WO2022089329A1 - 射频电路及电子设备 - Google Patents

射频电路及电子设备 Download PDF

Info

Publication number
WO2022089329A1
WO2022089329A1 PCT/CN2021/125814 CN2021125814W WO2022089329A1 WO 2022089329 A1 WO2022089329 A1 WO 2022089329A1 CN 2021125814 W CN2021125814 W CN 2021125814W WO 2022089329 A1 WO2022089329 A1 WO 2022089329A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
switch
antenna
module
local oscillator
Prior art date
Application number
PCT/CN2021/125814
Other languages
English (en)
French (fr)
Inventor
王坤
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022089329A1 publication Critical patent/WO2022089329A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a radio frequency circuit and an electronic device.
  • FIG. 1 it is a schematic structural diagram of a radio frequency circuit of an electronic device supporting 5G in the related art. , 2T4R, 1T4R).
  • the radio frequency transmit signal is the signal after mixing the local oscillator signal and the baseband signal.
  • the radio frequency circuit includes a radio frequency transceiver, the radio frequency transceiver includes a local oscillator source, and the local oscillator source is used to generate a local oscillator signal.
  • the back end of the radio frequency circuit is used to switch the switch of the transmitting antenna. It must be a four-pole four-throw switch, so the RF circuit design structure is relatively simple and the flexibility is poor.
  • the embodiments of the present application provide a radio frequency circuit and an electronic device, which can solve the technical problems of relatively simple design structure and poor flexibility of the radio frequency circuit in the related art.
  • an embodiment of the present application provides a radio frequency circuit, where the radio frequency circuit includes a radio frequency transceiver, a first radio frequency transceiver module, a second radio frequency transceiver module, a first radio frequency receiving module, a second radio frequency receiving module, and a switch module and antenna arrays;
  • the radio frequency transceiver includes a first local oscillator source, a power divider, a first switch, a first baseband signal generator, a first mixer, a second local oscillator source, a second switch, a second baseband signal generator, a second mixer and a third local oscillator source;
  • the first local oscillator source is respectively connected to the first input end of the first switch and the first input end of the second switch through the power divider, and the second local oscillator source is connected to the first input end of the first switch.
  • the second input end of the switch is connected, the output end of the first switch is connected with the first end of the first mixer, and the first baseband signal generator passes through the second end of the first mixer connected to the first end of the first radio frequency transceiver module,
  • the third local oscillator source is connected to the second input end of the second switch, and the output end of the second switch is connected to the second mixer is connected to the first end of the second baseband signal generator, and the second baseband signal generator is connected to the first end of the second radio frequency transceiver module through the second end of the second mixer;
  • the first end of the first radio frequency receiving module and the first end of the second radio frequency receiving module are both connected to the radio frequency transceiver, and the second end of the first radio frequency transceiver module and the second radio frequency transceiver module are connected to the radio frequency transceiver.
  • the second end of the module, the second end of the first radio frequency receiving module, and the second end of the second radio frequency receiving module are all connected to the antenna array through the switch module;
  • the radio frequency circuit can switch between multiple states, and the multiple states include a first state and a second state, and in the first state In a state, the first local oscillator source is connected to the first radio frequency transceiver module and the second radio frequency transceiver module, and in the second state, the second local oscillator source transmits and receives with the first radio frequency The module is turned on, and the third local oscillator source is connected with the second radio frequency transceiver module.
  • an embodiment of the present application provides an electronic device, where the electronic device includes the radio frequency circuit described in the first aspect.
  • an embodiment of the present application provides a communication device, where the communication device includes the radio frequency circuit described in the first aspect.
  • the first local oscillator source is connected to the two radio frequency transceiver modules through a power divider, and the first local oscillator source provides the same local oscillator signal for the two radio frequency transceiver modules, which can avoid the back end being used for switching transmission.
  • the switch using the antenna must be a four-pole four-throw switch, which can improve the flexibility of the RF circuit design.
  • FIG. 1 is a schematic structural diagram of a radio frequency circuit in the related art
  • FIG. 2 is one of schematic diagrams of a networking architecture provided by an embodiment of the present application.
  • FIG. 3 is a second schematic diagram of a networking architecture provided by an embodiment of the present application.
  • FIG. 4 is one of the schematic structural diagrams of a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 5 is a second schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 6 is one of the schematic diagrams of the antenna layout of an electronic device provided by an embodiment of the present application.
  • FIG. 7 is a third schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 8 is the second schematic diagram of an antenna layout of an electronic device provided by an embodiment of the present application.
  • FIG. 9 is a fourth schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 10 is a third schematic diagram of an antenna layout of an electronic device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and distinguish between “first”, “second”, etc.
  • the objects are usually of one type, and the number of objects is not limited.
  • the first object may be one or more than one.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • the radio frequency circuit can be used in the fifth generation mobile communication (5th Generation Mobile Communication Technology, 5G).
  • 5G has the technical characteristics of high speed, low latency and large connections.
  • 5G terminal equipment in order to achieve ultra-high network rates, downlink 4*4 Multiple Input Multiple Output (MIMO) and uplink (uplink, UL) 2*2 Multiple Input Multiple Output (multiinput-multiple output) are introduced.
  • MIMO Multiple Input Multiple Output
  • uplink uplink
  • UL 2*2 Multiple Input Multiple Output
  • Multioutput, MIMO Sounding Reference Signal
  • SRS Sounding Reference Signal
  • 1024 Quadrature Amplitude Modulation Quadadrature Amplitude Modulation
  • QAM 4-Way Antenna Switching Diversity
  • the 5G networking mode can be divided into Non-Stand Alone (NSA) and Stand Alone (Stand Alone).
  • SA is a non-independent networking mode.
  • the 4G base station is used as the main station and the 5G base station is used as the auxiliary station.
  • SA is an independent networking mode, and only the 5G base station is connected to 5G. Core Network. For 5G terminals, both SA and NSA networking modes must be supported at the same time.
  • the SRS requires the 1T4R function; while in the SA networking mode, there are two TX paths and four RX paths.
  • the SRS requires the realization of the 2T4R function, and can also support the 1T4R function.
  • the radio frequency circuit in this embodiment can realize that two transmitters and four receivers 2T4R are compatible with one transmitter and four receivers 1T4R.
  • the TX0 channel needs to be switched to four through the back-end switch array (Switcharray, SW). antenna. Due to the antenna layout and space constraints, the routing differences between the TX0 channel and the four antennas are very different. As shown in Table 1, the routing difference is up to 5.5dB.
  • Table 1 shows the loss difference (loss diff) under the three frequency bands (bands) of N41, N78 and N79 with different configurations (config) and different transceiver (RX) modules.
  • PRX auxiliary channel reception
  • DRX main channel reception multiple input multiple output
  • PRX MIMO primary reception Multiple Input Multiple Output
  • DRX MIMO auxiliary channel reception multiple input multiple output
  • FIG. 4 is a schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • the radio frequency circuit includes a radio frequency transceiver 1 , a first radio frequency transceiver module 2 , and a second radio frequency transceiver module 3 , a first radio frequency receiving module 4, a second radio frequency receiving module 5, a switch module 6 and an antenna array 7;
  • the radio frequency transceiver 1 includes a first local oscillator source 11 , a power divider 12 , a first switch 13 , a first baseband signal generator 14 , a first mixer 15 , a second local oscillator source 16 , and a second switch 17 . , a second baseband signal generator 18, a second mixer 19 and a third local oscillator source 20;
  • the first local oscillator source 11 is respectively connected to the first input end of the first switch 13 and the first input end of the second switch 17 through the power divider 12
  • the second local oscillator source 16 is connected to the second input end of the first switch 13
  • the output end of the first switch 13 is connected to the first end of the first mixer 15
  • the first baseband signal generator 14 passes the
  • the second end of the first mixer 15 is connected to the first end of the first radio frequency transceiver module 2
  • the third local oscillator source 20 is connected to the second input end of the second switch 17
  • the third local oscillator source 20 is connected to the second input end of the second switch 17 .
  • the output end of the second switch 17 is connected to the first end of the second mixer 19
  • the second baseband signal generator 18 transmits and receives with the second radio frequency through the second end of the second mixer 19
  • the first end of module 3 is connected;
  • the first end of the first radio frequency receiving module 4 and the first end of the second radio frequency receiving module 5 are both connected to the radio frequency transceiver 1 , and the second end of the first radio frequency transceiver module 2 and the The second end of the second radio frequency transceiver module 3 , the second end of the first radio frequency receiving module 4 , and the second end of the second radio frequency receiving module 5 are all connected to the antenna array 7 through the switch module 6 ;
  • the radio frequency circuit can switch between multiple states, and the multiple states include a first state and a second state.
  • the first state the first local oscillator 11 is connected to the first radio frequency transceiver module 2 and the second radio frequency transceiver module 3.
  • the second local oscillator source 16 is connected to the first radio frequency transceiver module 2 and the second radio frequency transceiver module 3.
  • the first radio frequency transceiver module 2 is turned on, and the third local oscillator source 20 is connected to the second radio frequency transceiver module 3 .
  • the first local oscillator source 11 may be used to generate a local oscillator signal.
  • the power divider 12 can be used to divide the local oscillator signal generated by the first local oscillator source 11 into multiple signals.
  • Both the first baseband signal generator 14 and the second baseband signal generator 18 may be used to generate baseband signals.
  • Both the first mixer 15 and the second mixer 19 can be used to mix multiple input signals and output the mixed signals.
  • the second local oscillator source 16 and the third local oscillator source 20 may be used to generate local oscillator signals.
  • the switch module 6 may include a first double pole double throw switch and a second double pole double throw switch; or may include a first single pole triple throw switch; or may include a second single pole triple throw switch;
  • the radio frequency circuit in this embodiment can support two networking modes, the NSA mode and the SA mode, so as to realize the compatibility of two transmissions and four receptions 2T4R with one transmission and four receptions 1T4R.
  • the radio frequency circuit in this embodiment supports SRS 1T4R and four-antenna switching in NSA mode.
  • the first switch 13 can be controlled to make the first local oscillator source 11 and the first radio frequency transceiver module 2 conduct
  • the second switch 17 can be controlled to make the first local oscillator source 11 and the second radio frequency transceiver module 3 conduct . Since the first local oscillator source 11 is shared, the baseband signal of the first baseband signal generator 14 and the local oscillator signal of the first local oscillator source 11 are mixed and output TX0, and the baseband signal of the second baseband signal generator 18 and the The TX1 output by mixing the local oscillator signal of the first local oscillator source 11 is two identical TX signals.
  • the switch module 6 In the related art, if TX0 and TX1 are not the same TX signal, in order to realize switching between 1T4R and four antennas, the switch module 6 must be a four-pole four-throw switch.
  • the radio frequency transceiver supports the output of two identical TX signals, so the switch module 6 may include a first double-pole double-throw switch and a second double-pole double-throw switch, or may include a first single-pole triple-throw switch, And so on, without necessarily being limited to four-pole, four-throw switches.
  • the radio frequency circuit in this embodiment in SA mode, supports two different TX signals at the same time, and can realize two transmissions and four receptions 2T4R.
  • the first switch 13 can be controlled to make the second local oscillator source 16 and the first radio frequency transceiver module 2 conduct
  • the second switch 17 can be controlled to make the third local oscillator source 20 and the second radio frequency transceiver module 3 conduct .
