WO2021244408A1 - 锂电池电芯、锂电池电芯的制备方法和锂电池 - Google Patents

锂电池电芯、锂电池电芯的制备方法和锂电池 Download PDF

Info

Publication number
WO2021244408A1
WO2021244408A1 PCT/CN2021/096601 CN2021096601W WO2021244408A1 WO 2021244408 A1 WO2021244408 A1 WO 2021244408A1 CN 2021096601 W CN2021096601 W CN 2021096601W WO 2021244408 A1 WO2021244408 A1 WO 2021244408A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium battery
battery cell
positive
electrode sheet
negative
Prior art date
Application number
PCT/CN2021/096601
Other languages
English (en)
French (fr)
Inventor
谢红斌
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021244408A1 publication Critical patent/WO2021244408A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of battery technology, in particular to a lithium battery cell, a method for preparing a lithium battery cell, and a lithium battery.
  • the general lamination process can produce special-shaped batteries, such as punching to form multiple positive electrode sheets of the same shape and multiple negative electrode sheets of the same shape.
  • the lamination method can meet the requirements of the abnormal shape of the battery, it also has many shortcomings: it produces a lot of side material and low performance, low production efficiency, and the internal resistance of the generated abnormal shape battery is relatively large.
  • a lithium battery cell a method for preparing a lithium battery cell, and a lithium battery are provided.
  • a lithium battery cell includes a positive electrode sheet and a negative electrode sheet that are isolated from each other and in a preset pattern, and the lithium battery cell is formed by winding the positive electrode sheet and the negative electrode sheet, wherein the first part of the positive electrode sheet A preset area is provided with a plurality of positive lugs, and the second preset area of the negative plate is provided with a plurality of negative lugs;
  • the wound multiple positive lugs are stacked to form at least one positive terminal of the lithium battery cell, multiple negative lugs are stacked to form at least one negative terminal of the lithium battery cell, and the stacked multiple positive lugs are arranged in parallel,
  • the stacked multiple negative electrode ears are arranged in parallel, wherein the positive electrode ear and the negative electrode ear are arranged in a staggered arrangement.
  • a lithium battery includes the lithium battery cell as described above.
  • the above-mentioned lithium battery cell can be formed by winding a positive electrode sheet and a negative electrode sheet with a preset pattern, so that the shape of the lithium battery cell is diversified, the energy density of the lithium battery cell is improved, and the preparation efficiency is high. Since the wound multiple positive lugs are stacked to form at least one positive terminal of the lithium battery cell, the multiple negative lugs are stacked to form at least one negative terminal of the lithium battery cell, and the stacked multiple positive lugs are arranged in parallel. Multiple negative ear ears are arranged in parallel, which reduces the internal resistance of the lithium battery cell and enhances the overcurrent capability of the lithium battery cell, so that it can receive the large current (charging current) output by the external charging device to realize the power of the lithium battery. Fast charging of the core.
  • a method for manufacturing a lithium battery cell includes:
  • the positive electrode sheet and the negative electrode sheet stacked in isolation are wound according to the preset pattern, and a plurality of positive electrode tabs after the winding are stacked to form at least one positive terminal of the lithium battery cell, and a plurality of negative electrode tabs are stacked At least one negative terminal of the lithium battery cell is constituted, and a plurality of stacked positive lugs are arranged in parallel, and a plurality of stacked negative lugs are arranged in parallel.
  • a lithium battery is prepared according to the method for manufacturing a lithium battery cell as described above.
  • the method for manufacturing the lithium battery cell can first stack the positive electrode sheet and the negative electrode sheet, and then cut the stacked positive electrode sheet and the negative electrode sheet according to a preset pattern, which can improve the cutting efficiency and reduce the positive electrode sheet. , The probability of burr generation during the cutting process of the negative electrode plate, thereby reducing the risk of internal short circuit of the battery.
  • the energy density of the lithium battery cell prepared by the winding method is higher than that of the laminated battery.
  • the shapes of the lithium battery cells prepared by the preparation method are diversified, and the energy density of the lithium battery cells is improved.
  • the wound multiple positive lugs are stacked to form at least one positive terminal of the lithium battery cell
  • the multiple negative lugs are stacked to form at least one negative terminal of the lithium battery cell
  • the stacked multiple positive lugs are arranged in parallel.
  • Multiple negative ear ears are arranged in parallel, which reduces the internal resistance of the lithium battery cell and enhances the overcurrent capability of the lithium battery cell, so that it can receive the large current (charging current) output by the external charging device to realize the power of the lithium battery. Fast charging of the core.
  • FIG. 1 is a schematic diagram of stacking a positive electrode sheet and a negative electrode sheet according to an embodiment
  • FIG. 2 is an exploded schematic diagram of the structure of a lithium battery cell before winding according to an embodiment
  • Fig. 3 is one of the schematic diagrams of the lithium battery cell in Fig. 2 after winding;
  • FIG. 4 is a schematic diagram of stacking battery cell units according to an embodiment
  • FIG. 5 is a schematic diagram of stacking a plurality of battery cell units according to an embodiment
  • Fig. 6 is the second schematic diagram of the lithium battery cell in Fig. 2 after winding
  • Fig. 7 is the third schematic diagram of the lithium battery cell in Fig. 2 after winding
  • FIG. 8 is an exploded schematic diagram of a structure before winding of a lithium battery cell according to another embodiment
  • FIG. 9 is a schematic diagram of the structure of the lithium battery cell in FIG. 8 after winding
  • FIG. 10 is an exploded schematic diagram of a structure before winding of a lithium battery cell according to another embodiment
  • FIG. 11 is a schematic diagram of the structure of the lithium battery cell in FIG. 10 after winding;
  • FIG. 12 is a flowchart of a method for manufacturing a lithium battery cell in an embodiment
  • FIG. 13 is a flow chart of cutting the mutually isolated positive electrode sheet and the negative electrode sheet according to a preset pattern according to an embodiment.
  • first, second, etc. used in this application can be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish the first element from another element.
  • first preset area may be referred to as the second preset area
  • second preset area may be referred to as the first preset area. Both the first preset area and the second preset area are preset areas, but they are not the same preset area.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features.
  • a plurality of means at least two, such as two, three, etc., unless specifically defined otherwise.
  • everal means at least one, such as one, two, etc., unless otherwise specifically defined.
  • the embodiment of the application provides a lithium battery cell.
  • the lithium battery cell includes a positive electrode sheet 110 and a negative electrode sheet 120 stacked in isolation from each other and in a predetermined pattern, and the lithium battery cell is wound by the positive electrode sheet 110 and the negative electrode sheet 120. Become.
  • the positive electrode sheet 110 is formed by stirring the positive electrode active material, the conductive agent, the binder, and the solvent uniformly on the positive electrode metal layer (for example, aluminum foil), and after drying, the positive electrode sheet 110 is formed after being rolled by a roller press.
  • the positive electrode active material may include one of lithium cobalt oxide, lithium nickel cobalt manganate, lithium iron phosphate, and lithium nickel cobalt aluminate.
  • the negative electrode sheet 120 is formed by stirring the negative electrode active material, the conductive agent, the binder and the solvent (deionized water) uniformly on the negative electrode metal layer (for example, copper foil), and after drying, it is formed after being rolled by a roller press Negative plate 120.
  • the negative electrode active material may include one of artificial graphite, natural graphite, mesophase carbon microspheres, hard carbon, graphene, and lithium titanate.
  • composition and forming process of the positive electrode sheet 110 and the negative electrode sheet 120 are not further limited.
  • the positive electrode sheet 110 and the negative electrode sheet 120 are stacked and separated from each other, and the separated and stacked positive electrode sheet 110 and the negative electrode sheet 120 can be simultaneously cut into a positive electrode sheet 110 and a negative electrode sheet having a preset pattern through a cutting process.
  • Sheet 120 as shown in FIG. 2.
  • the positive electrode sheet 110 and the negative electrode sheet 120 after being cut have the same shape, that is, the positive electrode sheet 110 and the negative electrode sheet 120 after being cut have a predetermined pattern.
  • the preset pattern can be used to indicate the winding operation of the positive electrode sheet 110 and the negative electrode sheet 120. That is, the lithium battery cell may be wound based on the positive electrode sheet 110 and the negative electrode sheet 120 having a preset pattern, and the wound lithium battery cell can be understood as a special-shaped lithium battery cell.
  • the shape of the special-shaped lithium battery cell can be an irregular polygon, such as an "L" shape.
  • a plurality of positive electrode lugs 131 are provided in the first predetermined area of the positive electrode sheet 110 having a predetermined pattern after being cut.
  • an ultrasonic cleaning machine can be used to clean the first preset area near the edge of the positive electrode sheet 110 with a preset pattern, and the multiple positive electrode ears 131 can be welded to the first predetermined area of the positive electrode sheet 110 with an ultrasonic spot welding machine. Set the points on each preset position of the area.
  • a plurality of positive electrode lugs 131 welded in the first predetermined area are arranged protrudingly relative to the edge of the positive electrode sheet 110.
  • a plurality of negative lugs 141 are provided in the second predetermined area of the negative electrode sheet 120 having a predetermined pattern after being cut.
  • an ultrasonic powder cleaner can be used to clean the second preset area near the edge of the negative electrode sheet 120 with a preset pattern, and the multiple negative electrode lugs 141 can be welded to the second predetermined area of the negative electrode sheet 120 by an ultrasonic spot welding machine. Set the points on each preset position of the area.
  • a plurality of negative electrode lugs 141 welded in the second predetermined area are arranged protrudingly relative to the edge of the negative electrode sheet 120.
  • the positive projections of the multiple positive lugs 131 in the first predetermined area and the multiple negative lugs 141 in the second predetermined area do not overlap and are arranged in a staggered arrangement on the same horizontal plane. That is, the plurality of positive lugs 131 arranged on the positive electrode sheet 110 and the plurality of negative electrode lugs 141 arranged on the negative electrode sheet 120 do not overlap and are arranged in a staggered arrangement.
  • the horizontal plane can be understood as a plane arranged in parallel with the positive electrode sheet 110 and the negative electrode sheet 120.
  • the positive electrode sheet 110 provided with a plurality of positive electrode ears 131 and the negative electrode sheet 120 provided with a plurality of negative electrode ears 141 are wound to form a lithium battery cell.
