WO2021244402A1 - 一种送粉式3d打印分层建模方法 - Google Patents

一种送粉式3d打印分层建模方法 Download PDF

Info

Publication number
WO2021244402A1
WO2021244402A1 PCT/CN2021/096503 CN2021096503W WO2021244402A1 WO 2021244402 A1 WO2021244402 A1 WO 2021244402A1 CN 2021096503 W CN2021096503 W CN 2021096503W WO 2021244402 A1 WO2021244402 A1 WO 2021244402A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
layer
shape
difference
process database
Prior art date
Application number
PCT/CN2021/096503
Other languages
English (en)
French (fr)
Inventor
隋少春
荣鹏
王大为
Original Assignee
成都飞机工业(集团)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都飞机工业(集团)有限责任公司 filed Critical 成都飞机工业(集团)有限责任公司
Priority to US17/638,808 priority Critical patent/US11618083B2/en
Publication of WO2021244402A1 publication Critical patent/WO2021244402A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/10Additive manufacturing, e.g. 3D printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the technical field of 3D printing, in particular, a powder feeding type 3D printing layered modeling method.
  • 3D printing technology was born. It is not limited to traditional "removal" processing methods. 3D printing is a bottom-up manufacturing method, also known as additive manufacturing technology, which realizes a mathematical model. The establishment. 3D printing technology has received widespread attention since its birth, and it has developed rapidly. In recent decades, 3D printing technology has become the focus of attention. Industrial design, construction, automotive, aerospace, dentistry, education, etc. are all used, but its application and development are still limited by factors. In addition to the equipment and printing process parameters, the shape detection of parts is also a key factor affecting the quality of 3D printed products.
  • Powder-feeding 3D printing means that the metal powder material forms a molten pool under the action of a laser beam, with laser spots, which can be moved to achieve sintering (or fusion).
  • this technology can also directly produce molds and parts. Since the working environment of the laser is vacuum, its strength is much higher than that of general castings, and it has a wider range of applications
  • the processing speed is very slow. Due to the many points of comparison, the processor and the processing algorithm are required to be high, but the processing result often takes a long time.
  • the purpose of the present invention is to provide a powder feeding type 3D printing layered modeling method, which effectively reduces the amount of calculation for data comparison and greatly saves time.
  • a powder-feeding 3D printing layered modeling method through the process database to obtain the printing estimated value of each layer in the entire digital model, and then obtain the estimated feature points of each layer through the estimated value, and finally pass the estimated feature points of each layer Compared with the corresponding actual shape feature points, the difference of each layer is obtained, and the difference of the entire digital model is obtained by accumulation, thereby obtaining the corresponding printing parameters.
  • Step S1 Obtain the printing parameters of the N layer
  • Step S2 Estimate the estimated shape of printing of N layers from the process database and according to the printing parameters of the N layers;
  • Step S3 Recognizing the characteristic points of the N layer according to the predicted shape of the printing of the obtained N layers, and dividing the image recognition area according to the characteristic points;
  • Step S4 compare the predicted print shape of the N layer with the corresponding shape in the process database to obtain the difference of the print shape of the layer;
  • Step S5 Combine the predicted shape of the printing of the predicted N layers to obtain the difference of the entire digital model
  • Step S6 According to the difference value of the entire digital and analog, obtain the printing parameters of the N+1 layer from the process database.
  • dividing the image recognition area according to the characteristics in the step S3 specifically refers to: obtaining the image recognition area by comparing the acquired feature points with the shape in the process database.
  • the step S4 specifically refers to: based on the image recognition area, comparing the printing shape in the N layer with the corresponding shape in the process database to obtain the difference of the printing shape of the layer.
  • the present invention has the following advantages and beneficial effects:
  • the present invention can greatly reduce the calculation amount of data comparison by layering the entire digital model and performing feature point comparison;
  • the present invention matches the theoretical digital model with the actual digital model, avoiding the situation of matching a feature point to a million-level point cloud, thereby greatly saving time.
  • Figure 1 is a working flow chart of the present invention
