31输出的功率调节后的发送信号进行采样得到采样信号;
S220:对所述采样信号进行功率检测得到信号功率。
S230:根据所述信号功率和预设输出功率确定参数调整值,根据所述参数调整值形成对应的功率控制信号。
在优选的实施方式中,所述S100接收射频线缆2传输的车载终端1发出的发送信号,根据功率调节参数对所述发送信号进行功率调节后发送至所述车载天线4具体包括:
S111:接收射频线缆2传输的车载终端1发出的发送信号,根据衰减数值对所述发送信号进行功率衰减。
S112:对功率衰减后的发送信号进行功率放大得到功率调节后的发送信号并发送至所述车载天线4。
所述功率调节参数为衰减数值,所述根据所述功率控制信号更新所述功率调节参数具体包括:
S211:根据所述功率控制信号更新所述衰减数值。
在优选的实施方式中,所述S100接收射频线缆2传输的车载终端1发出的发送信号,根据功率调节参数对所述发送信号进行功率调节后发送至所述车载天线4具体包括:
S121:接收射频线缆2传输的车载终端1发出的发送信号,根据所述偏置电压对所述发送信号进行功率放大。
所述功率调节参数为功率放大的偏置电压,所述根据所述功率控制信号更新所述功率调节参数具体包括:
S221:根据所述功率控制信号调整所述功率放大的偏置电压。
由于该方法解决问题的原理与以上信号放大器类似,因此本方法的实施可以参见信号放大器的实施,在此不再赘述。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (15)

1.一种车用信号放大器,其特征在于,包括信号发送通路和自适应放大控制模块;
其中,所述信号发送通路的一端与射频线缆耦接,另一端与车载天线耦接,接收射频线缆传输的车载终端发出的发送信号,根据功率调节参数对所述发送信号进行功率调节后发送至所述车载天线;
所述信号发送通路包括根据衰减数值对所述发送信号进行功率衰减的数控衰减器和对功率衰减后的发送信号进行功率放大的功率放大器,所述功率调节参数为所述数控衰减器的衰减数值;或者,所述信号发送通路包括根据偏置电压对所述发送信号进行功率放大的功率放大器,所述功率调节参数为所述功率放大器的偏置电压;
所述自适应放大控制模块用于检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,将所述功率控制信号传输至所述信号发送通路以更新所述功率调节参数。
2.根据权利要求1所述的车用信号放大器,其特征在于,进一步包括信号接收通路;
所述信号接收通路的一端与射频线缆耦接,另一端与车载天线耦接,接收车载天线传输的接收信号,对所述接收信号进行放大后发送至所述射频线缆以通过所述射频线缆将放大后的接收信号传输至所述车载终端。
3.根据权利要求2所述的车用信号放大器,其特征在于,所述信号接收通路包括低噪声放大器。
4.根据权利要求2所述的车用信号放大器,其特征在于,所述信号接收通路的一端通过射频开关与射频线缆耦接,另一端通过射频开关与车载天线耦接;或者,
所述信号接收通路的一端通过环形器与射频线缆耦接,另一端通过环形器与车载天线耦接。
5.根据权利要求1所述的车用信号放大器,其特征在于,所述信号发送通路的一端通过射频开关与射频线缆耦接,另一端通过射频开关与车载天线耦接;或者,
所述信号发送通路的一端通过环形器与射频线缆耦接,另一端通过环形器与车载天线耦接。
6.根据权利要求1所述的车用信号放大器,其特征在于,所述自适应放大控制模块包括信号采样模块、功率检测模块和功率控制模块;
所述信号采样模块用于对所述信号发送通路输出的功率调节后的发送信号进行采样得到采样信号;
所述功率检测模块用于对所述采样信号进行功率检测得到信号功率;
所述功率控制模块用于根据所述信号功率和预设输出功率确定参数调整值,根据所述参数调整值形成对应的功率控制信号,将所述功率控制信号传输至所述信号发送通路以更新所述功率调节参数。
7.根据权利要求6所述的车用信号放大器,其特征在于,所述信号采样模块包括设于信号发送通路与所述车载天线间的耦合器。
8.根据权利要求1所述的车用信号放大器,其特征在于,所述信号发送通路包括数控衰减器和第一功率放大器,所述功率调节参数为衰减数值;
所述数控衰减器用于接收射频线缆传输的车载终端发出的发送信号,根据衰减数值对所述发送信号进行功率衰减;
所述第一功率放大器用于对功率衰减后的发送信号进行功率放大得到功率调节后的发送信号并发送至所述车载天线;
所述自适应放大控制模块用于检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,将所述功率控制信号传输至所述数控衰减器以更新所述数控衰减器的衰减数值。
9.根据权利要求1所述的车用信号放大器,其特征在于,所述信号发送通路包括第二功率放大器,所述功率调节参数为第二功率放大器的偏置电压;
所述第二功率放大器用于接收射频线缆传输的车载终端发出的发送信号,根据所述偏置电压对所述发送信号进行功率放大得到功率调节后的发送信号并发送至所述车载天线;
所述自适应放大控制模块用于检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,将所述功率控制信号传输至所述第二功率放大器以调整所述第二功率放大器的偏置电压。
10.一种车用信号放大系统,其特征在于,包括如权利要求1-9任一项所述的车用信号放大器、射频线缆、车载终端和车载天线。
11.一种信号传输方法,其特征在于,包括:
接收射频线缆传输的车载终端发出的发送信号,根据衰减数值对所述发送信号进行功率衰减并对功率衰减后的发送信号进行功率放大后发送至车载天线或者根据偏置电压对所述发送信号进行功率放大后发送至车载天线,功率调节参数为衰减数值或者所述功率调节参数为功率放大的偏置电压;
检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号,根据所述功率控制信号更新所述功率调节参数。
12.根据权利要求11所述的信号传输方法,其特征在于,进一步包括:
接收车载天线传输的接收信号,对所述接收信号进行放大后发送至所述射频线缆以通过所述射频线缆将放大后的接收信号传输至所述车载终端。
13.根据权利要求11所述的信号传输方法,其特征在于,所述检测功率调节后的发送信号的功率,根据所述功率形成对应的功率控制信号具体包括:
对功率调节后的发送信号进行采样得到采样信号;
对所述采样信号进行功率检测得到信号功率;
根据所述信号功率和预设输出功率确定参数调整值,根据所述参数调整值形成对应的功率控制信号。
14.根据权利要求11所述的信号传输方法,其特征在于,所述接收射频线缆传输的车载终端发出的发送信号,根据功率调节参数对所述发送信号进行功率调节后发送至所述车载天线具体包括:
接收射频线缆传输的车载终端发出的发送信号,根据衰减数值对所述发送信号进行功率衰减;
对功率衰减后的发送信号进行功率放大得到功率调节后的发送信号并发送至所述车载天线;
所述功率调节参数为衰减数值,所述根据所述功率控制信号更新所述功率调节参数具体包括:
根据所述功率控制信号更新所述衰减数值。
15.根据权利要求11所述的信号传输方法,其特征在于,所述接收射频线缆传输的车载终端发出的发送信号,根据功率调节参数对所述发送信号进行功率调节后发送至所述车载天线具体包括:
接收射频线缆传输的车载终端发出的发送信号,根据偏置电压对所述发送信号进行功率放大;
所述功率调节参数为功率放大的偏置电压,所述根据所述功率控制信号更新所述功率调节参数具体包括:
根据所述功率控制信号调整所述功率放大的偏置电压。
CN202210227543.1A 2022-03-08 2022-03-08 车用信号放大器、系统及信号传输方法 Active CN114614840B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210227543.1A CN114614840B (zh) 2022-03-08 2022-03-08 车用信号放大器、系统及信号传输方法
PCT/CN2023/080295 WO2023169466A1 (zh) 2022-03-08 2023-03-08 车用信号放大器、系统及信号传输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210227543.1A CN114614840B (zh) 2022-03-08 2022-03-08 车用信号放大器、系统及信号传输方法

