WO2019014889A1 - 波束跟踪方法、rru、bbu和基站 - Google Patents
波束跟踪方法、rru、bbu和基站 Download PDFInfo
- Publication number
- WO2019014889A1 WO2019014889A1 PCT/CN2017/093643 CN2017093643W WO2019014889A1 WO 2019014889 A1 WO2019014889 A1 WO 2019014889A1 CN 2017093643 W CN2017093643 W CN 2017093643W WO 2019014889 A1 WO2019014889 A1 WO 2019014889A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rru
- information
- angular spectrum
- bbu
- codebooks
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
Definitions
- the present invention relates to the field of high frequency wireless communications, and in particular, to a beam tracking method RRU, a BBU, and a base station.
- Beam Forming is a signal preprocessing technology based on an antenna array, which can be used for both the signal transmitting end and the signal receiving end.
- the beamforming technology adjusts the weighting coefficients of each array element in the antenna array, so that the signals of some angles obtain constructive interference, while the signals of other angles obtain destructive interference, thereby compensating for spatial loss and more during wireless propagation.
- Signal fading and distortion introduced by factors such as the path effect reduce interference.
- Beam Tracking is based on the antenna array dynamically adjusting the beam sent from the antenna array to the transmitting end according to the received beam (such as the terminal device of the mobile phone) (such as dynamically adjusting the parameters of the beamforming). technology.
- beam scanning is a commonly used method for performing beam tracking.
- small changes in the mobile end such as rotation, shifting position, indoor movement, instantaneous high-speed movement, and sudden occlusion of signals
- the codebook library of beam scanning increases with the number of antennas, that is, the scanning time also increases exponentially with the number of antennas, which is more disadvantageous for real-time tracking of beams.
- the embodiments of the present invention provide a beam tracking method, an RRU, a BBU, and a base station, to solve the problem that the beam cannot be tracked in real time in the prior art.
- an embodiment of the present invention provides a beam tracking method.
- the method includes: the radio remote unit RRU scans beams from different directions, wherein each beam carries feature information of the user equipment, the feature information includes azimuth information; the RRU pairs each of the features according to the feature information The beam performs angular spectrum estimation to determine angular spectrum information and energy information of each beam; the RRU sends the angular spectrum information and energy information of each beam to the baseband processing list And a BBU for determining, by the BBU, a beam weight used for beamforming when the RRU sends data to the user equipment according to the angular spectrum information and the energy information of each beam.
- the RRU uses the angular spectrum estimation to obtain the angle information and the energy information of the beam, and sends the information to the BBU, so that the BBU determines the beam when the RRU sends data to the user equipment according to the angular spectrum information.
- the beam weights used to shape the real-time tracking of the user beam.
- the RRU scans beams from different orientations, including: the RRU scanning a beam from a horizontal orientation in a predetermined vertical orientation.
- the RRU scans beams from different orientations, including: the RRU scans beams from different orientations through a set of codebooks, where each set of codebooks in the m sets of codebooks
- the capacity is N
- the m sets of codebooks correspond to m antenna sub-arrays
- each of the m antenna sub-arrays includes N antennas
- the N and m are natural numbers, respectively.
- the RRU performs an angular spectrum estimation on each of the beams, and determines angular spectrum information and energy information of each beam, including: the RRU classifies MUSIC through Bartlett, Capon, multiple signals, and At least one radar angle estimation algorithm in the rotation invariant technique estimation signal parameter ESPRIT performs angular spectrum estimation on each beam to determine angular spectrum information and energy information of each beam.
- each of the code blocks included in the m sets of codebooks includes N code words obtained by the following formula:
- the rand(1,N) function is used to generate a random sequence rc of length N, and Amp is a fixed factor, indicating that the rc sequence passes different powers, and L and p respectively represent preset power values (L, L-1,...,p),s is the original codebook;
- the original codebook s is shifted to obtain the N codebooks, wherein the N codebooks are orthogonal to each other.
- the RRU sends the angular spectrum information of each beam to the baseband processing unit BBU through the angular spectrum control information, where the angular spectrum control information includes the angle information of the beam and the energy information of the beam. At least one.
- an embodiment of the present invention provides a beam tracking method.
- the method includes: the baseband processing unit BBU receives angular spectrum information and energy information of different beams sent by the radio remote unit RRU; the BBU is based on each wave The angular spectrum information and the energy information of the beam determine the beam weights used for beamforming when the RRU transmits data to the user equipment.
- the BBU sorts the different beams according to energy information of each beam, generates the beam weight according to two path beams with the largest energy, or generates at least one path of different energy. Beam combining to generate the beam weights.
- an embodiment of the present invention provides a radio remote unit RRU.
- the RRU may implement the functions performed by the RRU in the beam tracking methods of the foregoing first to first and second aspects, and the functions may be implemented by hardware or by executing corresponding software by hardware.
- the hardware or software includes one or more modules corresponding to the above functions.
- the RRU includes a memory, a processor, and a communication interface.
- the memory is configured to store a program instruction
- the processor is configured to: scan, according to the program instruction stored in the memory, a beam from different directions by using the communication interface, where each beam carries a user equipment Feature information, the feature information includes azimuth information; performing angular spectrum estimation on each beam according to the feature information, determining angular spectrum information of each beam; and passing angular spectrum information of each beam through the communication
- the interface sends the BBU to the BBU, so that the BBU determines the beam weight used for beamforming when the RRU sends data to the user equipment according to the angular spectrum information of each beam.
- the processor is specifically configured to scan a beam from a horizontal orientation through the communication interface at a preset vertical orientation.
- the processor is specifically configured to scan beams from different orientations by using a set of codebooks, where the capacity of each set of codebooks in the m sets of codebooks is N, the m sets The codebook corresponds to m antenna sub-arrays, and each of the m antenna sub-arrays includes N antennas, and the N and m are natural numbers, respectively.
- the processor is specifically configured to classify each of the beams by at least one radar angle estimation algorithm in Bartlett, Capon, multiple signal classification MUSIC, and by using a rotation invariant technique to estimate a signal parameter ESPRIT Perform angular spectrum estimation to determine the angular spectrum information of each beam.
- each of the code blocks included in the m sets of codebooks includes N code words obtained by the following formula:
- rand(1,N) function is used to generate a random sequence rc of length N, Amp is a fixed factor, and fun(rc, N) indicates that the rc sequence passes different powers, and L and p respectively represent presets.
- the square value, s is the original codebook;
- the original codebook s is shifted to obtain the N codebooks, wherein the N codebooks are orthogonal to each other.
- the processor is further configured to send the angular spectrum information of each beam to the baseband processing unit BBU through the angular spectrum control information, where the angular spectrum control information includes the angle information of the beam and the beam. At least one of the energy information.
- an embodiment of the present invention provides a baseband processing unit BBU.
- the BBU can implement the functions performed by the BBU in the beam tracking methods of the first to the first and second aspects, and the functions can be implemented by using hardware or by executing corresponding software by hardware.
- the hardware or software includes one or more modules corresponding to the above functions.
- the BBU includes: a memory, a processor, and a communication interface; the memory is configured to store program instructions; and the processor is configured to: according to the program instructions stored in the memory, perform the following operations: receiving the radio frequency through the communication interface
- the remote unit RRU transmits the angular spectrum information of the transmitted different beams; and determines the beam weights used for beamforming when the RRU sends data to the user equipment according to the angular spectrum information of each beam.
- the processor is further configured to sort the different beams according to energy information of each beam, generate the beam weight according to two path beams with the largest energy, or generate different energy At least one of the path beams is combined to generate the beam weights.
- an embodiment of the present invention provides a base station.
- the base station may include the RRU of the third aspect and the BBU of the fourth aspect, and the base station may be used to implement the beam tracking method of the first aspect and the second aspect.
- the RRU performs angular spectrum estimation on the horizontally-acquired wave angle in a fixed vertical orientation to obtain an angle including angle information and energy information. Spectral information.
- the RRU sends the spectrum information to the BBU, so that the BBU determines the beam weight used for beamforming when the RRU sends data to the user equipment according to the angular spectrum information.
- the RRU constructs a special codebook, based on which a small amount of beam scanning is performed, and the angular spectrum estimation algorithm is used to calculate the data obtained by the beam scanning, and the angular spectrum information including the angle information and the energy information is obtained.
- the RRU sends the spectrum information to the BBU, so that the BBU determines the beam weight used for beamforming when the RRU sends data to the user equipment according to the angular spectrum information.
- the BBU can use the beam energy sorting information to decide how to use the angle spectrum.