  • the baseband signal of the first baseband signal generator 14 and the local oscillator signal of the second local oscillator source 16 are mixed and output TX0,
  • the TX1 output by mixing the baseband signal of the second baseband signal generator 18 and the local oscillator signal of the third local oscillator source 20 is two different TX signals, so that two transmissions and four receptions 2T4R can be realized.
  • the uplink path can be reconfigured.
  • the first local oscillator source 11 is connected to two channels TX0 and TX1 through a power divider 12, and is connected to the two baseband signals TX0_BB and TX1 respectively.
  • the TX1_BB is mixed, the TX signal of the first local oscillator source 11 is output.
  • the two baseband signals TX0_BB and TX1_BB transmit the same data, and there is no essential difference.
  • two channels of radio frequency signals TX0 and TX1 are generated.
  • the TX0 and TX1 signals are output from the two TX ports, because they share the first local oscillator source 11, they are actually one signal.
  • the TX0 and TX1 signals then select the corresponding RF channel and send it to the corresponding antenna according to the corresponding relationship between the RF channel and the antenna, realize channel reconstruction, and meet the needs of different RF channels covering different antennas. It is not necessary to limit the back end for switching transmission.
  • the switch of the antenna must be a four-pole four-throw switch, which can reduce the path loss of the radio frequency circuit and reduce the power consumption of the radio frequency; and, in order to make the local oscillator signals of the four antennas the same during transmission, the back end of the radio frequency circuit is used to switch the transmission.
  • the switch used for the antenna can be a single-pole triple-throw switch or a double-pole double-throw switch, etc., thereby improving the flexibility of the RF circuit design.
  • the first local oscillator source 11 is connected to the two radio frequency transceiver modules through the power divider 12, and the first local oscillator source 11 provides the same local oscillator signal for the two radio frequency transceiver modules, which can avoid back-end use.
  • the switch for switching the transmitting antenna must be a four-pole four-throw switch, which can improve the flexibility of the RF circuit design.
  • the first switch 13 is a SPDT switch
  • the second switch 17 is a SPDT switch.
  • the first switch 13 is a SPDT switch
  • the second switch 17 is a SPDT switch
  • the first movable end of the first switch 13 is connected to the power divider 12
  • the first input terminal of the second switch 17 is connected to the first input terminal
  • the second active terminal of the first switch 13 is connected to the second local oscillator source 16
  • the fixed terminal of the first switch 13 is connected to the first mixed terminal.
  • the first end of the frequency converter 15 is connected; the first active end of the second switch 17 is connected to the power divider 12 , and the second active end of the second switch 17 is connected to the third local oscillator source 20 , the fixed terminal of the second switch 17 is connected to the first terminal of the second mixer 19 .
  • the local oscillator signal of the first local oscillator source 11 and the baseband signal of the first baseband signal generator 14 can be controlled to mix the frequencies, or the local oscillator signal of the second local oscillator source 16 and the second baseband signal can be controlled by the SPDT switch.
  • the baseband signal of the generator 18 is mixed so that the radio frequency circuit can be used in NSA mode and SA mode.
  • the antenna array 7 includes a first antenna 71, a second antenna 72, a third antenna 73 and a fourth antenna 74, the first antenna 71, the second antenna 72, the third antenna 73 and the fourth antenna 74 are all connected to the switch module 6 .
  • the radio frequency circuit can be used to realize the compatibility of two transmissions and four receptions 2T4R compatible with one transmission and four receptions 1T4R.
  • the first radio frequency transceiver module 2 includes a first power amplifier 21 , and an input end of the first power amplifier 21 is connected to the first mixer 15 through a third switch 8 .
  • the second radio frequency transceiver module 3 includes a second power amplifier 31 , and the input end of the second power amplifier 31 is connected to the second mixer 19 through the fourth switch 9 .
  • the third switch 8 can be connected to the first mixer 15 through a low-pass filter, and the fourth switch 9 can be connected to the second mixer 19 through a low-pass filter.
  • the third switch 8 and the fourth switch 9 are used to control whether the first power amplifier 21 and the second power amplifier 31 work, respectively, so as to control the first radio frequency transceiver module 2 and/or the radio frequency signal transmission process.
  • the second radio frequency transceiver module 3 transmits radio frequency signals.
  • the switch module 6 includes a first double-pole double-throw switch 61 and a second double-pole double-throw switch 62 , and the second end of the first radio frequency transceiver module 2 is connected to the first double-pole double-throw switch 62 .
  • the second end of a radio frequency receiving module 4 is connected to the first antenna 71 and the second antenna 72 respectively through the first double pole double throw switch 61
  • the second end of the second radio frequency transceiver module 3 is connected to the second antenna 72 .
  • the second ends of the second radio frequency receiving module 5 are connected to the third antenna 73 and the fourth antenna 74 respectively through the second double-pole double-throw switch 62 .
  • the first local oscillator source 11 and the power divider 12 are connected to the first baseband signal generator 14 through the first switch 13, and are connected to the second baseband signal generator 18 through the second switch 17,
  • the two TX signals of the first local oscillator source 11 are output, namely the TX0 and TX1 signals.
  • the TX0 and TX1 signals are then selected according to the corresponding relationship between the radio frequency channel and the antenna.
  • the radio frequency channel is sent to the corresponding antenna, so that one local oscillator source can cover two radio frequency channels.
  • the radio frequency circuit can be used for the antenna layout shown in FIG. 6 , the first antenna 71 and the second antenna 72 are in the upper half of the electronic device, and the path loss from the TX0 channel to the first antenna 71 and the second antenna 72 is relatively high. Small; the third antenna 73 and the fourth antenna 74 are in the lower half of the electronic device, and the path loss from the TX1 path to the third antenna 73 and the fourth antenna 74 is small.
  • the first switch 13 can be controlled to make the first local oscillator 11 and the first RF transceiver module 2 conduct, and the second switch 17 can be controlled to make the first
  • the local oscillator source 11 and the second radio frequency transceiver module 3 are turned on, so that the baseband signal of the first baseband signal generator 14 is mixed with the local oscillator signal of the first local oscillator source 11 , and the baseband signal of the second baseband signal generator 18 is mixed. It is mixed with the local oscillator signal of the first local oscillator source 11 .
  • the third switch 8 is controlled to be closed, and the fourth switch 9 is controlled to be opened, and the TX signal passes through the channel of the first power amplifier 21 to the first antenna.
  • the antenna 71 and the second antenna 72 can reduce the path loss; in the NSA mode, if the TX path needs to be switched to the third antenna 73 and the fourth antenna 74, the fourth switch 9 is controlled to be closed, and the third switch 8 is controlled to be disconnected.
  • the TX signal passes through the passage of the second power amplifier 31 to the third antenna 73 and the fourth antenna 74, which can reduce the path loss.
  • the first switch 13 can be controlled to make the second local oscillator 16 and the first RF transceiver module 2 conduct
  • the second switch 17 can be controlled to make the third local oscillator source.
  • 20 and the second radio frequency transceiver module 3 are turned on, so that the baseband signal of the first baseband signal generator 14 is mixed with the local oscillator signal of the second local oscillator source 16, and the baseband signal of the second baseband signal generator 18 is mixed with the third The local oscillator signal of the local oscillator source 20 is mixed.
  • the third switch 8 and the fourth switch 9 can be controlled to be closed, so that the TX0 signal passes through the path of the first power amplifier 21 to the first antenna 71 and the second antenna 72, and the TX1 signal passes through the path of the second power amplifier 31 to the third antenna 73 and the fourth antenna 74 .
  • the TX signal passes through the path of the first power amplifier 21 to the first antenna 71 and the second antenna 72, or the TX signal passes through the path of the second power amplifier 31 to the third antenna 73 and the fourth antenna 74, thereby avoiding the path of the TX signal through the first power amplifier 21 to the first antenna 71, the second antenna 72, the third antenna 73 and the fourth antenna 74 through the four-pole four-throw switch.
  • the back end switch can be replaced by two DPDTs from 4P4T, which can improve cost, occupied area and path loss; and can reduce The wiring differences of the 4 channels reduce the influence of the unbalance introduced by the wiring differences on the antenna switching.
  • the first radio frequency transceiver module 2 can transmit radio frequency signals through the first antenna 71 and the second antenna 72
  • the second radio frequency transceiver module 3 can transmit radio frequency signals through the third antenna 73 and the fourth antenna 74 Therefore, the 1T4R scenario can be realized through the first double-pole double-throw switch 61 and the second double-pole double-throw switch 62, avoiding the use of four-pole four-throw switches, thereby reducing path loss, improving RF transmission performance, and reducing RF power consumption .
  • the switch module 6 includes a first SPDT switch and a second SPDT switch, and the second end of the first RF receiving module 4 communicates with the second antenna 72 through the first SPDT switch. connection, the second end of the second radio frequency receiving module 5 is connected to the fourth antenna 74 through the second SPDT switch.
  • the first radio frequency receiving module 4 may include a power amplifier and a bandpass filter, the power amplifier is connected to the radio frequency transceiver 1, and the power amplifier is connected to the switch module 6 through the bandpass filter.
  • the second radio frequency receiving module 5 may include a power amplifier and a bandpass filter, the power amplifier is connected to the radio frequency transceiver 1, and the power amplifier is connected to the switch module 6 through the bandpass filter.
  • the first movable end of the first SPDT switch is connected to the second end of the first radio frequency receiving module 4, the fixed end of the first SPDT switch is connected to the second antenna 72, and the The second active end of the first SPDT switch is connected to the second radio frequency transceiver module 3 or the first radio frequency transceiver module 2 ; the first active end of the second SPDT switch is connected to the second radio frequency receiving module 5 .
  • the second end is connected, the fixed end of the second SPDT switch is connected to the fourth antenna 74, the second movable end of the second SPDT switch is connected to the second radio frequency receiving module 5 or the second radio frequency transceiver Module 3 is connected.
  • the second antenna 72 can be controlled by the first SPDT switch for radio frequency transmission or radio frequency reception
  • the fourth antenna 74 can be controlled by the second SPDT switch for radio frequency transmission or radio frequency reception.
  • the switch module 6 further includes a first single-pole three-throw switch 63 , the second end of the first radio frequency transceiver module 2 is connected to the first antenna 71 , and the second radio frequency transceiver module 2 is connected to the first antenna 71 .
  • the second end of the module 3 is connected to the second antenna 72 , the third antenna 73 and the fourth antenna 74 respectively through the first single-pole three-throw switch 63 .
  • the first local oscillator 11 and the power divider 12 are connected to the first baseband signal generator 14 through the first switch 13, and are connected to the second baseband signal generator 18 through the second switch 17,
  • the two TX signals of the first local oscillator source 11 are output, namely the TX0 and TX1 signals.
  • the TX0 and TX1 signals are then selected according to the corresponding relationship between the radio frequency channel and the antenna.
  • the radio frequency channel is sent to the corresponding antenna, so that one local oscillator source can cover two radio frequency channels.
  • the radio frequency circuit can be used for the antenna layout shown in FIG. 8 , the first antenna 71 is in the upper half of the electronic device, and the path loss from the TX0 channel to the first antenna 71 is small; the second antenna 72 and the third antenna 73 and the fourth antenna 74 are in the lower half of the electronic device, and the path loss from the TX1 path to the second antenna 72, the third antenna 73 and the fourth antenna 74 is small.
  • the first switch 13 can be controlled to make the first local oscillator 11 and the first RF transceiver module 2 conduct, and the second switch 17 can be controlled to make the first
  • the local oscillator source 11 and the second radio frequency transceiver module 3 are turned on, so that the baseband signal of the first baseband signal generator 14 is mixed with the local oscillator signal of the first local oscillator source 11 , and the baseband signal of the second baseband signal generator 18 is mixed. It is mixed with the local oscillator signal of the first local oscillator source 11 .