  • the wound positive electrode ears 131 are stacked to form lithium At least one positive terminal 130 of the battery cell, and a plurality of negative lugs 141 are stacked to form at least one negative terminal 140 of the lithium battery cell, and the stacked multiple positive lugs 131 are arranged in parallel, and the stacked multiple negative lugs 141 are arranged in parallel.
  • the positive terminal 130 of the lithium battery cell can be understood as a connection terminal for connecting with the positive pole of an external power supply device or discharge device, and the positive terminal 130 of the lithium battery cell can be understood as a connection terminal for connecting with the negative pole of an external power supply device or discharge device. ⁇ terminals.
  • the settings of the first preset area and the second preset area can be set according to the required final positions of the positive terminal 130 and the negative terminal 140 of the lithium battery cell, and the special shape of the lithium battery cell.
  • the above-mentioned lithium battery cell includes a positive electrode sheet 110 and a negative electrode sheet 120 that have a preset pattern and are stacked and separated from each other.
  • a plurality of negative lugs 141 are arranged on the upper surface.
  • the multiple negative lugs 141 are stacked to form at least one negative terminal 140 of the lithium battery cell, and the stacked multiple positive ears 131 are connected in parallel
  • the stacked multiple negative lugs 141 are arranged in parallel, which reduces the internal resistance of the lithium battery cell, enhances the overcurrent capability of the lithium battery cell, and can receive the large current (charging current) output by the external charging device. Realize the fast charging of lithium battery cells.
  • the lithium battery cell further includes a separator 150 disposed between the positive electrode sheet 110 and the negative electrode sheet 120.
  • the separator 150 may include an insulating material layer and an electrolyte layer respectively disposed on both sides of the insulating material layer.
  • the insulating material of the insulating material layer may include at least one of self-terminated high molecular oligomer, polyimide film, high polymer film and polyethylene film.
  • the positive electrode sheet 110, the separator 150, and the negative electrode sheet 120 constitute the battery cell unit 10.
  • the shape of each cell unit 10 is the same, and the shape of the cell unit 10 is the same as the cut preset patterns of the positive electrode sheet 110 and the negative electrode sheet 120.
  • the number of battery cell units 10 is multiple, and multiple battery cell units 10 are stacked. Wherein, a diaphragm 150 is provided between two adjacent cell units 10.
  • the positive lug 131 and the negative lug 141 provided on each cell unit 10 do not overlap with each other, and are arranged in a staggered position.
  • the positions of the positive lugs 131 and the negative lugs 141 provided on each layer of the cell unit 10 correspond to each other, that is, the multiple positive lugs 131 are located on the same axis, and the multiple negative lugs 141 are also located on the same axis.
  • the stacking directions of the cell units 10 are the same. Multiple battery cell units 10 are provided to improve the endurance of lithium battery cells.
  • the number of cell units 10 can be set according to the required thickness of the lithium battery cell.
  • the number of battery cell units 10 is not further limited.
  • the cell unit 10 includes a winding part 111 and a special-shaped part 113.
  • the positive electrode sheet 110 of the winding part 111 is wound to form a lithium battery cell in the special-shaped part 113, wherein
  • the shape of the deformed portion 113 is the same as the shape of the lithium battery cell formed after winding.
  • the special-shaped portion 113 may be a regular polygon, an irregular polygon, etc., for example, a trapezoid, a rectangle, an "L" shape (as shown in FIG. 2).
  • the winding portion 111 is provided with a slit 112, and the extending direction of the slit 112 is the same as the winding direction of the winding portion 111, wherein the winding direction is shown as the direction of the solid arrow in the figure.
  • the slit 112 can split the winding part 111 into a first winding part 111 and a second winding part 111, wherein the end of the first winding part 111 is connected to the special-shaped part 113 The end of the second winding part 111 is connected to the special-shaped part 113.
  • the end of the first winding part 111 and the end of the second winding part 111 can be understood as the ends of the winding.
  • the width of the slit 112 is 0.1-0.1 mm.
  • the opening position of the slit 112 is related to the shape of the special-shaped portion 113.
  • the boundary line between the deformed portion 113 and the winding portion 111 includes a first boundary line L1 and a second boundary line L2.
  • the slit 112 may be opened at the junction of the first dividing line L1 and the second dividing line L2, and the extending direction of the slit 112 is perpendicular to the first dividing line L1.
  • the number of the gap 112 may be set to correspond to two. It should be noted that in the embodiments of the present application, the number of the slits 112 and the opening positions of the slits 112 are not further limited.
  • the winding effect can be improved, and thus the yield rate of the lithium battery cell can be improved.
  • the cell unit 10 includes a first side 115 and a second side 116 disposed opposite to each other, and the first preset area and the second preset area are both disposed on the first side 115.
  • the first side 115 and the second side 116 of the cell unit 10 can also be understood as the first side 115 and the second side 116 of the positive electrode sheet 110, and can also be understood as the first side edge of the positive electrode sheet 120. 115 and second side 116.
  • the wound positive lugs 131 are stacked to form the positive terminal of the lithium battery cell, and the multiple negative lugs 141 are stacked to form the negative terminal of the lithium battery cell.
  • five positive lugs 131 may be arranged on the first preset area of the first side 115 of the positive electrode sheet 110, and correspondingly, five negative electrodes may be arranged on the second preset area of the first side 115 of the negative electrode sheet 120.
  • the ears 141 the positions of the five positive electrode ears 131 and the five negative electrode ears 141 before winding do not overlap with each other, and are arranged in a staggered arrangement. Referring to FIG.
  • part of the wound positive tabs 131 are stacked to form the first positive terminal 130a of the lithium battery cell, and part of the wound positive tabs 131 are stacked.
  • the second negative terminal 140b of the core is the wound positive terminal 130b of the core.
  • six positive lugs 131 can be arranged on the first preset area of the first side 115 of the positive electrode sheet 110, and correspondingly, six negative electrodes can be arranged on the second preset area of the first side 115 of the negative electrode sheet 120.
  • the positions of the lugs 141, in which the positions of the six positive lugs 131 and the six negative lugs 141 before winding do not overlap with each other, and are arranged in a staggered arrangement.
  • three positive ears 131 are stacked to form the first positive terminal 130a of the lithium battery cell, and the other three positive ears 131 are stacked to form the second positive terminal 130b of the lithium battery cell; three negative ears 141 are stacked to form The first negative terminal 140a of the lithium battery cell, and the other three negative tabs 141 are stacked to form the second negative terminal 140b of the lithium battery cell. That is, the first positive terminal 130a, the second positive terminal 130b, the first negative terminal 140a and the second negative terminal 140b of the lithium battery cell formed after winding are all located on the same side of the lithium battery cell.
  • the first preset area on the positive plate 110 for setting the positive lug 131 and the second preset area on the negative plate 120 for setting the negative lug 141 may also be set in the cell unit 10 On the second side 116.
  • the specific setting method is the same as the setting method provided on the first side 115, and will not be repeated here.
  • the battery cell unit 10 includes a first side 115 and a second side 116 disposed opposite to each other, and the first preset area and the second preset area are both disposed at the first side.
  • the multiple positive lugs 131 provided on the positive electrode sheet 110 may be correspondingly provided on the first side 115 and the second side 116
  • the multiple negative electrode lugs 141 provided on the negative electrode sheet 120 may also be correspondingly provided on the first side.
  • one side 115 and the second side 116 Based on this, as shown in FIG.
  • the multiple positive lugs 131 on the first side 115 are stacked to form the first positive terminal 130a of the lithium battery cell, and the multiple negative electrodes on the first side 115 are stacked.
  • the ears 141 are stacked to form the first negative terminal 140a of the lithium battery cell; correspondingly, the multiple positive ears 131 on the second side 116 are stacked to form the second positive terminal 130b of the lithium battery cell, which is located on the second side 116
  • the plurality of negative tabs 141 on the upper side are stacked to form the second negative terminal 140b of the lithium battery cell.
  • first positive terminal 130a and the first negative terminal 140a formed after winding are located on one side of the lithium battery cell, and the second positive terminal 130b and the second negative terminal 140b formed after winding are located on the side of the lithium battery cell. The other side.
  • the multiple positive lugs 131 provided on the positive electrode sheet 110 may be correspondingly provided on the second side 116, and the multiple negative electrode lugs 141 provided on the negative electrode sheet 120 are correspondingly provided On the first side 115.
  • the multiple positive lugs 131 on the second side 116 are stacked to form a positive terminal 130 of the lithium battery cell
  • the multiple negative lugs 141 on the first side 115 are stacked to form a lithium battery.
  • a negative terminal 140 of the core That is, the number of the positive terminal 130 and the negative terminal 140 formed after winding is only one, and they are respectively located on different sides of the lithium battery cell.
  • the multiple positive lugs 131 provided on the positive electrode sheet 110 may be correspondingly arranged on the second side 116, and the multiple negative electrode lugs 141 provided on the negative electrode sheet 120 are correspondingly arranged on the first side 115 superior. Based on this, as shown in FIG. 11, after winding, part of the positive electrode ear 131 on the second side 116 is stacked to form the first positive terminal 130a of the lithium battery cell, and part of the positive electrode ear 131 on the second side 116 is stacked.
  • the stack constitutes the second negative terminal 140b of the lithium battery cell. That is, the number of the positive terminal and the negative terminal formed after winding are both two, and the first positive terminal 130a and the second positive terminal 130b are located on one side of the lithium battery cell, and the first negative terminal 140a and the second negative terminal The terminal 140b is located on the other side of the lithium battery cell.
  • the preset shape of the cell unit 10 can be set according to the required forming shape of the lithium battery cell, as well as the first preset area for welding the positive lug 131 and the negative lug 141 for welding.
  • the second preset area can be set according to the required forming shape of the lithium battery cell, as well as the first preset area for welding the positive lug 131 and the negative lug 141 for welding.
  • extension direction of the first side 115 and the second side 116 arranged opposite to each other is the same as the winding direction when the lithium battery cell is formed.
  • the lithium battery cell with two positive terminals 130 and two negative terminals 140 provided in the embodiments of the present application has a stronger discharge capacity, and provides more charging and discharging connection terminals for external discharge devices and charging devices.
  • the present application also provides a lithium battery, which may include the lithium battery cell in any of the above embodiments.
