WO2021244181A1 - 光圈、光圈控制方法、摄像组件及电子设备 - Google Patents

光圈、光圈控制方法、摄像组件及电子设备 Download PDF

Info

Publication number
WO2021244181A1
WO2021244181A1 PCT/CN2021/089412 CN2021089412W WO2021244181A1 WO 2021244181 A1 WO2021244181 A1 WO 2021244181A1 CN 2021089412 W CN2021089412 W CN 2021089412W WO 2021244181 A1 WO2021244181 A1 WO 2021244181A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
aperture
sub
target
electrodes
Prior art date
Application number
PCT/CN2021/089412
Other languages
English (en)
French (fr)
Inventor
陈晓雷
王庆平
阮望超
陈廷爱
郑士胜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021244181A1 publication Critical patent/WO2021244181A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • H04N23/651Control of camera operation in relation to power supply for reducing power consumption by affecting camera operations, e.g. sleep mode, hibernation mode or power off of selective parts of the camera

Definitions

  • the present application relates to the technical field of imaging devices, and more specifically, to an aperture, an aperture control method, a camera assembly, and electronic equipment.
  • the aperture adjustment is mainly achieved by using blades or similar structures to block the aperture through mechanical driving. The adjustment of the aperture.
  • the purpose of this application is to provide an aperture, an aperture control method, a camera assembly, and an electronic device.
  • an aperture In order to solve the problems that the existing aperture is too large, it is difficult to achieve miniaturization and the reliability of the aperture is poor when using electronic equipment with the aperture.
  • the present application provides an aperture, including: a first light-transmitting structure and a second light-transmitting structure that are disposed oppositely, and an accommodating space is formed between the first light-transmitting structure and the second light-transmitting structure ,
  • the containing space is filled with a non-conductive transparent solution and light-shielding charged particles distributed in the transparent solution;
  • the first electrode includes a plurality of first sub-electrodes and a plurality of first sub-electrodes opposite to the first sub-electrodes
  • a second sub-electrode, the plurality of first sub-electrodes are arranged at intervals on a side of the first light-transmitting structure facing the second light-transmitting structure, and the plurality of second sub-electrodes are arranged at intervals in the second light-transmitting structure
  • the light structure faces the side of the first light-transmitting structure;
  • a second electrode the second electrode is surrounded by the outer peripheral edge of the first
  • the first electrode and the second electrode arranged on the peripheral edge control the charged particles. Since the first electrode and the second electrode each include a plurality of oppositely arranged sub-electrodes, the charged particles can be attracted to different positions to make the charged particles.
  • the directional movement realizes the shading of different areas, and thus realizes the adjustment of the aperture, without setting additional mechanical structures, thus effectively compressing the volume of the aperture structure, and avoiding the short service life and poor reliability caused by the use of mechanical structures. The problem has improved the reliability of the aperture.
  • the aperture further includes: a storage structure, the storage structure surrounds the outer peripheral edge of the first light-transmitting structure and the second light-transmitting structure, and the inner cavity of the storage structure In communication with the containing space, the storage structure is used for storing the charged particles; the second electrode is arranged on the side of the storage structure facing the containing space.
  • the storage structure is a housing made of a conductive material, and the storage structure serves as the second electrode.
  • the plurality of first sub-electrodes and the plurality of second sub-electrodes are all a plurality of ring electrodes arranged concentrically, and the plurality of first sub-electrodes and the plurality of second sub-electrodes are The two sub-electrodes are arranged in one-to-one correspondence, and each of the first sub-electrodes and each of the second sub-electrodes respectively form a potential difference with the second electrode to drive the charged particles to gather in different regions of the containing space.
  • the aperture further includes a first control circuit, a first end of the first control circuit is electrically connected to a DC power supply, and a second end of the first control circuit is connected to the first control circuit.
  • the electrode and the second electrode are electrically connected, and the first control circuit is used to control the electrical properties of the first electrode and the second electrode, and to control each of the first sub-electrodes and each of the second sub-electrodes. The on-off state of the electrode.
  • the first control circuit includes: a first control branch, a first end of the first control branch is electrically connected to the negative electrode of the DC power supply, and a second end is connected to the The second electrode is electrically connected; the second control branch, the first end of the second control branch is electrically connected to the negative electrode of the DC power supply; the third control branch, the first end of the third control branch Electrically connected to the positive electrode of the direct current power supply, and the second end is electrically connected to the second electrode; a fourth control branch, the first end of the fourth control branch is electrically connected to the positive electrode of the direct current power supply; more Parallel branches, the first end of each parallel branch is electrically connected to the plurality of first sub-electrodes and the plurality of second sub-electrodes, and the second end of each parallel branch is connected in parallel with all the The second end of the second control branch is electrically connected to the second end of the fourth control branch; the first control branch, the second control branch, the third control branch, and the fourth control branch And
  • the electrical properties of the first electrode and the second electrode can be adjusted, thereby realizing precise control of the charged particles.
  • the charged particles can accurately move to a specific area to achieve shading.
  • the aperture further includes a second control circuit, the second control circuit is arranged between the first electrode and the DC power source, and the second control circuit is used to adjust each of the The voltage of the first sub-electrode and each of the second sub-electrodes.
  • the second control circuit is specifically configured to adjust the voltage output by the DC power supply to each of the first sub-electrodes and each of the second sub-electrodes according to the posture of the aperture , So that the voltage of each of the first sub-electrodes and each of the second sub-electrodes matches the posture of the aperture.
  • the second control circuit is provided to control the voltage between the first electrode and the second electrode, so that the first sub-electrode and the second sub-electrode have different voltages.
  • the actual performance of each sub-electrode is often different from the theoretical value, especially as the use time of each sub-electrode increases, the performance of each sub-electrode will also change.
  • Charged particles are affected by the outside world such as gravity, which will also affect the accuracy of their directional movement.
  • the accuracy of the control of the charged particles by each sub-electrode can be further improved, and the control of the aperture can be improved. Accuracy.
  • the present application provides an aperture control method for controlling the aperture in any implementation manner of the first aspect above.
  • the method includes: acquiring a control signal, where the control signal includes a target aperture value; and comparing The target aperture value and the current aperture value are used to determine a target adjustment strategy; according to the target adjustment strategy, the first electrode and the second electrode in the aperture are adjusted to make the charged particles move directionally to shield different areas of the containing space , Forming a target aperture, wherein the aperture value of the target aperture is the target aperture value.
  • the specific target adjustment strategy is determined by comparing the target aperture value in the control signal with the current aperture value, and the first electrode and the second electrode are adjusted according to the target adjustment strategy, so that the charged particles move to different areas in a directional direction Perform shading to achieve the adjustment of the target aperture value. Since the charged particles have specific electrical properties, when the qualitative movement control of the charged particles is carried out, it is necessary to adjust the first electrode and the second electrode according to the direction in which the charged particles move. Electricity can only be achieved.
  • a specific target adjustment strategy needs to be determined, and then according to the target adjustment strategy, the charged particles are oriented under the action of the first electrode and the second electrode It is moved for the purpose of shading different areas of the containing space.
  • adjusting the first electrode and the second electrode in the aperture according to the target adjustment strategy includes: adjusting the first electrode and the second electrode according to the target adjustment strategy.
  • the electrical state of the electrode is adjusted, and the on-off state of each first sub-electrode and each second sub-electrode of the first electrode is adjusted.
  • the first control circuit forms a variety of circuit structures corresponding to the target adjustment strategy, and the charged particles are controlled through different circuit structures
  • a variety of circuit structures corresponding to the target adjustment strategy can be formed.
  • the charged particles are stably in the position state corresponding to the circuit structure.
  • the present application can achieve a more stable control of the charged particles, thereby achieving a more stable aperture value control of the aperture.
  • comparing the target aperture value with the current aperture value to determine the target adjustment strategy includes: if the target aperture value is greater than the current aperture value, determining the preset first adjustment strategy as the target adjustment strategy, wherein, the first adjustment strategy is used to characterize the electrical state of the first electrode and the second electrode when the target aperture value is greater than the current aperture value, and each of the first sub-electrodes and each of the second electrodes The on-off state of the two sub-electrodes; if the target aperture value is less than the current aperture value, the preset second adjustment strategy is determined as the target adjustment strategy, where the second adjustment strategy is used to characterize when the target aperture value is less than the current aperture value When, the electrical state of the first electrode and the second electrode, and the on-off state of each of the first sub-electrodes and each of the second sub-electrodes.
  • the electrical states of the first electrode and the second electrode are adjusted, and the first sub-electrodes and the first sub-electrodes of the first electrode are adjusted.
  • Adjusting the on-off state of each second sub-electrode includes: determining the sub-electrode identifier corresponding to the target aperture value according to the target adjustment strategy, and setting the target sub-electrode corresponding to the sub-electrode identifier to the energized state, so
  • the target sub-electrode includes one or more first sub-electrodes and one or more corresponding second sub-electrodes; according to the target adjustment strategy, the first target electrical property of the first electrode and the second electrode second are determined. Target electrical properties, and set the first electrode as the first target electrical properties, and set the second electrode as the second target electrical properties.
  • adjusting the first electrode and the second electrode in the aperture according to the target adjustment strategy further includes: acquiring a posture parameter, where the posture parameter is used to characterize the posture of the aperture; According to the target adjustment strategy, the voltage parameter corresponding to the posture parameter is determined; and the voltage of the first electrode and the second electrode is adjusted according to the voltage parameter.
  • the corresponding voltage parameters are determined by acquiring the posture parameters used to characterize the posture of the aperture, and the voltages of the first electrode and the second electrode are adjusted according to the voltage parameters. Due to the charged particles in the aperture, there is a certain For some charged particles with larger mass, they will be offset by the influence of gravity. Through the different postures of the aperture, the voltage value of the electrode at the corresponding position can be adjusted accordingly to overcome the influence of gravity on the charged particles. The charged particles can be accurately oriented and moved to the target area to achieve accurate shading, improve the control accuracy of the light value, and improve the light transmission effect of the aperture.
  • the method before the obtaining the control signal, the method further includes: obtaining a preset initialization adjustment strategy; and initializing the aperture according to the initialization adjustment strategy.
  • the initialization of the aperture according to the initialization adjustment strategy includes: according to a preset second adjustment strategy and a preset maximum aperture value, performing adjustments to the first electrode and the second aperture in the aperture.
  • the electrodes are adjusted so that the charged particles are gathered in the area corresponding to the maximum aperture value in the containing space; the first electrode and the second electrode in the aperture are adjusted according to the preset first adjustment strategy and the preset optimal aperture value, The charged particles are gathered in the area corresponding to the best aperture value in the containing space.
  • the aperture is initialized so that the aperture is at the maximum aperture value and the optimal aperture value in sequence. Since the aperture in the electronic device is not working, it is often not powered on due to power saving considerations. Therefore, the charged particles in the aperture are in a Brownian motion state. If the aperture is directly adjusted after the camera assembly starts to work, it will cause some of the charged particles at a distance to be unable to accurately move to the target sub-electrode position, which will affect the aperture.
  • This application initializes the aperture so that the aperture is first at the maximum aperture value and then at the optimal aperture value. Even if the charged particles are all directed to move to the maximum aperture position for concentration, then the charged particles are moved to the maximum aperture. The position corresponding to the best aperture value reduces the number of free charged particles that are not attracted by the electrode, and improves the light transmission effect of the aperture and the control accuracy of the aperture value.
  • the initialization adjustment strategy further includes an initialization voltage parameter
  • the aperture is initialized according to the initialization adjustment strategy, so that the aperture forms an aperture corresponding to a preset optimal aperture value
  • the method further includes: acquiring the initialization voltage parameter; and adjusting the voltage of the first electrode and the second electrode according to the initialization voltage parameter, so that the charged particles are gathered in the area corresponding to the optimal aperture value in the containing space.
  • the aperture is initialized according to the preset initialization voltage parameters during the initialization process, so that the first electrode and the second electrode after initialization have different voltage values to achieve the correct voltage value of the electrode.
  • the effect is to improve the control accuracy of the aperture value.
  • the present application provides a camera assembly, including a first lens group, a second lens group, and the aperture provided by any one of the implementations of the first aspect above, wherein the aperture is concentrically arranged in the first lens group and Between the second lens group, it is used to adjust the light transmission of the camera assembly.
  • the present application provides an electronic device, including a controller, a DC power supply, and the camera assembly provided in the above third aspect, wherein the DC power supply is electrically connected to the controller and the camera assembly, respectively,
  • the controller is used to supply power to the controller and the camera assembly; the controller is electrically connected to the camera assembly, and is used to obtain the state of the aperture in the camera assembly and control the aperture.
  • the present application provides a terminal device.
  • the terminal device includes an aperture, a processor, and a memory.
  • the memory is used to store computer programs and instructions.
  • the processor is used to call the computer programs and instructions so that all The processor is executed together with the aperture to implement the aperture control method provided by any implementation manner of the second aspect above
  • this application provides a computer-readable storage medium with a computer program stored on the computer-readable storage medium, and when the computer program is run on a computer, it can execute any implementation of the second aspect above The method provided by the method.
  • an embodiment of the present application provides an aperture control device, which includes: an acquisition module for acquiring a control signal, the control signal includes a target aperture value; a determining module for comparing the target aperture value with the current aperture value, Determine the target adjustment strategy; the adjustment module is used to adjust the first electrode and the second electrode in the aperture according to the target adjustment strategy, so that the charged particles move directionally to shield different areas of the containing space to form a target aperture, where, The aperture value of the target aperture is the target aperture value.