  • the third switch 8 In the NSA mode, if the TX channel needs to be switched to the first antenna 71, the third switch 8 is controlled to be closed, and the fourth switch 9 is controlled to be opened, and the TX signal passes through the channel of the first power amplifier 21 to the first antenna 71, which can reduce Path loss; in NSA mode, if the TX channel needs to be switched to the second antenna 72, the third antenna 73 and the fourth antenna 74, the fourth switch 9 is controlled to be closed, the third switch 8 is controlled to be opened, and the TX signal passes through the second antenna.
  • the path of the power amplifier 31 to the second antenna 72, the third antenna 73 and the fourth antenna 74 can reduce the path loss.
  • the first switch 13 can be controlled to make the second local oscillator 16 and the first RF transceiver module 2 conduct
  • the second switch 17 can be controlled to make the third local oscillator source.
  • 20 and the second radio frequency transceiver module 3 are turned on, so that the baseband signal of the first baseband signal generator 14 is mixed with the local oscillator signal of the second local oscillator source 16, and the baseband signal of the second baseband signal generator 18 is mixed with the third The local oscillator signal of the local oscillator source 20 is mixed.
  • the third switch 8 and the fourth switch 9 can be controlled to be closed, so that the TX0 signal passes through the path of the first power amplifier 21 to the first antenna 71, and the TX1 signal passes through the path of the second power amplifier 31 to the second antenna 72 and the third antenna 73. and the fourth antenna 74 .
  • the TX signal passes through the path of the first power amplifier 21 to the first antenna 71, or the TX signal passes through the path of the second power amplifier 31 to the second antenna 72 and the third antenna. 73 and the fourth antenna 74, thereby avoiding the path of the TX signal through the first power amplifier 21 to the first antenna 71, the second antenna 72, the third antenna 73 and the fourth antenna 74 through the four-pole four-throw switch.
  • the back end switch can be replaced from 4P4T to SP3T, which can improve cost, occupied area and path loss; and can reduce 4
  • the routing difference of the channel reduces the influence of the unbalance introduced by the routing difference on the antenna switching.
  • the fixed end of the first single-pole three-throw switch 63 is connected to the second end of the second radio frequency transceiver module 3, and the first movable end of the first single-pole three-throw switch 63 passes through the first A SPDT switch is connected to the second antenna 72 , the second movable end of the first SPDT switch 63 is connected to the third antenna 73 , and the third movable end of the first SPDT switch 63 is connected to the fourth antenna 73 .
  • Antenna 74 is connected.
  • the fixed end of the first SPDT switch can be connected to the second antenna 72
  • the first movable end of the first SPDT switch can be connected to the first radio frequency receiving module 4
  • the first SPDT switch can be connected to the first RF receiving module 4
  • the second movable end of the throw switch can be connected to the second radio frequency transceiver module 3 through the first single-pole three-throw switch 63 .
  • the fixed end of the second SPDT switch can be connected to the fourth antenna 74, the first movable end of the second SPDT switch can be connected to the second radio frequency receiving module 5, and the second movable end of the second SPDT switch can be Connect with the second radio frequency transceiver module 3 .
  • the first radio frequency transceiver module 2 can transmit radio frequency signals through the first antenna 71
  • the second radio frequency transceiver module 3 can transmit radio frequency signals through the second antenna 72 , the third antenna 73 and the fourth antenna 74 .
  • the 1T4R scenario can be implemented through the first single-pole-three-throw switch 63, and the use of a four-pole-four-throw switch can be avoided, thereby reducing path loss, improving RF transmission performance, and reducing RF power consumption.
  • the switch module 6 further includes a second single-pole three-throw switch 64 , and the second end of the first radio frequency transceiver module 2 is respectively connected to the second single-pole three-throw switch 64 through the second single-pole three-throw switch 64 .
  • the first antenna 71 , the second antenna 72 and the third antenna 73 are connected, and the second end of the second radio frequency transceiver module 3 is connected to the third antenna 73 .
  • the first local oscillator source 11 and the power divider 12 are connected to the first baseband signal generator 14 through the first switch 13, and are connected to the second baseband signal generator 18 through the second switch 17,
  • the two TX signals of the first local oscillator source 11 are output, namely the TX0 and TX1 signals.
  • the TX0 and TX1 signals are then selected according to the corresponding relationship between the radio frequency channel and the antenna.
  • the radio frequency channel is sent to the corresponding antenna, so that one local oscillator source can cover two radio frequency channels.
  • the radio frequency circuit can be used for the antenna layout as shown in FIG. 10, the first antenna 71, the second antenna 72 and the third antenna 73 are in the upper part of the electronic device, and the TX0 channel is connected to the first antenna 71 and the second antenna 72 and the third antenna 73 have small path losses; the fourth antenna 74 is in the lower half of the electronic device, and the path loss from the TX1 channel to the fourth antenna 74 is small.
  • the first switch 13 can be controlled to make the first local oscillator 11 and the first RF transceiver module 2 conduct, and the second switch 17 can be controlled to make the first
  • the local oscillator source 11 and the second radio frequency transceiver module 3 are turned on, so that the baseband signal of the first baseband signal generator 14 is mixed with the local oscillator signal of the first local oscillator source 11 , and the baseband signal of the second baseband signal generator 18 is mixed. It is mixed with the local oscillator signal of the first local oscillator source 11 .
  • the third switch 8 is controlled to be closed, the fourth switch 9 is controlled to be opened, and the TX signal passes through the first power amplifier 21
  • the path is connected to the first antenna 71, the second antenna 72 and the third antenna 73, which can reduce the path loss; in the NSA mode, if the TX path needs to be switched to the fourth antenna 74, the fourth switch 9 is controlled to close, and the third The switch 8 is turned off, and the TX signal passes through the path of the second power amplifier 31 to the fourth antenna 74, which can reduce the path loss.
  • the first switch 13 can be controlled to make the second local oscillator 16 and the first RF transceiver module 2 conduct
  • the second switch 17 can be controlled to make the third local oscillator source.
  • 20 and the second radio frequency transceiver module 3 are turned on, so that the baseband signal of the first baseband signal generator 14 is mixed with the local oscillator signal of the second local oscillator source 16, and the baseband signal of the second baseband signal generator 18 is mixed with the third The local oscillator signal of the local oscillator source 20 is mixed.
  • the third switch 8 and the fourth switch 9 can be controlled to be closed, so that the TX0 signal passes through the path of the first power amplifier 21 to the first antenna 71, the second antenna 72 and the third antenna 73, and the TX1 signal passes through the path of the second power amplifier 31 to the fourth antenna 74 .
  • the TX signal passes through the path of the first power amplifier 21 to the first antenna 71 , the second antenna 72 and the third antenna 73 , or the TX signal passes through the path of the second power amplifier 31 . path to the fourth antenna 74 , thereby avoiding the path of the TX signal through the first power amplifier 21 to the first antenna 71 , the second antenna 72 , the third antenna 73 and the fourth antenna 74 through the four-pole-four-throw switch.
  • the back end switch can be replaced from 4P4T to SP3T, which can improve cost, occupied area and path loss; and can reduce 4
  • the routing difference of the channel reduces the influence of the unbalance introduced by the routing difference on the antenna switching.
  • the fixed end of the second single-pole three-throw switch 64 is connected to the second end of the first radio frequency transceiver module 2
  • the first movable end of the second single-pole three-throw switch 64 is connected to the second end of the first radio frequency transceiver module 2 .
  • An antenna 71 is connected
  • the second movable end of the second SPDT switch 64 is connected to the second antenna 72 through the first SPDT switch
  • the third movable end of the second SPDT switch 64 is connected to The third antenna 73 is connected.
  • the fixed end of the first SPDT switch can be connected to the second antenna 72
  • the first movable end of the first SPDT switch can be connected to the first radio frequency receiving module 4
  • the first SPDT switch can be connected to the first RF receiving module 4
  • the second movable end of the throw switch can be connected to the first radio frequency transceiver module 2 through the second single-pole three-throw switch 64 .
  • the fixed end of the second SPDT switch can be connected to the fourth antenna 74, the first movable end of the second SPDT switch can be connected to the second radio frequency receiving module 5, and the second movable end of the second SPDT switch can be Connect with the second radio frequency transceiver module 3 .
  • the first radio frequency transceiver module 2 can transmit radio frequency signals through the first antenna 71 , the second antenna 72 and the third antenna 73
  • the second radio frequency transceiver module 3 can transmit radio frequency signals through the fourth antenna 74
  • the 1T4R scenario can be implemented through the second single-pole-three-throw switch 64, and the use of a four-pole four-throw switch can be avoided, thereby reducing path loss, improving RF transmission performance, and reducing RF power consumption.
  • the first radio frequency transceiver module 2 further includes a third power amplifier 22 and a third SPDT switch 23, the third power amplifier 22 is connected to the radio frequency transceiver 1,
  • the fixed end of the third SPDT switch 23 is connected to the switch module 6
  • the first movable end of the third SPDT switch 23 is connected to the first power amplifier 21
  • the third SPDT switch 23 is connected to the first power amplifier 21 .
  • the second active end of the throw switch 23 is connected to the third power amplifier 22;
  • the second RF transceiver module 3 further includes a fourth power amplifier 32 and a fourth SPDT switch 33, the fourth power amplifier 32 is connected to the RF transceiver 1, and the fourth SPDT switch 33 is The fixed end is connected to the switch module 6, the first movable end of the fourth SPDT switch 33 is connected to the second power amplifier 31, and the second movable end of the fourth SPDT switch 33 is connected to the second power amplifier 31.
  • the fourth power amplifier 32 is connected.
  • the output end of the third power amplifier 22 is connected to the radio frequency transceiver 1 , the first movable end of the third SPDT switch 23 can be connected to the output end of the first power amplifier 21 , and the third SPDT switch 23 can be connected to the output end of the first power amplifier 21 .
  • the two active terminals can be connected to the input terminal of the third power amplifier 22 , and the fixed terminal of the third SPDT switch 23 can be connected to the switch module 6 through a band-pass filter.
  • the output end of the fourth power amplifier 32 can be connected to the radio frequency transceiver 1 , the first movable end of the fourth SPDT switch 33 can be connected to the output end of the second power amplifier 31 , and the second The active end can be connected to the input end of the fourth power amplifier 32, and the fixed end of the fourth SPDT switch 33 can be connected to the switch module 6 through a band-pass filter.
  • the first radio frequency transceiver module 2 can be controlled by the third SPDT switch 23 for radio frequency transmission or radio frequency reception
  • the second radio frequency transceiver module 3 can be controlled by the fourth SPDT switch 33 for radio frequency transmission or radio frequency reception, thereby reducing the complexity of the radio frequency circuit.
  • the embodiment of the present application further provides an electronic device, where the electronic device includes the radio frequency circuit described in the embodiment of the present application.
  • the electronic device in this embodiment of the present application is connected to the two radio frequency transceiver modules through the first local oscillator source 11 through the power divider 12 , and the first local oscillator source 11 provides the same local oscillator signal for the two radio frequency transceiver modules, which can avoid back-end
  • the switch used to switch the transmitting antenna must be a four-pole four-throw switch, which can improve the flexibility of RF circuit design.
  • the embodiment of the present application further provides a communication device, where the communication device includes the radio frequency circuit described in the embodiment of the present application.
  • the communication device in the embodiment of the present application is connected to two radio frequency transceiver modules through a first local oscillator source 11 through a power divider 12, and the first local oscillator source 11 provides the same local oscillator signal for the two radio frequency transceiver modules, which can avoid back-end
  • the switch used to switch the transmitting antenna must be a four-pole four-throw switch, which can improve the flexibility of RF circuit design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本申请提供一种射频电路及电子设备,射频电路包括射频收发器、第一射频收发模块、第二射频收发模块、第一射频接收模块、第二射频接收模块、开关模块以及天线阵列;射频收发器包括第一本振源、功分器、第一开关、第一基带信号生成器、第一混频器、第二本振源、第二开关、第二基带信号生成器、第二混频器和第三本振源;在第一开关以及第二开关的控制下,射频电路可在多种状态之间进行切换,多种状态包括第一状态和第二状态,在第一状态下,第一本振源与第一射频收发模块和第二射频收发模块导通,在第二状态下,第二本振源与第一射频收发模块导通,第三本振源与第二射频收发模块导通。