  • the lithium battery may further include a casing for accommodating the lithium battery cell, and a connecting plate arranged on the casing.
  • the connecting plate is correspondingly provided with a positive connection terminal and a negative connection terminal.
  • the positive connection terminal is correspondingly connected with the positive terminal of the lithium battery cell
  • the negative connection terminal is correspondingly connected with the negative terminal of the lithium battery cell.
  • the shape of the casing can be similar to the shape of the lithium battery cell, and is used to encapsulate and protect the lithium battery cell.
  • the number of connecting plates can be set according to the positions of the positive and negative terminals of the lithium battery cell. If the positive and negative terminals of the lithium battery cell are on the same side of the lithium battery cell, the number of connecting plates can be one, and the number of positive and negative connecting terminals on the connecting plate can be the same as that of the lithium battery cell. The positive terminal and the negative terminal are set in one-to-one correspondence. If the positive and negative terminals of the lithium battery cell are located on two different sides of the lithium battery cell, the number of connection plates can be two, and the number of positive connection terminals and/or negative connection terminals on each connection plate It can be set in one-to-one correspondence with the positive terminal and/or the negative terminal of the lithium battery cell.
  • the lithium battery provided by the embodiment of the present application includes the lithium battery cell in any of the above embodiments, which can diversify the form of the lithium battery and improve the energy density of the lithium battery.
  • the stack of ears constitutes at least one positive terminal of the lithium battery cell
  • the stack of multiple negative ears constitutes at least one negative terminal of the lithium battery cell
  • the stacked multiple positive ears are arranged in parallel
  • the stacked multiple negative ears are arranged in parallel.
  • the internal resistance of the lithium battery cell enhances the overcurrent capability of the lithium battery cell, and can then receive the large current (charging current) output by the external charging device to achieve rapid charging of the lithium battery cell.
  • Fig. 12 is a flowchart of a method for manufacturing a lithium battery cell in an embodiment. As shown in FIG. 12, the manufacturing method of the lithium battery cell includes step 1202 to step 1208.
  • Step 1202 preparing a positive electrode sheet and a negative electrode sheet that are separated from each other.
  • the positive electrode active material, conductive agent, binder, and solvent can be uniformly stirred and then coated on the positive electrode metal layer (for example, aluminum foil), dried and then rolled by a roller press to form the positive electrode ⁇ 110.
  • the positive electrode active material may include one of lithium cobalt oxide, lithium nickel cobalt manganate, lithium iron phosphate, and lithium nickel cobalt aluminate.
  • the negative electrode active material, the conductive agent, the binder and the solvent (deionized water) can be evenly stirred and coated on the negative electrode metal layer (for example, copper foil), dried and then rolled by a roller press to form The negative electrode sheet 120.
  • the negative electrode active material may include one of artificial graphite, natural graphite, mesophase carbon microspheres, hard carbon, graphene, and lithium titanate.
  • composition and forming process of the positive electrode sheet 110 and the negative electrode sheet 120 are not further limited.
  • Step 1204 cutting the positive electrode sheet and the negative electrode sheet stacked from each other according to a preset pattern.
  • the positive electrode sheet 110 and the negative electrode sheet 120 are stacked and separated from each other, and the stacked positive electrode sheet 110 and the negative electrode sheet 120 can be separated and stacked by a cutting process (for example, punching with a customized knife die) Cut into a positive electrode sheet 110 and a negative electrode sheet 120 with a preset pattern, as shown in FIG. 2.
  • a cutting process for example, punching with a customized knife die
  • the positive electrode sheet 110 and the negative electrode sheet 120 after being cut have the same shape, that is, the positive electrode sheet 110 and the negative electrode sheet 120 after being cut have a predetermined pattern.
  • the preset pattern can be used to indicate the winding operation of the positive electrode sheet 110 and the negative electrode sheet 120.
  • Step 1206 Weld multiple positive lugs on the first predetermined area of the positive electrode sheet, and weld multiple negative electrode lugs on the second predetermined area of the negative electrode sheet.
  • an ultrasonic cleaning machine can be used to clean the first preset area near the edge of the positive electrode sheet 110 with a preset pattern, and the multiple positive electrode ears 131 can be welded to the positive electrode sheet 110 with an ultrasonic spot welding machine. Point on each preset position of the first preset area.
  • a plurality of positive electrode lugs 131 welded in the first predetermined area are arranged protrudingly relative to the edge of the positive electrode sheet 110.
  • an ultrasonic powder cleaner can be used to clean the second preset area near the edge of the negative electrode sheet 120 with a preset pattern, and the multiple negative electrode lugs 141 can be welded to the second predetermined area of the negative electrode sheet 120 by an ultrasonic spot welding machine. Set the points on each preset position of the area.
  • a plurality of negative electrode lugs 141 welded in the second predetermined area are arranged protrudingly relative to the edge of the negative electrode sheet 120.
  • Step 1208 Winding the mutually isolated positive electrode sheet and the negative electrode sheet according to the preset pattern, and the multiple positive electrode tabs after the winding are stacked to form at least one positive terminal of the lithium battery cell, and the multiple negative electrode tabs are stacked to form the lithium battery cell. At least one negative terminal of the core, and the stacked multiple positive lugs are arranged in parallel, and the stacked multiple negative lugs are arranged in parallel.
  • the positive terminal 130 of the lithium battery cell can be understood as a connection terminal for connecting with the positive pole of an external power supply device or discharge device, and the positive terminal 130 of the lithium battery cell can be understood as a connection terminal for connecting with the negative pole of an external power supply device or discharge device. ⁇ terminals.
  • the manufacturing method of the lithium battery cell described above first stacks the positive electrode and the negative electrode, and then cuts the stacked positive electrode and negative electrode according to a preset pattern, which can improve the cutting efficiency and reduce the positive and negative electrodes.
  • the probability of burr generation during the cutting process of the negative electrode plate reduces the risk of internal short circuit of the battery core.
  • the energy density of the lithium battery cell prepared by the winding method is higher than that of the laminated battery.
  • the shapes of the lithium battery cells prepared by the preparation method are diversified, and the energy density of the lithium battery cells is improved.
  • the wound multiple positive lugs are stacked to form at least one positive terminal of the lithium battery cell
  • the multiple negative lugs are stacked to form at least one negative terminal of the lithium battery cell
  • the stacked multiple positive lugs are arranged in parallel.
  • Multiple negative ear ears are arranged in parallel, which reduces the internal resistance of the lithium battery cell and enhances the overcurrent capability of the lithium battery cell, so that it can receive the large current (charging current) output by the external charging device to realize the power of the lithium battery. Fast charging of the core.
  • the method for manufacturing a lithium battery cell further includes: preparing a cell unit, which includes a positive electrode sheet, a separator, and a negative electrode sheet stacked in sequence.
  • a cell unit which includes a positive electrode sheet, a separator, and a negative electrode sheet stacked in sequence.
  • an electrolyte layer may be formed on both sides of the insulating material layer to form the separator 150.
  • the insulating material of the insulating material layer may include at least one of self-terminated high molecular oligomer, polyimide film, high polymer film and polyethylene film.
  • the battery cell unit 10 can be formed by stacking the prepared negative electrode sheet 120, the separator 150, and the positive electrode sheet 110 along the stacking direction. Wherein, the shape of each cell unit 10 is the same, and the shape of the cell unit 10 is the same as the cut preset patterns of the positive electrode sheet 110 and the negative electrode sheet 120.
  • cutting the mutually isolated positive electrode sheet and the negative electrode sheet according to a preset pattern includes:
  • step 1302 the cell unit is divided into a winding part and a special-shaped part according to a preset pattern.
  • step 1304 the cell unit is cut according to the divided winding part and the deformed part, and a slit is opened at a preset position of the winding part, and the extending direction of the slit is the same as the winding direction of the winding part.
  • the winding part 111 is provided with a slit 112, and the extending direction of the slit 112 is the same as the winding direction of the winding part 111, wherein the winding direction is shown as the direction of the solid arrow in the figure.
  • the slit 112 can split the winding part 111 into a first winding part 111 and a second winding part 111, wherein the end of the first winding part 111 is connected to the special-shaped part 113 The end of the second winding part 111 is connected to the special-shaped part 113.
  • the end of the first winding part 111 and the end of the second winding part 111 can be understood as the ends of the winding.
  • the width of the slit 112 is 0.1-0.1 mm.
  • the winding effect can be improved, and thus the yield rate of the lithium battery cell can be improved.
  • the method further includes the step of encapsulating the wound lithium battery cell to form a lithium battery.
  • the aluminum-plastic film shell corresponding to the special-shaped cavity can be punched according to the special-shaped shape of the lithium battery cell, and the lower part of the special-shaped aluminum-plastic film shell cavity can be turned over to wrap the lithium battery cell after one package is completed and then baked Pre-packaged after baking and filling.
  • the semi-finished battery is aged at room temperature for 24 hours, it is subjected to high-temperature pressurization pre-aging and secondary high-temperature aging of the fixture, air extraction and secondary packaging, and the excess aluminum-plastic film casing is subtracted to obtain a special-shaped lithium battery.
  • the present application also provides a lithium battery, which can be prepared according to the method for manufacturing a lithium battery cell in any of the above embodiments.
  • the lithium battery prepared based on the above-mentioned manufacturing method of the lithium battery cell can reduce the risk of internal short circuit of the cell.
  • the energy density of the lithium battery cell prepared by the winding method is higher than that of the laminated battery.
  • the shapes of the lithium battery cells prepared by the preparation method are diversified, and the energy density of the lithium battery cells is improved.
  • the wound multiple positive lugs are stacked to form at least one positive terminal of the lithium battery cell
  • the multiple negative lugs are stacked to form at least one negative terminal of the lithium battery cell
  • the stacked multiple positive lugs are arranged in parallel.
  • Multiple negative ear ears are arranged in parallel, which reduces the internal resistance of the lithium battery cell and enhances the overcurrent capability of the lithium battery cell, so that it can receive the large current (charging current) output by the external charging device to realize the power of the lithium battery. Fast charging of the core.

