WO2021244398A1 - 一种波束对齐方法及相关设备 - Google Patents

一种波束对齐方法及相关设备 Download PDF

Info

Publication number
WO2021244398A1
WO2021244398A1 PCT/CN2021/096453 CN2021096453W WO2021244398A1 WO 2021244398 A1 WO2021244398 A1 WO 2021244398A1 CN 2021096453 W CN2021096453 W CN 2021096453W WO 2021244398 A1 WO2021244398 A1 WO 2021244398A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
optimal
receiving
rotation angle
beams
Prior art date
Application number
PCT/CN2021/096453
Other languages
English (en)
French (fr)
Inventor
王世鹏
尤羲鹤
张宝
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/007,896 priority Critical patent/US20240230816A1/en
Priority to EP21817823.4A priority patent/EP4149010A4/en
Publication of WO2021244398A1 publication Critical patent/WO2021244398A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/06Means for increasing effective directivity, e.g. by combining signals having differently oriented directivity characteristics or by sharpening the envelope waveform of the signal derived from a rotating or oscillating beam antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/0696Determining beam pairs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • This application relates to the field of communication technology, and in particular to a beam alignment method and related equipment.
  • Millimeter wave millimeter wave, mmWave
  • 5G fifth generation of mobile communication technology
  • 5G fifth generation
  • mmWave can not only provide a greater data transmission rate, but also reduce the transmission cost per bit.
  • the embodiments of the present application provide a beam alignment method and related equipment, which can increase the transmission gain or the reception gain of the terminal equipment, and improve the coverage and mobility of the millimeter wave.
  • an embodiment of the present application provides a beam alignment method, including: receiving a transmission beam sent by a network device through multiple receiving beams at a current location, and determining the reference signal reception of each of the multiple receiving beams Power RSRP; according to RSRP, select the optimal receiving beam from multiple receiving beams; according to the optimal receiving beam, determine the rotation angle and direction of rotation required for the terminal equipment to align the normal beam with the transmitting beam; according to the rotation angle and direction , Adjust the position of the terminal equipment, and use the normal beam and the transmitting beam to form the optimal beam pair at the adjusted position.
  • the terminal device can use the normal beam and the transmitting beam to form an optimal beam pair after adjusting the position. This not only improves the transmission gain or reception gain of the terminal device, but also improves the coverage and mobility of the millimeter wave.
  • the rotation angle and the rotation direction are displayed. So that the user can adjust the position of the terminal device according to the displayed rotation angle and rotation direction, and the operation is convenient and quick.
  • a prompt message is displayed, and the prompt message is used to prompt the user to complete adjusting the position of the terminal device. So that the user can stop rotating the position of the terminal device when viewing the prompt information to improve the accuracy of adjusting the position.
  • the terminal device may select the receiving beam with the largest RSRP from the multiple receiving beams as the optimal receiving beam.
  • the receiving beam with the largest RSRP as the optimal receiving beam, the rotation angle and direction required to rotate from the position of the normal beam to the position of the optimal receiving beam are determined, so that the transmitting gain or receiving gain of the terminal device is improved to the best Effect.
  • the terminal device can determine the relative position of the normal beam and the optimal receiving beam; according to the relative position, determine the rotation angle and direction required for the terminal device to align the normal beam with the transmitting beam. Through the relative position of the normal beam and the optimal receiving beam, the rotation angle and direction required to rotate from the position of the normal beam to the position of the optimal receiving beam are determined, which improves the accuracy of determining the rotation angle and direction.
  • the normal beam is a beam perpendicular to the antenna panel of the network device.
  • an embodiment of the present application provides a terminal device, which includes a modem, a processor, and a display.
  • the modem is used to receive the transmit beam sent by the network device through multiple receive beams at the current location, and determine the reference signal receive power RSRP of each receive beam in the multiple receive beams; according to RSRP, from the multiple receive beams Select the optimal receive beam; send the optimal receive beam to the processor; the processor is used to receive the optimal receive beam, and determine the rotation angle and direction required for the terminal device to align the normal beam with the transmit beam, and according to the rotation angle Adjust the position of the terminal device with the direction of rotation, and use the normal beam at the adjusted position to form the optimal beam pair with the transmitting beam.
  • the terminal device can use the normal beam and the transmitting beam to form an optimal beam pair after adjusting the position. This not only improves the transmission gain or reception gain of the terminal device, but also improves the coverage and mobility of the millimeter wave.
  • a display is used to display the angle and direction of rotation. So that the user can adjust the position of the terminal device according to the displayed rotation angle and rotation direction, and the operation is convenient and quick.
  • the display is also used to display prompt information when the terminal device is adjusted to the position indicated by the rotation angle and the rotation direction, and the prompt information is used to prompt the user to finish adjusting the position of the terminal device. So that the user can stop rotating the position of the terminal device when viewing the prompt information to improve the accuracy of adjusting the position.
  • the modem is also used to select the receiving beam with the largest RSRP from the multiple receiving beams as the optimal receiving beam.
  • the rotation angle and direction required to rotate from the position of the normal beam to the position of the optimal receiving beam are determined, so that the transmitting gain or receiving gain of the terminal device is improved to the best Effect.
  • the processor is also used to determine the relative position of the normal beam and the optimal receiving beam; according to the relative position, determine the rotation angle and rotation required for the terminal device to align the normal beam with the transmitting beam direction.
  • the relative position of the normal beam and the optimal receiving beam determines the rotation angle and direction required to rotate from the position of the normal beam to the position of the optimal receiving beam, which improves the accuracy of determining the rotation angle and direction.
  • the embodiments of the present application provide a beam alignment device, which is configured to implement the methods and functions performed by the terminal device in the above-mentioned first aspect, and is implemented by hardware/software, and its hardware/software includes and Modules corresponding to the above functions.
  • an embodiment of the present application provides a terminal device.
  • the terminal device includes a processor, a memory, and a communication bus.
  • the communication bus is used to implement connection and communication between the processor and the memory, and the processor executes storage in the memory.
  • the program is used to implement the steps of the first aspect described above.
  • the embodiments of the present application provide a computer-readable storage medium with instructions stored in the computer-readable storage medium, which when run on a computer, cause the computer to execute the methods of the foregoing aspects.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the methods of the foregoing aspects.
  • an embodiment of the present application provides a chip including a processor, configured to call and execute instructions stored in the memory from the memory, so that the device with the chip installed executes the method of any one of the above aspects.