Description

射频电路及电子设备
相关申请的交叉引用
本申请主张在2020年10月26日在中国提交的中国专利申请No.202011156094.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及通信技术领域,具体涉及一种射频电路及电子设备。
背景技术
随着互联网通信技术的快速发展,以及电子设备的不断普及,用户对数据流量的需求也在不断增加。从4G的传输速率为100Mbps~1Gbps,到第五代移动通信新空口(5th Generation Mobile Communication Technology New Radio,5G NR)的峰值传输速率可达20Gbps,速率的提升要求5G必备4*4多入多出(Multiple Input Multiple Output,MIMO)关键技术。
如图1所示,为相关技术中支持5G的电子设备的射频电路的结构示意图,该电路架构用于实现二发四收(2 transport 4 receive,2T4R)兼容一发四收(1 transport 4 receive,2T4R,1T4R)。射频发射信号为本振信号与基带信号混频后的信号。射频电路中包括射频收发器,射频收发器中包括本振源,本振源用于产生本振信号。在实现本申请过程中,发明人发现相关技术中至少存在如下问题:相关技术中的射频电路为使发射时四路天线的本振信号相同,射频电路中后端用于切换发射用天线的开关须为四刀四掷开关,从而射频电路设计结构较为单一,灵活性较差。
发明内容
本申请实施例提供一种射频电路及电子设备,能够解决相关技术中射频电路设计结构较为单一,灵活性较差的技术问题。
为了解决上述技术问题,本发明是这样实现的:
第一方面,本申请实施例提供了一种射频电路,所述射频电路包括射频收发器、第一射频收发模块、第二射频收发模块、第一射频接收模块、第二 射频接收模块、开关模块以及天线阵列;
所述射频收发器包括第一本振源、功分器、第一开关、第一基带信号生成器、第一混频器、第二本振源、第二开关、第二基带信号生成器、第二混频器和第三本振源;
所述第一本振源通过所述功分器分别与所述第一开关的第一输入端以及所述第二开关的第一输入端连接,所述第二本振源与所述第一开关的第二输入端连接,所述第一开关的输出端与所述第一混频器的第一端连接,所述第一基带信号生成器通过所述第一混频器的第二端与所述第一射频收发模块的第一端连接,所述第三本振源与所述第二开关的第二输入端连接,所述第二开关的输出端与所述第二混频器的第一端连接,所述第二基带信号生成器通过所述第二混频器的第二端与所述第二射频收发模块的第一端连接;
所述第一射频接收模块的第一端、所述第二射频接收模块的第一端均与所述射频收发器连接,所述第一射频收发模块的第二端、所述第二射频收发模块的第二端、所述第一射频接收模块的第二端、所述第二射频接收模块的第二端均通过所述开关模块与所述天线阵列连接;
其中,在所述第一开关以及所述第二开关的控制下,所述射频电路可在多种状态之间进行切换,所述多种状态包括第一状态和第二状态,在所述第一状态下,所述第一本振源与所述第一射频收发模块和第二射频收发模块导通,在所述第二状态下,所述第二本振源与所述第一射频收发模块导通,所述第三本振源与所述第二射频收发模块导通。
第二方面,本申请实施例提供了一种电子设备,所述电子设备包括第一方面所述的射频电路。
第三方面,本申请实施例提供了一种通信设备,所述通信设备包括第一方面所述的射频电路。
本申请实施例中,通过第一本振源经过功分器与两个射频收发模块连接,第一本振源为两个射频收发模块提供相同的本振信号,能够避免后端用于切换发射用天线的开关须为四刀四掷开关,从而能够提高射频电路设计的灵活性。
附图说明
图1是相关技术中一种射频电路的结构示意图;
图2是本申请实施例提供的一种组网架构示意图之一;
图3是本申请实施例提供的一种组网架构示意图之二;
图4是本申请实施例提供的一种射频电路的结构示意图之一;
图5是本申请实施例提供的一种射频电路的结构示意图之二;
图6是本申请实施例提供的一种电子设备的天线布局示意图之一;
图7是本申请实施例提供的一种射频电路的结构示意图之三;
图8是本申请实施例提供的一种电子设备的天线布局示意图之二;
图9是本申请实施例提供的一种射频电路的结构示意图之四;
图10是本申请实施例提供的一种电子设备的天线布局示意图之三。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
射频电路可用于第五代移动通信(5th Generation Mobile Communication Technology,5G)。5G具有高速率、低时延和大连接的技术特点。对于5G终端设备,为了实现超高的网络速率,引入了下行4*4多输入多输出(Multiple Input Multiple Output,MIMO)和上行链路(uplink,UL)2*2多路多输出(multiinput-multioutput,MIMO)、探测参考信号(Sounding Reference Signal, SRS)、1024正交振幅调制(Quadrature Amplitude Modulation,QAM)、4-Way天线切换分集(Antenna Switching Diversity)等。另外,因为第四代移动通信(4th Generation Mobile Communication Technology,4G)到5G的网络演进的原因,5G组网模式可以分成非独立组网(Non-Stand Alone,NSA)和独立组网(Stand Alone,SA)两种方式。如图2所示,NSA是非独立组网模式,借助当前4G核心网,以4G基站为主站,5G基站为辅站;如图3所示,SA是独立组网模式,仅5G基站连接5G核心网。对于5G终端来说,要同时支持SA和NSA两种组网模式。在NSA的组网模式中只有一路发射(transmit,TX)通路,四路接收(receive,RX)通路,SRS要求实现1T4R功能;而在SA的组网模式下有两路TX通路,四路RX通路,SRS要求实现2T4R功能,也可以支持1T4R功能。本实施例中的射频电路能够实现二发四收2T4R兼容一发四收1T4R。
需要说明的是,对于相关技术中图1所示的射频电路,在NSA模式下,要支持SRS 1T4R和4-Way ASDiV,需要TX0通路通过后端的开关阵列(Switcharray,SW)分别切到四个天线。受天线布局和空间限制,TX0通路切到4个天线上的走线差异很大,如表1所示,走线差异最大有5.5dB。
表1
Figure PCTCN2021125814-appb-000001
其中,表1为在N41、N78及N79三个频段(band)下,以不同的配置(config)及不同的收发(RX)模块工作下的损耗差异(loss diff),主路接收(primary receive,PRX)、辅路接收(diversity receive,DRX)、主路接收多 入多出(primary receive Multiple Input Multiple Output,PRX MIMO)及辅路接收多入多出(diversity receive Multiple Input Multiple Output,DRX MIMO)为射频电路的不同收发模块。
对于图1所示的射频电路,在1T4R SRS轮发时,走线差异大会带来评估不准确的问题,SRS评估不准确直接影响最大吞吐量;在四天线切换时,走线差异大会导致切换后常驻在较差的天线上,影响体验;并且四路走线差异大,表示射频电路的路径损耗太大,损耗大直接导致功耗较大、最大发射功率下降以及信号质量下降等问题。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的射频电路进行详细地说明。
参见图4,图4是本申请实施例提供的一种射频电路的结构示意图,如图4所示,所述射频电路包括射频收发器1、第一射频收发模块2、第二射频收发模块3、第一射频接收模块4、第二射频接收模块5、开关模块6以及天线阵列7;
所述射频收发器1包括第一本振源11、功分器12、第一开关13、第一基带信号生成器14、第一混频器15、第二本振源16、第二开关17、第二基带信号生成器18、第二混频器19和第三本振源20;
所述第一本振源11通过所述功分器12分别与所述第一开关13的第一输入端以及所述第二开关17的第一输入端连接,所述第二本振源16与所述第一开关13的第二输入端连接,所述第一开关13的输出端与所述第一混频器15的第一端连接,所述第一基带信号生成器14通过所述第一混频器15的第二端与所述第一射频收发模块2的第一端连接,所述第三本振源20与所述第二开关17的第二输入端连接,所述第二开关17的输出端与所述第二混频器19的第一端连接,所述第二基带信号生成器18通过所述第二混频器19的第二端与所述第二射频收发模块3的第一端连接;
所述第一射频接收模块4的第一端、所述第二射频接收模块5的第一端均与所述射频收发器1连接,所述第一射频收发模块2的第二端、所述第二射频收发模块3的第二端、所述第一射频接收模块4的第二端、所述第二射频接收模块5的第二端均通过所述开关模块6与所述天线阵列7连接;
其中,在所述第一开关13以及所述第二开关17的控制下,所述射频电路可在多种状态之间进行切换,所述多种状态包括第一状态和第二状态,在所述第一状态下,所述第一本振源11与所述第一射频收发模块2和第二射频收发模块3导通,在所述第二状态下,所述第二本振源16与所述第一射频收发模块2导通,所述第三本振源20与所述第二射频收发模块3导通。
其中,第一本振源11可以用于产生本振信号。所述功分器12可以用于将第一本振源11产生的本振信号分为多路信号。第一基带信号生成器14和第二基带信号生成器18均可以用于产生基带信号。第一混频器15和第二混频器19均可以用于将多路输入信号进行混频,并输出混频后的信号。第二本振源16和第三本振源20可以用于产生本振信号。所述开关模块6可以包括第一双刀双掷开关和第二双刀双掷开关;或者可以包括第一单刀三掷开关;或者可以包括第二单刀三掷开关;等等。
另外,本实施例中的射频电路能够支持NSA模式及SA模式两种组网模式,实现二发四收2T4R兼容一发四收1T4R。