  • the adjustment module is specifically used to: adjust the electrical state of the first electrode and the second electrode according to the target adjustment strategy, and adjust the first sub-electrodes and the respective first electrodes of the first electrode. The on-off state of the second sub-electrode is adjusted.
  • the determining module is specifically configured to: if the target aperture value is greater than the current aperture value, determine the preset first adjustment strategy as the target adjustment strategy, where the first adjustment strategy is used to characterize the current target When the aperture value is greater than the current aperture value, the electrical state of the first electrode and the second electrode, and the on-off state of each first sub-electrode and each second sub-electrode; if the target aperture value is less than the current aperture value, the preset The second adjustment strategy is determined as the target adjustment strategy, where the second adjustment strategy is used to characterize the electrical state of the first electrode and the second electrode when the target aperture value is less than the current aperture value, and the first sub-electrodes and the second The on-off state of the two sub-electrodes.
  • the adjustment module adjusts the electrical state of the first electrode and the second electrode according to the target adjustment strategy, and adjusts each first sub-electrode and each second sub-electrode of the first electrode.
  • the target adjustment strategy determines the sub-electrode ID corresponding to the target aperture value according to the target adjustment strategy, and set the target sub-electrode corresponding to the sub-electrode ID to the energized state, and the target sub-electrode includes one or more One first sub-electrode, and one or more corresponding second sub-electrodes; according to the target adjustment strategy, determine the first target electrical property of the first electrode and the second target electrical property of the second electrode, and set the first electrode For the first target electrical property, the second electrode is set to the second target electrical property.
  • the adjustment module when the adjustment module adjusts the first electrode and the second electrode in the aperture according to the target adjustment strategy, it is also used to: obtain attitude parameters, which are used to characterize the attitude of the aperture;
  • the target adjustment strategy is to determine the voltage parameter corresponding to the posture parameter; according to the voltage parameter, the voltage of the first electrode and the second electrode are adjusted.
  • the acquisition module before acquiring the control signal, is also used to: acquire a preset initialization adjustment strategy; and initialize the aperture according to the initialization adjustment strategy.
  • the acquisition module when the acquisition module initializes the aperture according to the initialization adjustment strategy, it is specifically used to: according to the preset second adjustment strategy and the preset maximum aperture value, the first electrode in the aperture and the The second electrode is adjusted so that the charged particles are gathered in the area corresponding to the maximum aperture value in the containing space; according to the preset first adjustment strategy and the preset optimal aperture value, the first electrode and the second electrode in the aperture are adjusted Adjust to make the charged particles gather in the area corresponding to the best aperture value in the containing space.
  • the initialization adjustment strategy also includes initialization voltage parameters.
  • the acquisition module initializes the aperture according to the initialization adjustment strategy so that the aperture forms the aperture corresponding to the preset optimal aperture value, it is also used to: Obtain the initialization voltage parameter; according to the initialization voltage parameter, the voltage of the first electrode and the second electrode are adjusted so that the charged particles are gathered in the area corresponding to the best aperture value in the containing space.
  • this application provides a computer program product, including program code.
  • the program code executes the method provided by any of the implementations of the second aspect above.
  • this application provides a chip including a processor.
  • the processor is used to call and run a computer program stored in the memory to execute the method provided in any implementation manner of the second aspect above.
  • charged particles for shielding light are arranged in the accommodation space between the first light-transmitting structure and the second light-transmitting structure, and the charged particles are arranged in the first light-transmitting structure and the second light-transmitting structure.
  • the first electrode on the optical structure and the second electrode arranged on the peripheral edge control the charged particles. Since the first electrode and the second electrode each include a plurality of opposed sub-electrodes, the charged particles can be attracted to different positions.
  • the directional movement of the charged particles realizes the shading of different areas, and then realizes the adjustment of the aperture, without setting additional mechanical structures, thus effectively compressing the volume of the aperture structure, and avoiding the short service life caused by the use of mechanical structures ,
  • the problem of poor reliability improves the reliability of the aperture.
  • FIG. 1 is a schematic diagram of an application scenario of an aperture provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a structure of an aperture provided by an embodiment of the application.
  • FIG. 2A is a schematic structural diagram of an annular sealing structure provided by an embodiment of the application.
  • Figure 3 is a schematic diagram of a storage structure provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the first sub-electrode and the second sub-electrode driving charged particles according to an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of another aperture provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a first control circuit provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of still another aperture provided by an embodiment of the application.
  • FIG. 8 is a schematic flowchart of an aperture control method provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of determining a target adjustment strategy provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of adjusting the first electrode and the second electrode according to an embodiment of the application.
  • FIG. 11 is a schematic flowchart of another aperture control method provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of an implementation manner of a target adjustment strategy provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of another implementation manner of a target adjustment strategy provided by an embodiment of the application.
  • FIG. 14 is a schematic flowchart of an implementation manner of step S205 in the embodiment shown in FIG. 11;
  • FIG. 15 is a schematic flowchart of an implementation manner of step S200 in the embodiment shown in FIG. 11;
  • FIG. 16 is a schematic block diagram of the structure of a camera assembly provided by an embodiment of the application.
  • FIG. 17 is a schematic block diagram of the structure of an electronic device according to an embodiment of the application.
  • 1 Front camera; 10: Camera assembly; 100: Aperture; 110: First light transmission structure; 115: Annular sealing structure 120: Second light transmission structure; 130: Receiving space; 140: Charged particles; 150: First Electrode; 151: first sub-electrode; 152: second sub-electrode; 160: second electrode; 170: storage structure; 180: first control circuit; 181: first control branch; 182: second control branch; 183: third control branch; 184: fourth control branch; 185: parallel branch; 186: control switch; 190: second control circuit; 200: first lens group; 210: second lens group;
  • the embodiment of the present application provides an aperture, which is applied to a camera component, and the camera component is set in an electronic device to realize the shooting function of the electronic device.
  • the electronic device may include, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a super Mobile personal computers (ultra-mobile personal computers, UMPC), handheld computers, walkie-talkies, netbooks, POS machines, personal digital assistants (personal digital assistants, PDAs), driving recorders, security equipment and other mobile or fixed terminals equipped with camera components .
  • Fig. 1 is a schematic diagram of an application scenario of an aperture provided by an embodiment of the application.
  • the electronic device is a mobile phone.
  • the camera assembly 10 including the aperture provided by the embodiment of the present application is correspondingly set at the position of the front camera 1 of the mobile phone.
  • the camera assembly 10 can also be set at the rear camera or the lift camera. Position, so that the mobile phone can realize the shooting function through the camera assembly 10.
  • the camera assembly 10 provided in the mobile phone needs to meet the necessary size requirements.
  • the traditional variable aperture camera assembly 10 is based on a mechanical drive.
  • the aperture structure requires the placement of electromagnetic drive mechanisms, blades and other components, resulting in a large size that cannot meet the size requirements set in the mobile phone. Therefore, the existing camera assembly 10 often uses an invariable aperture to realize the camera assembly 10.
  • the miniaturization of the mobile phone meets the design requirements of the mobile phone, but at the same time it also leads to the inability of the mobile phone to achieve the function of changing the aperture.
  • the mechanical drive structure is susceptible to environmental factors such as humidity, dust, etc., when in use, the operating accuracy is reduced and the service life is shortened, which reduces the reliability of the camera assembly 10.
  • the iris 100 provided by the embodiment of the present application adjusts the iris by controlling the directional movement of charged particles for shading through multiple electrodes, which can avoid the problems of excessively large size and poor reliability of the iris based on mechanical driving.
  • FIG. 2 is a schematic diagram of an aperture provided by an embodiment of the application. As shown in FIG. 2, the aperture 100 includes:
  • the first light-transmitting structure 110 and the second light-transmitting structure 120 are arranged opposite to each other, and an accommodating space 130 is formed between the first light-transmitting structure 110 and the second light-transmitting structure 120, and the accommodating space 130 is filled with a non-conductive transparent solution and Light-shielding charged particles 140 distributed in a transparent solution.
  • the transparent solution is used to carry the charged particles 140, because the charged particles 140 in the transparent solution will be resisted by the transparent solution when moving in a direction, so the stability of the charged particles will be increased to a certain extent, and the light shielding effect of the charged particles will be improved.
  • the first light-transmitting structure 110 and the second light-transmitting structure 120 may be plate-like structures with high light-transmitting properties, more specifically, for example, a glass substrate made of optical quartz glass with a thickness of 0.3 to 1 mm.
  • Optical quartz glass has a high degree of transparency, high chemical and physical uniformity, has specific and precise optical constants, and can provide better light transmission effects.
  • the glass substrate may also be other light-transmitting glass, such as colored optical glass, sapphire glass, tempered glass, etc., here, the first light-transmitting structure 110 and The specific material of the second light-transmitting structure 120 is limited.
  • the non-conductive transparent solution may be pure water or glycerin.
  • the current in the non-conductive transparent solution can be less than 1 mA.
  • the containing space 130 between the first light-transmitting structure 110 and the second light-transmitting structure 120 is filled with a non-conductive transparent solution.
  • the charged particles 140 can be positively charged or negatively charged, which can be determined according to the material of the charged particles 140.
  • the charged particles 140 can be polymer particles, for example, by emulsion polymerization, seed emulsion polymerization, It is prepared by emulsifier-free polymerization method, dispersion polymerization method, suspension polymerization method and other methods.
  • the material of the polymer particles is styrene, styrene-acrylic, styrene-isoprene, divinylbenzene, methyl methacrylate, methyl methacrylate, methyl methacrylate, Base acrylates, ethyl methacrylate, ethyl acrylate, n-butyl acrylate, acrylic, acrylonitrile, acrylic rubber-methacrylic, vinyl, ethylene-acrylic, nylon, Polysiloxanes, urethanes, melamines, benzomelamines, phenols, fluorine (tetrachloroethylene), vinyl chlorides, quaternary pyridinium salts, synthetic rubber, fibers
  • the type of charged particles 140 is not specifically limited here, such as cellulose, cellulose acetate, chitosan, calcium alginate, etc.
  • the charged particles 140 may be polymer particles dyed with inorganic pigments or organic dyes.
  • the inorganic pigments are, for example, carbon black, iron black, and manganese iron oxide.
  • the outer peripheral edges of the first light-transmitting structure 110 and the second light-transmitting structure 120 are provided with an annular sealing structure 115, as shown in FIG. 2A, the annular sealing structure 115 and the first light-transmitting structure 110 It is connected to the outer peripheral edge of the second light-transmitting structure 120, so that the first light-transmitting structure 110, the second light-transmitting structure 120, and the annular sealing structure 115 form a sealed accommodating space 130. It is understandable that there are many ways to realize the annular sealing structure 115, and correspondingly can realize different functions.
  • the annular sealing structure 115 is not specifically limited here, as long as it can be combined with the first light-transmitting structure 110 and the second light-transmitting structure.
  • the outer peripheral edges of the light structure 120 are connected to form a closed accommodating space.
  • FIG. 3 is a schematic diagram of a storage structure 170 provided by an embodiment of the application.
  • the storage structure 170 has an inner cavity for storing charged particles 140.
  • the storage structure 170 is surrounded by the outer peripheral edge of the first light-transmitting structure 110 and the second light-transmitting structure 120, and the inner cavity of the storage structure 170 is in communication with the containing space 130.
  • the outer peripheral edges are respectively connected to the storage structure 170 in a sealed manner.
  • the storage structure 170 can play the same role as the annular sealing structure 115 in FIG.
  • the two ends of the storage structure 170 are respectively connected to the outer edges of the first light-transmitting structure 110 and the second light-transmitting structure 120 by clamping, welding, gluing or fasteners.
  • the storage structure 170 may be a conductive material with an expansion coefficient close to that of the glass substrate, such as magnesium-aluminum alloy.
  • a filling hole is reserved on the outer side of the storage structure 170 for filling into the enclosed space formed by the inner cavity and the containing space 130 Charged particles 140 and non-conductive transparent solution.
  • the storage structure 170 for storing the charged particles 140, it is possible to store all the charged particles 140 in the containing space 130 in the storage structure 170 under specific usage scenarios, so that the charged particles 140 are more
  • the stable state reduces the problem of affecting the light transmission of the iris due to the appearance of free charged particles 140, and improves the light transmission effect and light transmission stability of the iris.
  • the aperture further includes a first electrode 150 and a second electrode 160.
  • the first electrode 150 includes a plurality of transparent first sub-electrodes 151 and a plurality of transparent second sub-electrodes 152 opposite to the first sub-electrodes 151.
  • the first sub-electrode 151 and the second sub-electrode 152 are indium tin oxide (ITO) electrodes, and a plurality of first sub-electrodes 151 are arranged at intervals in the first light-transmitting structure 110 toward the second light-transmitting On one side of the structure 120, the plurality of second sub-electrodes 152 are arranged at intervals on the side of the second light-transmitting structure 120 facing the first light-transmitting structure 110. Illustratively, there is a gap between the plurality of first sub-electrodes 151.
  • ITO indium tin oxide
  • the band can be made of insulating material, and the spacing band extends along the extension direction of the two adjacent first sub-electrodes 152, so as to isolate the plurality of first sub-electrodes 151 and prevent the first sub-electrodes from being electrically conductive. And influence each other.
  • the interval between two adjacent first sub-electrodes 151 and the interval between two adjacent second sub-electrodes 152 are both between 1-100 microns.