Abstract

一种锂电池电芯,其中,锂电池电芯包括相互隔离且呈预设图形的正极片(110)和负极片(120),且锂电池电芯由正极片(110)和负极片(120)卷绕而成,其中,正极片(110)的第一预设区域设置有多个正极耳(131),负极片(120)的第二预设区域设置有多个负极耳(141);卷绕后的多个正极耳(131)堆叠构成锂电池电芯的至少一正极端(130),多个负极耳(141)堆叠构成锂电池电芯的至少一负极端(140),且堆叠的多个正极耳(131)并联设置,堆叠的多个负极耳(141)并联设置,正极耳(131)和负极耳(141)错位排布。

Description

锂电池电芯、锂电池电芯的制备方法和锂电池
相关申请的交叉引用
本申请要求于2020年6月1日提交中国专利局、申请号为202010483598X发明名称为“锂电池电芯、锂电池电芯的制备方法和锂电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,特别是涉及一种锂电池电芯、锂电池电芯的制备方法和锂电池。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着科技的发展,电池的种类也越来越丰富,为了满足人们日常生产和使用的需求,电池续航能力的要求也越来越高。目前移动终端诸如手机等中应用的主流石墨体系锂离子电池中,电池的能量密度一般在500~700Wh/L,充电倍率约在0.5~3C,但是这逐渐不能满足用户对整个手机的续航需求。在有限的空间内放置最大的电池也是移动终端实现大容量的途径之一,因此,异形电池的普及应用已经引起锂电池行业越来越多的关注。
一般叠片工艺可以生产异形电池,例如冲切形成多个相同形状的正极片,以及多个相同形状的负极片,叠片时隔膜呈Z字形将正极片与负极片位于隔膜两侧进行折叠,叠片法虽然能满足电池异形的要求,但也存在诸多缺点:产生边料多性能低,生产效率低,生成的异形电池的内阻较大。
发明内容
根据本申请的各种实施例,提供一种锂电池电芯、锂电池电芯的制备方法和锂电池。
一种锂电池电芯,包括相互隔离且呈预设图形的正极片和负极片,且所述锂电池电芯由所述正极片和负极片卷绕而成,其中,所述正极片的第一预设区域设置有多个正极耳,所述负极片的第二预设区域设置有多个负极耳;
卷绕后的多个正极耳堆叠构成所述锂电池电芯的至少一正极端,多个负极耳堆叠构成所述锂电池电芯的至少一负极端,且堆叠的多个正极耳并联设置,堆叠的多个负极耳并联设置,其中,所述正极耳和所述负极耳错位排布。
一种锂电池,包括如上述的锂电池电芯。
上述锂电池电芯可通过对具有预设图形的正极片和负极片的卷绕而成,使得锂电池电芯的形态具有多样化,提升了锂电池电芯的能量密度,制备效率高。由于卷绕后的的多个正极耳堆叠构成锂电池电芯的至少一正极端,多个负极耳堆叠构成锂电池电芯的至少一负极端,且堆叠的多个正极耳并联设置,堆叠的多个负极耳并联设置,降低了锂电池电芯的内阻值,增强了锂电池电芯的过流能力,进而可以接收外部充电设备输出的大电流(充电电流),以实现对锂电池电芯的快速充电。
一种锂电池电芯的制作方法,包括:
制备相互隔离的正极片和负极片;
按照预设图形对相互隔离的所述正极片和负极片进行裁切;
在所述正极片的第一预设区域焊接多个正极耳,并在所述负极片的第二预设区域焊接多个负极耳,所述正极耳和所述负极耳错位排布;
根据所述预设图形对相互隔离堆叠的所述正极片和负极片进行卷绕,且卷绕后的多个 正极耳堆叠构成所述锂电池电芯的至少一正极端,多个负极耳堆叠构成所述锂电池电芯的至少一负极端,且堆叠的多个正极耳并联设置,堆叠的多个负极耳并联设置。
一种锂电池,根据如上述的锂电池电芯的制作方法制备而成。
上述锂电池电芯的制作方法可先将正极片和负极片进行堆叠,在按照预设图形对相互隔离堆叠的正极片和负极片进行裁切,可以提升裁切的效率,同时还可以降低正、负极片裁切过程中毛刺生成概率,从而降低了电芯内部短路的风险。通过卷绕的方式制备而成的锂电池电芯相对于叠片电池,其能量密度要高于低于叠片工艺电池的能量密度。同时,通过该制备方法制备的锂电池电芯的形态具有多样化,提升了锂电池电芯的能量密度。由于卷绕后的的多个正极耳堆叠构成锂电池电芯的至少一正极端,多个负极耳堆叠构成锂电池电芯的至少一负极端,且堆叠的多个正极耳并联设置,堆叠的多个负极耳并联设置,降低了锂电池电芯的内阻值,增强了锂电池电芯的过流能力,进而可以接收外部充电设备输出的大电流(充电电流),以实现对锂电池电芯的快速充电。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例的正极片和负极片的堆叠示意图;
图2为一实施例的锂电池电芯的卷绕前的结构爆炸示意图;
图3为图2中的锂电池电芯卷绕后的示意图之一;
图4为一实施例的电芯单元的堆叠示意图;
图5为一实施例的多个电芯单元的堆叠示意图;
图6为图2中的锂电池电芯卷绕后的示意图之二;
图7为图2中的锂电池电芯卷绕后的示意图之三;
图8为另一实施例的锂电池电芯的卷绕前的结构爆炸示意图;
图9为图8中锂电池电芯的卷绕后的结构示意图;
图10为又一实施例的锂电池电芯的卷绕前的结构爆炸示意图;
图11为图10中锂电池电芯的卷绕后的结构示意图;
图12为一个实施例中锂电池电芯的制作方法的流程图;
图13为一实施例的按照预设图形对相互隔离的正极片和负极片进行裁切的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一预设区域称为第二预设区域,且类似地, 可将第二预设区域称为第一预设区域。第一预设区域和第二预设区域两者都是预设区域,但其不是同一预设区域。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
本申请实施例提供一种锂电池电芯。在其中一个实施例中,如图1所示,锂电池电芯包括相互隔离堆叠且呈预设图形的正极片110和负极片120,且锂电池电芯由正极片110和负极片120卷绕而成。
其中,正极片110由正极活性物质、导电剂、粘结剂和溶剂搅拌均匀后涂覆在正极金属层(例如,铝箔)上,烘干后经辊压机辊压后形成的正极片110。其中,正极活性物质可包括钴酸锂、镍钴锰酸锂、磷酸铁锂、镍钴铝酸锂中的一种。负极片120由负极活性物质、导电剂、粘结剂和溶剂(去离子水)搅拌均匀后涂覆在负极金属层(例如,铜箔)上,烘干后经辊压机辊压后形成的负极片120。其中,负极活性物质可包括人造石墨、天然石墨、中间相碳微球、硬碳、石墨烯、钛酸锂中的一种。
需要说明的是,在本申请实施例中,对正极片110、负极片120的组成成分和形成工艺不做进一步的限定。
在其中一个实施例中,正极片110和负极片120相互隔离堆叠设置,可通过裁切工艺同时将隔离堆叠设置的正极片110和负极片120裁切成具有预设图形的正极片110和负极片120,如图2所示。其中,裁切后的正极片110和负极片120的形状相同,也即,裁切后的正极片110和负极片120都具有预设图形。其中,预设图形可用于指示对正极片110和负极片120的卷绕操作。也即,锂电池电芯可基于具有预设图形的正极片110和负极片120卷绕而成,卷绕后的锂电池电芯可以理解为异形锂电池电芯。
需要说明的是,异形锂电池电芯的形状可以不规则的多边形,例如“L”型等。
裁切后具有预设图形的正极片110的第一预设区域设置有多个正极耳131。具体的,可以使用超声波清粉机在具有预设图形的正极片110上靠近边缘处清理出第一预设区域,用超声波点焊机将多个正极耳131焊接在正极片110的第一预设区域的各预设位置点上。其中,焊接在第一预设区域的多个正极耳131相对正极片110的边缘凸出设置。