本实施例中的射频电路,在NSA模式下,支持SRS 1T4R和四天线切换。在进行射频发射时,可以控制第一开关13使得第一本振源11和第一射频收发模块2导通,控制第二开关17使得第一本振源11和第二射频收发模块3导通。由于共第一本振源11,从而第一基带信号生成器14的基带信号与第一本振源11的本振信号进行混频输出的TX0,及第二基带信号生成器18的基带信号与第一本振源11的本振信号进行混频输出的TX1,为两路相同的TX信号。相关技术中,若TX0和TX1不为相同的TX信号,则为实现1T4R和四天线切换,开关模块6须为四刀四掷开关。本实施例中,通过射频收发器支持输出两路相同的TX信号,从而开关模块6可以包括第一双刀双掷开关和第二双刀双掷开关,或者可以包括第一单刀三掷开关,等等,而不必限定为四刀四掷开关。
本实施例中的射频电路,在SA模式下,同时支持两路不同的TX信号,可以实现二发四收2T4R。在进行射频发射时,可以控制第一开关13使得第二本振源16和第一射频收发模块2导通,控制第二开关17使得第三本振源20和第二射频收发模块3导通。由于第二本振源16和第三本振源20为不同 的本振源,从而第一基带信号生成器14的基带信号与第二本振源16的本振信号进行混频输出的TX0,及第二基带信号生成器18的基带信号与第三本振源20的本振信号进行混频输出的TX1,为两路不同的TX信号,从而可以实现二发四收2T4R。
本申请实施例中的射频电路,上行通路可重构。如图4所示,通过在射频收发器1内增加第一本振源11,第一本振源11通过一个功分器12和TX0及TX1两个通道相连,分别跟两路基带信号TX0_BB和TX1_BB混频后,输出共第一本振源11的TX信号。两路基带信号TX0_BB和TX1_BB发送相同数据,没有本质差异,再通过第一本振源11的本振信号混频后,生成两路射频信号TX0和TX1信号。TX0和TX1信号虽然从两个TX端口输出,因为共第一本振源11,实际上是一路信号。TX0和TX1信号再根据射频通路和天线的对应关系,选择对应的射频通路发送到对应的天线上,实现通道重构,满足不同射频通路覆盖不同天线的需求,不须限定后端用于切换发射用天线的开关须为四刀四掷开关,从而能够降低射频电路的路径损耗,降低射频功耗;并且,为使发射时四路天线的本振信号相同,射频电路中后端用于切换发射用天线的开关可以为单刀三掷开关或者双刀双掷开关等,从而能够提高射频电路设计的灵活性。
本申请实施例中,通过第一本振源11经过功分器12与两个射频收发模块连接,第一本振源11为两个射频收发模块提供相同的本振信号,能够避免后端用于切换发射用天线的开关须为四刀四掷开关,从而能够提高射频电路设计的灵活性。
可选的,所述第一开关13为单刀双掷开关,所述第二开关17为单刀双掷开关。
该实施方式中,所述第一开关13为单刀双掷开关,所述第二开关17为单刀双掷开关,所述第一开关13的第一活动端与所述功分器12连接,以及所述第二开关17的第一输入端连接,所述第一开关13的第二活动端与所述第二本振源16连接,所述第一开关13的定端与所述第一混频器15的第一端连接;所述第二开关17的第一活动端与所述功分器12连接,所述第二开关17的第二活动端与所述第三本振源20连接,所述第二开关17的定端与所述 第二混频器19的第一端连接。
这样,能够通过单刀双掷开关控制第一本振源11的本振信号与第一基带信号生成器14的基带信号进行混频,或者第二本振源16的本振信号与第二基带信号生成器18的基带信号进行混频,从而使得射频电路能够适用于NSA模式及SA模式。
可选的,所述天线阵列7包括第一天线71、第二天线72、第三天线73和第四天线74,所述第一天线71、第二天线72、第三天线73和第四天线74均与所述开关模块6连接。
该实施方式中,通过第一天线71、第二天线72、第三天线73和第四天线74,射频电路可以用于实现二发四收2T4R兼容一发四收1T4R。
可选的,如图5所示,所述第一射频收发模块2包括第一功率放大器21,第一功率放大器21的输入端通过第三开关8与所述第一混频器15连接。
所述第二射频收发模块3包括第二功率放大器31,第二功率放大器31的输入端通过第四开关9与所述第二混频器19连接。
其中,第三开关8可以通过低通滤波器与第一混频器15连接,第四开关9可以通过低通滤波器与第二混频器19连接。
该实施方式中,通过第三开关8和第四开关9分别控制第一功率放大器21和第二功率放大器31是否工作,从而在射频信号发送的过程中,控制第一射频收发模块2和/或第二射频收发模块3进行射频信号发送。
可选的,如图5所示,所述开关模块6包括第一双刀双掷开关61和第二双刀双掷开关62,所述第一射频收发模块2的第二端和所述第一射频接收模块4的第二端均通过所述第一双刀双掷开关61分别与所述第一天线71和第二天线72连接,所述第二射频收发模块3的第二端和所述第二射频接收模块5的第二端均通过所述第二双刀双掷开关62分别与所述第三天线73和第四天线74连接。
其中,如图5所示,第一本振源11和功分器12通过第一开关13和第一基带信号生成器14连接,并通过第二开关17和第二基带信号生成器18连接,分别跟两路基带信号TX0_BB和TX1_BB混频后,输出共第一本振源11的两路TX信号,即TX0和TX1信号,TX0和TX1信号再根据射频通路和天 线的对应关系,选择对应的射频通路发送到对应的天线上,可以实现一个本振源覆盖两条射频通路的目的。
另外,该射频电路可以用于如图6所示的天线布局,第一天线71和第二天线72在电子设备的上半部分,TX0通路到第一天线71和第二天线72的路径损耗较小;第三天线73和第四天线74在电子设备的下半部分,TX1通路到第三天线73和第四天线74的路径损耗较小。
需要说明的是,在NSA模式下,需要支持SRS 1T4R和四天线切换,可以控制第一开关13使得第一本振源11和第一射频收发模块2导通,控制第二开关17使得第一本振源11和第二射频收发模块3导通,从而第一基带信号生成器14的基带信号与第一本振源11的本振信号进行混频,第二基带信号生成器18的基带信号与第一本振源11的本振信号进行混频。在NSA模式下,若TX通路需要切换到第一天线71和第二天线72,则控制第三开关8闭合,控制第四开关9断开,TX信号经过第一功率放大器21的通路到第一天线71和第二天线72,可以减少路径损耗;在NSA模式下,若TX通路需要切换到第三天线73和第四天线74,则控制第四开关9闭合,控制第三开关8断开,TX信号经过第二功率放大器31的通路到第三天线73和第四天线74,可以减少路径损耗。
进一步的,在SA模式下,需要同时支持两路TX信号,可以控制第一开关13使得第二本振源16和第一射频收发模块2导通,控制第二开关17使得第三本振源20和第二射频收发模块3导通,从而第一基带信号生成器14的基带信号与第二本振源16的本振信号进行混频,第二基带信号生成器18的基带信号与第三本振源20的本振信号进行混频。可以控制第三开关8和第四开关9闭合,从而TX0信号经过第一功率放大器21的通路到第一天线71和第二天线72,TX1信号经过第二功率放大器31的通路到第三天线73和第四天线74。
通过上行通路重构,实现在1T4R的场景下,TX信号经过第一功率放大器21的通路到第一天线71和第二天线72,或者,TX信号经过第二功率放大器31的通路到第三天线73和第四天线74,从而避免通过四刀四掷开关实现TX信号经过第一功率放大器21的通路到第一天线71、第二天线72、第 三天线73及第四天线74。能够减少射频电路后端的路径损耗,提升性能,并降低功耗;并且可以减少开关的复杂度,后端的开关可以由4P4T换成两个DPDT,能够改善成本、占用面积及路径损耗;并且可以减少4条通路的走线差异,降低由于走线差异引入的不平衡对天线切换的影响。
该实施方式中,第一射频收发模块2能够将射频发送信号经过第一天线71和第二天线72进行发送,第二射频收发模块3能够将射频发送信号经过第三天线73和第四天线74进行发送,从而能够通过第一双刀双掷开关61和第二双刀双掷开关62实现1T4R场景,避免使用四刀四掷开关,从而能够降低路径损耗,提升射频发送性能,降低射频功耗。
可选的,所述开关模块6包括第一单刀双掷开关和第二单刀双掷开关,所述第一射频接收模块4的第二端通过所述第一单刀双掷开关与第二天线72连接,所述第二射频接收模块5的第二端通过所述第二单刀双掷开关与第四天线74连接。
其中,所述第一射频接收模块4可以包括功率放大器和带通滤波器,功率放大器与射频收发器1连接,且功率放大器通过带通滤波器与开关模块6连接。所述第二射频接收模块5可以包括功率放大器和带通滤波器,功率放大器与射频收发器1连接,且功率放大器通过带通滤波器与开关模块6连接。
另外,所述第一单刀双掷开关的第一活动端与所述第一射频接收模块4的第二端连接,所述第一单刀双掷开关的定端与第二天线72连接,所述第一单刀双掷开关的第二活动端与第二射频收发模块3或第一射频收发模块2连接;所述第二单刀双掷开关的第一活动端与所述第二射频接收模块5的第二端连接,所述第二单刀双掷开关的定端与第四天线74连接,所述第二单刀双掷开关的第二活动端与所述第二射频接收模块5或第二射频收发模块3连接。
该实施方式中,能够通过第一单刀双掷开关控制第二天线72用于射频发送或射频接收,以及通过第二单刀双掷开关控制第四天线74用于射频发送或射频接收。
可选的,如图7所示,所述开关模块6还包括第一单刀三掷开关63,所述第一射频收发模块2的第二端与第一天线71连接,所述第二射频收发模块3的第二端通过所述第一单刀三掷开关63分别与第二天线72、第三天线73 及第四天线74连接。
其中,如图7所示,第一本振源11和功分器12通过第一开关13和第一基带信号生成器14连接,并通过第二开关17和第二基带信号生成器18连接,分别跟两路基带信号TX0_BB和TX1_BB混频后,输出共第一本振源11的两路TX信号,即TX0和TX1信号,TX0和TX1信号再根据射频通路和天线的对应关系,选择对应的射频通路发送到对应的天线上,可以实现一个本振源覆盖两条射频通路的目的。