  • Figure 2 is an example diagram of Embodiment 5 of the present invention.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed can be a fixed connection or a detachable connection.
  • integrally connected it can be a mechanical connection or an electrical connection
  • it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the present invention is realized by the following technical solutions, a powder-feeding 3D printing layered modeling method, through the process database to obtain the printing estimated value of each layer in the entire digital model, and then obtain the estimated feature points of each layer through the estimated value Finally, the difference of each layer is obtained by comparing the estimated feature points of each layer with the corresponding actual shape feature points, and the difference of the entire digital model is obtained through accumulation, so as to obtain the corresponding printing parameters.
  • the process database includes the theoretical shape of the hierarchical digital model; the method of the present invention is based on the process database to obtain the estimated value of each layer of data.
  • the process database stores a large amount of experimental data, for example, it stores the physical shape obtained under various parameters such as powder feeding volume, air feeding volume, laser power, printing speed and so on.
  • Pre-processing mainly refers to the reasonable layering of digital models and finding suitable feature points in each layer.
  • This embodiment is further optimized on the basis of the foregoing embodiment, as shown in FIG. 1, specifically including the following steps:
  • Step S1 Obtain the printing parameters of the N layer, so as to obtain the solid shape of the block digital model in the N layer;
  • Step S2 Based on the process database, and predict the estimated shape of the printing of the N layers according to the printing parameters of the N layers;
  • Step S3 Recognizing the characteristic points of the N layer according to the predicted shape of the printing of the obtained N layers, and dividing the image recognition area according to the characteristic points;
  • Step S4 compare the predicted print shape of the N layer with the corresponding shape in the process database to obtain the difference of the print shape of the layer;
  • Step S5 Combine the predicted shape of the printing of the predicted N layers to obtain the difference of the entire digital model
  • Step S6 According to the difference value of the entire digital and analog, obtain the printing parameters of the N+1 layer from the process database.
  • the printing parameters include powder feeding volume, air feeding volume, laser power, printing speed, and the physical shape obtained under the combination of the above parameters.
  • the division of the image recognition area according to the characteristics in the step S3 specifically refers to:
  • the feature points of the N layer are compared with the physical shape to obtain the pattern recognition area.
  • step S4 specifically refers to: based on the image recognition area, the printing in the N layer The shape is compared with the corresponding shape in the process database, and the difference of the printed shape of the layer is obtained.
  • step S1 Obtain the printing parameters of the N layer, so as to obtain the physical shape of the block digital model in the N layer;
  • Step S2 Based on the process database, and predict the estimated shape of the printing of the N layers according to the printing parameters of the N layers;
  • Step S3 Recognizing the feature points of the N layer according to the predicted shape of the obtained printing of the N layer, and obtaining the pattern recognition area by comparing the acquired feature points of the N layer with the physical shape;
  • Step S4 Based on the image recognition area, compare the printed shape in the N layer with the corresponding shape in the process database to obtain the difference of the printed shape of the layer;
  • Step S5 Combine the predicted shape of the printing of the predicted N layers to obtain the difference of the entire digital model
  • Step S6 According to the difference value of the entire digital and analog, obtain the printing parameters of the N+1 layer from the process database.
  • the entire digital model is a cone.
  • the printed entity shape is a long strip forming a trapezoid.
  • the long bars in the figure are independent image recognition areas. Identify the feature points in the long strip image recognition area, and compare with the feature points on the actual image, you can get the difference in the recognition area of each image, and finally add up to get the entire digital model and theory The difference between digital and analog.
  • the first layer is printed, and then the second layer needs to be printed normally to supplement the missing area, and so on to complete the printing of the physical shape.