  • the second electrode 160, the second electrode 160 is surrounded by the outer peripheral edge of the first light-transmitting structure 110 and the second light-transmitting structure 120, the first electrode 150 and the second electrode 160 are electrically opposite; the charged particles 140 are on the first electrode 150 and the second electrode 160 move directionally to shield different areas of the accommodating space 130 from light.
  • directional movement refers to the movement of charged particles along the radial direction of the aperture.
  • the plurality of first sub-electrodes 151 and the plurality of second sub-electrodes 152 are all a plurality of ring electrodes arranged concentrically, and the plurality of first sub-electrodes 151 and the plurality of second sub-electrodes 152 are the same.
  • One corresponding arrangement for example, each first sub-electrode 151 and each second sub-electrode 152 are arranged opposite to each other, and the projection of each first sub-electrode 151 on the plane where the second sub-electrode is located overlaps.
  • Each first sub-electrode 151 and each second sub-electrode 152 respectively form a potential difference with the second electrode 160, so that the charged particles 140 can be driven, and move in the accommodating space 130 along the radial direction of the lens, thereby achieving different aperture sizes. Corresponding different areas are occluded and covered.
  • the first light-transmitting structure 110 and the second light-transmitting structure 120 are arranged in parallel. The distance between them is less than 2 mm.
  • the distance between the side of the first light-transmitting structure 110 where the first sub-electrode 151 is provided and the side of the second light-transmitting structure 120 where the second sub-electrode 152 is provided is less than 100 micrometers.
  • FIG. 4 is a schematic diagram of the first sub-electrode 151 and the second sub-electrode 152 driving the charged particles 140 according to an embodiment of the application. As shown in FIG.
  • each first sub-electrode 151 and each second sub-electrode 152 are arranged oppositely, when After the first sub-electrode 151 and the corresponding second sub-electrode 152 are energized, the charged particles 140 can be attracted to the position of the ring-shaped first sub-electrode 151 and the second sub-electrode 152 to form a ring-shaped shield; After the sub-electrode 151 and the corresponding second sub-electrode are energized, the light shielding of the specific area can be realized to form different aperture values.
  • the second electrode 160 is provided on the side of the storage structure 170 facing the containing space 130.
  • the storage structure 170 is a shell made of conductive material, and the storage structure 170 itself serves as the second electrode 160.
  • the first electrode 150 and the second electrode 160 are energized, they can attract the charged particles 140, thereby causing the charged particles 140 to move directionally and fix them in the containing space 130 or a certain area in the inner cavity of the storage structure 170.
  • the light passing through the first light-transmitting structure 110 and the second light-transmitting structure 120 is blocked, so as to realize the adjustment of the aperture size.
  • charged particles 140 for shielding light are provided in the containing space 130 between the first light-transmitting structure 110 and the second light-transmitting structure 120,
  • the first electrode 150 on the optical structure 120 and the second electrode 160 arranged on the peripheral edge control the charged particles 140. Since the first electrode 150 and the second electrode 160 each include a plurality of oppositely arranged sub-electrodes, they can be charged.
  • the particles 140 are attracted to different positions, so that the directional movement of the charged particles 140 realizes the shading of different areas, thereby realizing the adjustment of the aperture 100.
  • the structure is simple and no additional mechanical structure is required.
  • the first light-transmitting structure 110, the second light-transmitting structure 110 can be compressed to less than 2 mm, which effectively compresses the structural volume of the aperture 100, and at the same time avoids the short service life and poor reliability caused by the use of mechanical structures, and improves the aperture 100. Reliability.
  • FIG. 5 is a schematic structural diagram of another aperture provided by an embodiment of the application. As shown in FIG. 5, the aperture provided in this embodiment is based on the aperture shown in FIG.
  • the control circuit for controlling the two electrodes 160, in a possible implementation manner, the aperture further includes:
  • the first control circuit 180, the first electrode 150 and the second electrode 160 are respectively connected to the two poles of the DC power supply 2 through the first control circuit 180, and the first control circuit 180 is used to control the electrical properties of the first electrode 150 and the second electrode 160 , And control the on-off state of each first sub-electrode 151 and each second sub-electrode 152, wherein the first control circuit 180 is electrically connected to the controller.
  • the first control circuit 180 includes an input terminal and an output terminal, wherein the input terminal is electrically connected with the positive and negative electrodes of the DC power supply 2, and the output terminal is electrically connected with the first electrode 150 and the second electrode 160 respectively, so that the DC The power source 2 is respectively connected to the first electrode 150 and the second electrode 160, wherein the voltage of the DC power source 2 is between 1.8-12 volts, which can drive the directional movement of the charged particles 140.
  • the control circuit includes multiple control branches. By adjusting the on-off state of the control branches, the structure of the first control circuit 180 is changed, so as to realize the electrical adjustment of the first electrode 150 and the second electrode 160, and the first electrode 150 and the second electrode 160. The on-off state of the sub-electrode 151 and each second sub-electrode 152 is adjusted. A specific implementation is described below.
  • the first control circuit 180 includes: a first control branch 181, a first control The first end of the branch 181 is electrically connected to the negative electrode of the DC power supply 2, and the second end is electrically connected to the second electrode 160; the second control branch 182, the first end of the second control branch 182 is electrically connected to the negative electrode of the DC power supply 2 Electrically connected; the third control branch 183, the first end of the third control branch 183 is electrically connected to the positive electrode of the DC power supply 2, and the second end is electrically connected to the second electrode 160; the fourth control branch 184, the fourth control The first end of the branch 184 is electrically connected to the positive electrode of the DC power supply 2; a plurality of parallel branches 185, and the first end of each parallel branch 185 is respectively connected to a plurality of first sub-electrodes 151 and/or a plurality of second sub-electrode
  • control switch 186 may be switched and maintained in an open or closed state according to specific instruction information, where the instruction information may be a control instruction sent by the controller in the electronic device to the voltage regulating unit.
  • instruction information may be a control instruction sent by the controller in the electronic device to the voltage regulating unit.
  • the opening and closing actions of the control switch 186 can be realized by an optocoupler or a field effect transistor.
  • the control switches 186 on the first control branch 181 and the fourth control branch 184 are closed, and the control switches 186 on the second control branch 182 and the third control branch 183 are open, at this time ,
  • the electrical property of the first electrode 150 is negative; the electrical property of the second electrode 160 is positive; at the same time, the control switches 186 on the multiple parallel branches 185 are all closed.
  • the first sub-electrode 151 and each second All the sub-electrodes 152 are energized.
  • first control circuit 180 shown in FIG. 6 is only one of the specific ways to implement the first control circuit 180, and other equivalent circuits that can achieve the same function can all be regarded as the first control circuit 180. I will not list them one by one here.
  • first control circuit 180 including a plurality of control control branches and parallel branches 185, the electrical properties of the first electrode 150 and the second electrode 160 are adjusted, thereby realizing the control of the charged particles 140 Precise control enables the charged particles 140 to accurately move to a specific area for shading.
  • FIG. 7 is a schematic structural diagram of still another aperture provided by an embodiment of the application.
  • the aperture further includes a second control circuit 190, and the second control circuit 190 is disposed in the first Between the electrode 150 and the DC power supply 2, the second control circuit 190 is used to adjust the voltage of each first sub-electrode 151 and each second sub-electrode 152.
  • the second control circuit 190 obtains the posture parameters of the aperture to determine the posture of the aperture 100, where the posture of the aperture refers to the angular relationship between the aperture 100 of the sheet-like structure and the ground in space.
  • the second control circuit 190 accepts the attitude parameters sent by the controller in the electronic device. More specifically, for example, the controller determines the attitude parameters through the data of the gyroscope in the electronic device, or The controller determines the posture parameters through the image data collected by the camera. After obtaining the posture parameters sent by the controller, the second control circuit 190 can determine the posture of the aperture accordingly.
  • the second control circuit 190 adjusts the voltage of the DC power supply output to each first sub-electrode 151 and each second sub-electrode 152 according to the posture of the aperture 100, so that the voltage of each first sub-electrode 151 and each second sub-electrode 152 The voltage matches the posture of the aperture 100.
  • the second control circuit 190 may be a multi-output voltage regulating unit disposed between the first electrode 150 and the DC power supply 2, and the output terminal of the voltage regulating unit is connected to each first sub-electrode 151 of the first electrode 150.
  • the voltage regulating unit can adjust and output different voltages to each first sub-electrode 151 and each second sub-electrode 152 of the first electrode 150 according to specific command information, so that the first electrode 150
  • the instruction information may be a control instruction sent by the controller in the electronic device to the voltage regulating unit, and the specific implementation of the voltage regulating unit is an existing technology in the art, and will not be repeated here.
  • the second control circuit 190 is provided to control the voltage between the first electrode 150 and the second electrode 160, so that the first sub-electrode 151 and the second sub-electrode 152 have different voltages, because the charged particles 140
  • the actual performance of each sub-electrode is often different from the theoretical value, especially as the use time of each sub-electrode increases, the performance of each sub-electrode There will also be changes.
  • the charged particles 140 are affected by the outside world such as gravity, which will also affect the accuracy of their directional movement.
  • the accuracy of control improves the control accuracy of the iris.
  • FIG. 8 is a schematic flowchart of an aperture control method provided by an embodiment of the application. As shown in FIG. 8, the method includes:
  • control signal may be control information for adjusting the size of the aperture value, for example, an aperture adjustment instruction issued by a camera application, an aperture adjustment instruction issued by a shopping application during a code scan, and so on.
  • control signal includes the target aperture value, that is, the target amount of aperture adjustment.
  • the target aperture value is, for example, F1, 4, F2.8, F4.0.
  • it can also be an identifier that has a mapping relationship with the aperture value, which is not specifically limited here.
  • the current aperture value of the aperture is obtained and compared with the target aperture value, and the corresponding target adjustment strategy is determined according to the current aperture value and the relationship with the target aperture value. Since charged particles have specific electrical properties, when controlling the directional movement of charged particles, it is necessary to adjust the electrical properties of the first electrode and the second electrode according to the direction in which the charged particles move, that is, the aperture changes slightly. When Yamato changes from big to smaller, its adjustment strategy is different. Therefore, according to the relationship between the target aperture value and the current aperture value, a specific target adjustment strategy needs to be determined, and then according to the target adjustment strategy, the charged particles are in the first electrode and the second electrode. Under the action of directional movement.
  • FIG. 9 is a schematic diagram of determining a target adjustment strategy according to an embodiment of the application.
  • the preset first adjustment strategy Determined as the target adjustment strategy, where the first adjustment strategy is used to characterize the electrical state of the first electrode and the second electrode when the target aperture value is greater than the current aperture value, and the electrical state of each first sub-electrode and each second sub-electrode On-off state; if the target aperture value is less than the current aperture value, the preset second adjustment strategy is determined as the target adjustment strategy, where the second adjustment strategy is used to characterize when the target aperture value is less than the current aperture value, the first electrode and The electrical state of the second electrode, and the on-off state of each first sub-electrode and each second sub-electrode.
  • the corresponding target adjustment strategy can be set according to specific needs, which is not limited here.
  • the first electrode and the second electrode in the aperture are adjusted to move the charged particles in a directional movement to shield different areas of the containing space to form a target aperture, where the aperture value of the target aperture is the target aperture value.
  • FIG. 10 is a schematic diagram of adjusting the first electrode and the second electrode according to an embodiment of the application.
  • the target adjustment strategy may be to change the aperture from the current aperture value to the first corresponding to the target aperture value.
  • the adjustment method of the electrode and the second electrode is, for example, a mapping relationship table or a logical expression for changing the current aperture value to the target aperture value and the state of the first electrode and the second electrode. Mapping relations.
  • the target adjustment strategy can be used to adjust the electrical state of one electrode and the second electrode, and to adjust the on-off state of each first sub-electrode and each second sub-electrode in one electrode. adjust.
  • the charged particles can be attracted by the electrode or sub-electrode with the opposite electrical property and move to The position of the electrode or the sub-electrode forms a block to the area, thereby realizing the change control of the aperture size.
  • the first control circuit is made to form a variety of circuit structures corresponding to the target adjustment strategy, and the charged particles are controlled through different circuit structures.
  • Due to the adjustment of the electrical state and on-off state of the first electrode and the second electrode a variety of circuit structures corresponding to the target adjustment strategy are formed, which can be charged
  • the particles are stably in the position state corresponding to the circuit structure.
  • the present application can achieve more stable control of the charged particles, thereby achieving a more stable aperture value control of the aperture.
  • FIG. 11 is a schematic flowchart of another aperture control method provided by an embodiment of the application. As shown in FIG. 11, the aperture control method provided in this embodiment is based on the aperture control method provided in the embodiment shown in FIG. Step S103 is further refined, and the method includes:
  • the target sub-electrode includes one or more first sub-electrodes, and a corresponding one Or multiple second sub-electrodes.
  • marks may be set for each of the first sub-electrodes and the second sub-electrodes in advance, for example, the first electrode includes A1, A2, and Four first sub-electrodes A3 and A4. Through the sub-electrode identification, the corresponding sub-electrode can be determined.
  • the first electrode in the aperture includes a plurality of first sub-electrodes and a plurality of second sub-electrodes corresponding to the first sub-electrodes, wherein one or more first sub-electrodes that maintain a energized state, and a corresponding one Or a plurality of second sub-electrodes can form an electric field with the second electrode through discharge to generate a driving force for the charged particles, thereby realizing the directional movement of the charged particles and shielding light.
  • the sub-electrode identification corresponding to the aperture value determines the target sub-electrode and keeps the target sub-electrode in an energized state to attract charged particles to the position of the target sub-electrode to form an annular shielding area corresponding to the target aperture value.