另外,该射频电路可以用于如图8所示的天线布局,第一天线71在电子设备的上半部分,TX0通路到第一天线71的路径损耗较小;第二天线72、第三天线73和第四天线74在电子设备的下半部分,TX1通路到第二天线72、第三天线73和第四天线74的路径损耗较小。
需要说明的是,在NSA模式下,需要支持SRS 1T4R和四天线切换,可以控制第一开关13使得第一本振源11和第一射频收发模块2导通,控制第二开关17使得第一本振源11和第二射频收发模块3导通,从而第一基带信号生成器14的基带信号与第一本振源11的本振信号进行混频,第二基带信号生成器18的基带信号与第一本振源11的本振信号进行混频。在NSA模式下,若TX通路需要切换到第一天线71,则控制第三开关8闭合,控制第四开关9断开,TX信号经过第一功率放大器21的通路到第一天线71,可以减少路径损耗;在NSA模式下,若TX通路需要切换到第二天线72、第三天线73和第四天线74,则控制第四开关9闭合,控制第三开关8断开,TX信号经过第二功率放大器31的通路到第二天线72、第三天线73和第四天线74,可以减少路径损耗。
进一步的,在SA模式下,需要同时支持两路TX信号,可以控制第一开关13使得第二本振源16和第一射频收发模块2导通,控制第二开关17使得第三本振源20和第二射频收发模块3导通,从而第一基带信号生成器14的基带信号与第二本振源16的本振信号进行混频,第二基带信号生成器18的基带信号与第三本振源20的本振信号进行混频。可以控制第三开关8和第四开关9闭合,从而TX0信号经过第一功率放大器21的通路到第一天线71,TX1信号经过第二功率放大器31的通路到第二天线72、第三天线73和第四 天线74。
通过上行通路重构,实现在1T4R的场景下,TX信号经过第一功率放大器21的通路到第一天线71,或者,TX信号经过第二功率放大器31的通路到第二天线72、第三天线73和第四天线74,从而避免通过四刀四掷开关实现TX信号经过第一功率放大器21的通路到第一天线71、第二天线72、第三天线73及第四天线74。能够减少射频电路后端的路径损耗,提升性能,并降低功耗;并且可以减少开关的复杂度,后端的开关可以由4P4T换成SP3T,能够改善成本、占用面积及路径损耗;并且可以减少4条通路的走线差异,降低由于走线差异引入的不平衡对天线切换的影响。
需要说明的是,所述第一单刀三掷开关63的定端与所述第二射频收发模块3的第二端连接,所述第一单刀三掷开关63的第一活动端通过所述第一单刀双掷开关与第二天线72连接,所述第一单刀三掷开关63的第二活动端与第三天线73连接,所述第一单刀三掷开关63的第三活动端与第四天线74连接。
另外,在该实施方式中,第一单刀双掷开关的定端可以与第二天线72连接,第一单刀双掷开关的第一活动端可以与第一射频接收模块4连接,第一单刀双掷开关的第二活动端可以通过第一单刀三掷开关63与第二射频收发模块3连接。第二单刀双掷开关的定端可以与第四天线74连接,第二单刀双掷开关的第一活动端可以与第二射频接收模块5连接,第二单刀双掷开关的第二活动端可以与第二射频收发模块3连接。
该实施方式中,第一射频收发模块2能够将射频发送信号经过第一天线71进行发送,第二射频收发模块3能够将射频发送信号经过第二天线72、第三天线73和第四天线74进行发送,从而能够通过第一单刀三掷开关63实现1T4R场景,避免使用四刀四掷开关,从而能够降低路径损耗,提升射频发送性能,降低射频功耗。
可选的,如图9所示,所述开关模块6还包括第二单刀三掷开关64,所述第一射频收发模块2的第二端通过所述第二单刀三掷开关64分别与所述第一天线71、第二天线72及第三天线73连接,所述第二射频收发模块3的第二端与所述第三天线73连接。
其中,如图9所示,第一本振源11和功分器12通过第一开关13和第一基带信号生成器14连接,并通过第二开关17和第二基带信号生成器18连接,分别跟两路基带信号TX0_BB和TX1_BB混频后,输出共第一本振源11的两路TX信号,即TX0和TX1信号,TX0和TX1信号再根据射频通路和天线的对应关系,选择对应的射频通路发送到对应的天线上,可以实现一个本振源覆盖两条射频通路的目的。
另外,该射频电路可以用于如图10所示的天线布局,第一天线71、第二天线72和第三天线73在电子设备的上半部分,TX0通路到第一天线71、第二天线72和第三天线73的路径损耗较小;第四天线74在电子设备的下半部分,TX1通路到第四天线74的路径损耗较小。
需要说明的是,在NSA模式下,需要支持SRS 1T4R和四天线切换,可以控制第一开关13使得第一本振源11和第一射频收发模块2导通,控制第二开关17使得第一本振源11和第二射频收发模块3导通,从而第一基带信号生成器14的基带信号与第一本振源11的本振信号进行混频,第二基带信号生成器18的基带信号与第一本振源11的本振信号进行混频。在NSA模式下,若TX通路需要切换到第一天线71、第二天线72和第三天线73,则控制第三开关8闭合,控制第四开关9断开,TX信号经过第一功率放大器21的通路到第一天线71、第二天线72和第三天线73,可以减少路径损耗;在NSA模式下,若TX通路需要切换到第四天线74,则控制第四开关9闭合,控制第三开关8断开,TX信号经过第二功率放大器31的通路到第四天线74,可以减少路径损耗。
进一步的,在SA模式下,需要同时支持两路TX信号,可以控制第一开关13使得第二本振源16和第一射频收发模块2导通,控制第二开关17使得第三本振源20和第二射频收发模块3导通,从而第一基带信号生成器14的基带信号与第二本振源16的本振信号进行混频,第二基带信号生成器18的基带信号与第三本振源20的本振信号进行混频。可以控制第三开关8和第四开关9闭合,从而TX0信号经过第一功率放大器21的通路到第一天线71、第二天线72和第三天线73,TX1信号经过第二功率放大器31的通路到第四天线74。
通过上行通路重构,实现在1T4R的场景下,TX信号经过第一功率放大器21的通路到第一天线71、第二天线72和第三天线73,或者,TX信号经过第二功率放大器31的通路到第四天线74,从而避免通过四刀四掷开关实现TX信号经过第一功率放大器21的通路到第一天线71、第二天线72、第三天线73及第四天线74。能够减少射频电路后端的路径损耗,提升性能,并降低功耗;并且可以减少开关的复杂度,后端的开关可以由4P4T换成SP3T,能够改善成本、占用面积及路径损耗;并且可以减少4条通路的走线差异,降低由于走线差异引入的不平衡对天线切换的影响。
需要说明的是,所述第二单刀三掷开关64的定端与所述第一射频收发模块2的第二端连接,所述第二单刀三掷开关64的第一活动端与所述第一天线71连接,所述第二单刀三掷开关64的第二活动端通过所述第一单刀双掷开关与第二天线72连接,所述第二单刀三掷开关64的第三活动端与第三天线73连接。
另外,在该实施方式中,第一单刀双掷开关的定端可以与第二天线72连接,第一单刀双掷开关的第一活动端可以与第一射频接收模块4连接,第一单刀双掷开关的第二活动端可以通过第二单刀三掷开关64与第一射频收发模块2连接。第二单刀双掷开关的定端可以与第四天线74连接,第二单刀双掷开关的第一活动端可以与第二射频接收模块5连接,第二单刀双掷开关的第二活动端可以与第二射频收发模块3连接。
该实施方式中,第一射频收发模块2能够将射频发送信号经过第一天线71、第二天线72和第三天线73进行发送,第二射频收发模块3能够将射频发送信号经过第四天线74进行发送,从而能够通过第二单刀三掷开关64实现1T4R场景,避免使用四刀四掷开关,从而能够降低路径损耗,提升射频发送性能,降低射频功耗。
可选的,如图5所示,所述第一射频收发模块2还包括第三功率放大器22及第三单刀双掷开关23,所述第三功率放大器22与所述射频收发器1连接,所述第三单刀双掷开关23的定端与所述开关模块6连接,所述第三单刀双掷开关23的第一活动端与所述第一功率放大器21连接,所述第三单刀双掷开关23的第二活动端与所述第三功率放大器22连接;
所述第二射频收发模块3还包括第四功率放大器32及第四单刀双掷开关33,所述第四功率放大器32与所述射频收发器1连接,所述第四单刀双掷开关33的定端与所述开关模块6连接,所述第四单刀双掷开关33的第一活动端与所述第二功率放大器31连接,所述第四单刀双掷开关33的第二活动端与所述第四功率放大器32连接。
其中,第三功率放大器22的输出端与射频收发器1连接,第三单刀双掷开关23的第一活动端可以与第一功率放大器21的输出端连接,第三单刀双掷开关23的第二活动端可以与第三功率放大器22的输入端连接,第三单刀双掷开关23的定端可以通过带通滤波器与开关模块6连接。第四功率放大器32的输出端可以与射频收发器1连接,第四单刀双掷开关33的第一活动端可以与第二功率放大器31的输出端连接,第四单刀双掷开关33的第二活动端可以与第四功率放大器32的输入端连接,第四单刀双掷开关33的定端可以通过带通滤波器与开关模块6连接。
该实施方式中,能够通过第三单刀双掷开关23控制第一射频收发模块2用于射频发送或射频接收,且能够通过第四单刀双掷开关33控制第二射频收发模块3用于射频发送或射频接收,从而能够降低射频电路的复杂程度。
本申请实施例还提供一种电子设备,所述电子设备包括本申请实施例所述的射频电路。
由于电子设备的其他结构是现有技术,射频电路在上述实施例中已进行详细说明,因此,本实施例中对于具体的电子设备的结构不再赘述。
本申请实施例的电子设备通过第一本振源11经过功分器12与两个射频收发模块连接,第一本振源11为两个射频收发模块提供相同的本振信号,能够避免后端用于切换发射用天线的开关须为四刀四掷开关,从而能够提高射频电路设计的灵活性。
本申请实施例还提供一种通信设备,所述通信设备包括本申请实施例所述的射频电路。
由于通信设备的其他结构是现有技术,射频电路在上述实施例中已进行详细说明,因此,本实施例中对于具体的通信设备的结构不再赘述。
本申请实施例的通信设备通过第一本振源11经过功分器12与两个射频 收发模块连接,第一本振源11为两个射频收发模块提供相同的本振信号,能够避免后端用于切换发射用天线的开关须为四刀四掷开关,从而能够提高射频电路设计的灵活性。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (11)