  • the embodiments of the present application provide another chip, including: an input interface, an output interface, a processor, and optionally, a memory.
  • the input interface, an output interface, the processor and the memory are connected by an internal connection path.
  • the processor is used to execute the code in the memory, and when the code is executed, the processor is used to execute the method in any of the foregoing aspects.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of beam alignment provided by an embodiment of the present application.
  • Figure 3(A) is a top and side view of an antenna array factor gain provided by an embodiment of the present application.
  • Figure 3(B) is a top and side view of another antenna array factor gain provided by an embodiment of the present application.
  • Figure 3(C) is a schematic diagram of an EIRP provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a beam alignment method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an information display provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a beam provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a beam alignment device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal device proposed in an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system 100 provided by an embodiment of the present application.
  • the communication system 100 may include a network device 110 and a terminal device 101 to a terminal device 106.
  • the network device or terminal device can be hardware, software that is functionally divided, or a combination of the two.
  • the network device and the terminal device can communicate with other devices or network elements.
  • the network device 110 can send downlink data to the terminal device 101 to the terminal device 106.
  • the terminal device 101 to the terminal device 106 may also send uplink data to the network device 110.
  • the terminal device 101 to the terminal device 106 may be cellular phones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radio devices, global positioning systems, handheld computers (personal digital assistants, PDAs) and/or used in wireless Any other suitable devices for communication on the communication system 100 and so on.
  • the network device 110 may be an access point (AP), a node B, an environment bureau (eNB), or a 5G base station (next generation base station, gNB), which refers to passing one or more fans on the air interface.
  • AP access point
  • eNB environment bureau
  • gNB next generation base station
  • the communication system 100 may adopt a public land mobile network (PLMN), a device-to-device (D2D) network, a machine-to-machine (M2M) network, and the Internet of things (Internet of things). , IoT) or other networks.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT Internet of things
  • the terminal device 104 to the terminal device 106 may also form a communication system.
  • the terminal device 105 can send downlink data to the terminal device 104 or the terminal device 106.
  • the method in the embodiment of the present application can be applied to the communication system 100 shown in FIG. 1.
  • FIG. 2 is a schematic diagram of a beam alignment provided by an embodiment of the present application. If the beam pair on the left is selected, the main lobe direction is not aligned, which affects the receiving and transmitting performance. And if the beam pair on the right is selected, the main lobe direction can be aligned, so the optimal receiving gain and transmitting gain can be obtained.
  • FIG. 3(A) and FIG. 3(B) are top and side views of a 5*5 antenna array factor gain provided by an embodiment of the present application, with 5 sectors in each direction and 25 sectors in total.
  • the normal beam that is, the beam perpendicular to the antenna panel
  • the beam EIRP shows a downward trend.
  • Figure 3(C) the normal beam EIRP in the middle, and the surrounding beam components are reduced.
  • FIG. 4 is a schematic flowchart of a beam alignment method provided by an embodiment of the present application.
  • the steps in the embodiment of this application at least include:
  • S401 Receive a transmit beam sent by a network device through a plurality of receive beams at a current location, and determine a reference signal receiving power (RSRP) of each receive beam in the plurality of receive beams.
  • RSRP reference signal receiving power
  • measurement scan is performed on all receiving beams at the current position, and the RSRP of each receiving beam is determined.
  • S402 Select an optimal receiving beam from the multiple receiving beams according to the RSRP.
  • the receiving beam with the largest RSRP may be selected from the multiple receiving beams as the optimal receiving beam.
  • the terminal device uses the receiving beam with the largest RSRP and the transmitting beam of the network device to form an optimal beam pair.
  • S403 Determine, according to the optimal receiving beam, a rotation angle and a rotation direction required for the terminal device to use the normal beam to align with the transmitting beam.
  • the terminal device may determine the relative position of the normal beam and the optimal receiving beam; according to the relative position, determine all that is required for the terminal device to align the normal beam with the transmit beam.
  • the rotation angle and the rotation direction That is, the rotation angle and rotation direction required to rotate from the position of the normal beam to the position of the optimal receiving beam.
  • the normal beam is a beam perpendicular to the antenna panel of the network device.
  • S404 Adjust the position of the terminal device according to the rotation angle and the rotation direction, and use the normal beam at the adjusted position to form an optimal beam pair with the transmit beam.
  • the direction and angle of the terminal device can be adjusted according to the rotation direction and the rotation angle, thereby adjusting the radiation direction and the radiation angle of the antenna in the terminal device. Stop rotating the terminal device when it is adjusted to the position indicated by the rotation angle and the rotation direction. At this time, the terminal device can use the normal beam to align with the transmitting beam to form an optimal beam pair.
  • the terminal device may display the rotation angle and the rotation direction, so that the user can rotate the terminal device according to the displayed rotation angle and rotation direction.
  • the rotation angle and the rotation direction may be displayed in the notification bar of the terminal device, or may be displayed in the middle position of the display interface of the terminal device. It is also possible to display the rotation angle and the rotation direction through a prompt box (for example, a bubble). It should be noted that the rotation angle and the rotation direction can also be displayed in other ways, and the display method here is not limited.
  • FIG. 5 is a schematic diagram of an information display provided by an embodiment of the present application.
  • the notification bar of the terminal device displays -> (40), which means that it is rotated 40 degrees to the right, so that the terminal device can use the normal beam and the transmitting beam to form an optimal beam pair.
  • -> 40
  • the terminal device can also be rotated in any direction to the left, forward, or right, and the rotation angle can also be any angle.
  • the display of the rotation angle and the rotation direction may be stopped.
  • the preset threshold can be 30 seconds or 1 minute, which is not limited here.
  • the terminal device displays prompt information, and the prompt information is used to prompt the user to complete adjusting the position of the terminal device.
  • the prompt information is used to prompt the user to complete adjusting the position of the terminal device.
  • the user sees the prompt information, he can stop rotating the position of the terminal device, so that the terminal device can use the normal beam and the transmitting beam to form an optimal beam pair.
  • FIG. 6 is a schematic diagram of a beam provided by an embodiment of the present application.
  • the left side in FIG. 6 represents the ID of the receiving beam that can be used by the terminal device.
  • beam No. 0 is a normal beam (boresight direction/peak direction)