Abstract

本发明涉及3D打印技术领域,具体公开了一种送粉式3D打印分层建模方法,通过工艺数据库获得整个数模中每层的打印预估值,再通过预估值获得每层预估特征点,最终通过每层预估特征点和对应的实际形状特征点的对比,得到每层的差值,通过累加获得整个数模的差值,从而得到相应的打印参数。本发明的有益效果是:本发明有效的缩小了数据对比的运算量,大大节约了时间。

Description

一种送粉式3D打印分层建模方法 技术领域
本发明涉及3D打印技术领域,具体的说,是一种送粉式3D打印分层建模方法。
背景技术
上世纪八十年代,3D打印技术诞生了,并不仅限于传统的“去除”加工方法,而且3D打印是一种自下而上的制造方式,也称为增材制造技术,其实现了数学模型的建立。3D打印技术自诞生之日起就受到人们的广泛关注,因此获得了快速发展。近几十年来,3D打印技术已成为人们关注的焦点。工业设计,建筑,汽车,航空航天,牙科,教育领域等都被应用,但是其应用和开发仍然受到因素的限制。除了仪器设备和印刷程序参数外,制件的外形检测也是影响3D打印产品质量的关键因素。
送粉式3D打印是指金属粉末材料在激光光束的作用下形成熔池,并带有激光斑点,可移动以实现烧结(或熔合)。此外,这种技术还可以直接生产模具和零件。由于激光的工作环境是真空的,其强度比一般铸件的强度要高得多,具有更加广泛的应用范围
现有技术中无论是采用蓝光、光栅、3D反求技术等形式均是直接将整个数模与实际建模模型进行对比。这种对比方法存在两个问题:
1、数模处理量大。传统的对比方式相当于将理论数模与实际数模进行对比,而3D数模是由百万甚至千万个点构成的。这种数模对数模的对比方式相当于百万级的点与百万级的点分别比较,数据处理量极大。
2、处理速度很慢。由于对比的点很多,对于处理器以及处理算法要求高,但处理结果往往需要很长的时间。
发明内容
本发明的目的在于提供一种送粉式3D打印分层建模方法,有效的缩小了数据对比的运算量,大大节约了时间。
本发明通过下述技术方案实现:
一种送粉式3D打印分层建模方法,通过工艺数据库获得整个数模中每层的打印预估值,再通过预估值获得每层预估特征点,最终通过每层预估特征点和对应的实际形状特征点的对比,得到每层的差值,通过累加获得整个数模的差值,从而得到相应的打印参数。
进一步地,为了更好的实现本发明,
步骤S1:获取N层的打印参数;
步骤S2:从工艺数据库中,并根据N层打印参数预估N层的打印预估形状;
步骤S3:根据获得N层的打印预估形状识别N层的特征点,并根据特征点划分图像识 别区域;
步骤S4:将N层的打印预估形状与工艺数据库中的对应的形状对比,获得该层打印形状的差值;
步骤S5:组合预估N层的打印预估形状,获得整个数模的差值;
步骤S6:根据整个数模的差值,从工艺数据库中获得N+1层的打印参数。
进一步地,为了更好的实现本发明,所述步骤S3中的根据特点划分图像识别区域具体是指:通过获取的特征点与工艺数据库中的形状对比,获得图形识别区域。
进一步地,为了更好的实现本发明,所述步骤S4具体是指:基于图像识别区域,将N层中的打印形状与工艺数据库中对应的形状进行对比,得到该层打印形状的差值。
本发明与现有技术相比,具有以下优点及有益效果:
(1)本发明通过将整个数模进行分层并进行特征点对比的方式可以大大缩小数据对比的运算量;
(2)本发明匹配理论数模与实际数模,避免了将一个特征点去百万级的点云中进行匹配的情况,从而大大节约时间。
附图说明
图1为本发明的工作流程图;
图2为本发明中实施例5的示例图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语 在本发明中的具体含义。