  1. 一种射频电路,所述射频电路包括射频收发器、第一射频收发模块、第二射频收发模块、第一射频接收模块、第二射频接收模块、开关模块以及天线阵列;
    所述射频收发器包括第一本振源、功分器、第一开关、第一基带信号生成器、第一混频器、第二本振源、第二开关、第二基带信号生成器、第二混频器和第三本振源;
    所述第一本振源通过所述功分器分别与所述第一开关的第一输入端以及所述第二开关的第一输入端连接,所述第二本振源与所述第一开关的第二输入端连接,所述第一开关的输出端与所述第一混频器的第一端连接,所述第一基带信号生成器通过所述第一混频器的第二端与所述第一射频收发模块的第一端连接,所述第三本振源与所述第二开关的第二输入端连接,所述第二开关的输出端与所述第二混频器的第一端连接,所述第二基带信号生成器通过所述第二混频器的第二端与所述第二射频收发模块的第一端连接;
    所述第一射频接收模块的第一端、所述第二射频接收模块的第一端均与所述射频收发器连接,所述第一射频收发模块的第二端、所述第二射频收发模块的第二端、所述第一射频接收模块的第二端、所述第二射频接收模块的第二端均通过所述开关模块与所述天线阵列连接;
    其中,在所述第一开关以及所述第二开关的控制下,所述射频电路可在多种状态之间进行切换,所述多种状态包括第一状态和第二状态,在所述第一状态下,所述第一本振源与所述第一射频收发模块和第二射频收发模块导通,在所述第二状态下,所述第二本振源与所述第一射频收发模块导通,所述第三本振源与所述第二射频收发模块导通。
  2. 根据权利要求1所述的射频电路,其中,所述第一开关为单刀双掷开关,所述第二开关为单刀双掷开关。
  3. 根据权利要求1所述的射频电路,其中,所述天线阵列包括第一天线、第二天线、第三天线和第四天线,所述第一天线、第二天线、第三天线和第四天线均与所述开关模块连接。
  4. 根据权利要求3所述的射频电路,其中,所述第一射频收发模块包括第一功率放大器,第一功率放大器的输入端通过第三开关与所述第一混频器连接;
    所述第二射频收发模块包括第二功率放大器,第二功率放大器的输入端通过第四开关与所述第二混频器连接。
  5. 根据权利要求4所述的射频电路,其中,所述开关模块包括第一双刀双掷开关和第二双刀双掷开关,所述第一射频收发模块的第二端和所述第一射频接收模块的第二端通过所述第一双刀双掷开关分别与所述第一天线和第二天线连接,所述第二射频收发模块的第二端和所述第二射频接收模块的第二端通过所述第二双刀双掷开关分别与所述第三天线和第四天线连接。
  6. 根据权利要求4所述的射频电路,其中,所述开关模块包括第一单刀双掷开关和第二单刀双掷开关,所述第一射频接收模块的第二端通过所述第一单刀双掷开关与第二天线连接,所述第二射频接收模块的第二端通过所述第二单刀双掷开关与第四天线连接。
  7. 根据权利要求6所述的射频电路,其中,所述开关模块还包括第一单刀三掷开关,所述第一射频收发模块的第二端与第一天线连接,所述第二射频收发模块的第二端通过所述第一单刀三掷开关分别与第二天线、第三天线及第四天线连接。
  8. 根据权利要求6所述的射频电路,其中,所述开关模块还包括第二单刀三掷开关,所述第一射频收发模块的第二端通过所述第二单刀三掷开关分别与所述第一天线、第二天线及第三天线连接,所述第二射频收发模块的第二端与所述第三天线连接。
  9. 根据权利要求4所述的射频电路,其中,所述第一射频收发模块还包括第三功率放大器及第三单刀双掷开关,所述第三功率放大器与所述射频收发器连接,所述第三单刀双掷开关的定端与所述开关模块连接,所述第三单刀双掷开关的第一活动端与所述第一功率放大器连接,所述第三单刀双掷开关的第二活动端与所述第三功率放大器连接;
    所述第二射频收发模块还包括第四功率放大器及第四单刀双掷开关,所述第四功率放大器与所述射频收发器连接,所述第四单刀双掷开关的定端与 所述开关模块连接,所述第四单刀双掷开关的第一活动端与所述第二功率放大器连接,所述第四单刀双掷开关的第二活动端与所述第四功率放大器连接。
  10. 一种电子设备,所述电子设备包括权利要求1-9中任一项所述的射频电路。
  11. 一种通信设备,所述通信设备包括权利要求1-9中任一项所述的射频电路。
PCT/CN2021/125814 2020-10-26 2021-10-22 射频电路及电子设备 WO2022089329A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011156094.3 2020-10-26
CN202011156094.3A CN112272044B (zh) 2020-10-26 2020-10-26 射频电路及电子设备