  • beam No. 76 used at the current location and the transmit beam of the base station form an optimal beam pair. Therefore, the corresponding angle between the two beams (beam 76 and beam 0) can be rotated, and beam 0 can be rotated to the position of beam 76, so that the UE uses beam 0 and the transmit beam of the base station to form an optimal beam pair .
  • the rotation angle of the No. 0 beam to the No. 76 beam is the angle that the UE needs to rotate.
  • the transmit beams sent by the network device are received through multiple receive beams at the current location, and the optimal receive beam is selected from the multiple receive beams according to the RSRP of each receive beam; according to the optimal receive beam , Determine the rotation angle and direction of rotation required for the terminal equipment to use the normal beam and the transmit beam to align; adjust the position of the terminal device according to the rotation angle and rotation direction, and use the normal beam and the transmit beam at the adjusted position. Excellent beam pair.
  • the terminal device can use the normal beam and the transmitting beam to form an optimal beam pair after adjusting the position. This not only improves the transmission gain or reception gain of the terminal device, but also improves the coverage and mobility of the millimeter wave.
  • FIG. 7 is a schematic structural diagram of a beam alignment device provided by an embodiment of the present application.
  • the device may include a receiving module 701, a selection module 702, a processing module 703, and a display module 704. The detailed description of each module as follows.
  • the receiving module 701 is configured to receive the transmit beams sent by the network device through multiple receive beams at the current location, and determine the reference signal receive power RSRP of each receive beam in the multiple receive beams;
  • the selecting module 702 is further configured to select an optimal receiving beam from the multiple receiving beams according to the RSRP;
  • the processing module 703 is further configured to determine, according to the optimal receiving beam, a rotation angle and a rotation direction required for the terminal device to use the normal beam to align with the transmitting beam;
  • the processing module 703 is configured to adjust the position of the terminal device according to the rotation angle and the rotation direction, and use the normal beam and the transmit beam to form an optimal beam pair at the adjusted position.
  • the display module 704 is configured to display the rotation angle and the rotation direction.
  • the display module 704 is configured to display prompt information when the terminal device is adjusted to the position indicated by the rotation angle and the rotation direction, and the prompt information is used to prompt the user to complete the adjustment of the terminal The location of the device.
  • the selecting module 702 is further configured to select the receiving beam with the largest RSRP from the multiple receiving beams as the optimal receiving beam.
  • the processing module 703 is further configured to determine the relative position of the normal beam and the optimal receive beam; according to the relative position, determine that the terminal device uses the normal beam and the transmit beam Align the required rotation angle and the rotation direction.
  • the normal beam is a beam perpendicular to the antenna panel of the network device.
  • each module can also refer to the corresponding description of the method embodiment shown in FIG. 4 to execute the methods and functions performed by the terminal device in the foregoing embodiment.
  • An embodiment of the present application provides a terminal device, which includes a modem, a processor, and a display.
  • the modem is used to execute the methods and functions performed by the receiving module 701 and the selecting module 702, and the processor is used for the processing module 703.
  • the display is used to execute the methods and functions executed by the above-mentioned display module 704.
  • FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device may include: at least one processor 801, at least one communication interface 802, at least one memory 803, and at least one communication bus 804.
  • the processor 801 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication bus 804 may be a standard PCI bus for interconnecting peripheral components or an extended industry standard structure EISA bus. The bus can be divided into an address bus, a data bus, a control bus, and so on.
  • the communication bus 804 is used to implement connection and communication between these components.
  • the communication interface 802 of the device in the embodiment of the present application is used for signaling or data communication with other node devices.
  • the memory 803 may include volatile memory, such as nonvolatile random access memory (NVRAM), phase change RAM (PRAM), magnetoresistive random access memory (magetoresistive RAM, MRAM), etc., and may also include non-volatile memory, such as at least one disk storage device, electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), flash memory devices, such as reverse or flash memory (NOR flash memory) or NAND flash memory (NAND flash memory), semiconductor devices, such as solid state disks (SSD), etc.
  • the memory 803 may also be at least one storage device located far away from the foregoing processor 801.
  • the memory 803 may also store a group of program codes.
  • the processor 801 may optionally also execute a program stored in the memory 803.
  • processor 801 is further configured to perform the following operation steps:
  • the rotation angle and the rotation direction are displayed.
  • processor 801 is further configured to perform the following operation steps:
  • prompt information is displayed, and the prompt information is used to prompt the user to complete adjusting the position of the terminal device.
  • processor 801 is further configured to perform the following operation steps:
  • processor 801 is further configured to perform the following operation steps:
  • the rotation angle and the rotation direction required for the terminal device to align the normal beam with the transmit beam are determined.
  • the normal beam is a beam perpendicular to the antenna panel of the network device.
  • the processor may also cooperate with the memory and the communication interface to perform the operation of the terminal device in the above-mentioned application embodiment.
  • the embodiment of the present application also provides a chip system
  • the chip system includes a processor, which is used to support terminal devices to implement the functions involved in any of the above embodiments, such as calculating the rotation angle and the rotation direction, and receiving or sending the rotation angle. And the direction of rotation.
  • the chip system may further include a memory, and the memory is used for necessary program instructions and data of the terminal device or the network device.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • the embodiment of the present application also provides a processor, which is configured to be coupled with a memory and used to execute any method and function related to the terminal device in any of the foregoing embodiments.
  • the embodiments of the present application also provide a computer program product containing instructions, which when running on a computer, enables the computer to execute any method and function related to the terminal device in any of the foregoing embodiments.
  • the embodiment of the present application also provides a device for executing any method and function related to the terminal device in any of the foregoing embodiments.
  • An embodiment of the present application also provides a wireless communication system, which includes at least one terminal device and at least one network device involved in any of the foregoing embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website network device, computer, server, or data.
  • the center uses wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to transmit to another website network device, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例公开了一种波束对齐方法及相关设备。包括:在当前位置处通过多个接收波束接收网络设备发送的发射波束,并确定所述多个接收波束中每个接收波束的参考信号接收功率RSRP;根据所述RSRP,从所述多个接收波束中选取最优接收波束;根据所述最优接收波束,确定终端设备使用法线波束与所述发射波束对齐所需要的旋转角度和旋转方向;根据所述旋转角度和所述旋转方向,调整所述终端设备的位置,在调整后的位置处使用所述法线波束与所述发射波束的构成最优波束对。采用本申请实施例,可以提高终端设备的发射增益或接收增益,提高毫米波的覆盖和移动性。