下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1:
本发明通过下述技术方案实现,一种送粉式3D打印分层建模方法,通过工艺数据库获得整个数模中每层的打印预估值,再通过预估值获得每层预估特征点,最终通过每层预估特征点和对应的实际形状特征点的对比,得到每层的差值,通过累加获得整个数模的差值,从而得到相应的打印参数。
需要说明的是,通过上述改进,工艺数据库中包括分层数模的理论形状;本发明基于工艺数据库的方法得到每层数据的预估值。工艺数据库存储有大量的实验数据,例如,存储有在各种送粉量、送气量、激光功率、打印速度等参数下所得到的实体形状。通过预估打印形状我们可以进行数据的预处理,预处理主要是指将数模合理的分层,并在每层内寻找合适的特征点。通过将整个数模分层并进行特征点对比的方式可以大大缩小数据对比的运算量,快速匹配理论数模与实际数模,避免了将一个特征点去百万级的点云中进行匹配的情况,从而大大节约时间。
实施例2:
本实施例在上述实施例的基础上做进一步优化,如图1所示,具体包括以下步骤:
步骤S1:获取N层的打印参数,从而得到N层中分块数模的实体形状;
步骤S2:基于工艺数据库,并根据N层打印参数预估N层的打印预估形状;
步骤S3:根据获得N层的打印预估形状识别N层的特征点,并根据特征点划分图像识别区域;
步骤S4:将N层的打印预估形状与工艺数据库中的对应的形状对比,获得该层打印形状的差值;
步骤S5:组合预估N层的打印预估形状,获得整个数模的差值;
步骤S6:根据整个数模的差值,从工艺数据库中获得N+1层的打印参数。
需要说明的是,通过上述改进,这里的打印参数包括送粉量、送气量、激光功率、打印速度,以及在上述参数组合情况下所得到的实体形状。
本实施例的其他部分与上述实施例相同,故不再赘述。
实施例3:
本实施例在上述实施例的基础上做进一步优化,如图1所示,进一步地,为了更好的实现本发明,所述步骤S3中的根据特点划分图像识别区域具体是指:通过获取的N层的特征点与实体形状对比,获得图形识别区域。
本实施例的其他部分与上述实施例相同,故不再赘述。
实施例4:
本实施例在上述实施例的基础上做进一步优化,如图1所示,进一步地,为了更好的实现本发明,所述步骤S4具体是指:基于图像识别区域,将N层中的打印形状与工艺数据库中对应的形状进行对比,得到该层打印形状的差值。
本实施例的其他部分与上述实施例相同,故不再赘述。
实施例5:
本实施例为本发明的最佳实施例,如图1所示,步骤S1:获取N层的打印参数,从而得到N层中分块数模的实体形状;
步骤S2:基于工艺数据库,并根据N层打印参数预估N层的打印预估形状;
步骤S3:根据获得N层的打印预估形状识别N层的特征点,通过获取的N层的特征点与实体形状对比,获得图形识别区域;
步骤S4:基于图像识别区域,将N层中的打印形状与工艺数据库中对应的形状进行对比,得到该层打印形状的差值;
步骤S5:组合预估N层的打印预估形状,获得整个数模的差值;
步骤S6:根据整个数模的差值,从工艺数据库中获得N+1层的打印参数。
需要说明的是,通过上述改进,如图2所示,整个数模为一个椎体,获取打印参数后,预估打印出的实体形状为一个个长条形组成梯形。图中一个个长条形即为独立的图像识别区域。识别一个个长条形的图像识别区域内的特征点,并与实际图像上的特征点进行对比,即可得到每一块图像识别区域上的差异,最后进行累加,即可得到整个数模与理论数模之间的差值。
在进行打印时,第一层打印完,然后第二层要正常打印的基础上补充缺失区域,依次类推完成实体形状的打印。
本实施例的其他部分与上述实施例相同,故不再赘述。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。