  • the target adjustment strategy includes a first adjustment strategy and a second adjustment strategy.
  • the first adjustment strategy is used to adjust the aperture when the target aperture value is greater than the current aperture value; the second adjustment strategy is used to adjust the aperture value at the target aperture value. Adjust the aperture when it is smaller than the current aperture value.
  • the difference between the first adjustment strategy and the second adjustment strategy is that when the first adjustment strategy or the second adjustment strategy is used to adjust the aperture, the first target electrical property of the first electrode and the second target electrical property of the second electrode are different . More specifically, for example, if the first adjustment strategy is the target adjustment strategy, it is suitable for situations where the target aperture value is greater than the current aperture value, that is, a scene where the aperture is increased.
  • the first target electrical property of the first electrode is the same as the electrical property of the charged particles; the second target electrical property of the second electrode is opposite to the electrical property of the charged particles.
  • the second adjustment strategy is the target adjustment strategy, it is suitable for situations where the target aperture value is less than the current aperture value, that is, the scene where the aperture is reduced.
  • the charged particles need to be driven to move to the center of the aperture accommodation space. Therefore, The first target electrical property of the first electrode is the same as the electrical property of the charged particles; the second target electrical property of the second electrode is opposite to the electrical property of the charged particles.
  • FIG. 12 is a schematic diagram of an implementation manner of the target adjustment strategy provided by an embodiment of the application.
  • the target adjustment strategy includes a method for characterizing the energization state of a plurality of sub-electrodes in the first electrode. And the logic table of the electrical properties of the first electrode and the second electrode.
  • the charged particles are negatively charged.
  • the first electrode includes four first sub-electrodes A1, A2, A3, and A4, and four corresponding second sub-electrodes.
  • the electrodes can correspond to the apertures F1.4, F1.8, F2.2, and F2.8.
  • the target sub-electrodes can be determined to be A1, A2, A3, so that A1, A2, A3 remain energized, and at the same time, the first The first target electrical property of the electrode is negative, and the second target electrical property of the second electrode is positive. At this time, the charged particles will gather at the positions of A1, A2, and A3 to achieve shading of the corresponding area, and then make the aperture Increase to the target aperture value F2.2.
  • the target sub-electrodes can be determined to be A1, A2, A3, A4, and A1, A2, A3, A4 are kept powered on At the same time, make the first target electrical property of the first electrode positive, and make the second target electrical property of the second electrode negative. At this time, the charged particles will gather at the positions of A1, A2, A3, and A4, Realize the shading of the corresponding area, and then reduce the aperture to the target aperture value of F2.8.
  • the aperture is the aperture provided in the embodiment corresponding to FIG. 6, and the aperture includes a first control circuit, and multiple control branches of the first control circuit and multiple parallel branches are respectively provided There is a control switch, and the controller is electrically connected to the control switch, and can control the opening and closing of the control switch.
  • Setting the target sub-electrode to the energized state in step S203, and setting the first electrode to the first target electrical property in step S204, and setting the second electrode to the second target electrical property may be: according to the target adjustment strategy, to the first
  • the multiple control branches of the control circuit and the control switches provided on the multiple parallel branches send control instructions to make the control switches in an open and closed state corresponding to the target aperture value.
  • FIG. 13 is a schematic diagram of another implementation manner of a target adjustment strategy provided by an embodiment of the application.
  • the target adjustment strategy includes a function for characterizing the on-off state of the control switch.
  • Logical table 1 means that the control switch is closed, and 0 means that the control switch is off.
  • the charged particles are negatively charged
  • the first electrode includes four first sub-electrodes A1, A2, A3, and A4 and four corresponding second sub-electrodes, and the corresponding aperture can be adjusted to F1.4, F1.8, F2.2, F2.8.
  • Control switches Ka, Kb, Kc, Kd are provided on multiple control branches; control switches K1, K2, K3, K4 are respectively provided on multiple parallel branches.
  • the target sub-electrodes can be determined to be A1, A2, A3, and A1, A2, A3 need to be kept powered on, That is, the control switches K1, K2, K3 are closed, and K4 is open; at the same time, the first target electrical property of the first electrode is made negative, and the second target electrical property of the second electrode is made positive, that is, control Kc, Kd Closed, Ka and Kb are disconnected. At this time, because the charged particles are negatively charged, and the second electrode is connected to the positive electrode of the power supply and is positively charged, the charged particles will move to the second electrode under the attraction of the second electrode Gather, so that the aperture is adjusted larger.
  • the corresponding target aperture value is F2.2. Then, in the next time unit, because the charged particles are attracted by the second electrode and continue to move in the direction of the second electrode, the current aperture value continues to increase. At this time, it is necessary to switch the electrical properties of the first electrode and the second electrode, that is, control Kc and Kd are open and closed, Ka and Kb are closed, so that the first target electrical property of the first electrode is positive, and the second target electrical property of the second electrode is negative.
  • Attracting charged particles will gather in A1, A2, A3 At the location, realize the shading of the corresponding area, and then reduce the relative current aperture value of the aperture to the target aperture value F2.2, repeat the above actions to dynamically maintain the charged particles at the target aperture value F2.2 position, thereby achieving the current The purpose of increasing the aperture value to the target aperture value F2.2.
  • the target sub-electrodes can be determined to be A1, A2, A3, A4, and A1, A2, A3, A4 need to be maintained
  • the energized state that is, the control switches K1, K2, K3, and K4 are closed; at the same time, the first target electrical property of the first electrode is positive, and the second target electrical property of the second electrode is negative, that is, control Ka, Kb is closed, Kc and Kd are disconnected. At this time, the charged particles will gather at the positions of A1, A2, A3, and A4.
  • switch the electrical properties of the first electrode and the second electrode that is, control Ka and Kb Open, Kc, Kd close, make the first target electrical property of the first electrode negative, make the second target electrical property of the second electrode positive, attract the charged particles to move toward the second electrode, repeat the above action, make The charged particles are dynamically maintained at the target aperture value F2.8, so as to achieve the purpose of reducing the current aperture value to the target aperture value F2.8.
  • step S204 the method further includes:
  • S205 Adjust the voltage of the first electrode and the second electrode in the aperture according to the configuration information.
  • the first electrode includes a plurality of first sub-electrodes and a plurality of second sub-electrodes
  • adjusting the voltage of the first electrode and the second electrode in the aperture includes adjusting the plurality of first sub-electrodes and a plurality of second sub-electrodes.
  • the voltage of any of the sub-electrodes and the second electrode makes the first sub-electrode and the second sub-electrode have different voltages.
  • each sub-electrode When the charged particles move directionally under the action of the first electrode and the second electrode, each sub-electrode The actual performance is often different from the theoretical value, especially as the use time of the first and second sub-electrodes increases, the performance of the electrodes will also change.
  • the charged particles are affected by the external environment such as gravity.
  • the accuracy of its directional movement will also be affected, and by adjusting the voltage of each sub-electrode, the accuracy of the control of the charged particles by each sub-electrode can be further improved, and the control accuracy of the aperture can be improved.
  • S205 includes three specific implementation steps of S2051, S2052, and S2053:
  • the aperture is a sheet-like structure
  • the posture of the aperture refers to the angular relationship between the aperture of the sheet-like structure and the ground in space.
  • attitude parameters can be determined according to the parameters that characterize the attitude of the electronic device. For example, by acquiring data from the gyroscope in the electronic device as the attitude parameters, Obtain the image data collected by the camera to determine the attitude parameters.
  • attitude parameters such as horizontal tilt, or identification information corresponding to different tilts. The method of acquiring the attitude parameters and the realization of the attitude parameters are not here. Make specific restrictions.
  • the target adjustment strategy also includes the mapping relationship between the attitude parameter and the corresponding voltage parameter.
  • the corresponding voltage parameter can be determined according to the target adjustment strategy.
  • the voltage parameter can be An array, which includes multiple voltage values corresponding to each electrode. According to the multiple voltage values, the voltages of the multiple first sub-electrodes and the second electrodes in the first electrode are adjusted to have different voltage values, thereby changing the driving ability of each electrode to charged particles.
  • the charged particles have a certain mass. For some charged particles with larger mass, they will be offset by the influence of gravity.
  • the voltage value of the electrode at the corresponding position is adjusted correspondingly to overcome the effect of gravity.
  • the impact of the charged particles enables the charged particles to move to the target area accurately, realize accurate shading, improve the control accuracy of the light value, and improve the light transmission effect of the aperture.
  • step S201 the method further includes:
  • S200 Initialize the aperture according to a preset initialization adjustment strategy.
  • initializing the aperture includes controlling the state of the first electrode and the second electrode in the aperture, and driving the charged particles to move directionally, so that the aperture has a specific aperture value.
  • the optimal aperture value is directly used for imaging without additional adjustments, which improves the efficiency of using the aperture for imaging.
  • the optimal aperture value can be preset as needed, which is not specifically limited here.
  • the iris in the electronic device is not working, it is often not energized for power saving considerations. Therefore, the charged particles in the iris are in a state of Brownian motion. If the camera assembly starts to work, the iris will directly stop the iris. The adjustment of the value will cause some of the charged particles at a long distance to be unable to accurately move to the target sub-electrode position, which will affect the light transmission effect of the aperture.
  • This application initializes the aperture so that the aperture is first at the maximum aperture value, and then at the maximum.
  • S200 includes three specific implementation steps of S2001, S2002, and S2003:
  • S2002 According to the preset first adjustment strategy and the preset optimal aperture value, adjust the first electrode and the second electrode in the aperture so that the charged particles are concentrated in the area corresponding to the optimal aperture value in the accommodation space.
  • the second adjustment strategy is the target adjustment strategy when the aperture is adjusted.
  • the state of the first electrode and the second electrode in the aperture is controlled so that the charged particles are gathered at the edge of the accommodating space of the aperture.
  • the first adjustment strategy that is, the adjustment strategy when the aperture is reduced
  • the state of the first electrode and the second electrode in the aperture is controlled, so that the charged particles are concentrated to the center of the aperture and stay at the first corresponding to the optimal aperture value.
  • the position of a sub-electrode and a second sub-electrode make the aperture have the best aperture value.
  • the specific implementation of controlling the first electrode and the second electrode has been described in detail in steps S203-S204 of the embodiment shown in FIG. 11, and will not be repeated here.
  • the aperture is initialized so that the aperture is at the maximum aperture value and the optimal aperture value in sequence. Since the aperture in the electronic device is not working, it is often not powered on due to power saving considerations. Therefore, the charged particles in the aperture are in a state of Brownian motion. If the aperture directly adjusts the aperture value after the camera assembly starts to work, it will cause some of the charged particles at a distance to be unable to accurately move to the target sub-electrode position, which will affect the aperture.
  • step S2002 the method further includes:
  • S2003 Acquire an initialization voltage parameter; adjust the voltage of the first electrode and the second electrode according to the initialization voltage parameter, so that the charged particles are gathered in the area corresponding to the best aperture value in the accommodation space.
  • the initialization voltage parameter may be an array, and the array includes a plurality of voltage values corresponding to each electrode. According to the multiple voltage values, the voltages of the multiple first sub-electrodes and the second electrodes in the first electrode are adjusted to have different voltage values, thereby changing the driving ability of each electrode to the charged particles.
  • the initialization voltage parameter may be a voltage parameter input by the user to the controller according to specific needs, or a voltage parameter calculated by the controller according to other parameters. The method for determining the initialization voltage parameter is not specifically limited here.
  • the aperture is initialized according to the preset initialization voltage parameters during the initialization process, so that the first electrode and the second electrode after initialization have different voltage values, so as to achieve the effect of correcting the voltage value of the electrode. , Improve the control accuracy of the aperture value.
  • step S2003 can be executed after steps S2001 and S2002, or can be executed separately; steps S2001 and S2002 can also be executed separately from step S2003, which is not limited here.
  • FIG. 16 is a schematic block diagram of the structure of a camera assembly provided by an embodiment of the application.
  • the camera assembly 10 includes: a first lens group 200, a second lens group 210, and an aperture 100 corresponding to any one of the embodiments in FIGS. 2-7.
  • the aperture 100 is concentrically arranged on the The first lens group 200 and the second lens group 210 are used to adjust the light transmission of the camera assembly 10.
  • FIG. 17 is a schematic block diagram of the structure of an electronic device according to an embodiment of the application. As shown in FIG. 17, the electronic device includes a controller 3, a DC power supply 2 and a camera assembly 10 provided in the embodiment corresponding to FIG. 16.
  • the DC power supply 2 is electrically connected to the controller 3 and the camera assembly 10, respectively, and is used to supply power to the controller 3 and the camera assembly 10; And control the aperture 100.
  • the embodiment of the present application also provides a terminal device, including an aperture, a processor, and a memory.
  • the memory is used to store computer programs and instructions.
  • the processor is used to call the computer programs and instructions so that the processor and the aperture can execute together as shown in Figure 8-15.
  • the aperture control method provided by any corresponding implementation manner.
  • the embodiment of the present application also provides a computer-readable storage medium, including computer code, which when running on a computer, causes the computer to execute the aperture control method provided by any implementation manner corresponding to Figs. 8-15.
  • An embodiment of the present application also provides an aperture control device, which includes: an acquisition module for acquiring a control signal, the control signal includes a target aperture value; a determining module, for comparing the target aperture value with the current aperture value, and determining the target adjustment Strategy; adjustment module, used to adjust the first electrode and the second electrode in the aperture according to the target adjustment strategy, so that the charged particles move directionally to shield different areas of the containing space to form a target aperture, where the target aperture The aperture value is the target aperture value.