Description

一种波束对齐方法及相关设备
本申请要求于2020年6月3日提交中国国家知识产权局、申请号为202010497707.3、发明名称为“一种波束对齐方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束对齐方法及相关设备。
背景技术
毫米波(millimeter wave,mmWave)是推动第五代移动通信技术(5th generation,5G)技术发展中最具潜力的技术之一。具有大带宽、短时延的特性,并且频谱便宜,能够给运营商降低成本。因此在未来5G技术发展上,mmWave不仅可以提供更大的数据传输速率,同时还能够降低每比特传输成本。但是由于mmWave波长短、频率高,也具有强衰减、易受雨衰和大气吸收的影响,因此无法保障接收波束和发射波束对齐,进而无法获得最优的接收增益和发射增益。
发明内容
本申请实施例提供一种波束对齐方法及相关设备,可以提高终端设备的发射增益或接收增益,提高毫米波的覆盖和移动性。
第一方面,本申请实施例提供了一种波束对齐方法,包括:在当前位置处通过多个接收波束接收网络设备发送的发射波束,并确定多个接收波束中每个接收波束的参考信号接收功率RSRP;根据RSRP,从多个接收波束中选取最优接收波束;根据最优接收波束,确定终端设备使用法线波束与发射波束对齐所需要的旋转角度和旋转方向;根据旋转角度和旋转方向,调整终端设备的位置,在调整后的位置处使用法线波束与发射波束的构成最优波束对。通过确定从法线波束的位置旋转到最优接收波束的位置所需要的旋转角度和旋转方向,使得终端设备在调整位置后可以使用法线波束与发射波束构成最优波束对。从而不仅提高终端设备的发射增益或接收增益,而且提高了毫米波的覆盖和移动性。
在一种可能的设计中,在确定终端设备使用法线波束与发射波束对齐所需要的旋转角度和旋转方向之后,显示旋转角度和旋转方向。以便用户可以按照显示的旋转角度和旋转方向来调整终端设备的位置,操作方便快捷。
在另一种可能的设计中,当终端设备调整到旋转角度和旋转方向所指示的位置处时,显示提示信息,提示信息用于提示用户完成调整终端设备的位置。以便用户查看到提示信息时,可以停止旋转终端设备的位置,提高调整位置的准确性。
在另一种可能的设计中,终端设备可以从多个接收波束中选取RSRP最大的接收波束作为最优接收波束。通过选取RSRP最大的接收波束作为最优接收波束,确定从法线波束的位置旋转到最优接收波束的位置所需要的旋转角度和旋转方向,使得终端设备的发射增 益或接收增益提高到最佳效果。
在另一种可能的设计中,终端设备可以确定法线波束与最优接收波束的相对位置;根据相对位置,确定终端设备使用法线波束与发射波束对齐所需要的旋转角度和旋转方向。通过法线波束与最优接收波束的相对位置,确定从法线波束的位置旋转到最优接收波束的位置所需要的旋转角度和旋转方向,提高了确定旋转角度和旋转方向的准确性。
在另一种可能的设计中,所述法线波束为垂直于网络设备的天线面板的波束。
第二方面,本申请实施例提供了一种终端设备,该终端设备包括调制解调器、处理器和显示器。其中,调制解调器,用于在当前位置处通过多个接收波束接收网络设备发送的发射波束,并确定多个接收波束中每个接收波束的参考信号接收功率RSRP;根据RSRP,从多个接收波束中选取最优接收波束;向处理器发送最优接收波束;处理器,用于接收最优接收波束,确定终端设备使用法线波束与发射波束对齐所需要的旋转角度和旋转方向,并根据旋转角度和旋转方向调整终端设备的位置,在调整后的位置处使用法线波束构成与发射波束的最优波束对。通过确定从法线波束的位置旋转到最优接收波束的位置所需要的旋转角度和旋转方向,使得终端设备在调整位置后可以使用法线波束与发射波束构成最优波束对。从而不仅提高终端设备的发射增益或接收增益,而且提高了毫米波的覆盖和移动性。
在另一种可能的设计中,显示器,用于显示旋转角度和旋转方向。以便用户可以按照显示的旋转角度和旋转方向来调整终端设备的位置,操作方便快捷。
在另一种可能的设计中,显示器,还用于当终端设备调整到旋转角度和旋转方向所指示的位置处时,显示提示信息,提示信息用于提示用户完成调整终端设备的位置。以便用户查看到提示信息时,可以停止旋转终端设备的位置,提高调整位置的准确性。
在另一种可能的设计中,调制解调器,还用于从多个接收波束中选取RSRP最大的接收波束作为最优接收波束。通过选取RSRP最大的接收波束作为最优接收波束,确定从法线波束的位置旋转到最优接收波束的位置所需要的旋转角度和旋转方向,使得终端设备的发射增益或接收增益提高到最佳效果。
在另一种可能的设计中,处理器,还用于确定法线波束与最优接收波束的相对位置;根据相对位置,确定终端设备使用法线波束与发射波束对齐所需要的旋转角度和旋转方向。通过法线波束与最优接收波束的相对位置,确定从法线波束的位置旋转到最优接收波束的位置所需要的旋转角度和旋转方向,提高了确定旋转角度和旋转方向的准确性。
第三方面,本申请实施例提供了一种波束对齐装置,该波束对齐装置被配置为实现上述第一方面中终端设备所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的模块。
第四方面,本申请实施例提供了一种终端设备,该终端设备包括:处理器、存储器和通信总线,其中,通信总线用于实现处理器和存储器之间连接通信,处理器执行存储器中存储的程序用于实现上述第一方面的步骤。
第五方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第六方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运 行时,使得计算机执行上述各方面的方法。
第七方面,本申请实施例提供了一种芯片,包括处理器,用于从存储器中调用并运行存储器中存储的指令,使得安装有芯片的设备执行上述任一方面的方法。
第八方面,本申请实施例提供另一种芯片,包括:输入接口、输出接口、处理器,可选的,还包括存储器,输入接口、输出接口、处理器以及存储器之间通过内部连接通路相连,处理器用于执行存储器中的代码,当代码被执行时,处理器用于执行上述任一方面中的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种波束对齐的示意图;
图3(A)是本申请实施例提供的一种天线阵列因子增益的顶面和侧面图;
图3(B)是本申请实施例提供的另一种天线阵列因子增益的顶面和侧面图;
图3(C)是本申请实施例提供的一种EIRP的示意图;
图4是本申请实施例提供的一种波束对齐方法的流程示意图;
图5是本申请实施例提供的一种信息显示的示意图;
图6是本申请实施例提供的一种波束的示意图;
图7是本申请实施例提供的一种波束对齐装置的结构示意图;