裁切后具有预设图形的负极片120的第二预设区域设置有多个负极耳141。相应的,可以使用超声波清粉机在具有预设图形的负极片120上靠近边缘处清理出第二预设区域,用超声波点焊机将多个负极耳141焊接在负极片120的第二预设区域的各个预设位置点上。其中,焊接在第二预设区域的多个负极耳141相对负极片120的边缘凸出设置。
其中,第一预设区域的多个正极耳131和第二预设区域的多个负极耳141正投影在同一水平面上的区域不重叠且呈错位排布。也即,设置在正极片110上的多个正极耳131与设置在负极片120上的多个负极耳141不重叠且呈错位排布。该水平面可以理解为与正极片110、负极片120平行设置的平面。
对设置多个正极耳131的正极片110和设置多个负极耳141的负极片120进行卷绕形成锂电池电芯,如图3所示,其卷绕后的多个正极耳131堆叠构成锂电池电芯的至少一正极端130,多个负极耳141堆叠构成锂电池电芯的至少一负极端140,且堆叠的多个正极耳131并联设置,堆叠的多个负极耳141并联设置。锂电池电芯的正极端130可以理解为用于与外部供电设备或放电设备的正极连接的连接端子,锂电池电芯的正极端130可以理解为用于与外部供电设备或放电设备的负极连接的连接端子。
需要说明的是,第一预设区域和第二预设区域的设定可以根据所需要的锂电池电芯的正极端130、负极端140的最终位置、以及锂电池电芯的异形形状进行设定。
上述锂电池电芯包括具有预设图形且相互隔离堆叠设置的正极片110和负极片120,其正极片110的第一预设区域设置有多个正极耳131,负极片120的第二预设位于上设置有多个负极耳141。通过对正极片110和负极片120的卷绕,可形成异形锂电池电芯,使得锂电池电芯的形态具有多样化,提升了锂电池电芯的能量密度,制备效率高。由于卷绕后的多个正极耳131堆叠构成锂电池电芯的至少一正极端130,多个负极耳141堆叠构成锂电池电芯的至少一负极端140,且堆叠的多个正极耳131并联设置,堆叠的多个负极耳141并联设置,降低了锂电池电芯的内阻值,增强了锂电池电芯的过流能力,进而可以接收外部充电设备输出的大电流(充电电流),以实现对锂电池电芯的快速充电。
如图4所示,在其中一个实施例中,锂电池电芯还包括设置在正极片110和负极片120之间的隔膜150。隔膜150可包括绝缘材料层,以及分别配置于绝缘材料层两侧的电解质层。其中绝缘材料层的绝缘材料可包括自身终止高分子低聚物、聚酸亚胺薄膜、高聚合物薄膜和聚乙烯薄膜中的至少一种。其中,正极片110、隔膜150和负极片120构成电芯单元10。其中,每个电芯单元10的形状均相同,其电芯单元10的形状与正极片110、负极片120的裁切的预设图形相同。
如图5所示,在其中一个实施例中,电芯单元10的数量为多个,且多个电芯单元10堆叠设置。其中,相邻两个电芯单元10间设置有隔膜150。
每个电芯单元10上设置的正极耳131和负极耳141互不重合,且错位配置。每一层电芯单元10上设置的正极耳131和负极耳141的位置相对应,也即,多个正极耳131位于同一轴线上,多个负极耳141也位于同一轴线上,轴线延伸与多个电芯单元10的堆叠方向相同。通过设置多个电芯单元10以提高锂电池电芯的续航能力。
需要说明的是,电芯单元10的数量可以根据锂电池电芯的所需厚度来设定。在此,对电芯单元10的数量不做进一步的限定。
参考图2,在其中一个实施例中,电芯单元10包括卷绕部111和异形部113,对卷绕部111的正极片110、进行卷绕以在异形部113形成锂电池电芯,其中,异形部113的形状与卷绕后形成的锂电池电芯的形状相同。示例性的,该异形部113可以为规则的多边形、不规则的多边形等等,例如,梯形、矩形、“L”型(如图2所示)。
在其中一个实施例中,卷绕部111开设有缝隙112,缝隙112的延伸方向与卷绕部111的卷绕方向相同,其中,卷绕方向如图中实线箭头方向所示。当缝隙112的数量为一条时,该缝隙112可以将卷绕部111拆分为第一卷绕部111和第二卷绕部111,其中,第一卷绕部111的末端与异形部113连接设置,第二卷绕部111的末端与异形部113连接设置。需要说明的是,第一卷绕部111的末端和第二卷绕部111的末端可以理解为卷绕的终端。
具体地,该缝隙112的宽度为0.1~0.1mm。
在其中一个实施例中,缝隙112的开设位置与异形部113的形状相关联。示例性的,当异形部113的形状为“L”型时,其异形部113与卷绕部111的分界线包括第一分界线L1和第二分界线L2。缝隙112可开设在第一分界线L1和第二分界线L2的连接处,且该缝隙112的延伸方向与第一分界线L1垂直。
示例性的,当异形部113与卷绕部111的分界线的数量为三条使,其缝隙112的数量可对应设置两条。需要说明的是,在本申请实施例中,对缝隙112的数量、缝隙112的开设位置均不做进一步的限定。
本申请实施例中,通过在卷绕部111开设一缝隙112,可以提升卷绕效果,进而提升锂电池电芯的良品率。
在其中一个实施例中,电芯单元10包括相背设置的第一侧边115和第二侧边116,第一预设区域和第二预设区域均设置在第一侧边115。其中,电芯单元10的第一侧边115和第二侧边116也可以理解为正极片110的第一侧边115和第二侧边116,也可以理解为正极片120的第一侧边115和第二侧边116。
在其中一个实施例中,卷绕后的多个正极耳131堆叠构成锂电池电芯的正极端,多个负极耳141堆叠构成锂电池电芯的负极端。示例性的,可以在正极片110第一侧边115的第一预设区域设置五个正极耳131,对应的,可以在负极片120第一侧边115的第二预设区域设置五个负极耳141,其中,五个正极耳131和五个负极耳141的卷绕前的位置互不重合,且错位排布。参考图3,卷绕后的五个正极耳131堆叠构成锂电池电芯的一个正极端130,五个负极耳141堆叠构成锂电池电芯的一个负极端140。也即,卷绕后形成的锂电池电芯的正极端130和负极端140均位于锂电池电芯的同一侧。
在其中一个实施例中,如图6和图7所示,卷绕后的部分多个正极耳131堆叠构成锂电池电芯的第一正极端130a,卷绕后的部分多个正极耳131堆叠构成锂电池电芯的第二正极端130b;卷绕后的部分多个负极耳141堆叠构成锂电池电芯的第一负极端140a,卷绕后的部分多个负极耳141堆叠构成锂电池电芯的第二负极端140b。
示例性的,可以在正极片110第一侧边115的第一预设区域设置六个正极耳131,对应的,可以在负极片120第一侧边115的第二预设区域设置六个负极耳141,其中,六个正极耳131和六个负极耳141的卷绕前的位置互不重合,且错位排布。卷绕后,其中,三个正极耳131堆叠构成锂电池电芯的第一正极端130a,另外三个正极耳131堆叠构成锂电池电芯的第二正极端130b;三个负极耳141堆叠构成锂电池电芯的第一负极端140a,另外三个负极耳141堆叠构成锂电池电芯的第二负极端140b。也即,卷绕后形成的锂电池电芯的第一正极端130a、第二正极端130b、第一负极端140a和第二负极端140b均位于锂电池电芯的同一侧。
在其中一个实施例中,正极片110中用于设置正极耳131的第一预设区域和负极片120上用于设置负极耳141的第二预设区域也可以均设置在电芯单元10的第二侧边116上。其具体的设置方式与设置在第一侧边115的设置方式相同,在此,不再赘述。
如图8所示,在其中一个实施例中,电芯单元10包括相背设置的第一侧边115和第二侧边116,第一预设区域和第二预设区域均设置在第一侧边115和第二侧边116上。也即,设置在正极片110上的多个正极耳131可以对应设置在第一侧边115和第二侧边116上,设置在负极片120上的多个负极耳141也可以对应设置在第一侧边115和第二侧边116上。基于此,如图9所示,卷绕后,位于第一侧边115上的多个正极耳131堆叠构成锂电池电芯的第一正极端130a,位于第一侧边115上的多个负极耳141堆叠构成锂电池电芯的第一负极端140a;相应的,位于第二侧边116上的多个正极耳131堆叠构成锂电池电芯的第二正极端130b,位于第二侧边116上的多个负极耳141堆叠构成锂电池电芯的第二负极端140b。也即,卷绕后形成的第一正极端130a、第一负极端140a位于锂电池电芯的一侧,卷绕后形成的第二正极端130b、第二负极端140b位于锂电池电芯的另一侧。