  • the adjustment module is specifically used to: adjust the electrical state of the first electrode and the second electrode according to the target adjustment strategy, and adjust the first sub-electrodes and the respective first electrodes of the first electrode. The on-off state of the second sub-electrode is adjusted.
  • the determining module is specifically configured to: if the target aperture value is greater than the current aperture value, determine the preset first adjustment strategy as the target adjustment strategy, where the first adjustment strategy is used to characterize the current target When the aperture value is greater than the current aperture value, the electrical state of the first electrode and the second electrode, and the on-off state of each first sub-electrode and each second sub-electrode; if the target aperture value is less than the current aperture value, the preset The second adjustment strategy is determined as the target adjustment strategy, where the second adjustment strategy is used to characterize the electrical state of the first electrode and the second electrode when the target aperture value is less than the current aperture value, and the first sub-electrodes and the second The on-off state of the two sub-electrodes.
  • the adjustment module adjusts the electrical state of the first electrode and the second electrode according to the target adjustment strategy, and adjusts each first sub-electrode and each second sub-electrode of the first electrode.
  • the target adjustment strategy determines the sub-electrode ID corresponding to the target aperture value according to the target adjustment strategy, and set the target sub-electrode corresponding to the sub-electrode ID to the energized state, and the target sub-electrode includes one or more One first sub-electrode, and one or more corresponding second sub-electrodes; according to the target adjustment strategy, determine the first target electrical property of the first electrode and the second target electrical property of the second electrode, and set the first electrode For the first target electrical property, the second electrode is set to the second target electrical property.
  • the adjustment module when the adjustment module adjusts the first electrode and the second electrode in the aperture according to the target adjustment strategy, it is also used to: obtain attitude parameters, which are used to characterize the attitude of the aperture;
  • the target adjustment strategy is to determine the voltage parameter corresponding to the posture parameter; according to the voltage parameter, the voltage of the first electrode and the second electrode are adjusted.
  • the acquisition module before acquiring the control signal, is also used to: acquire a preset initialization adjustment strategy; and initialize the aperture according to the initialization adjustment strategy.
  • the acquisition module when the acquisition module initializes the aperture according to the initialization adjustment strategy, it is specifically used to: according to the preset second adjustment strategy and the preset maximum aperture value, the first electrode in the aperture and the The second electrode is adjusted so that the charged particles are gathered in the area corresponding to the maximum aperture value in the containing space; according to the preset first adjustment strategy and the preset optimal aperture value, the first electrode and the second electrode in the aperture are adjusted Adjust to make the charged particles gather in the area corresponding to the best aperture value in the containing space.
  • the initialization adjustment strategy also includes initialization voltage parameters.
  • the acquisition module initializes the aperture according to the initialization adjustment strategy so that the aperture forms the aperture corresponding to the preset optimal aperture value, it is also used to: Obtain the initialization voltage parameter; according to the initialization voltage parameter, the voltage of the first electrode and the second electrode are adjusted so that the charged particles are gathered in the area corresponding to the best aperture value in the containing space.
  • the aperture control device provided in this embodiment can be used to implement the technical solutions of any one of the embodiments shown in FIG. 8 to FIG. 15 in the foregoing method, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including program code.
  • the program code executes the aperture control method provided in any implementation manner corresponding to FIGS. 8-15.
  • An embodiment of the present application also provides a chip, including a processor, which is used to call and run a computer program stored in the memory to execute the aperture control method provided in any implementation manner corresponding to FIGS. 8-15.
  • the computer can be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions can be transmitted from a website, computer, server, or data center through a cable (such as , Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (for example, infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本申请实施例提供了一种光圈、光圈控制方法、摄像组件及电子设备,包括:相对设置的第一透光结构和第二透光结构,且第一透光结构和第二透光结构之间形成容纳空间,容纳空间中填充有非导电的透明溶液以及分布在透明溶液中的遮光的带电粒子;第一电极,包括多个第一子电极以及与第一子电极相对的多个第二子电极,多个第一子电极间隔设置于第一透光结构朝向第二透光结构的一面,多个第二子电极间隔设置于第二透光结构朝向第一透光结构的一面;第二电极,第二电极围设在第一透光结构和第二透光结构的外周边缘处,第一电极与第二电极电性相反;带电粒子在对容纳空间的不同区域进行遮光,实现光圈调节,能有效降低光圈的结构体积。

Description

光圈、光圈控制方法、摄像组件及电子设备
本申请要求于2020年6月5日提交中国专利局、申请号为202010510666.7、申请名称为“光圈、光圈控制方法、摄像组件及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及摄像装置技术领域,更为具体地,涉及一种光圈、光圈控制方法、摄像组件及电子设备。
背景技术
对于光学镜头而言,改变光圈可以改变景深,从而获得更加丰富的图像效果,现有技术中,光圈的调节,主要是利用叶片或类似结构,通过机械驱动的方式,对光圈进行遮挡,从而实现光圈的调节。
由于基于机械结构的光圈调节方式,需要放置电磁驱动机构、叶片等部件,造成摄像组件的体积过大,使手机、微型监测器等设备,难以实现小型化,存在使用场景受限,以及可靠性差的问题。
发明内容
本申请的目的在于提供一种光圈、光圈控制方法、摄像组件及电子设备。以解决现有的光圈体积过大,导致使用安装光圈的电子设备难以实现小型化以及光圈可靠性差的问题。
第一方面,本申请提供了一种光圈,包括:相对设置的第一透光结构和第二透光结构,且所述第一透光结构和所述第二透光结构之间形成容纳空间,所述容纳空间中填充有非导电的透明溶液以及分布在所述透明溶液中的遮光的带电粒子;第一电极,包括多个第一子电极以及与所述第一子电极相对的多个第二子电极,所述多个第一子电极间隔设置于所述第一透光结构朝向所述第二透光结构的一面,所述多个第二子电极间隔设置于所述第二透光结构朝向所述第一透光结构的一面;第二电极,所述第二电极围设在所述第一透光结构和所述第二透光结构的外周边缘处,所述第一电极与所述第二电极电性相反;所述带电粒子在所述第一电极和所述第二电极的作用下定向移动以对所述容纳空间的不同区域进行遮光。
基于上述技术内容,通过在第一透光结构和第二透光结构之间的容纳空间内,设置用于遮光的带电粒子,并通过设置于第一透光结构、第二透光结构上的第一电极和设置于外围边缘的第二电极对该带电粒子进行控制,由于第一电极和第二电极各包括多个相对设置的子电极,能够将带电粒子吸引至不同的位置,使带电粒子的定向移动实现对不同区域的遮光,进而实现光圈的调节,无需设置额外的机械结构,因此有效的压缩了光圈结构的体积,同时避免了使用机械结构带来的使用寿命较短、可靠性差的问题,提高了光圈的可靠性。