图8是本申请实施例提出的一种终端设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
如图1所示,图1是本申请实施例提供的一种通信系统100的架构示意图。该通信系统100可以包括网络设备110和终端设备101~终端设备106。应理解,可以应用本申请实施例的方法的通信系统100中可以包括更多或更少的网络设备或终端设备。网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。网络设备与终端设备之间可以通过其他设备或网元通信。在该通信系统100中,网络设备110可以向终端设备101~终端设备106发送下行数据。当然,终端设备101~终端设备106也可以向网络设备110发送上行数据。终端设备101~终端设备106可以是蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、掌上电脑(personal digital assistant,PDA)和/或用于在无线通信系统100上通信的任意其它适合设备等等。网络设备110可以为接入点(access point,AP)、节点B、演进型节点(environment bureau,eNB)或5G基站(next generation base station,gNB),指在空中接口上通过一个或多个扇区与无线终端进行通信的接入网络中的设备。通信系统100可以采用公共陆地移动网络(public land mobile network,PLMN)、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)或者其他网 络。此外,终端设备104~终端设备106也可以组成一个通信系统。在该通信系统中,终端设备105可以发送下行数据给终端设备104或终端设备106。在本申请实施例中的方法可以应用于图1所示的通信系统100中。
由于mmWave波长短、频率高,具有强衰减、易受雨衰和大气吸收的影响,因此移动性和覆盖具有很大的挑战。为了能够较好的获得发射增益和接收增益,mmWave利用窄波束进行发射和接收,这样可以较好的提高覆盖和移动性。但是,这种波束必须保证接收波束和发射波束的主瓣方向对齐才能够获得最优的增益。如图2所示,图2是本申请实施例提供的一种波束对齐的示意图。如果选择左侧的波束对,主瓣方向未对其,影响接收和发射性能。而如果选取右侧的波束对,主瓣方向可以对其,因此可以获得最优的接收增益和发射增益。
对于基站来讲,由于天线阵子较多,且天线面积较大,可以做到各个方向的波束发射增益和接收增益较均衡。而UE的天线阵子较小,且天线面板较小,各个方向的波束无法做到均衡。例如,图3(A)和图3(B)是本申请实施例提供的一种5*5天线阵列因子增益的顶面和侧面图,每个方向5扇区,总共25扇区。从图3(A)和图3(B)可以看出,法线波束(也即垂直于天线面板的波束)的方向有效全向辐射功率(effective isotropic radiated power,EIRP)性能最优,四周的波束EIRP呈下降趋势,从图3(C)也可以看出中间的法线波束EIRP,四周的波束组件降低。
在目前的技术方案中,可以针对一个发射波束,对所有的接收波束进行一次测量扫描,重复上述过程,针对其他每个发射波束,对所有的接收波束进行一次测量扫描,将测量值最优的接收波束和发射波束的波束对作为最优波束对。但是,这种方案无法保证每次使用的是UE最佳的接收波束与发射波束构成最优波束对。
如图4所示,图4是本申请实施例提供的一种波束对齐方法的流程示意图。本申请实施例中的步骤至少包括:
S401,在当前位置处通过多个接收波束接收网络设备发送的发射波束,并确定所述多个接收波束中每个接收波束的参考信号接收功率(reference signal receiving power,RSRP)。
具体的,针对网络设备的每个发射波束,在当前位置对所有的接收波束进行测量扫描,并确定每个接收波束的RSRP。
S402,根据所述RSRP,从所述多个接收波束中选取最优接收波束。
具体的,可以从所述多个接收波束中选取所述RSRP最大的接收波束作为所述最优接收波束。此时,终端设备使用该RSRP最大的接收波束与网络设备的发射波束构成最优波束对。
S403,根据所述最优接收波束,确定终端设备使用法线波束与所述发射波束对齐所需要的旋转角度和旋转方向。
具体的,终端设备可以确定所述法线波束与所述最优接收波束的相对位置;根据所述相对位置,确定所述终端设备使用所述法线波束与所述发射波束对齐所需要的所述旋转角度和所述旋转方向。也即从法线波束的位置旋转到最优接收波束的位置所需要的旋转角度和旋转方向。其中,所述法线波束为垂直于所述网络设备的天线面板的波束。
S404,根据所述旋转角度和所述旋转方向,调整所述终端设备的位置,在调整后的位置处使用所述法线波束构成与所述发射波束的最优波束对。
具体的,可以按照旋转方向和旋转角度调整所述终端设备方向和角度,进而起到调整终端设备中的天线的辐射方向和辐射角度的作用。在调整到所述旋转角度和所述旋转方向所指示的位置处时停止旋转终端设备。此时,终端设备可以使用法线波束与发射波束对齐形成最优波束对。
可选的,终端设备可以显示所述旋转角度和所述旋转方向,这样用户可以按照显示的旋转角度和旋转方向来旋转所述终端设备。示例性的,可以在终端设备的通知栏显示旋转角度和旋转方向,也可以在终端设备的显示界面的中间位置显示旋转角度和旋转方向。也可以通过提示框(例如气泡)显示旋转角度和所述旋转方向。需要说明的是,也可以通过其他方式显示旋转角度和旋转方向,此处显示方式并不限定。
例如,如图5所示,图5是本申请实施例提供的一种信息显示的示意图。在终端设备的通知栏显示->(40),表示向右旋转40度,使得终端设备可以使用法线波束与发射波束构成最优波束对。需要说明的是,终端设备也可以向左、向前或向右任何一个方向旋转,旋转角度也可以是任何一个角度。
可选的,可以在显示所述旋转角度和所述旋转方向的时长超过预设阈值时,停止显示所述旋转角度和所述旋转方向。其中,预设阈值可以30秒或1分钟,此处并不限定。
可选的,当所述终端设备调整到所述旋转角度和所述旋转方向所指示的位置处时,终端设备显示提示信息,所述提示信息用于提示用户完成调整所述终端设备的位置。此时用户查看到提示信息时,可以停止旋转终端设备的位置,使得终端设备可以使用法线波束与发射波束构成最优波束对。
例如,如图6所示,图6是本申请实施例提供的一种波束的示意图。图6中的左边表示终端设备可以使用的接收波束的ID。其中,0号波束为法线波束(bore sight direction/peak direction),在当前位置使用的76号波束与基站的发射波束构成最优波束对。因此,可以旋转两个波束(76号波束和0号波束)之间相对应角度,将0号波束旋转到76号波束的位置,使得UE使用0号波束与基站的发射波束构成最优波束对。该0号波束旋转到76号波束的旋转角度,即为UE需要旋转的角度。