Claims (4)

  1. 一种送粉式3D打印分层建模方法,其特征在于:通过工艺数据库获得整个数模中每层的打印预估值,再通过预估值获得每层预估特征点,最终通过每层预估特征点和对应的实际形状特征点的对比,得到每层的差值,通过累加获得整个数模的差值,从而得到相应的打印参数。
  2. 根据权利要求1所述的一种送粉式3D打印分层建模方法,其特征在于:
    步骤S1:获取N层的打印参数;
    步骤S2:从工艺数据库中,并根据N层打印参数预估N层的打印预估形状;
    步骤S3:根据获得N层的打印预估形状识别N层的特征点,并根据特征点划分图像识别区域;
    步骤S4:将N层的打印预估形状与工艺数据库中的对应的形状对比,获得该层打印形状的差值;
    步骤S5:组合预估N层的打印预估形状,获得整个数模的差值;
    步骤S6:根据整个数模的差值,从工艺数据库中获得N+1层的打印参数。
  3. 根据权利要求2所述的一种送粉式3D打印分层建模方法,其特征在于:所述步骤S3中的根据特点划分图像识别区域具体是指:通过获取的特征点与工艺数据库中的形状对比,获得图形识别区域。
  4. 根据权利要求3所述的一种送粉式3D打印分层建模方法,其特征在于:所述步骤S4具体是指:基于图像识别区域,将N层中的打印形状与工艺数据库中对应的形状进行对比,得到该层打印形状的差值。
PCT/CN2021/096503 2020-06-01 2021-05-27 一种送粉式3d打印分层建模方法 WO2021244402A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/638,808 US11618083B2 (en) 2020-06-01 2021-05-27 Layered modeling method for laser metal deposition (LMD) three-dimensional (3D) printing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010484779.4 2020-06-01
CN202010484779.4A CN111730057A (zh) 2020-06-01 2020-06-01 一种送粉式3d打印分层建模方法

Publications (1)

Publication Number Publication Date
WO2021244402A1 true WO2021244402A1 (zh) 2021-12-09

Family

ID=72646615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096503 WO2021244402A1 (zh) 2020-06-01 2021-05-27 一种送粉式3d打印分层建模方法

Country Status (3)

Country Link
US (1) US11618083B2 (zh)
CN (1) CN111730057A (zh)
WO (1) WO2021244402A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111730057A (zh) * 2020-06-01 2020-10-02 成都飞机工业(集团)有限责任公司 一种送粉式3d打印分层建模方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104708824A (zh) * 2015-03-12 2015-06-17 中国科学院重庆绿色智能技术研究院 一种保留模型特征的3d打印自适应切片方法
CN106202687A (zh) * 2016-07-05 2016-12-07 河海大学常州校区 一种基于模型面积变化率的自适应分层处理方法
CN106256536A (zh) * 2016-08-24 2016-12-28 芜湖枫曲三维数字化设计有限公司 一种三维结构分层打印方法
CN107803987A (zh) * 2017-10-18 2018-03-16 湖南华曙高科技有限责任公司 用于增材制造的自适应分层处理方法、系统及增材制造设备
CN108724734A (zh) * 2018-05-23 2018-11-02 西安理工大学 一种基于密集特征的3d打印前处理分层算法
CN109522585A (zh) * 2018-09-13 2019-03-26 合肥工业大学 一种防止3d打印模型特征偏移的自适应分层方法
EP3569332A1 (en) * 2018-05-14 2019-11-20 Siemens Aktiengesellschaft Method of providing a dataset, additive manufacturing method, computer program product and computer readable medium
CN111730057A (zh) * 2020-06-01 2020-10-02 成都飞机工业(集团)有限责任公司 一种送粉式3d打印分层建模方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132164A1 (en) * 2015-02-17 2016-08-25 Siemens Healthcare Gmbh Method and system for personalizing a vessel stent
CN106427249B (zh) * 2015-08-12 2019-06-07 三纬国际立体列印科技股份有限公司 粉末式3d打印的打印信息处理方法
CN106600690B (zh) * 2016-12-30 2020-09-18 厦门理工学院 基于点云数据的复杂建筑体三维建模方法
CN108971424A (zh) * 2017-05-31 2018-12-11 宁夏共享模具有限公司 具有监测补偿功能的3d打印头及在线补偿打印的方法
CN107599412A (zh) * 2017-09-14 2018-01-19 深圳市艾科赛龙科技股份有限公司 一种基于组织结构的三维建模方法、系统及三维模型
CN107806843B (zh) * 2017-09-25 2020-01-31 西安智熔金属打印系统有限公司 电子束熔丝增材制造形貌测量装置及其补偿控制方法
CN109079136B (zh) * 2018-07-25 2020-09-04 沈阳精合数控科技开发有限公司 一种3d打印方法
CN110052607B (zh) * 2019-03-11 2020-05-08 上海交通大学 基于视觉监测的粉床式3d打印闭环控制装置、系统及方法
EP4242762A3 (en) * 2019-05-17 2023-12-27 Markforged, Inc. 3d printing apparatus and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104708824A (zh) * 2015-03-12 2015-06-17 中国科学院重庆绿色智能技术研究院 一种保留模型特征的3d打印自适应切片方法
CN106202687A (zh) * 2016-07-05 2016-12-07 河海大学常州校区 一种基于模型面积变化率的自适应分层处理方法
CN106256536A (zh) * 2016-08-24 2016-12-28 芜湖枫曲三维数字化设计有限公司 一种三维结构分层打印方法
CN107803987A (zh) * 2017-10-18 2018-03-16 湖南华曙高科技有限责任公司 用于增材制造的自适应分层处理方法、系统及增材制造设备
EP3569332A1 (en) * 2018-05-14 2019-11-20 Siemens Aktiengesellschaft Method of providing a dataset, additive manufacturing method, computer program product and computer readable medium
CN108724734A (zh) * 2018-05-23 2018-11-02 西安理工大学 一种基于密集特征的3d打印前处理分层算法
CN109522585A (zh) * 2018-09-13 2019-03-26 合肥工业大学 一种防止3d打印模型特征偏移的自适应分层方法
CN111730057A (zh) * 2020-06-01 2020-10-02 成都飞机工业(集团)有限责任公司 一种送粉式3d打印分层建模方法