Publications (1)

Publication Number Publication Date
WO2022089329A1 true WO2022089329A1 (zh) 2022-05-05

Family

ID=74341645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125814 WO2022089329A1 (zh) 2020-10-26 2021-10-22 射频电路及电子设备

Country Status (2)

Country Link
CN (1) CN112272044B (zh)
WO (1) WO2022089329A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115694522A (zh) * 2023-01-03 2023-02-03 荣耀终端有限公司 射频模组及电子设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112272044B (zh) * 2020-10-26 2022-07-01 维沃移动通信有限公司 射频电路及电子设备
CN112886973B (zh) * 2021-01-28 2022-08-26 维沃移动通信有限公司 射频电路及电子设备
CN113258944B (zh) * 2021-05-12 2023-05-16 展讯通信(上海)有限公司 Srs发射电路、方法和装置
CN113746495A (zh) * 2021-08-04 2021-12-03 Tcl通讯(宁波)有限公司 一种射频前端电路及电子设备
CN114499704B (zh) * 2022-01-14 2023-08-22 维沃移动通信有限公司 功率检测电路及终端
CN115694544B (zh) * 2022-06-14 2023-11-14 荣耀终端有限公司 射频前端模块和控制射频前端模块的方法
CN115102568B (zh) * 2022-07-12 2023-10-24 东集技术股份有限公司 射频电路、控制方法、装置、射频读写设备及存储介质
CN116299398B (zh) * 2023-05-23 2023-08-29 石家庄银河微波技术股份有限公司 一种应用于飞行器的目标测距方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572939A (zh) * 2009-05-27 2009-11-04 上海华为技术有限公司 射频模块、收发信机及收发信机切换控制的方法
WO2014067363A1 (zh) * 2012-11-01 2014-05-08 中兴通讯股份有限公司 一种集成接收装置
CN109802699A (zh) * 2019-01-24 2019-05-24 维沃移动通信有限公司 一种信号收发装置及终端设备
CN109951192A (zh) * 2019-03-22 2019-06-28 维沃移动通信有限公司 一种射频前端电路及移动终端
CN112272044A (zh) * 2020-10-26 2021-01-26 维沃移动通信有限公司 射频电路及电子设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100679468B1 (ko) * 1997-12-18 2007-02-07 소니 인터내셔널(유로파) 게엠베하 N-포트 직접 수신기
US7236763B2 (en) * 2004-06-04 2007-06-26 Motorola, Inc. Method and apparatus providing improved mixer performance for radio receivers
US20110250926A1 (en) * 2009-12-21 2011-10-13 Qualcomm Incorporated Dynamic antenna selection in a wireless device
CN201869165U (zh) * 2010-10-29 2011-06-15 北京握奇数据系统有限公司 一种变频模块及设备
US9083390B2 (en) * 2012-04-16 2015-07-14 Broadcom Corporation Method and apparatus for mixed-mode spectrum communication
US9531451B2 (en) * 2015-03-19 2016-12-27 Infineon Technologies Ag System and method for high-speed analog beamforming
CN205377863U (zh) * 2015-12-30 2016-07-06 南京誉葆科技有限公司 一种毫米波收发模块
CN106230436B (zh) * 2016-07-26 2019-02-05 中国电子科技集团公司第十研究所 高可靠性频率源设备
CN110808757A (zh) * 2019-10-29 2020-02-18 Tcl移动通信科技(宁波)有限公司 射频前端电路及终端设备
CN111525933B (zh) * 2020-04-30 2021-12-17 维沃移动通信有限公司 一种射频电路及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572939A (zh) * 2009-05-27 2009-11-04 上海华为技术有限公司 射频模块、收发信机及收发信机切换控制的方法
WO2014067363A1 (zh) * 2012-11-01 2014-05-08 中兴通讯股份有限公司 一种集成接收装置
CN109802699A (zh) * 2019-01-24 2019-05-24 维沃移动通信有限公司 一种信号收发装置及终端设备
CN109951192A (zh) * 2019-03-22 2019-06-28 维沃移动通信有限公司 一种射频前端电路及移动终端
CN112272044A (zh) * 2020-10-26 2021-01-26 维沃移动通信有限公司 射频电路及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115694522A (zh) * 2023-01-03 2023-02-03 荣耀终端有限公司 射频模组及电子设备

Also Published As

Publication number Publication date
CN112272044B (zh) 2022-07-01
CN112272044A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2022089329A1 (zh) 射频电路及电子设备
JP6955103B2 (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
JP7038214B2 (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
JP7065961B2 (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
EP3540959B1 (en) Multiway switch, radio frequency system, and wireless communication device
JP7038212B2 (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
US11901974B2 (en) Antenna switching on MIMO devices
CN108923790B (zh) 多路选择开关、射频系统和无线通信设备
JP7038216B2 (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
CN108880602B (zh) 多路选择开关以及相关产品
WO2022001746A1 (zh) 射频电路及电子设备
JP2021508982A (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
EP3540956B1 (en) Multiway switch, radio frequency system, and communication device
JP2021507638A (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
CN108900201B (zh) 多路选择开关、射频系统及电子设备
WO2020001211A1 (zh) 多路选择开关及相关产品
CN108923792B (zh) 多路选择开关及相关产品
JP2022013725A (ja) 二重接続電力増幅器システム
CN109039367B (zh) 多路选择开关及相关产品
CN108923793B (zh) 多路选择开关及相关产品
US20240088925A1 (en) Module arranged to bidirectionally pass coupled power signal
CN209748553U (zh) 射频电路及终端设备
CN108923789B (zh) 多路选择开关及相关产品
CN113489506B (zh) 射频电路和电子设备
WO2024046172A1 (zh) 一种射频接收器、射频接收系统及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885056

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21885056

Country of ref document: EP

Kind code of ref document: A1