在本申请实施例中,在当前位置处通过多个接收波束接收网络设备发送的发射波束,并根据每个接收波束的RSRP,从多个接收波束中选取最优接收波束;根据最优接收波束,确定终端设备使用法线波束与发射波束对齐所需要的旋转角度和旋转方向;根据旋转角度和旋转方向,调整终端设备的位置,在调整后的位置处使用法线波束与发射波束的构成最优波束对。通过确定从法线波束的位置旋转到最优接收波束的位置所需要的旋转角度和旋转方向,使得终端设备在调整位置后可以使用法线波束与发射波束构成最优波束对。从而不仅提高终端设备的发射增益或接收增益,而且提高了毫米波的覆盖和移动性。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图7,图7是本申请实施例提供的一种波束对齐装置的结构示意图,该装置可以包括接收模块701、选取模块702、处理模块703和显示模块704,其中,各个模块的详细描述如下。
接收模块701,用于在当前位置处通过多个接收波束接收网络设备发送的发射波束,并确定所述多个接收波束中每个接收波束的参考信号接收功率RSRP;
选取模块702,还用于根据所述RSRP,从所述多个接收波束中选取最优接收波束;
处理模块703,还用于根据所述最优接收波束,确定终端设备使用法线波束与所述发射波束对齐所需要的旋转角度和旋转方向;
处理模块703,用于根据所述旋转角度和所述旋转方向,调整所述终端设备的位置,在调整后的位置处使用所述法线波束与所述发射波束的构成最优波束对。
可选的,显示模块704,用于显示所述旋转角度和所述旋转方向。
可选的,显示模块704,用于当所述终端设备调整到所述旋转角度和所述旋转方向所指示的位置处时,显示提示信息,所述提示信息用于提示用户完成调整所述终端设备的位置。
可选的,选取模块702,还用于从所述多个接收波束中选取所述RSRP最大的接收波束作为所述最优接收波束。
可选的,处理模块703,还用于确定所述法线波束与所述最优接收波束的相对位置;根据所述相对位置,确定所述终端设备使用所述法线波束与所述发射波束对齐所需要的所述旋转角度和所述旋转方向。
可选的,所述法线波束为垂直于所述网络设备的天线面板的波束。
需要说明的是,各个模块的实现还可以对应参照图4所示的方法实施例的相应描述,执行上述实施例中终端设备所执行的方法和功能。
本申请实施例提供的一种终端设备,该终端设备包括调制解调器、处理器和显示器,其中,调制解调器用于执行上述接收模块701和选取模块702所执行的方法和功能,处理器用于上述处理模块703所执行的方法和功能,显示器用于执行上述显示模块704所执行的方法和功能。
请继续参考图8,图8是本申请实施例提出的一种终端设备的结构示意图。如图8所示,该终端设备可以包括:至少一个处理器801,至少一个通信接口802,至少一个存储器803和至少一个通信总线804。
其中,处理器801可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信总线804可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信总线804用于实现这些组件之间的连接通信。其中,本申请实施例中设备的通信接口802用于与其他节点设备进行信令或数据的通信。存储器803可以包括易失性存储器,例如非挥发性动态随机存取内存(nonvolatile random access memory,NVRAM)、相变化随机存取内存(phase change RAM,PRAM)、磁阻式随机存取内存(magetoresistive RAM,MRAM)等,还可以包括非易失性存储器,例如至少一个磁盘存储器件、电子可擦除可 编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash memory)、半导体器件,例如固态硬盘(solid state disk,SSD)等。存储器803可选的还可以是至少一个位于远离前述处理器801的存储装置。存储器803中可选的还可以存储一组程序代码。处理器801可选的还可以执行存储器803中所存储的程序。
在当前位置处通过多个接收波束接收网络设备发送的发射波束,并确定所述多个接收波束中每个接收波束的参考信号接收功率RSRP;
根据所述RSRP,从所述多个接收波束中选取最优接收波束;
根据所述最优接收波束,确定终端设备使用法线波束与所述发射波束对齐所需要的旋转角度和旋转方向;
根据所述旋转角度和所述旋转方向,调整所述终端设备的位置,在调整后的位置处使用所述法线波束与所述发射波束的构成最优波束对。
可选的,处理器801还用于执行如下操作步骤:
显示所述旋转角度和所述旋转方向。
可选的,处理器801还用于执行如下操作步骤:
当所述终端设备调整到所述旋转角度和所述旋转方向所指示的位置处时,显示提示信息,所述提示信息用于提示用户完成调整所述终端设备的位置。
可选的,处理器801还用于执行如下操作步骤:
从所述多个接收波束中选取所述RSRP最大的接收波束作为所述最优接收波束。
可选的,处理器801还用于执行如下操作步骤:
确定所述法线波束与所述最优接收波束的相对位置;
根据所述相对位置,确定所述终端设备使用所述法线波束与所述发射波束对齐所需要的所述旋转角度和所述旋转方向。
可选的,所述法线波束为垂直于所述网络设备的天线面板的波束。
进一步的,处理器还可以与存储器和通信接口相配合,执行上述申请实施例中终端设备的操作。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备以实现上述任一实施例中所涉及的功能,例如计算旋转角度和旋转方向、接收或发送旋转角度和旋转方向。在一种可能的设计中,所述芯片系统还可以包括存储器,所述存储器,用于终端设备或网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及终端设备的任意方法和功能。
本申请实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及终端设备的任意方法和功能。
本申请实施例还提供了一种装置,用于执行上述各实施例中任一实施例中涉及终端设备的任意方法和功能。
本申请实施例还提供一种无线通信系统,该系统包括上述任一实施例中涉及的至少一 个终端设备和至少一个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站网络设备、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站网络设备、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (22)