Also Published As

Publication number Publication date
US20220347753A1 (en) 2022-11-03
CN111730057A (zh) 2020-10-02
US11618083B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2021244402A1 (zh) 一种送粉式3d打印分层建模方法
CN109446549A (zh) 一种适用于3d打印的复杂结构彩色灯罩设计与实现方法
CN106513679A (zh) 一种适用于大型金属零件的激光增材制造方法
US10884396B2 (en) Sensor based smart segmentation
CN112191849A (zh) 基于温度分布的梯度多孔散热装置设计及增材制造方法
CN104156546B (zh) 基于t样条的汽车覆盖件模具的形面再设计方法
CN106671422A (zh) 一种制备生物支架的自适应直接切片方法
CN106600700B (zh) 一种三维模型数据处理系统
CN108320327A (zh) 一种三周期极小曲面等壁厚分层填充区域生成方法
CN114972387B (zh) 基于三维实测的复材成型过程模具变形修配方法及系统
WO2017080135A1 (zh) 一种面向3d打印的模型分解与排列方法
CN110385855A (zh) 一种零件的增材制造方法
CN109955486A (zh) 一种基于点阵化与稀疏压缩处理的结构模型3d打印方法
CN109079136A (zh) 一种3d打印方法
US20160052247A1 (en) Manufacturing process for vacuum heat transfer printing and jig thereof
Pang et al. An algorithm for extracting the center of linear structured light fringe based on directional template
CN114036788B (zh) 基于图像生成自由镂空铸型的设计方法、系统及介质
Zhang et al. An improved medial axis path generation algorithm for selective laser melting
Yan et al. A lightweight high-resolution algorithm based on deep learning for layer-wise defect detection in laser powder bed fusion
CN105965887A (zh) 基于选择性抑制烧结技术的3d模型支撑结构算法实现方法
Navangul et al. A vertex translation algorithm for adaptive modification of STL file in layered manufacturing
TW201440994A (zh) 薄型化之殼體結構及其製造方法
KR101846012B1 (ko) 태양전지 패턴 가공 방법 및 태양전지 패턴 가공 장치
CN111783181B (zh) 一种考虑尖角特征约束的保外形拓扑优化方法
He et al. A Comparative Study on the Effects of an Advanced Scan Pattern and Intelligent Scan Sequence on Thermal Distribution, Part Deformation, and Printing Time in PBF Additive Manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21816883

Country of ref document: EP

Kind code of ref document: A1