在一种可能的实现方式中,光圈还包括:贮存结构,所述贮存结构围设在所述第一透光结构和所述第二透光结构的外周边缘,且所述贮存结构的内腔与所述容纳空间相通,所述贮存结构用于存储所述带电粒子;所述第二电极设在所述贮存结构朝向所述容纳空间的一面上。
在另一种可能的实现方式中,所述贮存结构为导电材料制成的壳体,所述贮存结构作为所述第二电极。
基于上述技术内容,通过设置用于对带电粒子进行储存的贮存结构,能够在具体的使用场景下,将容纳空间内的带电粒子全部存储至贮存结构内,使带电粒子处于更加稳定的状态,减少由于出现游离的带电粒子而导致影响光圈透光的问题,提高光圈的透光效果和透光稳定性。
在一种可能的实现方式中,所述多个第一子电极和所述多个第二子电极均为同心设置的多个环形电极,所述多个第一子电极与所述多个第二子电极一一对应设置,各所述第一子电极和各所述第二子电极分别与所述第二电极形成电势差,以驱动所述带电粒子聚集于所述容纳空间的不同区域。
在一种可能的实现方式中,所述光圈还包括第一控制电路,所述第一控制电路的第一端与直流电源电连接,所述第一控制电路的第二端与所述第一电极、所述第二电极电连接,所述第一控制电路用于控制所述第一电极和所述第二电极的电性,以及控制各所述第一子电极和各所述第二子电极的通断状态。
在一种可能的实现方式中,所述第一控制电路包括:第一控制支路,所述第一控制支路的第一端与所述直流电源的负极电连接,第二端与所述第二电极电连接;第二控制支路,所述第二控制支路的第一端与所述直流电源的负极电连接;第三控制支路,所述第三控制支路的第一端与所述直流电源的正极电连接,第二端与所述第二电极电连接;第四控制支路,所述第四控制支路的第一端与所述直流电源的正极电连接;多个并联支路,各所述并联支路的第一端分别与所述多个第一子电极和所述多个第二子电极电连接,各并联支路的第二端并联后分别与所述第二控制支路的第二端和所述第四控制支路的第二端电连接;所述第一控制支路、第二控制支路、第三控制支路、第四控制支路以及所述多个并联支路上分别设置有控制开关。
基于上述技术内容,通过设置用包括多个控制控制支路和并联支路的第一控制电路,实现对第一电极和第二电极的电性的调节,进而实现对带电粒子的精准控制,使带电粒子能够准确的移动至特定的区域实现遮光。
在一种可能的实现方式中,所述光圈还包括第二控制电路,所述第二控制电路设置于所述第一电极与直流电源之间,所述第二控制电路用于调节各所述第一子电极和各所述第二子电极的电压。
在一种可能的实现方式中,所述第二控制电路具体用于:根据所述光圈的姿态,调节所述直流电源输出至各所述第一子电极和各所述第二子电极的电压,以使各所述第一子电极和各所述第二子电极的电压与所述光圈的姿态相匹配。
基于上述技术内容,通过设置第二控制电路,实现对第一电极和第二电极之间电压的控制,使第一子电极和第二子电极具有不同的电压,由于带电粒子在第一电极和第二电极的作用下进行定向移动时,各子电极之间的实际性能往往与理论值存在差异,尤其是随着 各子电极使用时间的增加,各子电极的性能也会出现变化,同时,带电粒子受到外界如重力的影响,也会使其定向移动的精确性受到影响,而通过调节各子电极的电压,能够进一步的提高各子电极对带电粒子进行控制的精确性,提高光圈的控制精度。
第二方面,本申请提供了一种光圈控制方法,用于对以上第一方面的任一实现方式的光圈进行控制,该方法包括:获取控制信号,所述控制信号中包括目标光圈值;比较所述目标光圈值与当前光圈值,确定目标调节策略;根据所述目标调节策略,对光圈中的第一电极和第二电极进行调节,使带电粒子定向移动以对容纳空间的不同区域进行遮光,形成目标光圈,其中,所述目标光圈的光圈值为目标光圈值。
基于上述技术内容,通过控制信号中的目标光圈值与当前光圈值的比较,确定具体的目标调节策略,并根据该目标调节策略调节第一电极和第二电极,使带电粒子定向移动至不同区域进行遮光,实现目标光圈值的调节,由于带电粒子带有特定的电性,因此在对带电粒子进行定性移动控制时,需要根据带电粒子移动的方向,对应的调节第一电极和第二电极的电性才能实现,因此,根据目标光圈值与当前光圈值的关系,需要确定具体的目标调节策略,进而根据目标调节策略实现带电粒子在所述第一电极和所述第二电极的作用下定向移动以对所述容纳空间的不同区域进行遮光的目的。
在一种可能的实现方式中,根据所述目标调节策略,对光圈中的第一电极和第二电极进行调节,包括:根据所述目标调节策略,对所述第一电极和所述第二电极的电性状态进行调节,以及,对所述第一电极的各第一子电极和各第二子电极的通断状态进行调节。
基于上述技术内容,通过对第一电极和第二电极的电性状态、通断状态进行调节,使第一控制电路形成多种与目标调节策略对应的电路结构,通过不同的电路结构控制带电粒子的定向移动,进而实现将光圈调节至目标光圈值的目的,由于对第一电极和第二电极的电性状态、通断状态进行调节,形成多种与目标调节策略对应的电路结构,能够使带电粒子稳定的处于与该电路结构对应的位置状态,相对于连续调节带电粒子位置状态的方案,本申请能够实现对带电粒子更加稳定的控制,进而实现光圈更加稳定的光圈值控制。
在一种可能的实现方式中,比较所述目标光圈值与当前光圈值,确定目标调节策略,包括:若目标光圈值大于当前光圈值,将预设的第一调节策略确定为目标调节策略,其中,所述第一调节策略用于表征当目标光圈值大于当前光圈值时,所述第一电极和所述第二电极的电性状态,以及各所述第一子电极和各所述第二子电极的通断状态;若目标光圈值小于当前光圈值,将预设的第二调节策略确定为目标调节策略,其中,所述第二调节策略用于表征当目标光圈值小于当前光圈值时,所述第一电极和所述第二电极的电性状态,以及各所述第一子电极和各所述第二子电极的通断状态。
在一种可能的实现方式中,根据所述目标调节策略,对所述第一电极和所述第二电极的电性状态进行调节,以及,对所述第一电极的各第一子电极和各第二子电极的通断状态进行调节,包括:根据所述目标调节策略,确定目标光圈值对应的子电极标识,并将与所述子电极标识对应的目标子电极设置为通电状态,所述目标子电极包括一个或多个第一子电极,和对应的一个或多个第二子电极;根据所述目标调节策略,确定第一电极的第一目标电性和第二电极的第二目标电性,并将所述第一电极设置为第一目标电性,将所述第二电极设置为第二目标电性。
在一种可能的实现方式中,根据所述目标调节策略,对光圈中的第一电极和第二电极 进行调节,还包括:获取姿态参数,所述姿态参数用于表征所述光圈的姿态;根据所述目标调节策略,确定所述姿态参数对应的电压参数;根据所述电压参数,对所述第一电极和所述第二电极的电压进行调节。
基于上述技术内容,通过获取用于表征光圈的姿态的姿态参数,确定对应的电压参数,并根据该电压参数对第一电极和第二电极的电压进行调节,由于光圈中的带电粒子,具有一定的质量,对于一些质量较大的带电粒子,会受到重力的影响而产生偏移,通过光圈不同的姿态,对应的调节相应位置的电极的电压值,以克服重力对带电粒子产生的影响,使带电粒子能够准确的定向移动至目标区域,实现准确的遮光,提高光值的控制精度,提高光圈的透光效果。
在一种可能的实现方式中,在所述获取控制信号之前,还包括:获取预设的初始化调节策略;根据所述初始化调节策略,对所述光圈初始化。
在一种可能的实现方式中,根据所述初始化调节策略,对所述光圈初始化,包括:根据预设的第二调节策略和预设的最大光圈值,对光圈中的第一电极和第二电极进行调节,使带电粒子聚集于容纳空间中最大光圈值对应的区域;根据预设的第一调节策略和预设的最佳光圈值,对光圈中的第一电极和第二电极进行调节,使带电粒子聚集于容纳空间中最佳光圈值对应的区域。
基于上述技术内容,通过对光圈进行初始化,使光圈依次处于最大光圈值和最佳光圈值处,由于在电子设备内的光圈在不工作时,出于省电方面的考虑,往往不对其进行通电,因此,光圈内的带电粒子,处于布朗运动状态,若摄像组件开始工作后,光圈直接进行光圈值的调节,会造成部分距离较远的带电粒子无法准确的移动至目标子电极位置,影响光圈的透光效果,而本申请通过对光圈进行初始化,使光圈先处于最大光圈值,再处于最佳光圈值,即使带电粒子先全部定向移动至最大光圈位置进行集中,再使带电粒子移动至最佳的光圈值对应的位置,减少未被电极吸引的游离带电粒子的数量,提高光圈的透光效果和光圈值的控制精度。
在一种可能的实现方式中,所述初始化调节策略中还包括初始化电压参数,根据所述初始化调节策略,对所述光圈初始化,使所述光圈形成预设的最佳光圈值对应的光圈,还包括:获取所述初始化电压参数;根据所述初始化电压参数,对所述第一电极和所述第二电极的电压进行调节,使带电粒子聚集于容纳空间中最佳光圈值对应的区域。
基于上述技术内容,通过在初始化过程中,根据预设的初始化电压参数,对光圈初始化,使初始化后的第一电极和第二电极,具有不同的电压值,达到对电极的电压值进行修正的效果,提高光圈值的控制精度。
第三方面,本申请提供了一种摄像组件,包括第一镜头组、第二镜头组和以上第一方面的任一实现方式提供的光圈,其中,所述光圈同心设置在第一镜头组和第二镜头组之间,用于调节摄像组件的透光量。
第四方面,本申请提供了一种电子设备,包括控制器、直流电源和如以上第三方面提供的摄像组件,其中,所述直流电源分别与所述控制器和所述摄像组件电连接,用于为所述控制器和所述摄像组件供电;所述控制器与所述摄像组件电连接,用于获取所述摄像组件内光圈的状态并对所述光圈进行控制。
第五方面,本申请提供一种终端设备,所述终端设备包括光圈,处理器和存储器,所 述存储器用于存储计算机程序和指令,所述处理器用于调用所述计算机程序和指令,使得所述处理器与所述光圈一起执行以实现以上第二方面的任一实现方式提供的光圈控制方法
第六方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,以执行以上第二方面的任一实现方式提供的方法。
第七方面,本申请实施例提供一种光圈控制装置,该装置包括:获取模块,用于获取控制信号,控制信号中包括目标光圈值;确定模块,用于比较目标光圈值与当前光圈值,确定目标调节策略;调节模块,用于根据目标调节策略,对光圈中的第一电极和第二电极进行调节,使带电粒子定向移动以对容纳空间的不同区域进行遮光,形成目标光圈,其中,目标光圈的光圈值为目标光圈值。
在一种可能的实现方式中,调节模块,具体用于:根据目标调节策略,对第一电极和第二电极的电性状态进行调节,以及,对第一电极的各第一子电极和各第二子电极的通断状态进行调节。
在一种可能的实现方式中,确定模块,具体用于:若目标光圈值大于当前光圈值,将预设的第一调节策略确定为目标调节策略,其中,第一调节策略用于表征当目标光圈值大于当前光圈值时,第一电极和第二电极的电性状态,以及各第一子电极和各第二子电极的通断状态;若目标光圈值小于当前光圈值,将预设的第二调节策略确定为目标调节策略,其中,第二调节策略用于表征当目标光圈值小于当前光圈值时,第一电极和第二电极的电性状态,以及各第一子电极和各第二子电极的通断状态。
在一种可能的实现方式中,调节模块在根据目标调节策略,对第一电极和第二电极的电性状态进行调节,以及,对第一电极的各第一子电极和各第二子电极的通断状态进行调节时,具体用于:根据目标调节策略,确定目标光圈值对应的子电极标识,并将与子电极标识对应的目标子电极设置为通电状态,目标子电极包括一个或多个第一子电极,和对应的一个或多个第二子电极;根据目标调节策略,确定第一电极的第一目标电性和第二电极的第二目标电性,并将第一电极设置为第一目标电性,将第二电极设置为第二目标电性。
在一种可能的实现方式中,调节模块在根据目标调节策略,对光圈中的第一电极和第二电极进行调节时,还用于:获取姿态参数,姿态参数用于表征光圈的姿态;根据目标调节策略,确定姿态参数对应的电压参数;根据电压参数,对第一电极和第二电极的电压进行调节。
在一种可能的实现方式中,获取模块在获取控制信号之前,还用于:获取预设的初始化调节策略;根据初始化调节策略,对光圈初始化。
在一种可能的实现方式中,获取模块在根据初始化调节策略,对光圈初始化时,具体用于:根据预设的第二调节策略和预设的最大光圈值,对光圈中的第一电极和第二电极进行调节,使带电粒子聚集于容纳空间中最大光圈值对应的区域;根据预设的第一调节策略和预设的最佳光圈值,对光圈中的第一电极和第二电极进行调节,使带电粒子聚集于容纳空间中最佳光圈值对应的区域。
在一种可能的实现方式中,初始化调节策略中还包括初始化电压参数,获取模块在根据初始化调节策略,对光圈初始化,使光圈形成预设的最佳光圈值对应的光圈时,还用于:获取初始化电压参数;根据初始化电压参数,对第一电极和第二电极的电压进行调节,使带电粒子聚集于容纳空间中最佳光圈值对应的区域。
第八方面,本申请提供了一种计算机程序产品,包括程序代码,当计算机运行计算机程序产品时,该程序代码执行以上第二方面的任一实现方式提供的方法。
第九方面,本申请提供了一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,以执行以上第二方面的任一实现方式提供的方法。
结合上述技术方案,本申请中,通过在第一透光结构和第二透光结构之间的容纳空间内,设置用于遮光的带电粒子,并通过设置于第一透光结构、第二透光结构上的第一电极和设置于外围边缘的第二电极对该带电粒子进行控制,由于第一电极和第二电极各包括多个相对设置的子电极,能够将带电粒子吸引至不同的位置,使带电粒子的定向移动实现对不同区域的遮光,进而实现光圈的调节,无需设置额外的机械结构,因此有效的压缩了光圈结构的体积,同时避免了使用机械结构带来的使用寿命较短、可靠性差的问题,提高了光圈的可靠性。
附图说明
图1为本申请实施例提供的光圈的一种应用场景示意图;
图2为本申请实施例提供的一种光圈的结构示意图;
图2A为本申请实施例提供环形密封结构的结构示意图;
图3为本申请实施例提供贮存结构的示意图;
图4为本申请实施例提供的第一子电极和第二子电极驱动带电粒子的示意图;
图5为本申请实施例提供的另一种光圈的结构示意图;
图6为本申请实施例提供的第一控制电路的结构示意图;
图7为本申请实施例提供的再一种光圈的结构示意图;
图8为本申请实施例提供的一种光圈控制方法的流程示意图;
图9为本申请实施例提供的一种确定目标调节策略的示意图;
图10为本申请实施例提供的一种对第一电极和第二电极进行调节的示意图;
图11为本申请实施例提供的另一种光圈控制方法的流程示意图;
图12为本申请实施例提供的一种目标调节策略的实现方式的示意图;
图13为本申请实施例提供的另一种目标调节策略的实现方式的示意图;
图14为图11所示实施例中步骤S205的一种实现方式的流程示意图;
图15为图11所示实施例中步骤S200的一种实现方式的流程示意图;
图16为本申请实施例提供的一种摄像组件的结构示意性框图;
图17为本申请实施例提供的一种电子设备的结构示意性框图。
附图标记:
1:前置摄像头;10:摄像组件;100:光圈;110:第一透光结构;115:环形密封结构120:第二透光结构;130:容纳空间;140:带电粒子;150:第一电极;151:第一子电极;152:第二子电极;160:第二电极;170:贮存结构;180:第一控制电路;181:第一控制支路;182:第二控制支路;183:第三控制支路;184:第四控制支路;185:并联支路;186:控制开关;190:第二控制电路;200:第一镜头组;210:第二镜头组;
2:直流电源;
3:控制器。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请,下面将结合附图对本申请实施例的实施方式进行详细描述。
本申请实施例提供了一种光圈,应用于摄像组件,摄像组件设置在电子设备内用于实现电子设备的拍摄功能,其中,电子设备可以包括但不限于为手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、对讲机、上网本、POS机、个人数字助理(personal digital assistant,PDA)、行车记录仪、安防设备等设置有摄像组件的移动或固定终端。
图1为本申请实施例提供的光圈的一种应用场景示意图,如图1所示,电子设备为手机,手机内设置有包含了本申请实施例提供的光圈100的摄像组件10,其中,在图1所示应用场景中,包含了本申请实施例提供的光圈的摄像组件10对应设置在手机的前置摄像头1的位置,当然,该摄像组件10也可以设置在后置摄像头或升降摄像头的位置,从而使手机能够通过该摄像组件10,实现拍摄功能。在图1所示的应用场景中,为了满足手机的外观和屏幕设计需求,手机内设置的摄像组件10需要满足必要的尺寸要求,传统的可变光圈摄像组件10,由于采用的是基于机械驱动的光圈结构,需要放置电磁驱动机构、叶片等部件,导致尺寸较大,无法满足在手机内设置的尺寸要求,因此,现有的摄像组件10往往采用的是不可变光圈,以实现摄像组件10的小型化,进而满足手机的设计要求,但也同时导致了手机的拍摄无法实现变光圈功能。同时,由于机械驱动结构在使用时,容易受到潮湿、灰尘等环境因素的影响而导致运行精度下降和使用寿命缩短的问题,降低了摄像组件10的可靠性。
本申请实施例提供的光圈100,采用通过多电极控制用于遮光的带电粒子定向移动的方式对光圈进行调节,能够避免基于机械驱动的光圈尺寸过大、可靠性差的问题。
图2为本申请实施例提供的一种光圈的示意图,如图2所示,该光圈100包括:
相对设置的第一透光结构110和第二透光结构120,且第一透光结构110和第二透光结构120之间形成容纳空间130,容纳空间130中填充有非导电的透明溶液以及分布在透明溶液中的遮光的带电粒子140。其中,透明溶液用于承载带电粒子140,由于透明溶液中的带电粒子140在定向移动时,会受到透明溶液的阻力,因此会一定程度上增大带电粒子的稳定性,提高带电粒子的遮光效果。
其中,第一透光结构110和第二透光结构120可以为高透光性的板状结构,更具体地,例如材质为光学石英玻璃的玻璃基板,厚度为0.3至1毫米。光学石英玻璃具有高度的透明性、化学及物理学上的高度均匀性,具有特定和精确的光学常数,能够提供更好地透光效果。当然,可以理解的是,对于不同的应用场景和应用需求,玻璃基板还可以是其他的透光玻璃,例如有色光学玻璃、蓝宝石玻璃、钢化玻璃等,此处,不对第一透光结构110和第二透光结构120的具体材质进行限定。
示例性地,非导电的透明溶液可以为纯水或甘油,在对光圈的电极通电调节光圈大小的过程中,能够使非导电的透明溶液中的电流小于1mA。在一种可能的实现方式中,为了提高带电粒子140移动的均匀性,第一透光结构110和第二透光结构120之间的容纳空间130内充满非导电的透明溶液。
示例性地,带电粒子140可以带正电,也可以带负电,可以根据带电粒子140的材料确定,带电粒子140可为高分子微粒,例如通过乳化聚合的方法、种子(seed)乳化聚合法、无乳化剂聚合法、分散聚合法、悬浊聚合法等方法制得。更加具体地,高分子微粒的材料为苯乙烯类、苯乙烯-丙烯基类、苯乙烯-异戊二烯类、二乙烯苯类、甲基丙烯酸甲酯类、甲基丙烯酸甲酯类、甲基丙烯酸酯类、甲基丙烯酸乙酯类、丙烯酸乙酯类、丙烯酸正丁酯类、丙烯酸类、丙烯腈类、丙烯酸酯橡胶-甲基丙烯酸类、乙烯类、乙烯-丙烯酸类、尼龙类、聚硅氧烷类、氨基甲酸乙酯类、蜜胺类、苯代三聚氰二胺类、苯酚类、氟(四氯乙烯类)、氯乙烯类、季吡啶鎓盐类、合成橡胶、纤维素、醋酸纤维素、脱乙酰壳多糖、藻酸钙等,此处,不对带电粒子140的类型进行具体限定。
示例性地,为了使带电粒子140能够实现遮光的目的,带电粒子140可以为使用无机颜料或者有机染料进行染色后的高分子微粒,其中,无机颜料例如为:碳黑、铁黑、锰铁氧体黑、钴铁氧体黑、铜铬黑、铜铬锰黑、钛黑、铝粉、铜粉、铅粉、锌粉等。
在一种可能的实现方式中,第一透光结构110和第二透光结构120的外周边缘,设置有环形密封结构115,如图2A所示,环形密封结构115与第一透光结构110和第二透光结构120的外周边缘连接,使第一透光结构110、第二透光结构120、环形密封结构115形成密封的容纳空间130。可以理解的是,环形密封结构115的实现方式有多种,以及对应能够实现不同的功能,此处不对环形密封结构115进行具体限定,只要其能够实现与第一透光结构110、第二透光结构120的外周边缘连接,形成封闭的容纳空间即可。
在另一种可能的实现方式中,第一透光结构110和第二透光结构120为圆形玻璃基板,第一透光结构110和第二透光结构120之间设置有贮存结构170,图3为本申请实施例提供贮存结构170的示意图,如图3所示,贮存结构170具有内腔,用于存储带电粒子140。贮存结构170围设在第一透光结构110和第二透光结构120的外周边缘,且贮存结构170的内腔与容纳空间130相通,第一透光结构110和第二透光结构120的外周边缘分别与贮存结构170的密封连接,贮存结构170可以起到与图2A中环形密封结构115相同的作用,使容纳空间130和贮存结构170的内腔共同组成一个封闭空间,示例性地,贮存结构170的两端分别与第一透光结构110和第二透光结构120的外边缘通过卡合、焊接、胶合或紧固件密封相连。贮存结构170可以为膨胀系数和玻璃基板接近的导电材料,比如镁铝合金,贮存结构170向外一侧预留一个灌装孔,用于向内腔和容纳空间130组成的封闭空间内灌装带电粒子140和非导电的透明溶液。
本申请中,通过设置用于对带电粒子140进行储存的贮存结构170,能够在具体的使用场景下,将容纳空间130内的带电粒子140全部存储至贮存结构170内,使带电粒子140处于更加稳定的状态,减少由于出现游离的带电粒子140而导致影响光圈透光的问题,提高光圈的透光效果和透光稳定性。
光圈还包括第一电极150和第二电极160,示例性的,第一电极150,包括多个透明的第一子电极151以及与第一子电极151相对的多个透明的第二子电极152,示例性地,第一子电极151和第二子电极152为氧化铟锡(Indium Tin Oxides,ITO)电极,多个第一子电极151间隔设置于第一透光结构110朝向第二透光结构120的一面,多个第二子电极152间隔设置于第二透光结构120朝向第一透光结构110的一面,示例性地,多个第一子电极151之间存在间隔带,该间隔带可以为绝缘材质,间隔带随着相邻的两个第一子电极 152的延伸方向延伸设置,以使多个第一子电极151之间产生隔离,防止各第一子电极之间由于导电而相互影响。示例性地,相邻两个第一子电极151之间的间隔和相邻两个第二子电极152之间的间隔均介于1-100微米。
第二电极160,第二电极160围设在第一透光结构110和第二透光结构120的外周边缘处,第一电极150与第二电极160电性相反;带电粒子140在第一电极150和第二电极160的作用下定向移动以对容纳空间130的不同区域进行遮光。其中,定向移动是指带电粒子沿光圈的径向移动。在一种可能的实现方式中,多个第一子电极151和多个第二子电极152均为同心设置的多个环形电极,多个第一子电极151与多个第二子电极152一一对应设置,例如,各第一子电极151与各第二子电极152一一相对设置,各第一子电极151在第二子电极所在平面上的投影重合。各第一子电极151和各第二子电极152分别与第二电极160形成电势差,使带电粒子140能够被驱动,而在容纳空间130内,沿镜头的径向移动,从而实现不同光圈大小所对应的不同区域遮挡覆盖。
示例性地,第一透光结构110和第二透光结构120平行设置,第一透光结构110背离第一子电极151的一面和第二透光结构120背离第二子电极152的一面之间的距离小于2毫米。
示例性地,第一透光结构110设置第一子电极151的一面与第二透光结构120设置第二子电极152的一面之间的距离小于100微米。
具体地,多个第一子电极151和多个第二子电极152均为同心设置的多个环形电极,各第一子电极151和各第二子电极152的半径由小至大逐渐变化,分别对应不同的光圈值。图4为本申请实施例提供的第一子电极151和第二子电极152驱动带电粒子140的示意图,如图4所示,各第一子电极151与各第二子电极152相对设置,当第一子电极151和与其对应的第二子电极152通电后,可以将带电粒子140吸引至该环形第一子电极151和第二子电极152位置处,形成一个环形遮蔽;当多个第一子电极151和与其对应的第二子电通电后,即可实现对特定区域的遮光,形成不同的光圈值大小。
在一种可能的实现方式中,第二电极160设在贮存结构170朝向容纳空间130的一面上,在另一种可能的实现方式中,贮存结构170为导电材料制成的壳体,贮存结构170本身作为第二电极160。当第一电极150和第二电极160通电后,能够对带电粒子140产生吸引,从而使带电粒子140定向移动,并固定在容纳空间130中或贮存结构170的内腔中的某一区域,实现对穿过第一透光结构110和第二透光结构120的光线进行遮挡,从而实现光圈大小的调节。
本申请中,通过在第一透光结构110和第二透光结构120之间的容纳空间130内,设置用于遮光的带电粒子140,并通过设置于第一透光结构110、第二透光结构120上的第一电极150和设置于外围边缘的第二电极160对该带电粒子140进行控制,由于第一电极150和第二电极160各包括多个相对设置的子电极,能够将带电粒子140吸引至不同的位置,使带电粒子140的定向移动实现对不同区域的遮光,进而实现光圈100的调节,结构简单且无需设置额外的机械结构,第一透光结构110、第二透光结构120以及之间的容纳空间130,可以压缩至2毫米以内,有效的压缩了光圈100的结构体积,同时避免了使用机械结构带来的使用寿命较短、可靠性差的问题,提高了光圈100的可靠性。
图5为本申请实施例提供的另一种光圈的结构示意图,如图5所示,本实施例提供的 光圈在图2所示的光圈的基础上,增加用于对第一电极150和第二电极160进行控制的控制电路,在一种可能的实现方式中,光圈还包括:
第一控制电路180,第一电极150与第二电极160通过第一控制电路180分别与直流电源2的两极相连,第一控制电路180用于控制第一电极150和第二电极160的电性,以及控制各第一子电极151和各第二子电极152的通断状态,其中,第一控制电路180与控制器电连接。
示例性地,第一控制电路180包括输入端和输出端,其中,输入端与直流电源2的正负极电连接,输出端分别与第一电极150、第二电极160电连接,以使直流电源2分别与第一电极150、第二电极160连通,其中,直流电源2的电压在1.8-12伏之间,能够驱动带电粒子140的定向移动。控制电路内包括多个控制支路,通过调节控制支路的通断状态,改变第一控制电路180的结构,从而实现对第一电极150、第二电极160的电性调节,以及各第一子电极151和各第二子电极152的通断状态调节。下面以一种具体的实现方式进行说明。
图6为本申请实施例提供的第一控制电路180的结构示意图,如图6所示,在一种可能的实现方式中,第一控制电路180包括:第一控制支路181,第一控制支路181的第一端与直流电源2的负极电连接,第二端与第二电极160电连接;第二控制支路182,第二控制支路182的第一端与直流电源2的负极电连接;第三控制支路183,第三控制支路183的第一端与直流电源2的正极电连接,第二端与第二电极160电连接;第四控制支路184,第四控制支路184的第一端与直流电源2的正极电连接;多个并联支路185,各并联支路185的第一端分别与多个第一子电极151,和/或多个第二子电极152电连接,各并联支路185的第二端并联后分别与第二控制支路182的第二端、第四控制支路184的第二端电连接;第一控制支路181、第二控制支路182、第二控制支路182、第二控制支路182以及多个并联支路185上分别设置有控制开关186。在一种可能的实现方式中,控制开关186可以根据具体的指令信息切换、保持为断开或闭合状态,其中,指令信息可以为电子设备中的控制器向调压单元发送的控制指令。示例性地,控制开关186的开闭动作可以通过光耦或者场效应管来实现。
更加具体地,例如,当第一控制支路181、第四控制支路184上的控制开关186闭合,第二控制支路182、第三控制支路183上的控制开关186断开,此时,第一电极150的电性为负电;第二电极160的电性为正电;同时,多个并联支路185上的控制开关186全部闭合,此时,第一子电极151和各第二子电极152全部通电。
再例如,当第一控制支路181、第四控制支路184上的控制开关186断开,第二控制支路182、第三控制支路183上的控制开关186闭合,此时,第一电极150的电性为正电;第二电极160的电性为负电;同时,多个并联支路185中L1、L2、L3支路上的控制开关186闭合,L4支路上的控制开关186断开,则,与L1、L2、L3支路对应的各第一子电极151和各第二子电极152通电,与L4支路对应的第一子电极151和第二子电极152断电。
需要说明的是,图6所示的第一控制电路180的结构,只是实现第一控制电路180的具体方式之一,其他能够实现相同功能的等效电路均可视为第一控制电路180,此处不进行一一例举。
本申请中,通过设置用包括多个控制控制支路和并联支路185的第一控制电路180, 实现对第一电极150和第二电极160的电性的调节,进而实现对带电粒子140的精准控制,使带电粒子140能够准确的移动至特定的区域实现遮光。
图7为本申请实施例提供的再一种光圈的结构示意图,如图7所示,在一种可能的实现方式中,光圈还包括第二控制电路190,第二控制电路190设置于第一电极150与直流电源2之间,第二控制电路190用于调节各第一子电极151和各第二子电极152的电压。