如图10所示,在其中一个实施例中,设置在正极片110上的多个正极耳131可以对应设置在第二侧边116上,设置在负极片120上的多个负极耳141对应设置在第一侧边115上。基于此,卷绕后,位于第二侧边116上的多个正极耳131堆叠构成锂电池电芯的一个正极端130,位于第一侧边115上的多个负极耳141堆叠构成锂电池电芯的一个负极端140。也即,卷绕后形成的正极端130、负极端140的数量只有一个,且分别位于锂电池电芯的不同两侧。
在其中一个实施例中,设置在正极片110上的多个正极耳131可以对应设置在第二侧边116上,设置在负极片120上的多个负极耳141对应设置在第一侧边115上。基于此,如图11所示,卷绕后,位于第二侧边116上的部分正极耳131堆叠构成锂电池电芯的第一正极端130a,位于第二侧边116上的部分正极耳131堆叠构成锂电池电芯的第二正极端130b;位于第一侧边115上的部分负极耳141堆叠构成锂电池电芯的第一负极端140a,位于第一侧边115上的部分负极耳141堆叠构成锂电池电芯的第二负极端140b。也即,卷绕后形成的正极端、负极端的数量均为两个,且第一正极端130a、第二正极端130b位于锂 电池电芯的一侧,第一负极端140a、第二负极端140b位于锂电池电芯的另一侧。
在本申请实施例中,可以根据所需要的锂电池电芯的成形形状来设置电芯单元10的预设形状,以及用于焊接正极耳131的第一预设区域和用于焊接负极耳141的第二预设区域。
需要说明的是,相背设置的第一侧边115和第二侧边116的延伸方向与锂电池电芯成形时的卷绕方向相同。
本申请实施例中提供的具有两个正极端130、两个负极端140的锂电池电芯的放电能力更强,且为外部放电设备和充电设备提供了更多的充放电连接端子。
在其中一个实施例中,本申请还提供一种锂电池,该锂电池可包括上述任一实施例中的锂电池电芯。进一步的,该锂电池还可以包括用于容纳该锂电池电芯的壳体,以及设置在该壳体上的连接板。其中,该连接板上对应设置有正极连接端子和负极连接端子。正极连接端子与锂电池电芯的正极端对应连接,负极连接端子与锂电池电芯的负极端对应连接。
其中,壳体的形状可以根据锂电池电芯的形状相似,用于封装和保护该锂电池电芯。
在其中一个实施例中,连接板的数量可以根据锂电池电芯的正极端、负极端所在位置来设定。若锂电池电芯的正极端、负极端均位于锂电池电芯的同一侧,则连接板的数量可以为一个,连接板上的正极连接端子和负极连接端子的数量可与锂电池电芯的正极端、负极端一一对应设置。若锂电池电芯的正极端、负极端均位于锂电池电芯的不同两一侧,则连接板的数量可以为两个,每一连接板上的正极连接端子和/或负极连接端子的数量可与锂电池电芯的正极端和/或负极端一一对应设置。
本申请实施例提供的锂电池,包括了上述任一实施例中的锂电池电芯,可以使得锂电池的形态具有多样化,提升了锂电池的能量密度,由于卷绕后的的多个正极耳堆叠构成锂电池电芯的至少一正极端,多个负极耳堆叠构成锂电池电芯的至少一负极端,且堆叠的多个正极耳并联设置,堆叠的多个负极耳并联设置,降低了锂电池电芯的内阻值,增强了锂电池电芯的过流能力,进而可以接收外部充电设备输出的大电流(充电电流),以实现对锂电池电芯的快速充电。
图12为一个实施例中锂电池电芯的制作方法的流程图。如图12所示,锂电池电芯的制作方法包括步骤1202至步骤1208。
步骤1202,制备相互隔离的正极片和负极片。
在其中一个实施例中,可以将正极活性物质、导电剂、粘结剂和溶剂搅拌均匀后涂覆在正极金属层(例如,铝箔)上,烘干后经辊压机辊压后形成的正极片110。其中,正极活性物质可包括钴酸锂、镍钴锰酸锂、磷酸铁锂、镍钴铝酸锂中的一种。相应的,可以将负极活性物质、导电剂、粘结剂和溶剂(去离子水)搅拌均匀后涂覆在负极金属层(例如,铜箔)上,烘干后经辊压机辊压后形成的负极片120。其中,负极活性物质可包括人造石墨、天然石墨、中间相碳微球、硬碳、石墨烯、钛酸锂中的一种。
需要说明的是,在本申请实施例中,对正极片110、负极片120的组成成分和形成工艺不做进一步的限定。
步骤1204,按照预设图形对相互隔离堆叠的正极片和负极片进行裁切。
在其中一个实施例中,正极片110和负极片120相互隔离堆叠设置,可通过裁切工艺(例如,用定制专用型号的刀模进行冲切)将隔离堆叠设置的正极片110和负极片120裁切成具有预设图形的正极片110和负极片120,如图2所示。其中,裁切后的正极片110和负极片120的形状相同,也即,裁切后的正极片110和负极片120都具有预设图形。其中,预设图形可用于指示对正极片110和负极片120的卷绕操作。
步骤1206,在正极片的第一预设区域焊接多个正极耳,并在负极片的第二预设区域焊接多个负极耳。
在其中一个实施例中,可以使用超声波清粉机在具有预设图形的正极片110上靠近边缘处清理出第一预设区域,用超声波点焊机将多个正极耳131焊接在正极片110的第一预设区域的各预设位置点上。其中,焊接在第一预设区域的多个正极耳131相对正极片110的边缘凸出设置。相应的,可以使用超声波清粉机在具有预设图形的负极片120上靠近边缘处清理出第二预设区域,用超声波点焊机将多个负极耳141焊接在负极片120的第二预设区域的各个预设位置点上。其中,焊接在第二预设区域的多个负极耳141相对负极片120的边缘凸出设置。
步骤1208,根据预设图形对相互隔离的正极片和负极片进行卷绕,且卷绕后的多个正极耳堆叠构成锂电池电芯的至少一正极端,多个负极耳堆叠构成锂电池电芯的至少一负极端,且堆叠的多个正极耳并联设置,堆叠的多个负极耳并联设置。
锂电池电芯的正极端130可以理解为用于与外部供电设备或放电设备的正极连接的连接端子,锂电池电芯的正极端130可以理解为用于与外部供电设备或放电设备的负极连接的连接端子。
上述锂电池电芯的制作方法先将正极片和负极片进行堆叠,在按照预设图形对相互隔离堆叠的正极片和负极片进行裁切,可以提升裁切的效率,同时还可以降低正、负极片裁切过程中毛刺生成概率,从而降低了电芯内部短路的风险。通过卷绕的方式制备而成的锂电池电芯相对于叠片电池,其能量密度要高于低于叠片工艺电池的能量密度。同时,通过该制备方法制备的锂电池电芯的形态具有多样化,提升了锂电池电芯的能量密度。由于卷绕后的的多个正极耳堆叠构成锂电池电芯的至少一正极端,多个负极耳堆叠构成锂电池电芯的至少一负极端,且堆叠的多个正极耳并联设置,堆叠的多个负极耳并联设置,降低了锂电池电芯的内阻值,增强了锂电池电芯的过流能力,进而可以接收外部充电设备输出的大电流(充电电流),以实现对锂电池电芯的快速充电。
在其中一个实施例中,锂电池电芯的制作方法还包括:制备电芯单元,电芯单元包括依次层叠设置的正极片、隔膜和负极片。如图4所示,在其中一个实施例中,可以通过在绝缘材料层的两侧形成电解质层,进而形成隔膜150。其中绝缘材料层的绝缘材料可包括自身终止高分子低聚物、聚酸亚胺薄膜、高聚合物薄膜和聚乙烯薄膜中的至少一种。
通过将制备而成的负极片120、隔膜150、正极片110沿着堆叠方向进行堆叠即可形成该电芯单元10。其中,每个电芯单元10的形状均相同,其电芯单元10的形状与正极片110、负极片120的裁切的预设图形相同。
如图13所示,在其中一个实施例中,按照预设图形对相互隔离的正极片和负极片进行裁切,包括:
步骤1302,按照预设图形将电芯单元划分为卷绕部和异形部。