  1. 一种波束对齐方法,其特征在于,包括:
    在当前位置处通过多个接收波束接收网络设备发送的发射波束,并确定所述多个接收波束中每个接收波束的参考信号接收功率RSRP;
    根据所述RSRP,从所述多个接收波束中选取最优接收波束;
    根据所述最优接收波束,确定终端设备使用法线波束与所述发射波束对齐所需要的旋转角度和旋转方向;
    根据所述旋转角度和所述旋转方向,调整所述终端设备的位置,在调整后的位置处使用所述法线波束与所述发射波束的构成最优波束对。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    显示所述旋转角度和所述旋转方向。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    当所述终端设备调整到所述旋转角度和所述旋转方向所指示的位置处时,显示提示信息,所述提示信息用于提示用户完成调整所述终端设备的位置。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述根据所述RSRP,从所述多个接收波束中选取最优接收波束包括:
    从所述多个接收波束中选取所述RSRP最大的接收波束作为所述最优接收波束。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述根据所述最优接收波束,确定终端设备使用法线波束与所述发射波束对齐所需要的旋转角度和旋转方向包括:
    确定所述法线波束与所述最优接收波束的相对位置;
    根据所述相对位置,确定所述终端设备使用所述法线波束与所述发射波束对齐所需要的所述旋转角度和所述旋转方向。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述法线波束为垂直于所述网络设备的天线面板的波束。
  7. 一种波束对齐装置,其特征在于,包括:
    接收模块,用于在当前位置处通过多个接收波束接收网络设备发送的发射波束,并确定所述多个接收波束中每个接收波束的参考信号接收功率RSRP;
    选取模块,用于根据所述RSRP,从所述多个接收波束中选取最优接收波束;
    所述处理模块,还用于根据所述最优接收波束,确定终端设备使用法线波束与所述发射波束对齐所需要的旋转角度和旋转方向;
    所述处理模块,用于根据所述旋转角度和所述旋转方向,调整所述终端设备的位置,在调整后的位置处使用所述法线波束与所述发射波束的构成最优波束对。
  8. 如权利要求7所述的装置,其特征在于,所述装置还包括:
    显示模块,用于显示所述旋转角度和所述旋转方向。
  9. 如权利要求7或8所述的装置,其特征在于,所述装置还包括:
    显示模块,用于当所述终端设备调整到所述旋转角度和所述旋转方向所指示的位置处时,显示提示信息,所述提示信息用于提示用户完成调整所述终端设备的位置。
  10. 如权利要求7-9任一项所述的装置,其特征在于,
    所述选取模块,还用于从所述多个接收波束中选取所述RSRP最大的接收波束作为所述最优接收波束。
  11. 如权利要求7-10任一项所述的装置,其特征在于,
    所述处理模块,还用于确定所述法线波束与所述最优接收波束的相对位置;根据所述相对位置,确定所述终端设备使用所述法线波束与所述发射波束对齐所需要的所述旋转角度和所述旋转方向。
  12. 如权利要求7-11任一项所述的装置,其特征在于,所述法线波束为垂直于所述网络设备的天线面板的波束。
  13. 一种终端设备,其特征在于,所述终端设备包括调制解调器和处理器,其中:
    所述调制解调器,用于在当前位置处通过多个接收波束接收网络设备发送的发射波束,并确定所述多个接收波束中每个接收波束的参考信号接收功率RSRP;根据所述RSRP,从所述多个接收波束中选取最优接收波束;向所述处理器发送所述最优接收波束;
    所述处理器,用于接收所述最优接收波束,确定所述终端设备使用法线波束与所述发射波束对齐所需要的旋转角度和旋转方向,并根据所述旋转角度和所述旋转方向,调整所述终端设备的位置,在调整后的位置处使用所述法线波束构成与所述发射波束的最优波束对。
  14. 如权利要求13所述的终端设备,其特征在于,所述终端设备还包括:
    显示器,用于显示所述旋转角度和所述旋转方向。
  15. 如权利要求14所述的终端设备,其特征在于,
    所述显示器,还用于当所述终端设备调整到所述旋转角度和所述旋转方向所指示的位置处时,显示提示信息,所述提示信息用于提示用户完成调整所述终端设备的位置。
  16. 如权利要求13-15任一项所述的终端设备,其特征在于,
    所述调制解调器,还用于从所述多个接收波束中选取所述RSRP最大的接收波束作为所述最优接收波束。
  17. 如权利要求13-16任一项所述的终端设备,其特征在于,
    所述处理器,还用于确定所述法线波束与所述最优接收波束的相对位置;根据所述相对位置,确定所述终端设备使用所述法线波束与所述发射波束对齐所需要的所述旋转角度和所述旋转方向。
  18. 如权利要求13-17任一项所述的终端设备,其特征在于,所述法线波束为垂直于所述网络设备的天线面板的波束。
  19. 一种装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使得所述装置执行权利要求1至6中任一项所述的方法。
  20. 一种芯片,其特征在于,所述芯片为网络设备或终端设备内的芯片,所述芯片包括处理器和与所述处理器连接的输入接口和输出接口,所述芯片还包括存储器,当所述存储器中计算机程序被执行时,所述权利要求1至6中任一项所述的方法被执行。
  21. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使所述计算机执行权利要求1至6中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使所述计算机执行权利要求1至6中任一项所述的方法。
PCT/CN2021/096453 2020-06-03 2021-05-27 一种波束对齐方法及相关设备 WO2021244398A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/007,896 US20240230816A1 (en) 2020-06-03 2021-05-27 Beam Alignment Method and Related Device
EP21817823.4A EP4149010A4 (en) 2020-06-03 2021-05-27 BEAM ALIGNMENT METHOD AND ASSOCIATED DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010497707.3 2020-06-03
CN202010497707.3A CN113765547B (zh) 2020-06-03 2020-06-03 一种波束对齐方法及相关设备