Publications (2)

Publication Number Publication Date
CN114614840A CN114614840A (zh) 2022-06-10
CN114614840B true CN114614840B (zh) 2023-08-25

Family

ID=81860950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210227543.1A Active CN114614840B (zh) 2022-03-08 2022-03-08 车用信号放大器、系统及信号传输方法

Country Status (2)

Country Link
CN (1) CN114614840B (zh)
WO (1) WO2023169466A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614840B (zh) * 2022-03-08 2023-08-25 福耀玻璃工业集团股份有限公司 车用信号放大器、系统及信号传输方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0481741A2 (en) * 1990-10-18 1992-04-22 Hitachi, Ltd. High frequency power amplifier circuit and mobile radio communication apparatus using the same
US6529710B1 (en) * 1998-12-23 2003-03-04 Honeywell International Inc. Radio frequency (RF) system loss compensation method
JP2008258840A (ja) * 2007-04-03 2008-10-23 Denso Corp 線路損失推定装置、無線機
CN105846520A (zh) * 2016-04-14 2016-08-10 重庆大学 一种自适应调整充电功率的方法及装置
CN106208983A (zh) * 2016-06-30 2016-12-07 唯捷创芯(天津)电子技术股份有限公司 面向时分复用的多模功率放大器模组、芯片及通信终端
CN111711423A (zh) * 2020-06-03 2020-09-25 唯捷创芯(天津)电子技术股份有限公司 射频功率放大器、射频前端模块及通信终端
CN113437991A (zh) * 2021-06-28 2021-09-24 展讯通信(上海)有限公司 射频功率放大电路、芯片及通信设备
CN214336938U (zh) * 2020-11-27 2021-10-01 深圳市万集科技有限公司 一种有源天线及车载电子标签
CN214428766U (zh) * 2021-02-07 2021-10-19 福耀玻璃工业集团股份有限公司 一种具有混合可重构的天线、智能立柱及车辆
CN215871398U (zh) * 2021-06-24 2022-02-18 深圳市金溢科技股份有限公司 一种射频信号功率补偿装置、射频设备以及车载单元