步骤1304,根据划分的卷绕部和异形部对电芯单元进行裁切,并在卷绕部的预设位置开设缝隙,缝隙的延伸方向与卷绕部的卷绕方向相同。
参考图2,卷绕部111开设有缝隙112,缝隙112的延伸方向与卷绕部111的卷绕方向相同,其中,卷绕方向如图中实线箭头方向所示。当缝隙112的数量为一条时,该缝隙112可以将卷绕部111拆分为第一卷绕部111和第二卷绕部111,其中,第一卷绕部111的末端与异形部113连接设置,第二卷绕部111的末端与异形部113连接设置。需要说明的是,第一卷绕部111的末端和第二卷绕部111的末端可以理解为卷绕的终端。具体地,该缝隙112的宽度为0.1~0.1mm。
本申请实施例中,通过在卷绕部111开设一缝隙112,可以提升卷绕效果,进而提升锂电池电芯的良品率。
在其中一个实施例中,方法还包括对卷绕的锂电池电芯进行封装以形成锂电池的步骤。具体的,可以根据锂电池电芯的异形形状冲制对应异形腔体的铝塑膜外壳,并将异形铝塑膜壳腔体的下部翻转包住锂电池电芯完成一次封装后将其进行烘烤并注液后进行预 封装。进一步的,还可以将半成品电池常温陈化24h后,进行高温加压预老化和夹具二次高温老化,进行抽气和二次封装,减去多余的铝塑膜外壳,得到异形锂电池电池。
应该理解的是,虽然图12-13的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图12-13中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在其中一个实施例中,本申请还提供一种锂电池,该锂电池可根据上述任一实施例中的锂电池电芯的制作方法制备而成。基于上述锂电池电芯的制作方法制备而成的锂电池可以降低电芯内部短路的风险。通过卷绕的方式制备而成的锂电池电芯相对于叠片电池,其能量密度要高于低于叠片工艺电池的能量密度。同时,通过该制备方法制备的锂电池电芯的形态具有多样化,提升了锂电池电芯的能量密度。由于卷绕后的的多个正极耳堆叠构成锂电池电芯的至少一正极端,多个负极耳堆叠构成锂电池电芯的至少一负极端,且堆叠的多个正极耳并联设置,堆叠的多个负极耳并联设置,降低了锂电池电芯的内阻值,增强了锂电池电芯的过流能力,进而可以接收外部充电设备输出的大电流(充电电流),以实现对锂电池电芯的快速充电。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种锂电池电芯,其特征在于,包括相互隔离且呈预设图形的正极片和负极片,且所述锂电池电芯由所述正极片和负极片卷绕而成,其中,所述正极片的第一预设区域设置有多个正极耳,所述负极片的第二预设区域设置有多个负极耳;
    卷绕后的多个正极耳堆叠构成所述锂电池电芯的至少一正极端,多个负极耳堆叠构成所述锂电池电芯的至少一负极端,且堆叠的多个正极耳并联设置,堆叠的多个负极耳并联设置,其中,所述正极耳和所述负极耳错位排布。
  2. 根据权利要求1所述的锂电池电芯,其特征在于,所述锂电池电芯还包括设置在所述正极片和负极片之间的隔膜,其中,所述正极片、隔膜和负极片构成电芯单元,所述电芯单元包括卷绕部和异形部,对所述卷绕部的正极片、负极片进行卷绕以在所述异形部形成所述锂电池电芯;其中,所述预设图形的形状与所述电芯单元的形状相同,所述异形部的形状与所述锂电池电芯的形状相同。
  3. 根据权利要求2所述的锂电池电芯,其特征在于,所述电芯单元包括相背设置的第一侧边和第二侧边,所述第一预设区域和所述第二预设区域均设置在所述第一侧边和第二侧边上的至少一个上。
  4. 根据权利要求3所述的锂电池电芯,其特征在于,卷绕后的多个正极耳堆叠构成所述锂电池电芯的正极端,多个负极耳堆叠构成所述锂电池电芯的负极端。
  5. 根据权利要求4所述的锂电池电芯,其特征在于,卷绕后形成的锂电池电芯的所述正极端和所述负极端均位于所述锂电池电芯的同一侧。
  6. 根据权利要求4所述的锂电池电芯,其特征在于,卷绕后形成的锂电池电芯的所述正极端和所述负极端分别位于所述锂电池电芯的不同两侧。
  7. 根据权利要求3所述的锂电池电芯,其特征在于,卷绕后的部分所述正极耳堆叠构成所述锂电池电芯的第一正极端,卷绕后的部分所述正极耳堆叠构成所述锂电池电芯的第二正极端;卷绕后的部分所述负极耳堆叠构成所述锂电池电芯的第一负极端,卷绕后的多个所述负极耳堆叠构成所述锂电池电芯的第二负极端。
  8. 根据权利要求7所述的锂电池电芯,其特征在于,卷绕后形成的所述第一正极端、所述第一负极端位于所述锂电池电芯的一侧,卷绕后形成的所述第二正极端、所述第二负极端位于所述锂电池电芯的另一侧。
  9. 根据权利要求7所述的锂电池电芯,其特征在于,卷绕后形成的所述第一正极端、所述第二正极端位于形成锂电池电芯的一侧,所述第一负极端、所述第二负极端位于形成锂电池电芯的另一侧。
  10. 根据权利要求2所述的锂电池电芯,其特征在于,所述卷绕部开设有缝隙,所述缝隙的延伸方向与所述卷绕部的卷绕方向相同。
  11. 根据权利要求2所述的锂电池电芯,其特征在于,所述异形部的形状为L型。
  12. 根据权利要求2所述的锂电池电芯,其特征在于,所述第一预设区域的多个正极耳和第二预设区域的多个负极耳正投影在同一水平面上的区域不重叠且呈错位排布。
  13. 根据权利要求2至12任一项所述的锂电池电芯,其特征在于,所述电芯单元的数量为多个,且多个所述电芯单元层叠隔离设置,所述锂电池电芯由层叠设置的多个所述电芯单元卷绕而成。
  14. 根据权利要求13述的锂电池电芯,其特征在于,相邻两个所述电芯单元之间设置有隔膜。
  15. 根据权利要求13所述的锂电池电芯,其特征在于,多个所述正极耳位于同一轴线上,多个所述负极耳在位于同一轴线上,且所述轴线延伸方向与多个所述电芯单元的堆叠方向相同。
  16. 一种锂电池电芯的制作方法,其特征在于,包括:
    制备相互隔离的正极片和负极片;
    按照预设图形对相互隔离的所述正极片和负极片进行裁切;
    在所述正极片的第一预设区域焊接多个正极耳,并在所述负极片的第二预设区域焊接多个负极耳,所述正极耳和所述负极耳错位排布;
    根据所述预设图形对相互隔离堆叠的所述正极片和负极片进行卷绕,且卷绕后的多个正极耳堆叠构成所述锂电池电芯的至少一正极端,多个负极耳堆叠构成所述锂电池电芯的至少一负极端,且堆叠的多个正极耳并联设置,堆叠的多个负极耳并联设置。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    制备电芯单元,所述电芯单元包括依次层叠设置的正极片、隔膜和负极片;
    所述按照预设图形对相互隔离的所述正极片和负极片进行裁切,包括:
    按照预设图形将所述电芯单元划分为卷绕部和异形部;
    根据划分的所述卷绕部和异形部对所述电芯单元进行裁切,并在所述卷绕部的预设位置开设缝隙,所述缝隙的延伸方向与所述卷绕部的卷绕方向相同。
  18. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    对卷绕的所述锂电池电芯进行封装以形成锂电池。
  19. 一种锂电池,包括如权利要求1-15任一项所述的锂电池电芯。
  20. 一种锂电池,根据如权利要求15-19任一项所述的锂电池电芯的制作方法制备而成。
PCT/CN2021/096601 2020-06-01 2021-05-28 锂电池电芯、锂电池电芯的制备方法和锂电池 WO2021244408A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010483598.X 2020-06-01
CN202010483598.XA CN111710898A (zh) 2020-06-01 2020-06-01 锂电池电芯、锂电池电芯的制备方法和锂电池