Publications (1)

Publication Number Publication Date
WO2021244398A1 true WO2021244398A1 (zh) 2021-12-09

Family

ID=78783501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096453 WO2021244398A1 (zh) 2020-06-03 2021-05-27 一种波束对齐方法及相关设备

Country Status (4)

Country Link
US (1) US20240230816A1 (zh)
EP (1) EP4149010A4 (zh)
CN (1) CN113765547B (zh)
WO (1) WO2021244398A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124720A (ja) * 1998-10-12 2000-04-28 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置
CN105824019A (zh) * 2016-03-18 2016-08-03 中国人民解放军63921部队 大型分布式空间监测雷达的最优化波束对齐方法
CN107005300A (zh) * 2014-11-25 2017-08-01 高通股份有限公司 用于获得无线设备的旋转的技术
CN108347272A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 一种基于波束组进行通信的方法及设备
CN110098856A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种天线装置及相关设备
CN110445523A (zh) * 2018-05-04 2019-11-12 华为技术有限公司 波束训练方法、相关装置及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9853712B2 (en) * 2014-02-17 2017-12-26 Ubiqomm Llc Broadband access system via drone/UAV platforms
JP6847581B2 (ja) * 2016-02-12 2021-03-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 無線通信装置、及び無線通信装置における表示方法
WO2018168670A1 (ja) * 2017-03-17 2018-09-20 株式会社Nttドコモ ユーザ端末および測位方法
CN109714780A (zh) * 2017-10-26 2019-05-03 华为技术有限公司 通信方法、终端和接入网设备
CN109996265B (zh) * 2019-04-02 2021-08-03 华为技术有限公司 波束测量方法、装置、系统、网络设备和终端设备
CN110212963B (zh) * 2019-05-24 2022-04-15 Oppo广东移动通信有限公司 波束跟踪方法、装置及计算机存储介质和终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124720A (ja) * 1998-10-12 2000-04-28 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置
CN107005300A (zh) * 2014-11-25 2017-08-01 高通股份有限公司 用于获得无线设备的旋转的技术
CN105824019A (zh) * 2016-03-18 2016-08-03 中国人民解放军63921部队 大型分布式空间监测雷达的最优化波束对齐方法
CN108347272A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 一种基于波束组进行通信的方法及设备
CN110098856A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种天线装置及相关设备
CN110445523A (zh) * 2018-05-04 2019-11-12 华为技术有限公司 波束训练方法、相关装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4149010A4

Also Published As

Publication number Publication date
CN113765547A (zh) 2021-12-07
US20240230816A1 (en) 2024-07-11
CN113765547B (zh) 2023-04-07
EP4149010A4 (en) 2023-10-25
EP4149010A1 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
CN113114439B (zh) 用于定位的方法与装置
US10742275B2 (en) Quad-sector antenna using circular polarization
US11108477B2 (en) Method and apparatus for determining broadcast beam weighted value in wireless communications system
US11575215B2 (en) Antenna with enhanced azimuth gain
US20200252963A1 (en) Random access method and user terminal
EP4221391A1 (en) Communication method and apparatus
WO2021244398A1 (zh) 一种波束对齐方法及相关设备
US12028769B2 (en) mmWave to Wi-Fi control signal offloading in the event of fading in the mmWave system
WO2020108499A1 (zh) 一种定时测量方法及相关设备
US11784388B2 (en) Reconfigurable antenna with a strands antenna radiation pattern
US11515642B2 (en) Antenna cover with integrated static lens
CN112994766B (zh) 一种波束传输方法及相关设备
CN109089279A (zh) 一种基于多波束的功率控制方法、用户终端和基站
CN111885254A (zh) 调整终端设备角度的方法、装置、存储介质及终端设备
US11751065B2 (en) First grant request optimization based on geographic location
US11777601B1 (en) Systems and methods for providing wireless communications to a device using both optical and radio frequency transmission
US9438514B2 (en) Wireless electronic device and wireless transmission method thereof
US11877323B2 (en) Random access method, user equipment and network side device
CN110784820B (zh) 无线网络设备定位方法、装置、存储介质及无线网络设备
US20240107495A1 (en) Automated Determination of Access-Point Geographic Locations
WO2024140129A1 (zh) 波束测量方法及相关装置
CN117938225A (zh) 一种波束覆盖方法、装置及设备
CN113905403A (zh) 调整移动终端位置的方法、装置、移动终端
WO2019014889A1 (zh) 波束跟踪方法、rru、bbu和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18007896

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021817823

Country of ref document: EP

Effective date: 20221205

NENP Non-entry into the national phase

Ref country code: DE