- the process of accelerating the beam tracking is estimated by the angle spectrum estimation, and the user can track the user in real time by the method provided by the embodiment of the present invention, whether the terminal is in the process of high-speed movement or the terminal is rotated due to the rotation of the terminal and the channel is suddenly received in the middle of the channel.
- the beam sets the optimal beam weight in real time to achieve the user's optimal experience.
- FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of communication of a beam tracking method according to an embodiment of the present invention.
- FIG. 3 is a cross-sectional view of a base station in a vertical dimension according to an embodiment of the present invention
- FIG. 4 is a schematic diagram of a sampling position of an RRU according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram of a format of a corner spectrum control word according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram of communication of another beam tracking method according to an embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of an RRU according to an embodiment of the present disclosure.
- FIG. 8 is a schematic structural diagram of a BBU according to an embodiment of the present invention.
- the beam tracking method provided by the embodiment of the present invention is applied to a cellular communication network in a high frequency wireless communication scenario.
- the techniques described in this disclosure may be applicable to Long Term Evolution (LTE) systems, or other wireless communication systems employing various radio access technologies, such as using code division multiple access, frequency division multiple access, time division multiple access, and positive A system for accessing frequency division multiple access, single carrier frequency division multiple access and other access technologies.
- LTE Long Term Evolution
- NR new radio
- the terminal involved in the embodiments of the present invention may include various handheld devices with wireless communication functions, in-vehicle devices, wearable devices (WD), computing devices, or other processing devices connected to the wireless modem, and various forms.
- UE User Equipment
- MS Mobile Station
- terminal terminal equipment, etc.
- a base station (BS) is a network device deployed in a radio access network to provide a wireless communication function for a terminal.
- the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
- the names of devices with base station functions may be different, for example, in an LTE network, called an evolved NodeB (eNB or eNodeB), in the fifth generation.
- eNB evolved NodeB
- NR-NB New Radio NodeB
- network devices that provide wireless communication functions for the above terminals in the embodiments of the present invention may be collectively referred to as base stations.
- FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
- the communication system includes at least one base station 10 and at least one terminal 11.
- the base station 10 adjusts the weighting coefficients of each array element in the antenna array of the base station to generate a beam with directivity through a beamforming technique.
- the terminal 11 When the terminal 11 is located at the location A, the terminal and the base station A communication link is established through beam 12 between 11.
- terminal 11 provides base station 10 with the information needed for beam tracking to enable base station 10 to dynamically adjust the beam directed to terminal 11.
- the terminal 11 When the terminal 11 is located at the location B, the terminal establishes a communication link with the base station 11 through the beam 13.
- the terminal 11 is configured to determine available beams by searching for reference information (such as a synchronization signal or a pilot signal) sent by the base station, and feed back the selection result to the base station. Meanwhile, if a plurality of antennas are deployed on the terminal side, a plurality of transmission and reception beams may be formed on the terminal side by using a beamforming transmission/reception technique.
- reference information such as a synchronization signal or a pilot signal
- the base station 10 is configured to expand the coverage by forming a narrow beam in the downlink direction, and also receive signals in different directions through different beams in the uplink direction.
- the base station 10 can support the transmission and reception of data using two or more beams at any one time.
- FIG. 2 is a schematic diagram of communication of a beam tracking method according to an embodiment of the present invention.
- the embodiment of the present invention can be used in the case where the antenna of the base station adopts Digital Hybrid Beam Forming (DHBF) technology, wherein the front stage of the DHBF is analog beamforming for vertical dimension scanning, and the middle level is used for horizontal Digital beamforming for dimensional scanning, followed by digital beamforming.
- DHBF Digital Hybrid Beam Forming
- the method may include steps S210-S240:
- Step S210 A Radio Remote Unit (RRU) scans beams from different directions, where each beam carries feature information of the user equipment.
- RRU Radio Remote Unit
- step S210 may include: the base station divides the terminal it covers into a plurality of intervals in a vertical dimension. For example, as shown in FIG. 3, the base station divides the terminal it covers into three intervals in a vertical dimension.
- the users in the different sections are sequentially served by the time division method.
- the terminal of the interval sends a signal to the base station in a random access channel (RACH), and the signal carries the feature information of the terminal.
- RACH random access channel
- the signals sent to the base station by each UE at this time are all orthogonal to each other to distinguish users, that is, if the signals sent by each UE to the base station are not orthogonal, The user cannot be distinguished.
- the feature information of the user equipment includes azimuth information of the user equipment.
- the feature information of the user equipment further includes identifier information, and the RRU identifies the user equipment under the beam by using the identifier information.
- the identification information (Teg) of the terminal may include an International Mobile Equipment Identity (IMEI) of the terminal.
- IMEI International Mobile Equipment Identity
- the terminal is equipped with a Subscriber Identification Module (SIM) and a global subscriber identity card (Universal)
- SIM Subscriber Identification Module
- eSIM embedded SIM
- eUICC embedded UICC
- MSISDN Mobile Station International Subscriber Directory Number
- step S220 the RRU performs angular spectrum estimation on each beam to determine the angular spectrum information of each beam.
- the method may further include the step of: the RRU extracting feature information according to the signal received from the terminal.
- the RRU first synthesizes an analog vertical beam based on the signal received from the terminal, and then processes the analog vertical beam using an Analog-to-Digital Converter (ADC) to obtain a digital vertical beam (including all horizontal antenna digitization of the RRU).
- ADC Analog-to-Digital Converter
- the digital vertical beam is processed by an intermediate frequency preprocessing algorithm such as Digital DownConverter (DDC), and the digital vertical beam is separated into n carriers and m antenna data streams, wherein each carrier corresponds to m Antenna data stream.
- DDC Digital DownConverter
- the RRU extracts feature information from multiple carriers according to the special slot position corresponding to the RACH channel, such as the location of a Physical Random Access Channel (PRACH). For another example, the RRU smoothes the signal a plurality of times based on the autocorrelation matrix of the signal received from the terminal to combine the information in the signal and extract the feature information based on the smoothed signal.
- PRACH Physical Random Access Channel
- step S220 the method may include: the RRU aggregates all antenna data streams corresponding to each carrier, and estimates signal parameters by Bartlett, Capon, Multiple Signal Classification (MUSIC), and rotation invariant techniques (Estimating Signal Parameters)
- At least one radar angle estimation algorithm in via Rotational Invariance Technique, ESPRIT performs angular spectrum estimation for each carrier, determines angular spectrum information of each carrier, and further determines angular spectrum information of each beam.
- the method further includes: the RRU intercepting data from the indicated location uploaded by the Building Base Band Unit (BBU).
- BBU Building Base Band Unit
- the method further includes: the RRU intercepting data from all antenna data streams corresponding to each carrier according to the indicated location uploaded by the BBU, and using each of the carriers according to the intercepted data (eg, signal pilot information). Perform angular spectrum estimation to determine the angular spectrum information of each beam. For example, as shown in FIG.
- channel 1_carrier 1 PATH1_CARR1
- channel 2_carrier 1 PATH2_CARR1
- channel n_carrier 1 PATHn_CARR1
- UpPTS Uplink Pilot Time slot
- the sampling position may be the 30th to 45th UpPTSs.
- the angular spectrum information of each beam includes angle information and energy information for each beam.
- angle letter Information includes vertical angle information, horizontal angle information and energy information.
- Step S230 the RRU sends the angular spectrum information of each beam to the BBU.
- the RRU sends the angular spectrum information to a Common Public Radio Interface (CPRI), and then the CPRI transmits the received angular spectrum information to the BBU.
- CPRI Common Public Radio Interface
- the RRU transmits the angular spectrum control information to the BBU according to a predetermined angular word control word format.
- the predetermined angle spectrum control word format is as shown in FIG. 5, and the control word includes a “radio remote unit identification field (Sector_RRU_ID)” for indicating whether to report data in the control word, for example, the field. If it is 1, the data in the control word is reported. When the field is 0, it is not reported.
- Step S240 The BBU determines, according to the angular spectrum information of each beam, a beam weight used for beamforming when the RRU sends data to the user equipment.
- the BBU sorts the multiple beams according to the energy information in the angular spectrum information of each beam.
- the two beams with the largest energy are selected for combining to generate beam weights; or at least one beam of different energy is combined (eg, directly superimposed) to generate beam weights.
- the beam weight is used for beamforming when the RRU sends data to the user equipment.
- the data in Table 2 is derived from: the angular spectrum spread characteristic of the user effective data stream arriving at the base station antenna according to the real scenario, and the fast tracking of the user beam by using the method of the embodiment of the present invention under different SNRs.
- the final solution error vector magnitude (Error Vector Magnitude, EVM) is compared with the EVM degradation caused by the prior art beam scanning scheme without timely tracking of the upper beam variation. It can be seen from the data in Table 2 that the error rate is reduced by 1/3 to 1/2 by using the scheme of the embodiment of the present invention compared with the beam scanning scheme. Therefore, in the scenario that the terminal needs to perform fast switching, such as high-speed motion, rotation, indoor shifting, or occlusion, the embodiment of the present invention can reduce the error rate and effectively improve the stability and reliability of the beam real-time tracking.
- the RRU performs angular spectrum estimation on the horizontal incoming wave angle in a fixed vertical orientation, and obtains angular spectrum information including angle information and energy information.
- the RRU sends the spectrum information to the BBU, so that the BBU determines the beam weight used for beamforming when the RRU sends data to the user equipment according to the angular spectrum information.
- the BBU can use the beam energy sorting information to decide how to use the angle spectrum.
- the process of accelerating the beam tracking is estimated by the angle spectrum estimation, and the user can track the user in real time by the method provided by the embodiment of the present invention, whether the terminal is in the process of high-speed movement or the terminal is rotated due to the rotation of the terminal and the channel is suddenly received in the middle of the channel.
- the beam sets the optimal beam weight in real time to achieve the user's optimal experience.
- FIG. 6 is a schematic diagram of communication of another beam tracking method according to an embodiment of the present invention.
- the embodiment of the present invention can be used in the case where the antenna of the base station adopts the Analog Beam Forming (ABF) technology, wherein the front stage of the ABF is analog beamforming for vertical dimension scanning, and the latter stage is digital beamforming, and The difference in DHBF is that the intermediate level of ABF is analog beamforming for horizontal dimension scanning.
- the method may include steps S610-S640:
- Step S610 the RRU scans beams from different directions, wherein each beam carries feature information of the user equipment.
- step S610a is further included: determining a beam sent by the base station by constructing an orthogonal codebook.
- the base station has m antenna sub-arrays, and each sub-array has N antennas.
- the method for constructing the orthogonal codebook is:
- the rand(1,N) function is used to generate a random sequence rc of length N, Amp is a fixed factor, and fun(rc, N) indicates that the rc sequence passes different powers, and L and p respectively represent presets.
- the power value, s is the original codebook.
- the original codebook s is shifted to obtain the N codebooks, and the N codebooks are orthogonal to each other.
- step S610 includes: the base station performs beam scanning on the vertical and horizontal directions of the airspace, and the RRU receives the feature information from the terminal.
- the base station has m antenna sub-arrays, each sub-array has N antennas, and the beam generated by the base station has m pointing intervals.
- the spatial domain is scanned 3m to 4m times (each scan is performed according to the setting of a certain codebook), and the scan code is m sets of the same orthogonal codebook, corresponding to m subarrays respectively. That is, each subarray is scanned with the same law (eg, the same codebook weight).
- each set of codebooks has a capacity of N. Since the original codebook s is shifted to obtain the N codebooks, and N>>4m, 3m to 4m can be taken out of the N orthogonal codebooks for fast scanning.
- the feature information of the user includes the identifier information, and the RRU identifies the user equipment under the beam by using the identifier information.
- the identification information (Teg) of the terminal may include an International Mobile Equipment Identity (IMEI) of the terminal.
- IMEI International Mobile Equipment Identity
- the identification information of the terminal may include a Mobile Station International Subscriber Directory Number (MSISDN) written in the cards.
- MSISDN Mobile Station International Subscriber Directory Number
- step S620 the RRU performs angular spectrum estimation on each beam to determine the angular spectrum information of each beam.
- step S620 the method may include: the RRU summarizes the feature information obtained by the beam scanning, and The weight of the 4m scan is combined with the eigenvector of the matrix decomposition to obtain the final angular spectrum information.
- the angular spectrum information includes an angle spectrum.
- Step S630 the RRU sends the angular spectrum information of each beam to the BBU.
- the RRU sends the angular spectrum information to a Common Public Radio Interface (CPRI), and then the CPRI transmits the received angular spectrum information to the BBU.
- CPRI Common Public Radio Interface
- Step S640 the BBU determines, according to the angular spectrum information of each beam, a beam weight used for beamforming when the RRU sends data to the user equipment.
- the BBU uses the baseband algorithm to allocate effective weights according to the angular path of the air interface surface according to the angle spectrum.
- the effective weight is used for beamforming when the RRU sends data to the user equipment.
- the base station can obtain effective information for controlling the subframe without requiring large-scale scanning.
- the RRU constructs a special codebook, and performs a small beam scanning according to the method, and uses the angular spectrum estimation algorithm to calculate the data obtained by the beam scanning, and obtains the angle information and the energy.
- the angular spectrum information of the information The RRU sends the spectrum information to the BBU, so that the BBU determines the beam weight used for beamforming when the RRU sends data to the user equipment according to the angular spectrum information.
- the BBU can use the beam energy sorting information to decide how to use the angle spectrum.
- the process of accelerating the beam tracking is estimated by the angle spectrum estimation, and the user can track the user in real time by the method provided by the embodiment of the present invention, whether the terminal is in the process of high-speed movement or the terminal is rotated due to the rotation of the terminal and the channel is suddenly received in the middle of the channel.
- the beam sets the optimal beam weight in real time to achieve the user's optimal experience.
- the beam tracking method according to an embodiment of the present invention is described in detail above with reference to FIGS. 1 through 6, and the RRU and BBU according to an embodiment of the present invention are described in detail below with reference to FIGS. 7 and 8.
- FIG. 7 is a schematic structural diagram of an RRU according to an embodiment of the present invention.
- the RRU 700 includes components such as a memory 701, a processor 702, and a communication interface 703.
- the memory 701 can be used to store program code and data of the RRU.
- the processor 702 can be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and a field programmable gate array. (Field Programmable Gate Array, FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
- the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
- the communication interface is a collective name and can include one or Multiple interfaces. Those skilled in the art will appreciate that the RRU structure illustrated in FIG. 7 does not constitute a definition of an RRU, and may include more or fewer components than those illustrated, or some components may be combined, or different component arrangements.
- the RRU can also include a bus 704.
- the communication interface 703, the processor 702, and the memory 701 may be connected to each other through a bus 704.
- the bus 704 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (abbreviated).
- PCI Peripheral Component Interconnect
- abbreviated Extended Industry Standard Architecture
- the bus 704 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 7, but it does not mean that there is only one bus or one type of bus.
- a memory 701 is configured to store program instructions
- a processor 702 is configured to perform, according to the program instructions stored in the memory 701, the communication interface 703 to scan beams from different directions, where each beam carries
- the feature information of the user equipment the feature information includes azimuth information
- the angular spectrum estimation is performed on each beam according to the feature information, and the angular spectrum information of each beam is determined
- the angular spectrum information of each beam is sent to the BBU through the communication interface 703,
- the BBU determines, according to the angular spectrum information of each beam, a beam weight used for beamforming when the RRU sends data to the user equipment.
- the processor 702 is specifically configured to scan a beam from a horizontal orientation through the communication interface 703 in a preset vertical orientation.
- the processor 702 is specifically configured to scan beams from different orientations by using a set of codebooks, wherein each set of codebooks in the m sets of codebooks has a capacity of N, and the m sets of codebooks correspond to m antenna subarrays.
- Each of the m antenna sub-arrays includes N antennas, and N and m are natural numbers, respectively.
- the processor 702 is specifically configured to perform angular spectrum estimation on each beam by using Bartlett, Capon, multiple signal classification MUSIC, and at least one radar angle estimation algorithm by using a rotation invariant technique estimation signal parameter ESPRIT.
- the angular spectrum information of each beam is specifically configured to perform angular spectrum estimation on each beam by using Bartlett, Capon, multiple signal classification MUSIC, and at least one radar angle estimation algorithm by using a rotation invariant technique estimation signal parameter ESPRIT.
- the angular spectrum information of each beam is specifically configured to perform angular spectrum estimation on each beam by using Bartlett, Capon, multiple signal classification MUSIC, and at least one radar angle estimation algorithm by using a rotation invariant technique estimation signal parameter ESPRIT.
- N code words included in each set of codebooks in the m sets of codebooks are obtained by the following formula:
- rand(1,N) function is used to generate a random sequence rc of length N
- Amp is a fixed factor
- fun(rc, N) means that the rc sequence passes different powers
- L and p respectively represent preset powers
- the value, s is the original codebook
- the original codebook s is shifted to obtain N codebooks, wherein the N codebooks are orthogonal to each other.
- the processor 702 is further configured to send the angular spectrum information of each beam to the baseband processing unit BBU by using the angular spectrum control information, where the angular spectrum control information includes at least one of angle information of the beam and energy information of the beam. item.
- the RRU performs angular spectrum estimation on the horizontal incoming wave angle in a fixed vertical orientation to obtain angular spectrum information including angle information and energy information.
- the RRU sends the spectrum information to the BBU, so that the BBU determines the beam weight used for beamforming when the RRU sends data to the user equipment according to the angular spectrum information.
- the ABF framework by constructing a special codebook, a small amount of beam scanning is performed according to this, and the angular spectrum estimation algorithm is used to calculate the data acquired by the beam scanning, and the angular spectrum information including the angle information and the energy information is obtained.
- the corner spectrum information is sent to the BBU, so that the BBU determines the beam weight used for beamforming when the RRU sends data to the user equipment according to the angular spectrum information.
- the process of accelerating the beam tracking by the angle spectrum estimation, whether the terminal is in the high-speed moving process or the terminal is rotated due to the rotation of the terminal, causing the occlusion to be suddenly received in the middle of the channel, and the real-time tracking user beam can be realized by the RRU provided by the embodiment of the present invention.
- the optimal beam weight is set in real time to achieve the user's optimal experience.
- FIG. 8 is a schematic structural diagram of a BBU according to an embodiment of the present invention.
- the BBU 800 includes components such as a memory 801, a processor 802, and a communication interface 803.
- the memory 801 can be used to store program codes and data of the BBU.
- the processor 802 can be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and a field programmable gate array. (Field Programmable Gate Array, FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
- the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
- the communication interface is a generic term and can include one or more interfaces. It will be understood by those skilled in the art that the BBU structure illustrated in FIG. 8 does not constitute a limitation of the BBU, and may include more or less components than those illustrated, or a combination of certain components, or different component arrangements.
- the BBU can also include a bus 804.
- the communication interface 803, the processor 802, and the memory 801 may be connected to each other through a bus 804.
- the bus 804 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (abbreviated).
- PCI Peripheral Component Interconnect
- abbreviated Extended Industry Standard Architecture
- the bus 804 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 8, but it does not mean that there is only one bus or one. Type of bus.
- a memory 801 is configured to store program instructions.
- the processor 802 is configured to: according to the program instructions stored in the memory 801, instruct the communication interface 803 to receive a corner of a different beam sent by the radio remote unit RRU. Spectral information; determining, according to the angular spectrum information of each beam, a beam weight used for beamforming when the RRU transmits data to the user equipment.
- the processor is further configured to sort different beams according to energy information of each beam, generate beam weights according to two path beams with the largest energy, or combine at least one path beam of different energy to generate a beam. Weight.
- the BBU provided by the embodiment of the present invention receives the angular spectrum information of different beams sent by the radio remote unit RRU, and determines the beamforming used by the RRU to transmit data to the user equipment according to the angular spectrum information of each beam. Beam weight. And the BBU can use the beam energy ordering information to decide how to use the angle spectrum.
- the process of accelerating the beam tracking by the angle spectrum estimation, whether the terminal is in the high-speed moving process or the terminal is rotated due to the rotation of the terminal, causing the channel to suddenly receive the occlusion in the middle of the channel, the real-time tracking user beam can be realized by the BBU provided by the embodiment of the present invention.
- the optimal beam weight is set in real time to achieve the user's optimal experience.
- the embodiment of the invention further provides a base station.
- the base station may include the RRU and the BBU in the foregoing embodiment, and may be used to implement the beam tracking method in the foregoing embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
本发明实施例提供一种波束跟踪方法、RRU、BBU和基站。该方法包括:射频拉远单元RRU扫描来自不同方位的波束,其中,每个波束承载用户设备的特征信息,特征信息包括方位角信息;RRU根据特征信息对每个波束进行角谱估计,确定每个波束的角谱信息和能量信息;RRU将每个波束的角谱信息和能量信息发送给基带处理单元BBU,以使BBU根据每个波束的角谱信息和能量信息确定RRU向用户设备发送数据时进行波束赋形所用的波束权值。RRU利用角谱估计获取波束的角度信息和能量信息,并将这些信息发送至BBU,以使BBU根据角谱信息确定RRU向用户设备发送数据时进行波束赋形所用的波束权值,从而实现对用户波束的实时追踪。
Description
本发明涉及高频无线通信领域,尤其涉及一种波束跟踪方法RRU、BBU和基站。
随着第五代移动通信技术(the 5th Generation mobile communication technology,5G)的发展,数据的传输需求大幅增加,用于传输数据的天线数量随之大幅增加,基于大规模天线阵列的波束赋形和波束跟踪成为了业界研究的热点。其中,波束赋形(Beam Forming)是一种基于天线阵列的信号预处理技术,既可以用于信号发射端,也可以用于信号接收端。波束赋形技术通过调整天线阵列中每个阵元的加权系数,使得某些角度的信号获得相长干涉,而另一些角度的信号获得相消干涉,从而补偿无线传播过程中由空间损耗、多径效应等因素引入的信号衰落与失真,降低干扰。波束跟踪(Beam Tracking)是根据天线阵列根据接收到的发射端(如手机等终端设备)的波束,对天线阵列发送至发射端的波束进行动态调整(如对波束赋形的参数进行动态调整)的技术。
现有技术中,波束扫描是进行波束追踪常用的方法。在毫米波的大规模收发系统里面,移动端微小的变化(如旋转,变换位置,室内移动,瞬间高速移动,信号被突然遮挡等)都会破坏已建立的波束链接。如果在波束扫描过程中不能实时的找到有效的替换波束,则此时用户感知会受到较大影响。此外,波束扫描的码本库随天线数量增长,即扫描时间也会随着天线数量而成倍增长,就越不利于波束的实时跟踪。
发明内容
本发明实施例提供了一种波束跟踪方法、RRU、BBU和基站,以解决现有技术中无法对波束进行实时跟踪的问题。
第一方面,本发明实施例提供了一种波束跟踪方法。该方法包括:射频拉远单元RRU扫描来自不同方位的波束,其中,每个波束承载用户设备的特征信息,所述特征信息包括方位角信息;所述RRU根据所述特征信息对所述每个波束进行角谱估计,确定每个波束的角谱信息和能量信息;所述RRU将每个波束的角谱信息和能量信息发送给基带处理单
元BBU,以使所述BBU根据所述每个波束的角谱信息和能量信息确定所述RRU向所述用户设备发送数据时进行波束赋形所用的波束权值。
本发明实施例提供的波束跟踪方法中,RRU利用角谱估计获取波束的角度信息和能量信息,并将这些信息发送至BBU,以使BBU根据角谱信息确定RRU向用户设备发送数据时进行波束赋形所用的波束权值,从而实现对用户波束的实时追踪。
在一个可能的实施例中,所述RRU扫描来自不同方位的波束,包括:所述RRU在预设垂直方位,扫描来自水平方位的波束。
在一个可能的实施例中,所述RRU扫描来自不同方位的波束,包括:所述RRU通过m套码本,扫描来自不同方位的波束,其中,所述m套码本中每套码本的容量为N,所述m套码本对应m个天线子阵,所述m个天线子阵中每个天线子阵包括N个天线,所述N、m分别为自然数。
在一个可能的实施例中,所述RRU对所述每个波束进行角谱估计,确定每个波束的角谱信息和能量信息,包括:所述RRU通过Bartlett、Capon、多重信号分类MUSIC以及借助旋转不变技术估计信号参数ESPRIT中的至少一种雷达角估计算法,对所述每个波束进行角谱估计,确定每个波束的角谱信息和能量信息。
在一个可能的实施例中,所述m套码本中的每套码本包括的N个码字通过以下公式得到:
rc=Amp·rand(1,N),
s=e-jπ·fun(rc,N),
其中,rand(1,N)函数用于产生长度为N的随机序列rc,Amp为固定因子,表示所述rc序列经过不同的乘方,L和p分别表示预设的乘方数值(L,L-1,…,p),s为原始码本;
所述原始码本s经过移位得到所述N个的码本,其中,所述N个码本相互正交。
在一个可能的实施例中,所述RRU将每个波束的角谱信息通过角谱控制信息发送给基带处理单元BBU,所述角谱控制信息中包含波束的角度信息和波束的能量信息中的至少一项。
第二方面,本发明实施例提供了一种波束跟踪方法。该方法包括:基带处理单元BBU接收射频拉远单元RRU发送发送的不同波束的角谱信息和能量信息;所述BBU根据每个波
束的角谱信息和能量信息确定所述RRU向所述用户设备发送数据时进行波束赋形所用的波束权值。
在一个可能的实施例中,所述BBU根据每个波束的能量信息将所述不同的波束进行排序,根据能量最大的两条径波束生成所述波束权值,或者将不同能量的至少一条径波束合并来生成所述波束权值。
第三方面,本发明实施例提供了一种射频拉远单元RRU。所述RRU可以实现上述第一至第一和第二方面的波束跟踪方法中RRU所执行的功能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个上述功能相应的模块。
所述RRU包括:存储器、处理器和通信接口。所述存储器,用于存储程序指令;所述处理器,用于根据所述存储器中存储的程序指令执行以下操作:通过所述通信接口扫描来自不同方位的波束,其中,每个波束承载用户设备的特征信息,所述特征信息包括方位角信息;根据所述特征信息对所述每个波束进行角谱估计,确定每个波束的角谱信息;将每个波束的角谱信息通过所述通信接口发送给所述BBU,以使所述BBU根据所述每个波束的角谱信息确定所述RRU向所述用户设备发送数据时进行波束赋形所用的波束权值。
在一个可能的设计中,所述处理器,具体用于在预设垂直方位,通过所述通信接口扫描来自水平方位的波束。
在一个可能的设计中,所述处理器,具体用于通过m套码本,扫描来自不同方位的波束,其中,所述m套码本中每套码本的容量为N,所述m套码本对应m个天线子阵,所述m个天线子阵中每个天线子阵包括N个天线,所述N、m分别为自然数。
在一个可能的设计中,所述处理器,具体用于通过Bartlett、Capon、多重信号分类MUSIC以及借助旋转不变技术估计信号参数ESPRIT中的至少一种雷达角估计算法,对所述每个波束进行角谱估计,确定每个波束的角谱信息。
在一个可能的设计中,所述m套码本中的每套码本包括的N个码字通过以下公式得到:
rc=Amp·rand(1,N),
s=e-jπ·fun(rc,N),
其中,rand(1,N)函数用于产生长度为N的随机序列rc,Amp为固定因子,fun(rc,N)表示所述rc序列经过不同的乘方,L和p分别表示预设的乘方数值,s为原始码本;
所述原始码本s经过移位得到所述N个的码本,其中,所述N个码本相互正交。
在一个可能的设计中,所述处理器,还用于将每个波束的角谱信息通过角谱控制信息发送给基带处理单元BBU,所述角谱控制信息中包含波束的角度信息和波束的能量信息中的至少一项。
第四方面,本发明实施例提供了一种基带处理单元BBU。所述BBU可以实现上述第一至第一和第二方面的波束跟踪方法中BBU所执行的功能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个上述功能相应的模块。
所述BBU包括:存储器、处理器和通信接口;所述存储器,用于存储程序指令;所述处理器,用于根据所述存储器中存储的程序指令执行以下操作:通过所述通信接口接收射频拉远单元RRU发送发送的不同波束的角谱信息;根据每个波束的角谱信息确定所述RRU向所述用户设备发送数据时进行波束赋形所用的波束权值。
在一个可能的设计中,所述处理器,还用于根据每个波束的能量信息将所述不同的波束进行排序,根据能量最大的两条径波束生成所述波束权值,或者将不同能量的至少一条径波束合并来生成所述波束权值。
第五方面,本发明实施例提供了一种基站。该基站可以包括上述第三方面的RRU和第四方面的BBU,且该基站可以用于实现上述第一方面和第二方面的波束跟踪方法。
本发明实施例提供的波束跟踪方法、RRU、BBU和基站,在DHFB构架下,RRU在某一固定垂直方位上,实时对水平来波角进行角谱估计,得到包括角度信息和能量信息的角谱信息。RRU将角谱信息发送给BBU,以使BBU根据角谱信息确定RRU向用户设备发送数据时进行波束赋形所用的波束权值。在ABF构架下,RRU通过构造特殊码本,据此进行微量的波束扫描,采用角谱估计算法对波束扫描获取的数据进行计算,得到包括角度信息和能量信息的角谱信息。RRU将角谱信息发送给BBU,以使BBU根据角谱信息确定RRU向用户设备发送数据时进行波束赋形所用的波束权值。其中,BBU可以利用波束能量排序信息来决策角度谱的使用方式。此方法通过角谱估计加速波束跟踪的过程,无论终端处在高速移动过程中,还是终端因旋转,在室内移动导致信道中途突然收到遮挡,都可通过本发明实施例提供的方法实时追踪用户波束,实时设置最优波束权值来达到用户最优体验。
图1为本发明实施例提供的通信系统架构示意图;
图2为本发明实施例提供的一种波束追踪方法的通信示意图;
图3为本发明实施例提供的基站在垂直维度的区间划分图;
图4为本发明实施例提供的RRU采样位置示意图;
图5为本发明实施例提供的角谱控制字格式示意图;
图6为本发明实施例提供的另一种波束追踪方法的通信示意图;
图7为本发明实施例提供的一种RRU的结构示意图;
图8为本发明实施例提供的一种BBU的结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
本发明实施例提供的波束追踪方法应用于高频无线通信场景的蜂窝通信网络中。本发明描述的技术可以适用于长期演进(Long Term Evolution,LTE)系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统。此外,还可以适用于使用LTE系统后续的演进系统,如第五代5G系统或新空口(new radio,NR)系统等。
本发明实施例所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备(Wearable Device,WD)、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端(terminal),终端设备(terminal equipment)等等。
本发明实施例所涉及到的基站(Base Station,BS)是一种部署在无线接入网中用以为终端提供无线通信功能的网络设备。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第五代5G或NR网络中,称为新空口基站(New Radio NodeB,NR-NB)等等。为方便描述,本发明实施例中为上述终端提供无线通信功能的网络设备可以统称为基站。
图1为本发明实施例提供的通信系统架构示意图。如图1所示,该通信系统包括至少一个基站10和至少一个终端11。基站10通过波束赋形技术,调整该基站的天线阵列中每个阵元的加权系数产生具有指向性的波束。当终端11位于位置A时,该终端与基站
11之间通过波束12建立通信链路。在终端11由位置A移动至位置B的过程中,终端11为基站10提供波束追踪所需要的信息,以使基站10能够对指向终端11的波束进行动态调整。当终端11位于位置B时,该终端与基站11之间通过波束13建立通信链路。需要说明的是,本发明实施例中可以有多个终端和多个基站,为了表述方便,图1中仅示出以一个终端和一个基站。
下面针对本发明实施例中用到的主要网元进行详细介绍:
终端11用于通过搜索基站发出的参考信息(如同步信号,或导频信号),确定可用波束,并将选择结果反馈给基站。同时,如果在终端侧部署了多个天线,则在终端侧也可以使用波束形成的收发技术形成多个发送接收波束。
基站10用于在下行方向上通过形成窄波束扩大覆盖范围,在上行方向上也可以通过不同波束接收不同方向的信号。该基站10可以支持在任一时刻使用两个或两个以上波束进行数据的发送和接收。
图2为本发明实施例提供的一种波束追踪方法的通信示意图。本发明实施例可以用于基站的天线采用数字混合波束成形(Digital Hybrid BeamForming,DHBF)技术的情况,其中,DHBF的前级是用于垂直维度扫描的模拟波束成形,中间一级是用于水平维度扫描的数字波束成形,后级为数字波束成形。如图2所示,该方法可以包括步骤S210-S240:
步骤S210,射频拉远单元(Radio Remote Unit,RRU)扫描来自不同方位的波束,其中,每个波束承载用户设备的特征信息。
示例性的,步骤S210可以包括:基站将其覆盖的终端在垂直维度上分为若干个区间,例如,如图3所示,基站将其覆盖的终端在垂直维度上分为3个区间。通过时分方式依次服务这些不同区间的用户,当波束指向某个区间时,该区间的终端会在随机接入信道(Random AccessChannel,RACH)向基站发送信号,该信号中携带终端的特征信息。需要说明的是,要保证此时每个UE上发给基站的都是信号都是相互正交的,以区分用户,也就是说,如果每个UE发给基站的信号不是正交的,则无法对用户进行区分。
示例性的,用户设备的特征信息包括用户设备的方位角信息。
示例性的,用户设备的特征信息还包括标识信息,RRU通过该标识信息识别波束下的用户设备。例如,当终端为移动设备时,终端的标识信息(Teg)可以包括终端的国际移动设备身份码(International Mobile Equipment Identity,IMEI)。当终端上安装有客户识别模块(Subscriber Identification Module,SIM)、全球用户识别卡(Universal
Subscriber Identity Module,USIM)、通用集成电路卡(Universal Integrated Circuit Card,UICC)、嵌入式SIM(eSIM)卡或嵌入式UICC(eUICC)卡等时,终端的标识信息可以包括这些卡中写入的移动台国际用户地址号码(Mobile Station International Subscriber Directory Number,MSISDN)。需要说明的是,终端的标识信息可以唯一标识该终端。
步骤S220,RRU对每个波束进行角谱估计,确定每个波束的角谱信息。
示例性的,在步骤S220之前,还可以包括步骤:RRU根据从终端接收的信号,提取特征信息。例如,RRU先根据从终端接收的信号合成模拟垂直波束,然后利用模数转换器(Analog-to-Digital Converter,ADC)对模拟垂直波束进行处理,得到数字垂直波束(包括RRU的所有水平天线数字化后的信号),再使用数字下变频(Digital DownConverter,DDC)等中频预处理算法对数字垂直波束进行处理,将数字垂直波束分离为n个载波,m个天线数据流,其中每个载波对应m个天线数据流。RRU根据RACH信道对应的特殊时隙位置,如物理随机接入信道(Physical Random Access Channel,PRACH)的位置,分别从多个载波中提取特征信息。又例如,RRU根据从终端接收的信号的自相关矩阵,对该信号进行多次平滑,以对该信号中的信息进行合并,并根据平滑后的信号提取特征信息。
示例性的,步骤S220,可以包括:RRU将每个载波对应的所有天线数据流汇总,通过Bartlett、Capon、多重信号分类(Multiple Signal Classification,MUSIC)以及旋转不变技术估计信号参数(Estimating Signal Parameters via Rotational Invariance Technique,ESPRIT)中的至少一种雷达角估计算法,对每个载波进行角谱估计,确定每个载波的角谱信息,并进一步确定每个波束的角谱信息。
示例性的,在步骤S220之前,还可以包括:RRU从基带处理单元(Building Base band Unit,BBU)上传的指示位置处截取数据。在步骤S220中,还可以包括:RRU根据BBU上传的指示位置,从每个载波对应的所有的天线数据流中截取数据,并根据所截取的数据(如,信号导频信息)对每个载波进行角谱估计,确定每个波束的角谱信息。例如,如图4所示,对于每一个载波的每一个天线数据流,即,通道1_载波1(PATH1_CARR1),通道2_载波1(PATH2_CARR1),通道n_载波1(PATHn_CARR1),…,通道n_载波m(PATHn_CARRm),包括上行(Upload,UL)数据(UL1和UL2)和下行(Download)数据。RRU从UL1的PRACH中的上行导频时隙(Uplink Pilot Time slot,UpPTS)中截取数据。如,UL1的PRACH中包括60个UpPTS,那么采样位置可以为其中的第30至第45个UpPTS。
示例性的,每个波束的角谱信息包括每个波束的角度信息和能量信息。例如,角度信
息包括垂直角度的信息,水平角度的信息和能量信息。
步骤S230,RRU将每个波束的角谱信息发送给BBU。
示例性的,RRU将角谱信息发送给通用公共无线电接口(Common Public Radio Interface,CPRI),然后CPRI将接收到的角谱信息发送给BBU。
示例性的,RRU根据预定的角谱字控制字格式,将角谱控制信息传输给BBU。在一个例子中,预定的角度谱控制字格式如图5所示,该控制字包括“射频拉远单元标识字段(Sector_RRU_ID)”,用于表示是否上报本控制字中的数据,例如,该字段为1时,上报本控制字中的数据,该字段为0时,不上报。还包括“此时段信噪比(SIGNAL-NOISE RATIO,SNR)”、“本次可采集长度上限”、“传输时间间隔(Transmission Time Interval,TTI)的帧号(TTI_ID)”、“极化号(Polarized_ID)”(如,为0时表示水平,为1时表示垂直)、“载波号(Carrier_ID)”和“来波方向的身份号(Ray_ID)”。其中,来波方向的身份号包括水平角度和对应的能量信息。需要说明的是,“角谱控制信息”也可以采用其他名称,本发明实施例对此不作限定。
步骤S240,BBU根据每个波束的角谱信息确定RRU向所述用户设备发送数据时进行波束赋形所用的波束权值。
示例性的,BBU根据每个波束的角谱信息中的能量信息,对多个波束进行排序。选取能量最大的两条波束进行合并,以生成波束权值;或者将不同能量的至少一个波束合并(如,直接叠加)来生成波束权值。该波束权值用于RRU向用户设备发送数据时进行波束赋形。
下面分别通过仿真评估实验和在实际场景中采用本发明实施方法得到的数据,对本发明实施例的有益效果进行进一步说明。如表1所示,在低SNR(=13),以及天线校正存在一定误差(幅度有1db误差,相位有±5度的误差),载波级处理速率(即,能承载载波的最小工作速率)(Rate=1.25BW),多径间隔(即,两条径的时延差)较小,即多径(1,2)=7.5ns,多径(2,3)=18ns,多径(4,5)=35ns,的恶劣场景下,进行仿真评估,从表中数据可以看出,通过仿真得到的角度值和能量值预先设定的角度值和能量值相比,角度值和能量值只在能量最低的两条径出现误差。但角度的误差小于预知波束码本(即,预存的各个角度的码本)的间距(如,1度),能量误差不影响排序。
表1
波束1 | 波束2 | 波束3 | 波束4 | 波束5 | 波束6 | |
设定角度值 | -65.2 | -50.3 | -10.2 | 40.1 | 54.23 | 70.32 |
设定能量值 | -10.0357 | -2.36898 | -6.28717 | -9.22996 | -13.7784 | -16.7935 |
仿真角度值 | -63.6015 | -50.8816 | -10.2312 | 39.8908 | 62.4173 | 79.437 |
仿真能量值 | -8.9743 | -2.16842 | -6.35084 | -9.24468 | -10.3137 | -14.2576 |
如下表2所示,表2中的数据来源于:依据真实场景下用户有效数据流到达基站天线发生的角度谱扩展特性,以及不同SNR下,对采用本发明实施例方法快速跟踪上用户波束而最终解算出的误差向量幅度(Error VectorMagnitude,EVM),与采用现有技术中的波束扫描方案而没有及时跟踪上波束变化导致的EVM恶化进行了对比。由表2中的数据可知,与采用波束扫描方案相比,采用本发明实施例方案使误码率降低了1/3至1/2。由此可知,在终端进行高速运动、旋转、室内移位或遮挡等需要波束快速切换的场景下,本发明实施例能够降低误码率,有效提高波束实时跟踪的稳定性和可靠性。
表2
SNR=4 | SNR=15.5 | SNR=18.3 | |
角谱解算User1_evm | 30.7207% | 8.1626% | 6.3001% |
角谱解算User2_evm | 40.4327% | 11.7073% | 9.2823% |
未对准波束:User1_evm | 64.3198% | 21.7685% | 17.6437% |
未对准波束:User2_evm | 74.3527% | 30.5347% | 25.5948% |
本发明实施例提供的波束追踪方法,在DHFB构架下,RRU在某一固定垂直方位上,实时对水平来波角进行角谱估计,得到包括角度信息和能量信息的角谱信息。RRU将角谱信息发送给BBU,以使BBU根据角谱信息确定RRU向用户设备发送数据时进行波束赋形所用的波束权值。其中,BBU可以利用波束能量排序信息来决策角度谱的使用方式。此方法通过角谱估计加速波束跟踪的过程,无论终端处在高速移动过程中,还是终端因旋转,在室内移动导致信道中途突然收到遮挡,都可通过本发明实施例提供的方法实时追踪用户波束,实时设置最优波束权值来达到用户最优体验。
图6为本发明实施例提供的另一种波束追踪方法的通信示意图。本发明实施例可以用于基站的天线采用模拟波束成形(Analog Beam Forming,ABF)技术的情况,其中,ABF的前级是用于垂直维度扫描的模拟波束成形,后级为数字波束成形,与DHBF不同的是,ABF的中间一级是用于水平维度扫描的模拟波束成形。如图6所示,该方法可以包括步骤S610-S640:
步骤S610,RRU扫描来自不同方位的波束,其中,每个波束承载用户设备的特征信息。
示例性的,在步骤S610之前,还包括步骤S610a:通过构造正交码本,确定基站发出的波束。例如,基站有m个天线子阵,每个子阵有N个天线,构造正交码本的方法为:
rc=Amp·rand(1,N) (1)
s=e-jπ·fun(rc,N) (2)
其中,rand(1,N)函数用于产生长度为N的随机序列rc,Amp为固定因子,fun(rc,N)表示所述rc序列经过不同的乘方,L和p分别表示预设的乘方数值,s为原始码本。原始码本s经过移位得到所述N个的码本,且N个码本相互正交。
示例性的,步骤S610包括:基站对空域垂直向和水平向进行波束扫描,RRU从终端接受特征信息。例如,基站有m个天线子阵,每个子阵有N个天线,因基站产生的波束具有m个指向区间。考虑到高频的多径特性,对空域进行3m至4m次(每次扫描均根据某种码本的设置进行)扫描,扫描码为m套相同的正交码本,分别对应m个子阵,即每个子阵以相同的规律(如,相同的码本权值)扫描。且每套码本的容量为N。因原始码本s经过移位得到所述N个的码本,且N>>4m,所以可以在N个正交的码本中取出3m至4m个用于快速扫描。
示例性的,用户的特征信息包括标识信息,RRU通过该标识信息识别波束下的用户设备。例如,当终端为移动设备时,终端的标识信息(Teg)可以包括终端的国际移动设备身份码(International Mobile Equipment Identity,IMEI)。当终端上安装有客户识别模块(Subscriber Identification Module,SIM)、全球用户识别卡(Universal Subscriber Identity Module,USIM)、通用集成电路卡(Universal Integrated Circuit Card,UICC)、嵌入式SIM(eSIM)卡或嵌入式UICC(eUICC)卡等时,终端的标识信息可以包括这些卡中写入的移动台国际用户地址号码(Mobile Station International Subscriber Directory Number,MSISDN)。需要说明的是,终端的标识信息可以唯一标识该终端。
步骤S620,RRU对每个波束进行角谱估计,确定每个波束的角谱信息。
示例性的,步骤S620,可以包括:RRU将波束扫描得到的特征信息进行汇总,将
4m次扫描的权值与矩阵分解的特征向量合并得到最终的角谱信息。其中,角谱信息包括角度谱。
步骤S630,RRU将每个波束的角谱信息发送给BBU。
示例性的,RRU将角谱信息发送给通用公共无线电接口(Common Public Radio Interface,CPRI),然后CPRI将接收到的角谱信息发送给BBU。
步骤S640,BBU根据每个波束的角谱信息确定所述RRU向所述用户设备发送数据时进行波束赋形所用的波束权值。
示例性的,BBU根据角度谱,采用基带算法根据空口面的角度径来分配有效权值。其中,有效权值用于RRU向用户设备发送数据时进行波束赋形。采用这种方式,基站能够在无需大规模扫描的前提下,得到控制子帧的而有效信息。
本发明实施例提供的波束追踪方法,在ABF构架下,RRU通过构造特殊码本,据此进行微量的波束扫描,采用角谱估计算法对波束扫描获取的数据进行计算,得到包括角度信息和能量信息的角谱信息。RRU将角谱信息发送给BBU,以使BBU根据角谱信息确定RRU向用户设备发送数据时进行波束赋形所用的波束权值。其中,BBU可以利用波束能量排序信息来决策角度谱的使用方式。此方法通过角谱估计加速波束跟踪的过程,无论终端处在高速移动过程中,还是终端因旋转,在室内移动导致信道中途突然收到遮挡,都可通过本发明实施例提供的方法实时追踪用户波束,实时设置最优波束权值来达到用户最优体验。
上文中结合图1至图6,详细描述了根据本发明实施例的波束追踪方法,下面根据图7和图8,详细描述根据本发明实施例的RRU和BBU。
图7为本发明实施例提供的一种RRU的结构示意图。如图7所示,该RRU700包括:存储器701、处理器702和通信接口703等部件。存储器701可以用于存储RRU的程序代码和数据。处理器702可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信接口是统称,可以包括一个或
多个接口。本领域技术人员可以理解,图7示出的RRU结构并不构成对RRU的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。例如,该RRU还可以包括总线704。其中,通信接口703、处理器702以及存储器701可以通过总线704相互连接;总线704可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线704可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
如图7所示,存储器701,用于存储程序指令;处理器702,用于根据存储器701中存储的程序指令执行以下操作:指示通信接口703扫描来自不同方位的波束,其中,每个波束承载用户设备的特征信息,特征信息包括方位角信息;根据特征信息对每个波束进行角谱估计,确定每个波束的角谱信息;将每个波束的角谱信息通过通信接口703发送给BBU,以使BBU根据每个波束的角谱信息确定RRU向用户设备发送数据时进行波束赋形所用的波束权值。
示例性的,处理器702,具体用于在预设垂直方位,通过通信接口703扫描来自水平方位的波束。
示例性的,处理器702,具体用于通过m套码本,扫描来自不同方位的波束,其中,m套码本中每套码本的容量为N,m套码本对应m个天线子阵,m个天线子阵中每个天线子阵包括N个天线,N、m分别为自然数。
示例性的,处理器702,具体用于通过Bartlett、Capon、多重信号分类MUSIC以及借助旋转不变技术估计信号参数ESPRIT中的至少一种雷达角估计算法,对每个波束进行角谱估计,确定每个波束的角谱信息。
示例性的,m套码本中的每套码本包括的N个码字通过以下公式得到:
rc=Amp·rand(1,N),
s=e-jπ·fun(rc,N),
其中,rand(1,N)函数用于产生长度为N的随机序列rc,Amp为固定因子,fun(rc,N)表示rc序列经过不同的乘方,L和p分别表示预设的乘方数值,s为原始码本;
原始码本s经过移位得到N个的码本,其中,N个码本相互正交。
示例性的,处理器702,还用于将每个波束的角谱信息通过角谱控制信息发送给基带处理单元BBU,角谱控制信息中包含波束的角度信息和波束的能量信息中的至少一项。
本发明实施例提供的RRU,在DHFB构架下,RRU在某一固定垂直方位上,实时对水平来波角进行角谱估计,得到包括角度信息和能量信息的角谱信息。RRU将角谱信息发送给BBU,以使BBU根据角谱信息确定RRU向用户设备发送数据时进行波束赋形所用的波束权值。在ABF构架下,通过构造特殊码本,据此进行微量的波束扫描,采用角谱估计算法对波束扫描获取的数据进行计算,得到包括角度信息和能量信息的角谱信息。并将角谱信息发送给BBU,以使BBU根据角谱信息确定RRU向用户设备发送数据时进行波束赋形所用的波束权值。通过角谱估计加速波束跟踪的过程,无论终端处在高速移动过程中,还是终端因旋转,在室内移动导致信道中途突然收到遮挡,都可通过本发明实施例提供的RRU实现实时追踪用户波束,实时设置最优波束权值来达到用户最优体验。
图8为本发明实施例提供的一种BBU的结构示意图。如图8所示,该BBU800包括:存储器801、处理器802和通信接口803等部件。存储器801可以用于存储BBU的程序代码和数据。处理器802可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信接口是统称,可以包括一个或多个接口。本领域技术人员可以理解,图8示出的BBU结构并不构成对BBU的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。例如,该BBU还可以包括总线804。其中,通信接口803、处理器802以及存储器801可以通过总线804相互连接;总线804可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线804可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种
类型的总线。
如图8所示,存储器801,用于存储程序指令;处理器802,用于根据存储器801中存储的程序指令执行以下操作:指示通信接口803接收射频拉远单元RRU发送发送的不同波束的角谱信息;根据每个波束的角谱信息确定RRU向用户设备发送数据时进行波束赋形所用的波束权值。
示例性的,处理器,还用于根据每个波束的能量信息将不同的波束进行排序,根据能量最大的两条径波束生成波束权值,或者将不同能量的至少一条径波束合并来生成波束权值。
本发明实施例提供的BBU,接收射频拉远单元RRU发送发送的不同波束的角谱信息,根据每个波束的角谱信息确定所述RRU向所述用户设备发送数据时进行波束赋形所用的波束权值。并且BBU可以利用波束能量排序信息来决策角度谱的使用方式。通过角谱估计加速波束跟踪的过程,无论终端处在高速移动过程中,还是终端因旋转,在室内移动导致信道中途突然收到遮挡,都可通过本发明实施例提供的BBU实现实时追踪用户波束,实时设置最优波束权值来达到用户最优体验。
本发明实施例还提供一种基站。该基站可以包括上述实施例中的RRU和BBU,且可以用于实现上述实施例中的波束跟踪方法。
Claims (17)
- 一种波束跟踪方法,其特征在于,包括:射频拉远单元RRU扫描来自不同方位的波束,其中,每个波束承载用户设备的特征信息,所述特征信息包括方位角信息;所述RRU根据所述特征信息对所述每个波束进行角谱估计,确定每个波束的角谱信息;所述RRU将每个波束的角谱信息发送给基带处理单元BBU,以使所述BBU根据所述每个波束的角谱信息确定所述RRU向所述用户设备发送数据时进行波束赋形所用的波束权值。
- 根据权利要求1所述的方法,其特征在于,所述RRU扫描来自不同方位的波束,包括:所述RRU在预设垂直方位,扫描来自水平方位的波束。
- 根据权利要求1所述的方法,其特征在于,所述RRU扫描来自不同方位的波束,包括:所述RRU通过m套码本,扫描来自不同方位的波束,其中,所述m套码本中每套码本的容量为N,所述m套码本对应m个天线子阵,所述m个天线子阵中每个天线子阵包括N个天线,所述N、m分别为自然数。
- 根据权利要求1至3任一项所述的方法,其特征在于,所述RRU对所述每个波束进行角谱估计,确定每个波束的角谱信息,包括:所述RRU通过Bartlett、Capon、多重信号分类MUSIC以及借助旋转不变技术估计信号参数ESPRIT中的至少一种雷达角估计算法,对所述每个波束进行角谱估计,确定每个波束的角谱信息。
- 根据权利要求1所述的方法,其特征在于,所述RRU将每个波束的角谱信息通过角谱控制信息发送给基带处理单元BBU,所述角谱控制信息中包含波束的角度信息和波束的能量信息中的至少一项。
- 一种波束跟踪方法,其特征在于,包括:基带处理单元BBU接收射频拉远单元RRU发送发送的不同波束的角谱信息;所述BBU根据每个波束的角谱信息确定所述RRU向所述用户设备发送数据时进行波束赋形所用的波束权值。
- 根据权利要求7所述的方法,其特征在于,所述BBU根据每个波束的能量信息将所述不同的波束进行排序,根据能量最大的两条波束生成所述波束权值,或者将不同能量的至少一条波束合并来生成所述波束权值。
- 一种射频拉远单元RRU,其特征在于,所述RRU包括:存储器、处理器和通信接口;所述存储器,用于存储程序指令;所述处理器,用于根据所述存储器中存储的程序指令执行以下操作:通过所述通信接口扫描来自不同方位的波束,其中,每个波束承载用户设备的特征信息,所述特征信息包括方位角信息;根据所述特征信息对所述每个波束进行角谱估计,确定每个波束的角谱信息;将每个波束的角谱信息通过所述通信接口发送给所述BBU,以使所述BBU根据所述每个波束的角谱信息确定所述RRU向所述用户设备发送数据时进行波束赋形所用的波束权值。
- 根据权利要求9所述的RRU,其特征在于,所述处理器,具体用于在预设垂直方位,通过所述通信接口扫描来自水平方位的波束。
- 根据权利要求9所述的RRU,其特征在于,所述处理器,具体用于通过m套码本,扫描来自不同方位的波束,其中,所述m套码本中每套码本的容量为N,所述m套码本对应m个天线子阵,所述m个天线子阵中每个天线子阵包括N个天线,所述N、m分别为自然数。
- 根据权利要求9至11任一项所述的RRU,其特征在于,所述处理器,具体用 于通过Bartlett、Capon、多重信号分类MUSIC以及借助旋转不变技术估计信号参数ESPRIT中的至少一种雷达角估计算法,对所述每个波束进行角谱估计,确定每个波束的角谱信息。
- 根据权利要求9所述的RRU,其特征在于,所述处理器,还用于将每个波束的角谱信息通过角谱控制信息发送给基带处理单元BBU,所述角谱控制信息中包含波束的角度信息和波束的能量信息中的至少一项。
- 一种基带处理单元BBU,其特征在于,所述BBU包括:存储器、处理器和通信接口;所述存储器,用于存储程序指令;所述处理器,用于根据所述存储器中存储的程序指令执行以下操作:通过所述通信接口接收射频拉远单元RRU发送发送的不同波束的角谱信息;根据每个波束的角谱信息确定所述RRU向所述用户设备发送数据时进行波束赋形所用的波束权值。
- 根据权利要求15所述的BBU,其特征在于,所述处理器,还用于根据每个波束的能量信息将所述不同的波束进行排序,根据能量最大的两条径波束生成所述波束权值,或者将不同能量的至少一条径波束合并来生成所述波束权值。
- 一种基站,其特征在于,包括如权利要求8至13任一项所述的射频拉远单元RRU和如权利要求15或16所述的基带处理单元BBU。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/093643 WO2019014889A1 (zh) | 2017-07-20 | 2017-07-20 | 波束跟踪方法、rru、bbu和基站 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/093643 WO2019014889A1 (zh) | 2017-07-20 | 2017-07-20 | 波束跟踪方法、rru、bbu和基站 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019014889A1 true WO2019014889A1 (zh) | 2019-01-24 |
Family
ID=65016554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/093643 WO2019014889A1 (zh) | 2017-07-20 | 2017-07-20 | 波束跟踪方法、rru、bbu和基站 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019014889A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102315868A (zh) * | 2010-07-08 | 2012-01-11 | 中兴通讯股份有限公司 | 一种分布式基站的天线校正方法及系统 |
WO2016115546A1 (en) * | 2015-01-16 | 2016-07-21 | Ping Liang | Beamforming in a mu-mimo wireless communication system |
CN106330281A (zh) * | 2015-06-18 | 2017-01-11 | 华为技术有限公司 | 波束赋形方法及装置 |
-
2017
- 2017-07-20 WO PCT/CN2017/093643 patent/WO2019014889A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102315868A (zh) * | 2010-07-08 | 2012-01-11 | 中兴通讯股份有限公司 | 一种分布式基站的天线校正方法及系统 |
WO2016115546A1 (en) * | 2015-01-16 | 2016-07-21 | Ping Liang | Beamforming in a mu-mimo wireless communication system |
CN106330281A (zh) * | 2015-06-18 | 2017-01-11 | 华为技术有限公司 | 波束赋形方法及装置 |
Non-Patent Citations (2)
Title |
---|
CMCC: "CoMP Scheme and System Level Performance Evaluation for LTE-A", 3GPP TSG-RAN WG1#55 BIS, R1-090335, 16 January 2009 (2009-01-16), XP050597209 * |
ZTE ET AL.: "Further Considerations On AAS Deployment And Coexistence Scenarios", 3GPP TSG-RAN WG4 MEETING #68, R4-134238, 23 August 2013 (2013-08-23), XP050721813 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020088571A1 (zh) | 一种信息传输方法、装置和设备 | |
WO2019161733A1 (en) | A method and apparatus for adjusting a reception beam | |
EP2643988B1 (en) | Multi-layer beamforming with partial channel state information | |
EP3718235B1 (en) | Customizing transmission of a system information message | |
EP3582430A1 (en) | Configuration method and configuration device for reference signal and communication node | |
EP3360263A1 (en) | Techniques to reduce radiated power for mimo wireless systems | |
US11184055B2 (en) | MIMO transmission using fewer antennas for communication | |
WO2017167503A1 (en) | Dynamic time division duplex interference mitigation in a wireless network | |
US11075674B2 (en) | Method, system and apparatus | |
WO2014009246A1 (en) | Millimeterwave access architecture with rapid rerouting | |
WO2020164743A1 (en) | Apparatus, method and computer program for beam management | |
WO2020159597A1 (en) | Methods and apparatus for beam management for device communications | |
WO2021032300A1 (en) | Apparatus, method and computer program for determining beamforming direction | |
WO2020238922A1 (zh) | 通信方法及装置 | |
EP4329213A1 (en) | Apparatus, method, program products for maximizing desired multi-transmission point signal to inter-layer-group-interference via ue beam control | |
US11533094B2 (en) | Systems and methods for providing forced full orthogonality for beams in a MU/MIMO radio system | |
EP3314775A1 (en) | Method and device for wireless communication | |
CN110557212A (zh) | 基于扩展紧缩场测试的毫米波终端测试系统及其方法 | |
CN114465644A (zh) | 干扰规避方法、装置及系统 | |
CN110166092B (zh) | 数据端口到天线的映射向量的生成方法及装置 | |
WO2019014889A1 (zh) | 波束跟踪方法、rru、bbu和基站 | |
CN112994766A (zh) | 一种波束传输方法及相关设备 | |
CN117221051A (zh) | 通信方法及通信装置 | |
WO2019109484A1 (zh) | 一种通信的方法及装置 | |
WO2019109483A1 (zh) | 一种通信的方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17918167 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17918167 Country of ref document: EP Kind code of ref document: A1 |