Publications (1)

Publication Number Publication Date
WO2021244408A1 true WO2021244408A1 (zh) 2021-12-09

Family

ID=72539065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096601 WO2021244408A1 (zh) 2020-06-01 2021-05-28 锂电池电芯、锂电池电芯的制备方法和锂电池

Country Status (2)

Country Link
CN (1) CN111710898A (zh)
WO (1) WO2021244408A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133230A (zh) * 2022-07-15 2022-09-30 安徽国洁新能源科技有限公司 卷筒状阴阳极端面焊接导流体的无极耳电芯制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710898A (zh) * 2020-06-01 2020-09-25 Oppo广东移动通信有限公司 锂电池电芯、锂电池电芯的制备方法和锂电池
CN114824682A (zh) * 2022-05-07 2022-07-29 蔚来汽车科技(安徽)有限公司 电池结构、电池模组以及电动汽车
CN115189100B (zh) * 2022-09-06 2023-08-22 宁德新能源科技有限公司 电极组件、电化学装置及用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086717A (ja) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP2012054197A (ja) * 2010-09-03 2012-03-15 Nec Energy Devices Ltd ラミネート電池およびその製造方法
CN109904355A (zh) * 2019-03-08 2019-06-18 易佰特新能源科技有限公司 一种异形锂离子电池及其制造方法
CN111063937A (zh) * 2019-11-25 2020-04-24 Oppo广东移动通信有限公司 柔性电芯及终端
CN111584920A (zh) * 2020-05-11 2020-08-25 Oppo广东移动通信有限公司 异形电池的制备方法
CN111710898A (zh) * 2020-06-01 2020-09-25 Oppo广东移动通信有限公司 锂电池电芯、锂电池电芯的制备方法和锂电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547750B2 (ja) * 2014-07-23 2019-07-24 三洋電機株式会社 非水電解質二次電池
CN106099207B (zh) * 2016-07-29 2019-06-14 湖南立方新能源科技有限责任公司 一种裸电芯及包含该裸电芯的锂离子电池的制备方法
CN108598354A (zh) * 2018-06-13 2018-09-28 东莞塔菲尔新能源科技有限公司 一种多极耳电芯、多端子电池、电池模组及其制备方法
CN109560321A (zh) * 2018-12-26 2019-04-02 蜂巢能源科技有限公司 锂电池的电芯、锂电池及锂电池的制造方法
CN209544535U (zh) * 2019-05-07 2019-10-25 江西迪比科股份有限公司 一种l型叠片式锂离子电池
CN110400959B (zh) * 2019-08-26 2021-01-12 桑德新能源技术开发有限公司 一种卷绕式双芯包、卷绕式双芯包制造方法及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086717A (ja) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP2012054197A (ja) * 2010-09-03 2012-03-15 Nec Energy Devices Ltd ラミネート電池およびその製造方法
CN109904355A (zh) * 2019-03-08 2019-06-18 易佰特新能源科技有限公司 一种异形锂离子电池及其制造方法
CN111063937A (zh) * 2019-11-25 2020-04-24 Oppo广东移动通信有限公司 柔性电芯及终端
CN111584920A (zh) * 2020-05-11 2020-08-25 Oppo广东移动通信有限公司 异形电池的制备方法
CN111710898A (zh) * 2020-06-01 2020-09-25 Oppo广东移动通信有限公司 锂电池电芯、锂电池电芯的制备方法和锂电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133230A (zh) * 2022-07-15 2022-09-30 安徽国洁新能源科技有限公司 卷筒状阴阳极端面焊接导流体的无极耳电芯制造方法
CN115133230B (zh) * 2022-07-15 2023-11-14 安徽国洁新能源科技有限公司 卷筒状阴阳极端面焊接导流体的无极耳电芯制造方法

Also Published As

Publication number Publication date
CN111710898A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2021244408A1 (zh) 锂电池电芯、锂电池电芯的制备方法和锂电池
CN111668451B (zh) 一种用于卷绕式多极耳电芯的极片的制备方法、极片及电芯
CN102683751B (zh) 一种大容量高倍率方形锂离子动力电池及其制造方法
KR20130133639A (ko) 전극 조립체, 전지셀, 전극 조립체의 제조방법 및 전지셀의 제조 방법
CN101106203A (zh) 具有新电极结构的锂电池及其制造方法
CN114156607A (zh) 一种电化学装置及电子装置
JP2020013729A (ja) 直列積層型全固体電池の製造方法
CN202601777U (zh) 一种大容量高倍率方形锂离子动力电池
CN111211358A (zh) 一种多极耳快充圆柱锂电池
CN110635106A (zh) 极片、锂离子电池及极片的制作方法
CN210403887U (zh) 多极耳电芯、锂离子电池及电子产品
KR101706319B1 (ko) 계단 구조의 복합 전극 조립체
CN109888162A (zh) 具备内嵌式极耳的胶黏结构电芯及其制备方法与锂电池
CN210349968U (zh) 极片和锂离子电池
CN114975864A (zh) 极片、电芯结构、锂电池以及电子设备
CN209822791U (zh) 卷绕电芯、电池和电子设备
CN217588983U (zh) 一种中间出极耳式正极片、电芯及电池
CN201673968U (zh) 非对称组装结构的微型聚合物锂离子电池
CN213636041U (zh) 正极片、卷芯、电池以及电子产品
WO2022051914A1 (zh) 一种电化学装置及电子装置
WO2021189380A1 (zh) 电化学装置和电子装置
CN210325964U (zh) 一种电池模组电芯、电池以及车辆
CN113851793A (zh) 一种多极耳电芯、电池及电池制作方法
CN203812982U (zh) 一种有自我保护装置的高倍率锂离子电池
CN111180803A (zh) 一种耐压聚合物锂离子电池单片电芯结构及其制作工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817824

Country of ref document: EP

Kind code of ref document: A1