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286786A (ja) * 1999-03-31 2000-10-13 Harada Ind Co Ltd 無線中継装置
FR2824433B1 (fr) * 2001-05-07 2003-08-01 Cit Alcatel Dispositif de regulation du controle de la puissance d'un emetteur
US8538354B2 (en) * 2011-04-04 2013-09-17 Intel IP Corporation Method and system for controlling signal transmission of a wireless communication device
DE102016108206B4 (de) * 2016-05-03 2020-09-10 Bury Sp.Z.O.O Schaltungsanordnung und Verfahren zur Dämpfungskompensation in einer Antennensignalverbindung
WO2019032813A1 (en) * 2017-08-11 2019-02-14 Cellphone-Mate, Inc. RADIO FREQUENCY SIGNAL AMPLIFIER FOR VEHICLES
CN112805938B (zh) * 2018-12-12 2022-11-25 华为技术有限公司 一种信号放大电路及终端设备
CN212086179U (zh) * 2020-02-27 2020-12-04 广州汽车集团股份有限公司 一种天线信号的转换装置
CN113765608B (zh) * 2020-06-04 2022-11-25 华为技术有限公司 故障诊断方法、电子设备及存储介质
CN114614840B (zh) * 2022-03-08 2023-08-25 福耀玻璃工业集团股份有限公司 车用信号放大器、系统及信号传输方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0481741A2 (en) * 1990-10-18 1992-04-22 Hitachi, Ltd. High frequency power amplifier circuit and mobile radio communication apparatus using the same
US6529710B1 (en) * 1998-12-23 2003-03-04 Honeywell International Inc. Radio frequency (RF) system loss compensation method
JP2008258840A (ja) * 2007-04-03 2008-10-23 Denso Corp 線路損失推定装置、無線機
CN105846520A (zh) * 2016-04-14 2016-08-10 重庆大学 一种自适应调整充电功率的方法及装置
CN106208983A (zh) * 2016-06-30 2016-12-07 唯捷创芯(天津)电子技术股份有限公司 面向时分复用的多模功率放大器模组、芯片及通信终端
CN111711423A (zh) * 2020-06-03 2020-09-25 唯捷创芯(天津)电子技术股份有限公司 射频功率放大器、射频前端模块及通信终端
CN214336938U (zh) * 2020-11-27 2021-10-01 深圳市万集科技有限公司 一种有源天线及车载电子标签
CN214428766U (zh) * 2021-02-07 2021-10-19 福耀玻璃工业集团股份有限公司 一种具有混合可重构的天线、智能立柱及车辆
CN215871398U (zh) * 2021-06-24 2022-02-18 深圳市金溢科技股份有限公司 一种射频信号功率补偿装置、射频设备以及车载单元
CN113437991A (zh) * 2021-06-28 2021-09-24 展讯通信(上海)有限公司 射频功率放大电路、芯片及通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高精度的短波发射机功率校准控制系统设计;钟维辉;于津;张盼华;;计算机测量与控制(第03期);全文 *

Also Published As

Publication number Publication date
WO2023169466A1 (zh) 2023-09-14
CN114614840A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
US6584081B1 (en) Method and apparatus for eliminating intermodulation interference in cellular telephone systems
US8521081B2 (en) Repeating apparatus and method in wireless communication system
US7593689B2 (en) Method for detecting an oscillation in an on-frequency repeater
US7729669B2 (en) Processor controlled variable gain cellular network amplifier
US10374653B2 (en) V2X antenna systems
CN114614840B (zh) 车用信号放大器、系统及信号传输方法
US8285220B2 (en) Method and apparatus for reducing a channel deviation in a mobile communication terminal
KR20110040201A (ko) 간섭 제거 중계기의 자동 이득 보상 방법
JP2000082983A (ja) 無線中継増幅装置
CN111193553A (zh) 一种光路插损自适应的射频光接收机
US8849187B2 (en) Radio frequency amplifier noise reduction system
US6038460A (en) Receiver for an RF signal booster in wireless communication system
JP3664138B2 (ja) 無線基地局
US20030013427A1 (en) Wireless transmitter and device for mobile station
CN101742631B (zh) 一种解决移动体覆盖的直放站及其控制方法
CN212064015U (zh) 一种集成场放前端的射频光传输系统
KR100301727B1 (ko) 출력레벨이 자동 조절되는 cdma 휴대전화기의 송신장치 및 그 제어방법
JP4170081B2 (ja) 干渉波検出装置、受信装置、および通信装置
KR101966460B1 (ko) 지능형 agc를 적용한 차량용 라디오 수신 장치 및 방법
CN111525959B (zh) 一种集成场放前端的射频光传输系统及方法
CN109392073B (zh) 用于补偿传输信号时的信号衰减的电路系统和所属的方法
KR20010104063A (ko) 이동통신 단말기에서의 송신전력 제어장치
JP2006512828A (ja) モバイルハンドセットの送信電力のための制御手法
KR20010104057A (ko) 이동통신 단말기에서의 pdm 신호를 이용한 송신전력제어장치
KR20000060719A (ko) 이동통신시스템에서의 이동국송신전력제어회로 및 그 제어방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant