WO2021244226A1 - 无线通信装置、天线的检测方法和用户设备 - Google Patents

无线通信装置、天线的检测方法和用户设备 Download PDF

Info

Publication number
WO2021244226A1
WO2021244226A1 PCT/CN2021/092636 CN2021092636W WO2021244226A1 WO 2021244226 A1 WO2021244226 A1 WO 2021244226A1 CN 2021092636 W CN2021092636 W CN 2021092636W WO 2021244226 A1 WO2021244226 A1 WO 2021244226A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
radio frequency
signal
detection
antenna
Prior art date
Application number
PCT/CN2021/092636
Other languages
English (en)
French (fr)
Inventor
罗迤宝
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/906,934 priority Critical patent/US12088364B2/en
Priority to EP21818089.1A priority patent/EP4117198A4/en
Publication of WO2021244226A1 publication Critical patent/WO2021244226A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0085Monitoring; Testing using service channels; using auxiliary channels using test signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/103Reflected power, e.g. return loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/16Test equipment located at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a wireless communication device, an antenna detection method, and user equipment.
  • Wireless communication devices are widely used in various fields.
  • a typical wireless communication system may adopt a multiple access technology capable of supporting communication with multiple users by sharing available system resources (for example, bandwidth, transmission power).
  • Multiple access technologies have been adopted in various telecommunications standards to provide a common protocol that enables different wireless devices to communicate on a city, country, regional, and even global level.
  • LTE Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • NR new radio telecommunication standard
  • 5G fifth generation mobile communications technology
  • user equipment performs wireless communication through an antenna.
  • the number of channels that the user equipment can simultaneously receive radio frequency signals is greater than the number of channels that can simultaneously transmit radio frequency signals. Therefore, it is necessary to select the antenna used to transmit radio frequency signals, or when the current antenna used to transmit radio frequency signals is in poor transmission status, It is necessary to switch other antennas as the antenna for transmitting radio frequency signals.
  • An embodiment of the present disclosure proposes a wireless communication device, including: a radio frequency circuit, which includes a plurality of antennas, the plurality of antennas are used for receiving or transmitting radio frequency signals; a detection circuit, which is connected to the plurality of antennas, for sequentially Detect the multiple antennas, and send the detection signals of the multiple antennas to the analysis circuit; and the analysis circuit, which is connected to the detection circuit, is configured to determine the An antenna used to transmit radio frequency signals among multiple antennas.
  • An embodiment of the present disclosure also provides an antenna detection method, which includes: a detection circuit sequentially detects multiple antennas in a radio frequency circuit, obtains detection signals of the multiple antennas, and sends the detection signals of the multiple antennas to the analysis Circuit; and an analysis circuit, based on the detection signals of the multiple antennas, determine the antenna used to transmit the radio frequency signal among the multiple antennas.
  • the embodiment of the present disclosure also provides a user equipment including the wireless communication device according to the present disclosure.
  • Fig. 1 is a schematic structural diagram of a wireless communication device according to an embodiment of the present disclosure
  • Fig. 2 is another schematic structural diagram of a wireless communication device according to an embodiment of the present disclosure
  • Fig. 3 is another schematic structural diagram of a wireless communication device according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of a radio frequency circuit in a wireless communication device according to an embodiment of the present disclosure
  • Fig. 5 is another schematic structural diagram of a radio frequency circuit in a wireless communication device according to an embodiment of the present disclosure
  • Fig. 6 is another schematic structural diagram of a radio frequency circuit in a wireless communication device according to an embodiment of the present disclosure.
  • Fig. 7 is a flowchart of an antenna detection method according to an embodiment of the present disclosure.
  • module used to represent elements is only used to facilitate the description of the present disclosure, and has no special meaning in itself. Therefore, “module”, “part” or “unit” can be used in a mixed manner.
  • Fig. 1 is a schematic structural diagram of a wireless communication device according to an embodiment of the present disclosure.
  • a wireless communication device may include a radio frequency circuit 1, a detection circuit 2 and an analysis circuit 3.
  • the radio frequency circuit 1 may include multiple antennas (for example, the first antenna 11 to the fourth antenna 14 in FIG. 1).
  • the antenna is used to receive or transmit radio frequency signals.
  • the detection circuit 2 is connected to multiple antennas in the radio frequency circuit 1.
  • the detection circuit 2 is used to sequentially detect multiple antennas, obtain the detection signal of each antenna, and send the detection signal of each antenna to the analysis circuit 3.
  • the analysis circuit 3 is connected to the detection circuit 2.
  • the analysis circuit 3 is used to determine the antenna used to transmit the radio frequency signal (hereinafter referred to as the transmitting antenna) among the multiple antennas according to the detection signal of each antenna transmitted by the detection circuit 2.
  • a wireless communication device is provided in User Equipment (UE).
  • UE User Equipment
  • the ability of a wireless communication device to receive radio frequency signals is different from the ability to transmit radio frequency signals. That is, the number of channels that can simultaneously receive radio frequency signals is greater than the number of channels that can simultaneously transmit radio frequency signals.
  • the number of channels for receiving radio frequency signals is the same as the number of antennas in radio frequency circuit 1, while the number of channels for transmitting radio frequency signals is less than the number of antennas in radio frequency circuit 1. Therefore, when radio frequency signals are to be sent, the detection circuit 2 can detect each one in turn.
  • Antenna determine the best antenna for transmitting radio frequency signals, and then connect the channel for transmitting radio frequency signals to the antenna for transmitting radio frequency signals in different transmission time slots, and transmit the radio frequency signals through this antenna, so as to optimize the communication of wireless communication quality. If it is determined that the transmitting antenna is working in the state of transmitting radio frequency signals (ie, uplink), the detection circuit 2 can continue to detect the transmitting antenna, and transmit the detection signal of the transmitting antenna to the analysis circuit 3. If the working state of the transmitting antenna deteriorates, for example, the antenna is blocked, the detection signal obtained by the detection circuit 2 changes, so that the analysis circuit 3 can switch a new antenna as the antenna for transmitting radio frequency signals, thereby further ensuring the communication quality of wireless communication .
  • the detection circuit 2 can continue to detect the transmitting antenna, and transmit the detection signal of the transmitting antenna to the analysis circuit 3. If the working state of the transmitting antenna deteriorates, for example, the antenna is blocked, the detection signal obtained by the detection circuit 2 changes, so that the analysis circuit 3
  • the radio frequency circuit 1 can include any number of antennas, and the specific number can be designed according to needs. The following takes the radio frequency circuit 1 including four antennas (ie, the first antenna 11 to the fourth antenna 14) as an example for description. .
  • the radio frequency circuit 1 includes a plurality of antennas 11 to 14 and a front terminal circuit 01.
  • the front terminal circuit 01 is connected to a plurality of antennas 11 to 14 to receive radio frequency signals, and transmit the radio frequency signals to each antenna in turn.
  • the detection circuit 2 is connected between the front terminal circuit 01 and each antenna. When the front terminal circuit 01 turns on an antenna and sends a radio frequency signal to the antenna, the radio frequency signal will flow into the detection circuit 2 first.
  • the detection circuit 2 obtains a detection signal corresponding to the antenna according to the radio frequency signal, and sends the detection signal to the analysis circuit 3.
  • the front terminal circuit 01 turns on each antenna in turn to transmit radio frequency signals, and the detection circuit 2 can receive radio frequency signals corresponding to each antenna in turn, obtain detection signals corresponding to each antenna according to each radio frequency signal, and send each detection signal to the analysis circuit 3 .
  • the analysis circuit 3 compares each antenna according to each detection signal to determine the antenna used to transmit the radio frequency signal.
  • the detection circuit 2 may include a directional coupler 21.
  • the directional coupler 21 may include four ports, namely, a first end A, a second end B, a third end C, and a fourth end D.
  • the first end A may be the input end of the directional coupler 21
  • the second end B may be the output end of the directional coupler 21
  • the third end C may be the coupling end of the directional coupler 21
  • the fourth end D may be the directional coupling ⁇ 21 Isolated end.
  • the first terminal A to the fourth terminal D are referred to as the input terminal A, the output terminal B, the coupling terminal C, and the isolation terminal D, respectively.
  • the input terminal A of the directional coupler 21 is connected to the front terminal circuit 01, and receives the radio frequency signal transmitted by the front terminal circuit 01.
  • the output terminal B of the directional coupler 21 is connected to multiple antennas, that is, the output terminal B of the directional coupler 21 connects the multiple antennas in series.
  • the front terminal circuit 01 turns on one antenna (the antenna turned on by the front terminal circuit 01 can be referred to as the antenna under test)
  • the output B of the directional coupler 21 can be regarded as correspondingly connected to the antenna under test.
  • the coupling end C of the directional coupler 21 is connected to the analysis circuit 3.
  • the isolation terminal D of the directional coupler 21 is also connected to the analysis circuit 3.
  • the directional coupler 21 receives the radio frequency signal corresponding to each antenna through the input terminal A, and distributes the radio frequency signal into the first detection signal and the second detection signal through the coupling. And the second detection signal is the detection signal corresponding to the antenna under test.
  • the coupling terminal C outputs the first detection signal, and transmits the first detection signal to the analysis circuit 3.
  • the isolation terminal D outputs the second detection signal, and transmits the second detection signal to the analysis circuit 3.
  • the first detection signal is the incident wave U+ (the main signal of the directional coupler 21)
  • the second detection signal is the reflected wave U- (the main signal of the directional coupler 21).
  • Fig. 2 is another schematic structural diagram of a wireless communication device according to an embodiment of the present disclosure.
  • the wireless communication device may include a radio frequency circuit 1, a detection circuit 2 and an analysis circuit 3.
  • the detection circuit 2 may include a directional coupler 21 and a frequency modulation sub-circuit 22.
  • the frequency modulation sub-circuit 22 is used to modulate the frequency of the detection signal output by the directional coupler 21.
  • the input terminal A of the directional coupler 21 is connected to the front terminal circuit 01, and receives the radio frequency signal transmitted by the front terminal circuit 01.
  • the output terminal B of the directional coupler 21 is connected to multiple antennas, that is, the output terminal B of the directional coupler 21 connects the multiple antennas in series.
  • the output terminal B of the directional coupler 21 can be regarded as correspondingly connected to the antenna under test.
  • the coupling end C of the directional coupler 21 is connected to the analysis circuit 3.
  • the isolation terminal D of the directional coupler 21 is also connected to the analysis circuit 3.
  • the directional coupler 21 receives the radio frequency signal corresponding to each antenna through the input terminal A, and distributes the radio frequency signal into the first detection signal and the second detection signal through the coupling. And the second detection signal is the detection signal corresponding to the antenna under test.
  • the coupling terminal C outputs the first detection signal, and the isolation terminal D outputs the second detection signal.
  • the frequency modulation sub-circuit 22 is connected between the directional coupler 21 and the analysis circuit 3, and is used to modulate the frequency of the detection signal (ie, the first detection signal and the second detection signal).
  • the frequency of the radio frequency signal input from the front terminal circuit 01 to the directional coupler 21 is higher, so the frequency of the first detection signal and the second detection signal coupled from the directional coupler 21 are also higher.
  • the frequencies of the first detection signal and the second detection signal may exceed the frequency range that the analysis circuit 3 can handle, so the frequency range of the signal can be preset according to the processing capability of the analysis circuit 3.
  • the frequency modulation sub-circuit 22 is arranged between the directional coupler 21 and the analysis circuit 3.
  • the first detection signal and the second detection signal output by the directional coupler 21 can be frequency-modulated by the frequency modulation sub-circuit 22 and then input to the analysis circuit 3 to ensure The frequencies of the frequency-modulated first detection signal and the second detection signal are within a preset frequency range.
  • the first detection signal is the incident wave U+ (the main signal of the directional coupler 21)
  • the second detection signal is the reflected wave U- (the main signal of the directional coupler 21).
  • the incident wave U+ and the reflected wave U- are input to the analysis circuit 3 after frequency modulation by the frequency modulation sub-circuit 22.
  • the analysis circuit 3 can further calculate parameters such as impedance matching and insertion loss corresponding to each antenna according to the reflection coefficient ⁇ , so as to compare each antenna according to the calculated parameters to determine the parameters used for transmission. The best antenna for RF signals.
  • the frequency modulation sub-circuit 22 may include a power divider 221, a first mixer 222 and a second mixer 223.
  • the power divider 221 may include three ports. The first port of the power divider 221 is connected to the first mixer 222, the second port of the power divider 221 is connected to the second mixer 223, and the third port of the power divider 221 is connected to the front terminal circuit 01.
  • the power divider 221 may receive the radio frequency signal transmitted by the front terminal circuit 01 through its third port. It should be noted that the radio frequency signal received by the power divider 221 and the radio frequency signal received by the directional coupler 21 are the same radio frequency signal.
  • the power divider 221 divides the radio frequency signal into a first FM signal and a second FM signal, and outputs the first FM signal through the first port to transmit the first FM signal to the first mixer 222, and output it through the second port
  • the second frequency modulation signal is used to transmit the second frequency modulation signal to the second mixer 223.
  • the first mixer 222 may include three ports.
  • the first port of the first mixer 222 is connected to the coupling terminal C of the directional coupler 21 to receive the first detection signal output by the coupling terminal C of the directional coupler 21; the second port of the first mixer 222 is connected to the power distribution
  • the first port of the power divider 221 receives the first FM signal output by the first port of the power divider 221; the third port of the first mixer 222 is connected to the analysis circuit 3.
  • the first mixer 222 mixes the first detection signal with the first FM signal (that is, reduces the frequency of the first detection signal), and then inputs the mixed signal to the analysis circuit 3 through its third port to ensure the first The frequency of a detection signal is within a preset frequency range.
  • the second mixer 223 may include three ports.
  • the first port of the second mixer 223 is connected to the isolation terminal D of the directional coupler 21 to receive the second detection signal output by the isolation terminal D of the directional coupler 21; the second port of the second mixer 223 is connected to the power distribution
  • the second port of the power divider 221 is used to receive the second FM signal output by the second port of the power divider 221; the third port of the second mixer 223 is connected to the analysis circuit 3.
  • the second mixer 223 mixes the second detection signal with the second FM signal (that is, reduces the frequency of the second detection signal), and then inputs the mixed signal to the analysis circuit 3 through its third port to ensure the first 2.
  • the frequency of the detection signal is within the preset frequency range.
  • the power divider 221 in the frequency modulation sub-circuit 22 may be a half power divider, that is, the power divider 221 can equally divide the received radio frequency signal into two signals (ie, the first frequency modulation signal). And the second FM signal), that is, the power of the first FM signal and the second FM signal are equal.
  • Fig. 3 is another schematic structural diagram of a wireless communication device according to an embodiment of the present disclosure.
  • the detection circuit 2 may further include a first filter 23 and a second filter 24.
  • the first filter 23 may be connected between the coupling terminal C of the directional coupler 21 and the analysis circuit 3, and filter the first detection signal output by the coupling terminal C of the directional coupler 21 to ensure that the analysis circuit 3 receives The stability of the first detection signal.
  • the second filter 24 may be connected between the isolation terminal D of the directional coupler 21 and the analysis circuit 3, and filter the second detection signal output by the isolation terminal D of the directional coupler 21 to ensure that the analysis circuit 3 receives The stability of the second detection signal.
  • the detection circuit 2 may include a directional coupler 21 and a frequency modulation sub-circuit 22, and the frequency modulation sub-circuit 22 may include a power divider 221, a first mixer 222 and a second mixer 223.
  • the first filter 23 may be connected between the first mixer 222 and the analysis circuit 3, and filter the frequency-modulated first detection signal.
  • the second filter 24 may be connected between the second mixer 223 and the analysis circuit 3, and filter the frequency-modulated second detection signal.
  • the first filter 23 and the second filter 24 may be low-pass filters. Since the frequency of the frequency-modulated first detection signal and the second detection signal are low, they can be processed by a low-pass filter. Filtering.
  • the directional coupler 21 may be replaced by the success rate distributor.
  • the radio frequency circuit 1 only includes one antenna, the antenna can be connected to the power splitter; if the radio frequency circuit 1 includes multiple antennas, the multiple antennas can be connected in series to the matching end of the power splitter.
  • the power divider can divide the radio frequency signal into the incident wave U+ and the reflected wave U-, and input the incident wave U+ and the reflected wave U- to the analysis circuit 3, so that the analysis circuit 3 calculates the reflection coefficient of the antenna under test.
  • the radio frequency circuit 1 may be a sounding reference signal (Sounding Reference Signal, SRS) radio frequency circuit.
  • SRS is a reference signal sent by the UE in the uplink direction.
  • the base station eg, gNB or eNB
  • the base station can use SRS to estimate uplink channel quality, and the base station can use this information to schedule uplink frequency resources for the UE.
  • the UE may transmit SRS via different antennas and using one or more transmission chains of the UE.
  • the radio frequency circuit 1 that transmits or receives radio frequency signals can be used as a radio frequency circuit that transmits SRS, that is, wireless communication is performed through the SRS radio frequency circuit.
  • the front terminal circuit 01 includes at least one transmitter (PA) and a plurality of switch sub-circuits.
  • the multiple switch sub-circuits are respectively connected to the corresponding antennas, and the PA sequentially selects each antenna through the switch sub-circuits to send radio frequency signals to the corresponding antennas.
  • FIGS. 4 to 6 taking the radio frequency circuit 1 including four antennas 11 to 14 as an example, FIGS. 4 to 6 respectively show the radio frequency circuit 1 having one PA, two PAs, and four PAs.
  • the front terminal circuit 01 includes a PA 021, and is configured with a first switch sub-circuit 011 to allow the radio frequency signal sent by the PA 021 to be coupled to one of the first antenna 11 to the fourth antenna 14.
  • the second antenna 12 is connected to the second switch sub-circuit 012
  • the third antenna 13 is connected to the third switch sub-circuit 013
  • the fourth antenna 14 is connected to the fourth switch sub-circuit 014.
  • the first switch sub-circuit 011 is a main switch.
  • the first switch sub-circuit 011 corresponding to the first antenna 11 is also connected to a first low noise amplifier (LNA) 031, and the second switch sub-circuit 012 corresponding to the second switch 12 is also connected to a second LNA 032, and
  • the third switch sub-circuit 013 corresponding to the third switch 13 is also connected to a third LNA 033, and the fourth switch sub-circuit 014 corresponding to the fourth switch 14 is also connected to a fourth LNA 034.
  • each antenna couples the received signal to the corresponding LNA.
  • the first antenna 11 may be designated for both the uplink and the downlink (hereinafter referred to as a transmit (Tx) antenna), and may be adjacent to the PA 021 for amplifying the transmission signal.
  • Tx transmit
  • the second antenna 12, the third antenna 13, and the fourth antenna 14 may be receive (Rx) antennas designated for downlink communication, and may not be adjacent to any PA (for example, PA 021).
  • PA 021 can be in the second switch sub-circuit 012 corresponding to the second antenna 12, the third switch sub-circuit 013 corresponding to the third antenna 13, and the fourth switch sub-circuit 014 corresponding to the fourth antenna 14. Any one of is turned on to use the second antenna 12, the third antenna 13, and the fourth antenna 14 to transmit radio frequency signals (for example, SRS).
  • the detection circuit 2 can detect the first antenna 11 to the fourth antenna 14 in sequence, and input the detection signals corresponding to the four antennas to the analysis circuit 3.
  • the analysis circuit 3 respectively determines the reflection coefficients of the first antenna 11 to the fourth antenna 14 according to the respective detection signals, and compares the four antennas according to the reflection coefficients to determine the best antenna for transmitting radio frequency signals. Subsequently, the signal used to select the transmitting antenna is passed to a switch (not shown in the figure) used to gate the antenna.
  • the switch for gating the antenna can gating the corresponding antenna according to the signal input from the analysis circuit 3 to couple the output of the PA 021 to the selected antenna, so that the selected antenna can be used as an antenna for transmitting radio frequency signals.
  • the radio frequency circuit 1 in this embodiment can allow one of the four antennas 11 to 14 to transmit radio frequency signals at any point in time.
  • the front terminal circuit 01 in the radio frequency circuit 1 includes two PAs, that is, a first PA 021 and a second PA 022.
  • the first antenna 11 and the third antenna 13 may be Tx antennas for transmitting radio frequency signals
  • the second antenna 12 and the fourth antenna 14 may be Rx antennas for receiving radio frequency signals.
  • the first PA 021 may be used for SRS transmission using the first antenna 11 or the second antenna 12
  • the second PA 022 may be used for SRS transmission using the third antenna 13 or the fourth antenna 14.
  • the first PA 021 may be coupled to the first switch sub-circuit 011 to allow the output of the first PA 021 to be coupled to one of the first antenna 11 and the second antenna 12 through the first switch sub-circuit 011.
  • the first switch sub-circuit 011 and the second switch sub-circuit 012 may be configured to connect the first antenna 11 and the second antenna 12 to the first LNA 031 and the third LNA 033 during reception, respectively.
  • the radio frequency circuit 1 in this embodiment can allow two of the four antennas 11 to 14 to transmit radio frequency signals at any point in time.
  • the front terminal circuit 011 in the radio frequency circuit 1 includes a first PA 021, a second PA 022, a third PA 023, and a fourth PA 024, and each PA passes through the first switch sub-circuits 011,
  • the second switch sub-circuit 012, the third switch sub-circuit 013, and the fourth switch sub-circuit 014 are coupled to the first antenna 11, the second antenna 12, the third antenna 13, and the fourth antenna 14.
  • the first switch sub-circuit 011, the second switch sub-circuit 012, the third switch sub-circuit 013, and the fourth switch sub-circuit 014 can be configured to connect the first antenna 11 and the second antenna 12 during reception.
  • the third antenna 13 and the fourth antenna 14 are connected to the first LNA 031, the second LNA 032, the third LNA 033, and the fourth LNA 034, respectively.
  • the radio frequency circuit 1 in this embodiment can allow four antennas 11 to 14 to transmit radio frequency signals at any point in time.
  • the radio frequency circuit 1 may also include more antennas. Accordingly, the front terminal circuit 011 may include more PAs and switch sub-circuits. This is only an example and does not limit the present disclosure.
  • an embodiment of the present disclosure also provides an antenna detection method, including steps S1 to S2.
  • step S1 the detection circuit sequentially detects multiple antennas in the radio frequency circuit, obtains the detection signals of the multiple antennas, and sends the detection signals of the multiple antennas to the analysis circuit.
  • the radio frequency circuit may include a front terminal circuit and multiple antennas.
  • the detection circuit can be connected between the front terminal circuit and each antenna.
  • the detection circuit receives the radio frequency signal to be transmitted by the front terminal circuit to the corresponding antenna, couples the radio frequency signal into a first detection signal (for example, incident wave U+) and a second detection signal (for example, reflected wave U-), and combines the first The detection signal and the second detection signal are transmitted to the analysis circuit.
  • a first detection signal for example, incident wave U+
  • a second detection signal for example, reflected wave U-
  • the detection circuit may sequentially detect each antenna when the radio frequency circuit transmits the SRS (that is, when the SRS is used as a reference signal for communication).
  • the detection circuit can also detect each antenna in a polling manner, that is, the detection circuit can detect each antenna in sequence at intervals of a preset period of time.
  • step S2 the analysis circuit determines the antenna used to transmit the radio frequency signal among the multiple antennas according to the detection signals of the multiple antennas.
  • an embodiment of the present disclosure also provides a user equipment, including a wireless communication device according to each embodiment of the present disclosure.
  • the wireless communication device in the user equipment can determine the antenna used to transmit the radio frequency signal among the multiple antennas through the detection circuit in the wireless communication device, thereby ensuring the communication quality of the wireless communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Transceivers (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种无线通信装置、天线的检测方法和用户设备。所述无线通信装置包括射频电路、检测电路和分析电路。射频电路包括用于接收或发送射频信号的多个天线,检测电路依次检测所述多个天线,且将所述多个天线的检测信号发送给分析电路,分析电路根据所述多个天线的检测信号,确定所述多个天线中用于发送射频信号的天线。

Description

无线通信装置、天线的检测方法和用户设备 技术领域
本公开涉及通信技术领域,具体涉及一种无线通信装置、天线的检测方法和用户设备。
背景技术
无线通信装置广泛地应用在各种领域中,典型的无线通信系统可以采用能够通过共享可用系统资源(例如,带宽、发送功率)来支持与多个用户通信的多址技术。已经在各种电信标准中采用多址技术以提供使不同无线设备能够在城市、国家、地区甚至全球等级进行通信的公共协议。多址技术的示例包括长期演进(Long Term Evolution,LTE)系统、码分多址(Code Division Multiple Access,CDMA)系统、时分多址(Time Division Multiple Access,TDMA)系统、频分多址(Frequency Division Multiple Access,FDMA)系统、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)系统、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)系统和时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统。新兴的电信标准的示例是新无线电(NR),例如,第五代移动通信技术(5 th Generation,5G)无线接入。
在相关技术中,用户设备通过天线进行无线通信。通常,用户设备可同时接收射频信号的通道数量大于可同时发送射频信号的通道数量,因此需要选择用于发送射频信号的天线,或者在当前用于发送射频信号的天线的发送状态不佳时,需要切换其他天线作为发送射频信号的天线。
发明内容
本公开实施例的提出一种无线通信装置,包括:射频电路,其包括多个天线,所述多个天线用于接收或发送射频信号;检测电路, 其连接所述多个天线,用于依次检测所述多个天线,且将所述多个天线的检测信号发送给分析电路;以及所述分析电路,其连接所述检测电路,用于根据所述多个天线的检测信号,确定所述多个天线中用于发送射频信号的天线。
本公开实施例还提供一种天线的检测方法,包括:检测电路依次检测射频电路中的多个天线,获得所述多个天线的检测信号,并将所述多个天线的检测信号发送给分析电路;以及分析电路根据所述多个天线的检测信号,确定所述多个天线中用于发送射频信号的天线。
本公开实施例还提供一种用户设备,包括根据本公开的无线通信装置。
附图说明
图1为根据本公开实施例的无线通信装置的结构示意图;
图2为根据本公开实施例的无线通信装置的另一结构示意图;
图3为根据本公开实施例的无线通信装置的另一结构示意图;
图4为根据本公开实施例的无线通信装置中的射频电路的结构示意图;
图5为根据本公开实施例的无线通信装置中的射频电路的另一结构示意图;
图6为根据本公开实施例的无线通信装置中的射频电路的另一结构示意图;以及
图7为根据本公开实施例的天线的检测方法的流程图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅是本公开的部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
附图中各部件的形状和大小不反映真实比例,目的只是为了便 于对本公开实施例的内容的理解。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等空间术语仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”等仅为了有利于本公开的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
图1为根据本公开实施例的无线通信装置的结构示意图。
如图1所示,根据本公开实施例的无线通信装置可以包括射频电路1、检测电路2和分析电路3。
射频电路1可以包括多个天线(例如,图1中第一天线11至第四天线14)。天线用于接收或发送射频信号。检测电路2连接射频电路1中的多个天线。检测电路2用于依次检测多个天线,获得各个天线的检测信号,并将各个天线的检测信号发送给分析电路3。分析电路3连接检测电路2。分析电路3用于根据检测电路2传输的各个天线的检测信号,确定多个天线中用于发送射频信号的天线(以下简称发送天线)。
用户设备(User Equipment,UE)中设置有无线通信装置。通常,无线通信装置接收射频信号的能力和发送射频信号的能力不同,也就是说,无线通信装置能够同时接收射频信号的通道数量大于能够同时发送射频信号的通道数量。通常,接收射频信号的通道数量和射 频电路1中天线的数量相同,而发送射频信号的通道数量小于射频电路1中天线的数量,因此在要发送射频信号时,可以通过检测电路2依次检测各个天线,确定出用于发送射频信号的最佳天线,之后发送射频信号的通道在不同的发送时隙连接用于发送射频信号的天线,并通过该天线发送射频信号,从而能够优化无线通信的通信质量。若确定发送天线工作在发射射频信号(即,上行链路)的状态下,检测电路2可以持续对发送天线进行检测,并将发送天线的检测信号传输给分析电路3。若发送天线的工作状态恶化,例如天线受到遮挡,则检测电路2获得的检测信号发生变化,从而分析电路3可以切换新的天线作为发送射频信号的天线,从而能够更进一步保证无线通信的通信质量。
需要说明的是,射频电路1可以包括任意数量的天线,具体的数量可以根据需要设计,以下皆以射频电路1包括四个天线(即,第一天线11至第四天线14)为例进行说明。
如图1所示,射频电路1包括多个天线11至14和前端子电路01。前端子电路01与多个天线11至14相连,接收射频信号,并依次将射频信号传输给各个天线。检测电路2连接在前端子电路01与各个天线之间。在前端子电路01导通一路天线,将射频信号发送给该天线时,射频信号会先流入检测电路2。检测电路2根据射频信号获得与该天线对应的检测信号,并将检测信号发送给分析电路3。前端子电路01依次导通各个天线传输射频信号,检测电路2可以依次接收与各个天线对应的射频信号,根据各个射频信号获得与各个天线对应的检测信号,并将各个检测信号发送给分析电路3。分析电路3根据各个检测信号,对各个天线进行比较后确定用于发送射频信号的天线。
可选地,如图1所示,检测电路2可以包括定向耦合器21。定向耦合器21可以包括四个端口,即,第一端A、第二端B、第三端C和第四端D。第一端A可以为定向耦合器21的输入端,第二端B可以为定向耦合器21的输出端,第三端C可以为定向耦合器21的耦合端,第四端D可以为定向耦合器21的隔离端。以下称第一端A至第 四端D分别为输入端A、输出端B、耦合端C和隔离端D。定向耦合器21的输入端A连接前端子电路01,并且接收前端子电路01传输的射频信号。定向耦合器21的输出端B连接至多个天线,即,定向耦合器21的输出端B将多个天线串接。在前端子电路01导通一路天线(被前端子电路01导通的天线可称为被测天线)时,定向耦合器21的输出端B可被视作对应地连接至被测天线。定向耦合器21的耦合端C连接分析电路3。定向耦合器21的隔离端D也连接分析电路3。在前端子电路01依次导通各个天线时,定向耦合器21通过输入端A接收与各个天线对应的射频信号,将射频信号经过耦合分配为第一检测信号和第二检测信号,第一检测信号和第二检测信号即为与被测天线对应的检测信号。耦合端C输出第一检测信号,并将第一检测信号传入分析电路3。隔离端D输出第二检测信号,并将第二检测信号传入分析电路3。根据定向耦合器21的原理可知,第一检测信号为入射波U+(定向耦合器21的主干信号),第二检测信号为反射波U-(定向耦合器21的支干信号)。从而分析电路3可以根据定向耦合器21传入的入射波U+和反射波U-的比例系数确定被测天线的反射系数Γ(Γ=U-/U+)。在计算了各个天线的反射系数Γ后,分析电路3可以根据反射系数Γ进一步计算与各个天线对应的阻抗匹配和插入损耗等参数,从而根据计算得到的参数对各个天线进行比较以确定用于发送射频信号的最佳天线。
图2为根据本公开实施例的无线通信装置的另一结构示意图。
如图2所示,根据本公开实施例的无线通信装置可以包括射频电路1、检测电路2和分析电路3。与图1所示的实施例不同,检测电路2可以包括定向耦合器21和调频子电路22。调频子电路22用于调制定向耦合器21输出的检测信号的频率。
定向耦合器21的输入端A连接前端子电路01,并且接收前端子电路01传输的射频信号。定向耦合器21的输出端B连接至多个天线,即,定向耦合器21的输出端B将多个天线串接。在前端子电路01导通被测天线时,定向耦合器21的输出端B可被视作对应地连接至被测天线。定向耦合器21的耦合端C连接分析电路3。定向耦合器 21的隔离端D也连接分析电路3。在前端子电路01依次导通各个天线时,定向耦合器21通过输入端A接收与各个天线对应的射频信号,将射频信号经过耦合分配为第一检测信号和第二检测信号,第一检测信号和第二检测信号即为与被测天线对应的检测信号。耦合端C输出第一检测信号,隔离端D输出第二检测信号。调频子电路22连接在定向耦合器21和分析电路3之间,并且用于调制检测信号(即,第一检测信号和第二检测信号)的频率。在一些实施例中,从前端子电路01输入到定向耦合器21的射频信号的频率较高,因此从定向耦合器21耦合出的第一检测信号和第二检测信号的频率也较高。第一检测信号和第二检测信号的频率可能超过分析电路3能够处理的频率范围,因此可以根据分析电路3的处理能力预设信号的频率范围。将调频子电路22设置在定向耦合器21和分析电路3之间,定向耦合器21输出的第一检测信号和第二检测信号可以经过调频子电路22的调频后再输入分析电路3,以保证经过调频的第一检测信号和第二检测信号的频率在预设的频率范围内。根据定向耦合器21的原理可知,第一检测信号为入射波U+(定向耦合器21的主干信号),第二检测信号为反射波U-(定向耦合器21的支干信号)。入射波U+和反射波U-在经过调频子电路22的调频后被输入到分析电路3。分析电路3可以根据经过调频的入射波U+和反射波U-的比例系数确定被测天线的反射系数Γ(Γ=U-/U+)。在计算了各个天线的反射系数Γ后,分析电路3可以根据反射系数Γ进一步计算与各个天线对应的阻抗匹配和插入损耗等参数,从而根据计算得到的参数对各个天线进行比较以确定用于发送射频信号的最佳天线。
可选地,如图2所示,调频子电路22可以包括功率分配器221、第一混频器222和第二混频器223。
功率分配器221可以包括三个端口。功率分配器221的第一端口连接第一混频器222,功率分配器221的第二端口连接第二混频器223,并且功率分配器221的第三端口连接前端子电路01。功率分配器221可以通过其第三端口接收前端子电路01传输的射频信号。需要说明的是,功率分配器221接收的射频信号与定向耦合器21接收 的射频信号为同一射频信号。功率分配器221将射频信号分为第一调频信号和第二调频信号,并通过第一端口输出第一调频信号,以将第一调频信号传输给第一混频器222,通过第二端口输出第二调频信号,以将第二调频信号传输给第二混频器223。
第一混频器222可以包括三个端口。第一混频器222的第一端口连接定向耦合器21的耦合端C,以接收定向耦合器21的耦合端C输出的第一检测信号;第一混频器222的第二端口连接功率分配器221的第一端口,以接收功率分配器221的第一端口输出的第一调频信号;第一混频器222的第三端口连接分析电路3。第一混频器222将第一检测信号和第一调频信号混频(即,降低第一检测信号的频率)后通过其第三端口将混频后的信号输入到分析电路3,以保证第一检测信号的频率在预设的频率范围内。
第二混频器223可以包括三个端口。第二混频器223的第一端口连接定向耦合器21的隔离端D,以接收定向耦合器21的隔离端D输出的第二检测信号;第二混频器223的第二端口连接功率分配器221的第二端口,以接收功率分配器221的第二端口输出的第二调频信号;第二混频器223的第三端口连接分析电路3。第二混频器223将第二检测信号和第二调频信号混频(即,降低第二检测信号的频率)后通过其第三端口将混频后的信号输入到分析电路3,以保证第二检测信号的频率在预设的频率范围内。
可选地,调频子电路22中的功率分配器221可以为二分之一功率分配器,即,功率分配器221能够将接收到的射频信号均分为两路信号(即,第一调频信号和第二调频信号),也就是说,第一调频信号和第二调频信号的功率相等。
图3为根据本公开实施例的无线通信装置的另一结构示意图。
可选地,如图3所示,在一些实施例中,检测电路2还可以包括第一滤波器23和第二滤波器24。第一滤波器23可以连接在定向耦合器21的耦合端C和分析电路3之间,并对定向耦合器21的耦合端C输出的第一检测信号进行滤波,以保证分析电路3接收到的第一检测信号的稳定性。第二滤波器24可以连接在定向耦合器21的隔离 端D和分析电路3之间,并对定向耦合器21的隔离端D输出的第二检测信号进行滤波,以保证分析电路3接收到的第二检测信号的稳定性。
参见图3,检测电路2可以包括定向耦合器21和调频子电路22,并且调频子电路22可以包括功率分配器221、第一混频器222和第二混频器223。第一滤波器23可以连接在第一混频器222和分析电路3之间,并对经过调频的第一检测信号进行滤波。第二滤波器24可以连接在第二混频器223和分析电路3之间,并对经过调频的第二检测信号进行滤波。
可选地,第一滤波器23和第二滤波器24可以为低通滤波器,由于经过调频的第一检测信号和第二检测信号的频率较低,因此可以使用低通滤波器对其进行滤波。
需要说明的是,在根据本公开实施例的无线通信装置中,例如在图1至图3所描述的各个实施例中,定向耦合器21可以被替换成功率分配器。若射频电路1仅包括一个天线,则可以将天线连接功率分配器;若射频电路1包括多个天线,则可以将多个天线串接在功率分配器的匹配端。功率分配器可以将射频信号分配为入射波U+和反射波U-,并将入射波U+和反射波U-输入到分析电路3,以使分析电路3计算被测天线的反射系数。
可选地,在本公开实施例中,射频电路1可以为探测参考信号(Sounding Reference Signal,SRS)的射频电路。SRS是由UE在上行链路方向上发送的参考信号。基站(例如,gNB或eNB)可以使用SRS来估计上行链路信道质量,并且基站可以使用该信息来调度针对UE的上行链路频率资源。UE可以经由不同的天线并使用UE的一个或多个发射链来发射SRS。在本实施例中,发送或接收射频信号的射频电路1可以用作发送SRS的射频电路,即,通过SRS射频电路进行无线通信。
可选地,前端子电路01包括至少一个发送机(PA)和多个开关子电路。多个开关子电路分别连接对应的天线,PA通过各个开关子电路依次选通各个天线,以将射频信号发送给对应的天线。
具体地,参考图4至图6,以射频电路1包括四个天线11至14为例,图4至图6分别示出了具有一个PA、两个PA和四个PA的射频电路1。
如图4所示,前端子电路01包括一个PA 021,并且配置有第一开关子电路011以允许将PA 021发送的射频信号耦合到第一天线11至第四天线14中的一个天线。第二天线12连接第二开关子电路012,第三天线13连接第三开关子电路013,并且第四天线14连接第四开关子电路014。第一开关子电路011为主开关。此外,与第一天线11对应的第一开关子电路011还连接有第一低噪声放大器(LNA)031,与第二开关12对应的第二开关子电路012还连接有第二LNA 032,与第三开关13对应的第三开关子电路013还连接有第三LNA 033,并且与第四开关14对应的第四开关子电路014还连接有第四LNA 034。在接收期间,各个天线将接收到的信号耦合至对应的LNA上。第一天线11可以被指定用于上行链路和下行链路(下文中称为发射(Tx)天线)二者,并且可以邻近用于放大传输信号的PA 021。第二天线12、第三天线13和第四天线14可以是被指定用于下行链路通信的接收(Rx)天线,并且可以不与任何PA(例如,PA 021)邻近。如图所示,PA 021可以和与第二天线12对应的第二开关子电路012、与第三天线13对应的第三开关子电路013和第四天线14对应的第四开关子电路014中的任一个导通,以将第二天线12、第三天线13和第四天线14用于发送射频信号(例如,SRS)。在PA 021要传输射频信号至天线时,检测电路2可以依次检测第一天线11至第四天线14,并将分别与四个天线对应的检测信号输入到分析电路3。分析电路3根据各个检测信号分别确定第一天线11至第四天线14的反射系数,根据反射系数对四个天线进行比较,以确定用于发送射频信号的最佳天线。随后,将用于选择发射天线的信号传入用于选通天线的开关(图中未示出)。用于选通天线的开关可以根据从分析电路3传入的信号选通对应的天线,以将PA 021的输出耦合至被选天线,使被选天线作为发送射频信号的天线。如图4所示,本实施例中的射频电路1可以允许在任何时间点,由四个天线11至14中的一个天线发送射频 信号。
可选地,参见图5,在本实施例中,射频电路1中的前端子电路01包括两个PA,即,第一PA 021和第二PA 022。在这种情况下,第一天线11、第三天线13可以是用于发送射频信号的Tx天线,第二天线12和第四天线14可以是用于接收射频信号的Rx天线。第一PA 021可以用于使用第一天线11或第二天线12的SRS传输,第二PA 022可以用于使用第三天线13或第四天线14的SRS传输。例如,第一PA 021可以耦合到第一开关子电路011以允许第一PA 021的输出通过第一开关子电路011耦合到第一天线11和第二天线12中的一个天线。第一开关子电路011和第二开关子电路012可以被配置为在接收期间将第一天线11和第二天线12分别连接到第一LNA 031和第三LNA 033。如图5所示,本实施例中的射频电路1可以允许在任何时间点,由四个天线11至14中的两个天线发送射频信号。
可选地,参见图6,射频电路1中的前端子电路011包括第一PA 021、第二PA 022、第三PA 023和第四PA 024,每个PA分别通过第一开关子电路011、第二开关子电路012、第三开关子电路013和第四开关子电路014耦合到第一天线11、第二天线12、第三天线13和第四天线14。如图6所示,第一开关子电路011、第二开关子电路012、第三开关子电路013、第四开关子电路014可以被配置为在接收期间将第一天线11、第二天线12、第三天线13和第四天线14分别连接到第一LNA 031、第二LNA 032、第三LNA 033和第四LNA 034。如图6所示,本实施例中的射频电路1可以允许在任何时间点,由四个天线11至14发送射频信号。
需要说明的是,射频电路1中还可以包括更多个天线,相应地,前端子电路011中可以包括更多个PA和开关子电路,在此仅为示例,不对本公开构成限制。
相应地,如图7所示,本公开实施例还提供一种天线的检测方法,包括步骤S1至S2。
在步骤S1、检测电路依次检测射频电路中的多个天线,获得所述多个天线的检测信号,并将所述多个天线的检测信号发送给分析电 路。
具体地,射频电路可以包括前端子电路和多个天线。检测电路可以连接在前端子电路和各个天线之间。检测电路接收前端子电路要传输给对应的天线的射频信号,将射频信号耦合为第一检测信号(例如,入射波U+)和第二检测信号(例如,反射波U-),并将第一检测信号和第二检测信号传输给分析电路。
可选地,以射频电路为SRS的射频电路为例,检测电路可以在射频电路发送SRS时(即,用SRS作为参考信号通信时),依次检测各个天线。检测电路也可以采用轮询的方式检测各个天线,即,检测电路可以间隔预设时长依次检测各个天线。
在步骤S2、分析电路根据所述多个天线的检测信号,确定所述多个天线中用于发送射频信号的天线。
具体地,接收到检测电路传输的各个天线的第一检测信号(例如,入射波U+)和第二检测信号(例如,反射波U-)后,分析电路可以根据入射波U+和反射波U-确定各个天线的反射系数Γ(Γ=U-/U+),再根据反射系数Γ计算各个天线的阻抗匹配和插入损耗,从而根据阻抗匹配和插入损耗对各个天线进行比较,以确定多个天线中用于发送射频信号的天线。
相应地,本公开实施例还提供一种用户设备,包括根据本公开各实施例的无线通信装置。用户设备中的无线通信装置能够通过无线通信装置中的检测电路确定多个天线中用于发送射频信号的天线,从而能够保证无线通信的通信质量。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (13)

  1. 一种无线通信装置,包括:
    射频电路,其包括多个天线,所述多个天线用于接收或发送射频信号;
    检测电路,其连接所述多个天线,用于依次检测所述多个天线,且将所述多个天线的检测信号发送给分析电路;以及
    所述分析电路,其连接所述检测电路,用于根据所述多个天线的检测信号,确定所述多个天线中用于发送射频信号的天线。
  2. 根据权利要求1所述的无线通信装置,其中,所述射频电路还包括前端子电路,其与所述多个天线相连,所述前端子电路接收所述射频信号,并依次将所述射频信号传输给所述多个天线,并且
    所述检测电路连接在所述前端子电路与所述多个天线之间,所述检测电路接收所述前端子电路传输给对应的天线的射频信号,并根据所述射频信号获得所述对应的天线的检测信号。
  3. 根据权利要求2所述的无线通信装置,其中,所述检测电路包括定向耦合器,
    所述定向耦合器包括第一端、第二端、第三端和第四端,所述定向耦合器的第一端连接所述前端子电路,以接收所述射频信号,所述定向耦合器的第二端连接所述多个天线,所述定向耦合器的第三端和第四端分别连接所述分析电路,并且
    其中,所述检测信号包括第一检测信号和第二检测信号,所述定向耦合器的第三端输出所述第一检测信号,所述定向耦合器的第四端输出所述第二检测信号,所述分析电路根据所述第一检测信号和所述第二检测信号确定所述对应的天线的反射系数,并根据所述反射系数确定用于发送射频信号的天线。
  4. 根据权利要求2所述的无线通信装置,其中,所述检测电路 包括定向耦合器和调频子电路,
    所述定向耦合器包括第一端、第二端、第三端和第四端,所述定向耦合器的第一端连接所述前端子电路,以接收所述射频信号,所述定向耦合器的第二端连接所述多个天线,所述定向耦合器的第三端和所述第四端分别连接所述分析电路,
    其中,所述检测信号包括第一检测信号和第二检测信号,所述定向耦合器的第三端输出所述第一检测信号,所述定向耦合器的第四端输出所述第二检测信号,所述分析电路根据所述第一检测信号和所述第二检测信号确定所述对应的天线的反射系数,并根据所述反射系数确定用于发送射频信号的天线,
    所述调频子电路连接在所述定向耦合器和所述分析电路之间,所述调频子电路用于调制所述第一检测信号和所述第二检测信号的频率,以保证所述第一检测信号和所述第二检测信号的频率在预设的频率范围内。
  5. 根据权利要求4所述的无线通信装置,其中,所述调频子电路包括功率分配器、第一混频器和第二混频器,
    所述功率分配器连接所述第一混频器和所述第二混频器,且所述功率分配器接收所述射频信号,将所述射频信号分为第一调频信号和第二调频信号,并将所述第一调频信号传输给所述第一混频器,将所述第二调频信号传输给所述第二混频器,
    所述第一混频器连接所述定向耦合器的第三端,所述第一混频器接收所述第一检测信号,将所述第一检测信号和所述第一调频信号混频,并将混频后的第一检测信号输入到所述分析电路;
    所述第二混频器连接所述定向耦合器的第四端,所述第二混频器接收所述第二检测信号,将所述第二检测信号和所述第二调频信号混频,并将混频后的第二检测信号输入到所述分析电路。
  6. 根据权利要求5所述的无线通信装置,其中,所述功率分配器为二分之一功率分配器。
  7. 根据权利要求3或4任一所述的无线通信装置,其中,所述检测电路还包括第一滤波器和第二滤波器,
    所述第一滤波器连接在所述定向耦合器的第三端和所述分析电路之间,并且所述第二滤波器连接在所述定向耦合器的第四端和所述分析电路之间。
  8. 根据权利要求2所述的无线通信装置,其中,所述前端子电路包括至少一个发送机和多个开关子电路,所述多个开关子电路分别连接所述多个天线,所述发送机通过所述多个开关子电路依次选通各个天线,以将所述射频信号发送给所述对应的天线。
  9. 根据权利要求1所述的无线通信装置,其中,所述射频电路为探测参考信号的射频电路。
  10. 一种天线的检测方法,包括:
    检测电路依次检测射频电路中的多个天线,获得所述多个天线的检测信号,并将所述多个天线的检测信号发送给分析电路;以及
    分析电路根据所述多个天线的检测信号,确定所述多个天线中用于发送射频信号的天线。
  11. 根据权利要求10所述的方法,其中,分析电路根据所述多个天线的检测信号,确定所述多个天线中用于发送射频信号的天线的步骤包括:
    分析电路根据所述多个天线的检测信号,计算与各个天线对应的反射系数,并根据所述反射系数确定所述多个天线中用于发送射频信号的天线。
  12. 根据权利要求10所述的方法,其中,所述射频电路为探测参考信号的射频电路;检测电路在射频电路发送探测参考信号时,依 次检测所述多个天线;
    或者,
    检测电路间隔预设时长依次检测所述多个天线。
  13. 一种用户设备,包括根据权利要求1-9中任一项所述的无线通信装置。
PCT/CN2021/092636 2020-06-03 2021-05-10 无线通信装置、天线的检测方法和用户设备 WO2021244226A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/906,934 US12088364B2 (en) 2020-06-03 2021-05-10 Wireless communication apparatus, antenna detection method and user device
EP21818089.1A EP4117198A4 (en) 2020-06-03 2021-05-10 WIRELESS COMMUNICATION APPARATUS, ANTENNA DETECTION METHOD AND USER DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010494637.6 2020-06-03
CN202010494637.6A CN113765558A (zh) 2020-06-03 2020-06-03 一种无线通信装置、天线的检测方法和用户设备

Publications (1)

Publication Number Publication Date
WO2021244226A1 true WO2021244226A1 (zh) 2021-12-09

Family

ID=78783175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092636 WO2021244226A1 (zh) 2020-06-03 2021-05-10 无线通信装置、天线的检测方法和用户设备

Country Status (4)

Country Link
US (1) US12088364B2 (zh)
EP (1) EP4117198A4 (zh)
CN (1) CN113765558A (zh)
WO (1) WO2021244226A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024178652A1 (en) * 2023-03-01 2024-09-06 Goertek Inc. Wireless electronic device having rf front-end circuitry

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707266A (zh) * 2012-05-24 2012-10-03 北京理工大学 一种具有抗干扰和多目标识别功能的雷达及其检测方法
WO2013131230A1 (zh) * 2012-03-05 2013-09-12 华为终端有限公司 天线切换电路和无线终端设备
CN103986806A (zh) * 2014-05-29 2014-08-13 宇龙计算机通信科技(深圳)有限公司 数据传输装置和移动终端
US20160191085A1 (en) * 2014-08-13 2016-06-30 Skyworks Solutions, Inc. Transmit front end module for dual antenna applications
CN109039397A (zh) * 2018-08-01 2018-12-18 维沃移动通信有限公司 一种移动终端的天线电路、控制方法及装置
US20190182779A1 (en) * 2016-07-07 2019-06-13 Zte Corporation Active antenna system, mobile terminal, and configuration method of antenna system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185372A (ja) * 2000-12-15 2002-06-28 Matsushita Electric Ind Co Ltd アンテナ切換機能を有する携帯無線装置
JP2010206357A (ja) 2009-03-02 2010-09-16 Fujitsu Ltd 無線送受信装置
US9113367B2 (en) * 2011-04-29 2015-08-18 Optis Cellular Technology, Llc Method, apparatus and system for determining voltage standing wave ratio in a downlink period of radio communication
US9070968B2 (en) * 2012-04-02 2015-06-30 Apple Inc. Methods for characterizing tunable radio-frequency elements in wireless electronic devices
US9404965B2 (en) * 2013-12-20 2016-08-02 Apple Inc. Radio-frequency test system with tunable test antenna circuitry
US9572130B2 (en) * 2014-12-18 2017-02-14 Intel IP Corporation User equipment and method for transmitting a data stream to an evolved node B
US10209284B2 (en) * 2017-06-29 2019-02-19 Keysight Technologies, Inc. Advanced antenna performance testing
JP7242878B2 (ja) * 2019-02-19 2023-03-20 シーメンス インダストリー ソフトウェア インコーポレイテッド 無線機器検査装置
TWI777086B (zh) * 2019-09-02 2022-09-11 瑞軒科技股份有限公司 無線傳輸效能測試系統及方法
CN113300786B (zh) * 2020-02-06 2023-08-01 安立股份有限公司 试验装置以及试验方法
US20230117207A1 (en) * 2020-03-30 2023-04-20 Dyi-chung Hu Semiconductor device
TWI784709B (zh) * 2020-09-25 2022-11-21 創未來科技股份有限公司 用於測試天線陣列之近場測試裝置及其相關的近場測試網格與方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013131230A1 (zh) * 2012-03-05 2013-09-12 华为终端有限公司 天线切换电路和无线终端设备
CN102707266A (zh) * 2012-05-24 2012-10-03 北京理工大学 一种具有抗干扰和多目标识别功能的雷达及其检测方法
CN103986806A (zh) * 2014-05-29 2014-08-13 宇龙计算机通信科技(深圳)有限公司 数据传输装置和移动终端
US20160191085A1 (en) * 2014-08-13 2016-06-30 Skyworks Solutions, Inc. Transmit front end module for dual antenna applications
US20190182779A1 (en) * 2016-07-07 2019-06-13 Zte Corporation Active antenna system, mobile terminal, and configuration method of antenna system
CN109039397A (zh) * 2018-08-01 2018-12-18 维沃移动通信有限公司 一种移动终端的天线电路、控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4117198A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024178652A1 (en) * 2023-03-01 2024-09-06 Goertek Inc. Wireless electronic device having rf front-end circuitry

Also Published As

Publication number Publication date
US12088364B2 (en) 2024-09-10
EP4117198A1 (en) 2023-01-11
EP4117198A4 (en) 2023-08-16
US20230128757A1 (en) 2023-04-27
CN113765558A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN105099495B (zh) 一种收发共用天线的同时同频全双工终端及其通信方法
CN110012536B (zh) 用于终端设备的定位方法、装置及系统
CN108923790B (zh) 多路选择开关、射频系统和无线通信设备
CN110035441B (zh) 确定波束的方法及通信装置
US20200119899A1 (en) Communication method, terminal, and network device
CN108880602B (zh) 多路选择开关以及相关产品
KR20200096618A (ko) 멀티 웨이 스위치, 무선 주파수 시스템 및 무선 통신 장치
US9178629B2 (en) Non-synchronized radio-frequency testing
US20130077612A1 (en) Point-to-multipoint microwave communication
WO2022089329A1 (zh) 射频电路及电子设备
US9647742B2 (en) Antenna architecture and operational method for RF test connector reduction
WO2019137441A1 (zh) 一种通信方法及装置
CN103458424B (zh) 基于功率检测及环路延迟计算的自干扰消除方法
CN111511010A (zh) 发送和接收指示的方法和装置
CN206332853U (zh) 移动通信分布覆盖系统
CN112821919B (zh) 射频系统及电子设备
CN102882573A (zh) 多输入多输出的信号传输实现方法、装置及系统
WO2021244226A1 (zh) 无线通信装置、天线的检测方法和用户设备
WO2015158221A1 (zh) 一种合路器、基站、信号合路系统及信号传输方法
WO2021238534A1 (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2022002099A1 (zh) 驻波检测方法、驻波检测装置及网络设备
CN105375939A (zh) 一种接收信号补偿方法
EP2733976A1 (en) System, device, and method for transmitting multi-input-multi-output signals
US20150207576A1 (en) Method and Apparatus for Testing Frequency Division Duplexing Transceiver
WO2022111632A1 (zh) 网络设备、用户终端、芯片、无线通信系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021818089

Country of ref document: EP

Effective date: 20221005

NENP Non-entry into the national phase

Ref country code: DE