示例性地,第二控制电路190获取光圈的姿态参数来确定光圈100的姿态,其中,光圈的姿态是指片状结构的光圈100在空间中与地面的角度关系。获取姿态参数的方式有多种,示例性地,第二控制电路190接受电子设备内的控制器发送的姿态参数,更加具体地,例如控制器通过电子设备内陀螺仪的数据确定姿态参数,或者控制器通过相机采集的图像数据确定姿态参数,第二控制电路190获取控制器发送的姿态参数后,可以相应的确定光圈的姿态。之后,第二控制电路190根据光圈100的姿态,调节直流电源输出至各第一子电极151和各第二子电极152的电压,以使各第一子电极151和各第二子电极152的电压与光圈100的姿态相匹配。示例性地,第二控制电路190可以为设置于第一电极150与直流电源2之间的多输出的调压单元,调压单元的输出端分别与第一电极150的各第一子电极151和各第二子电极152连接,调压单元可以根据具体的指令信息调节并向第一电极150的各第一子电极151和各第二子电极152输出不同的电压,以使第一电极150的各第一子电极151和各第二子电极152具有不同的电压值。其中,指令信息可以为电子设备中的控制器向调压单元发送的控制指令,调压单元的具体实现方式为本领域现有技术,此处不再赘述。
本申请中,通过设置第二控制电路190,实现对第一电极150和第二电极160之间电压的控制,使第一子电极151和第二子电极152具有不同的电压,由于带电粒子140在第一电极150和第二电极160的作用下进行定向移动时,各子电极之间的实际性能往往与理论值存在差异,尤其是随着各子电极使用时间的增加,各子电极的性能也会出现变化,同时,带电粒子140受到外界如重力的影响,也会使其定向移动的精确性受到影响,而通过调节各子电极的电压,能够进一步的提高各子电极对带电粒子140进行控制的精确性,提高光圈的控制精度。
本申请实施例还提供了一种光圈控制方法,用于对如图2-图7所对应的任一实现方式提供的光圈100进行控制,示例性地,该方法的执行主体可以为电子设备的控制器,控制器与光圈100电连接,控制器能够获取光圈100的状态并对光圈进行控制。图8为本申请实施例提供的一种光圈控制方法的流程示意图,如图8所示,该方法包括:
S101、获取控制信号,控制信号中包括目标光圈值。
示例性地,控制信号可以为用于调节光圈值大小的控制信息,例如,相机应用程序发出的光圈调节指令、购物应用程序在扫码时发出的光圈调节指令等。其中,控制信号内包括目标光圈值,即光圈大小调整的目标量。目标光圈值例如为:F1,4、F2.8、F4.0,当然,也可以是与光圈值具有映射关系的标识,此处不对此进行具体限定。
S102、比较目标光圈值与当前光圈值,确定目标调节策略。
获取光圈当前的光圈值并与目标光圈值进行比较,根据当前的光圈值并与目标光圈值的大小关系,确定对应的目标调节策略。由于带电粒子带有特定的电性,因此在对带电粒子进行定向移动控制时,需要根据带电粒子移动的方向,对应的调节第一电极和第二电极 的电性才能实现,即光圈由小变大和由大变小时,其调节策略是不同的,因此,根据目标光圈值与当前光圈值的关系,需要确定具体的目标调节策略,进而根据目标调节策略实现带电粒子在第一电极和第二电极的作用下定向移动。
图9为本申请实施例提供的一种确定目标调节策略的示意图,如图9所示,在一种可能的实现方式中,若目标光圈值大于当前光圈值,将预设的第一调节策略确定为目标调节策略,其中,第一调节策略用于表征当目标光圈值大于当前光圈值时,第一电极和第二电极的电性状态,以及各第一子电极和各第二子电极的通断状态;若目标光圈值小于当前光圈值,将预设的第二调节策略确定为目标调节策略,其中,第二调节策略用于表征当目标光圈值小于当前光圈值时,第一电极和第二电极的电性状态,以及各第一子电极和各第二子电极的通断状态。
当然,可以理解的是,确定对应的目标调节策略还有其他多种实现方式,例如根据目标光圈值与当前光圈值的差值,或者根据目标光圈值与当前光圈值的比值,确定不同的目标调节策略,可以根据具体的需要进行设置,此处不对此进行限定。
S103、根据目标调节策略,对光圈中的第一电极和第二电极进行调节,使带电粒子定向移动以对容纳空间的不同区域进行遮光,形成目标光圈,其中,目标光圈的光圈值为目标光圈值。
图10为本申请实施例提供的一种对第一电极和第二电极进行调节的示意图,如图10所示,目标调节策略可以为使光圈由当前光圈值变为目标光圈值对应的第一电极和第二电极的调节方法,更加具体地,例如为一种映射关系表或逻辑表达式,用于使由当前光圈值变化至目标光圈值与第一电极、第二电极的状态之间产生映射关系。
在一种可能的实现方式中,目标调节策略可以用于对一电极和第二电极的电性状态的调节,以及对一电极中各第一子电极和各第二子电极的通断状态进行调节。通过调节第一电极和第二电极的电性状态,以及第一电极中多个子电极的通断状态,使带电粒子能够被带有与之相反电性的电极或子电极所吸引,定向移动至该电极或子电极的位置,形成对该区域的挡住,进而实现光圈大小的变化控制。其中,对第一电极和第二电极进行调节,以改变第一电极和第二电极的电性,和/或第一电极中多个子电极的通断状态的具体实现方法有多种,将在后面的实施例中进行介绍,此处不再具体展开。
本申请中,通过对第一电极和第二电极的电性状态、通断状态进行调节,使第一控制电路形成多种与目标调节策略对应的电路结构,通过不同的电路结构控制带电粒子的定向移动,进而实现将光圈调节至目标光圈值的目的,由于对第一电极和第二电极的电性状态、通断状态进行调节,形成多种与目标调节策略对应的电路结构,能够使带电粒子稳定的处于与该电路结构对应的位置状态,相对于连续调节带电粒子位置状态的方案,本申请能够实现对带电粒子更加稳定的控制,进而实现光圈更加稳定的光圈值控制。
图11为本申请实施例提供的另一种光圈控制方法的流程示意图,如图11所示,本实施例提供的光圈控制方法在图8所示实施例提供的光圈控制方法的基础上,对步骤S103进一步细化,该方法包括:
S201、获取控制信号,控制信号中包括目标光圈值。
S202、比较目标光圈值与当前光圈值,确定目标调节策略。
S203、根据目标调节策略,确定目标光圈值对应的子电极标识,并将与子电极标识对 应的目标子电极设置为通电状态,目标子电极包括一个或多个第一子电极,和对应的一个或多个第二子电极。
示例性地,为了便于对各第一子电极和第二子电极区分,可以预先为第一子电极和第二子电极中的各子电极设置标识,例如,第一电极中包括A1、A2、A3、A4四个第一子电极。通过子电极标识,可以确定对应的子电极。具体地,光圈中的第一电极包括多个第一子电极和与第一子电极对应的多个第二子电极,其中,保持通电状态的一个或多个第一子电极,以及对应的一个或多个第二子电极,能够与第二电极通过放电形成电场,产生对带电粒子的驱动力,从而实现带电粒子的定向移动以及遮光,因此,在对光圈的大小进行控制时,需要确定目标光圈值对应的子电极标识,进而确定目标子电极,并使该目标子电极保持通电状态,以吸引带电粒子聚集至目标子电极的位置,形成与目标光圈值对应大小的环形遮挡区域。
S204、根据目标调节策略,确定第一电极的第一目标电性和第二电极的第二目标电性,并将第一电极设置为第一目标电性,将第二电极设置为第二目标电性,形成目标光圈值对应的光圈。
示例性地,目标调节策略包括第一调节策略和第二调节策略,其中,第一调节策略用于在目标光圈值大于当前光圈值时对光圈进行调节;第二调节策略用于在目标光圈值小于当前光圈值时对光圈进行调节。第一调节策略和第二调节策略的区别,即在于使用第一调节策略或第二调节策略对光圈进行调节时,第一电极的第一目标电性和第二电极的第二目标电性不同。更加具体地,例如,若第一调节策略为目标调节策略时,适用于目标光圈值大于当前光圈值的情况,即调大光圈的场景,此时,需要驱动带电粒子向光圈容纳空间的边缘移动,因此,第一电极的第一目标电性与带电粒子的电性相同;第二电极的第二目标电性与带电粒子的电性相反。对应的,若第二调节策略为目标调节策略时,适用于目标光圈值小于当前光圈值的情况,即调小光圈的场景,此时,需要驱动带电粒子向光圈容纳空间的中心移动,因此,第一电极的第一目标电性与带电粒子的电性相同;第二电极的第二目标电性与带电粒子的电性相反。
图12为本申请实施例提供的目标调节策略的实现方式的示意图,如图12所示,在一种可能的实现方式中,目标调节策略包括用于表征第一电极中多个子电极的通电状态以及第一电极、第二电极的电性的逻辑表,示例性地,电粒子带负电,第一电极中包括A1、A2、A3、A4四个第一子电极以及对应的四个第二子电极,可以对应形成光圈F1.4、F1.8、F2.2、F2.8。若需要将当前光圈值调大至目标光圈值F2.2,则根据第一调节策略,可以确定目标子电极为A1、A2、A3,使A1、A2、A3保持通电状态,同时,使第一电极的第一目标电性为负电,使第二电极的第二目标电性为正电,此时,带电粒子会聚集在A1、A2、A3所在位置处,实现对应区域的遮光,进而使光圈的调大至目标光圈值F2.2。类似的,若需要将当前光圈值调小至目标光圈值F2.8,则根据第二调节策略,可以确定目标子电极为A1、A2、A3、A4,使A1、A2、A3、A4保持通电状态,同时,使第一电极的第一目标电性为正电,使第二电极的第二目标电性为负电,此时,带电粒子会聚集在A1、A2、A3、A4所在位置处,实现对应区域的遮光,进而使光圈的调小至目标光圈值F2.8。
在一种可能的实现方式中,光圈为上述如图6所对应的实施例提供的光圈,光圈中包括第一控制电路,第一控制电路的多个控制支路以及多个并联支路上分别设置有控制开关, 控制器与控制开关电连接,并能够控制该控制开关的开闭。步骤S203中将目标子电极设置为通电状态,以及步骤S204中将第一电极设置为第一目标电性,将第二电极设置为第二目标电性可以为:根据目标调节策略,向第一控制电路的多个控制支路以及多个并联支路上设置的控制开关发送控制指令,使控制开关处于与目标光圈值对应的开闭状态。
图13为本申请实施例提供的另一种目标调节策略的实现方式的示意图,如图13所示,在一种可能的实现方式中,目标调节策略包括用于表征控制开关的开闭状态的逻辑表。其中,1表示控制开关闭合,0表示控制开关断开。示例性地,电粒子带负电,第一电极中包括A1、A2、A3、A4四个第一子电极以及对应的四个第二子电极,可以对应调节光圈为F1.4、F1.8、F2.2、F2.8。多个控制支路上设置有控制开关Ka、Kb、Kc、Kd;多个并联支路上分别设置有控制开关K1、K2、K3、K4。
示例性地,若需要将当前光圈值调大至目标光圈值F2.2,则根据第一调节策略,可以确定目标子电极为A1、A2、A3,需要使A1、A2、A3保持通电状态,即,控制开关K1、K2、K3闭合,K4断开;同时,使第一电极的第一目标电性为负电,使第二电极的第二目标电性为正电,即,控制Kc、Kd闭合,Ka、Kb断开,此时,由于带电粒子带负电,而第二电极与电源的正极连通而带有正电,因此,带电粒子在第二电极的吸引下,会向第二电极移动聚集,从而使光圈调大,在带电粒子移动至A1、A2、A3所在位置处时,对应的目标光圈值为F2.2。而后,在下一时间单位,由于带电粒子被第二电极吸引而继续向第二电极方向移动,使当前光圈值继续变大,此时,需要切换第一电极和第二电极的电性,即控制Kc、Kd断开合,Ka、Kb闭合,使第一电极的第一目标电性为正电,使第二电极的第二目标电性为负电,吸引带电粒子会聚集在A1、A2、A3所在位置处,实现对应区域的遮光,进而使光圈的相对当前光圈值缩小至目标光圈值F2.2,重复上述动作,使带电粒子动态的保持在目标光圈值F2.2位置,从而实现将当前光圈值调大至目标光圈值F2.2的目的。
类似的,若需要将当前光圈值调小至目标光圈值F2.8,则根据第二调节策略,可以确定目标子电极为A1、A2、A3、A4,需要使A1、A2、A3、A4保持通电状态,即,控制开关K1、K2、K3、K4闭合;同时,使第一电极的第一目标电性为正电,使第二电极的第二目标电性为负电,即,控制Ka、Kb闭合,Kc、Kd断开,此时,带电粒子会聚集在A1、A2、A3、A4所在位置处,在下一时间单位,切换第一电极和第二电极的电性,即控制Ka、Kb断开,Kc、Kd闭合,使第一电极的第一目标电性为负电,使第二电极的第二目标电性为正电,吸引带电粒子向第二电极方向移动,重复上述动作,使带电粒子动态的保持在目标光圈值F2.8位置,从而实现将将当前光圈值调小至目标光圈值F2.8的目的。
在一种可能的实现方式中,在步骤S204之后,还包括:
S205、根据配置信息,对光圈中的第一电极和第二电极的电压进行调节。
示例性地,第一电极包括多个第一子电极和多个第二子电极,对光圈中的第一电极和第二电极的电压进行调节包括对多个第一子电极、多个第二子电极、第二电极中的任意电极的电压进行使第一子电极和第二子电极具有不同的电压,由于带电粒子在第一电极和第二电极的作用下进行定向移动时,各子电极之间的实际性能往往与理论值存在差异,尤其是随着各第一子电极、第二子电极使用时间的增加,电极的性能也会出现变化,同时,带电粒子受到外界如重力的影响,也会使其定向移动的精确性受到影响,而通过调节各子电 极的电压,能够进一步的提高各子电极对带电粒子进行控制的精确性,提高光圈的控制精度。
在一种可能的实现方式中,如图14所示,S205包括S2051、S2052、S2053三个具体的实现步骤:
S2051、获取姿态参数,姿态参数用于表征光圈的姿态。
示例性地,光圈为片状结构,光圈的姿态是指片状结构的光圈在空间中与地面的角度关系。获取姿态参数的方式有多种,由于光圈是固定设置在电子设备内的,因此,可以根据表征电子设备的姿态的参数确定姿态参数,例如,通过获取电子设备内陀螺仪的数据作为姿态参数,获取通过相机采集的图像数据确定姿态参数,姿态参数的实现形式也有多种,例如可以为水平倾斜度,或者不同倾斜度对应的标识信息,此处不对获取姿态参数的方式和姿态参数的实现方式进行具体限定。
S2052、根据目标调节策略,确定姿态参数对应的电压参数。
S2053、根据电压参数,对第一电极和第二电极的电压进行调节。示例性地,目标调节策略中还包括有姿态参数与对应电压参数的映射关系,例如,当姿态参数为90o时,根据目标调节策略,可以确定对应的电压参数,更具体地,电压参数可以为一个数组,数组中包括分别与各电极对应的多个电压值。根据该多个电压值,对第一电极中的多个第一子电极和第二电极的电压分别进行调节,使其具有不同的电压值,进而改变各电极对带电粒子的驱动能力,由于光圈中的带电粒子,具有一定的质量,对于一些质量较大的带电粒子,会受到重力的影响而产生偏移,通过光圈不同的姿态,对应的调节相应位置的电极的电压值,以克服重力对带电粒子产生的影响,使带电粒子能够准确的定向移动至目标区域,实现准确的遮光,提高光值的控制精度,提高光圈的透光效果。
在一种可能的实现方式中,在步骤S201之前,还包括:
S200、根据预设的初始化调节策略,对光圈初始化。
示例性地,对光圈初始化,包括控制光圈中第一电极和第二电极的状态,驱动带电粒子定向移动,以使光圈具有一个特定的光圈值,在需要使用该光圈进行透光成像时,可以直接使用该最佳光圈值进行成像,无需进行额外调节,提高利用该光圈进行摄像的效率,其中,最佳光圈值可以根据需要进行预设,此处不对其进行具体限定。
由于在电子设备内的光圈在不工作时,出于省电方面的考虑,往往不对其进行通电,因此,光圈内的带电粒子,处于布朗运动状态,若摄像组件开始工作后,光圈直接进行光圈值的调节,会造成部分距离较远的带电粒子无法准确的移动至目标子电极位置,影响光圈的透光效果,而本申请通过对光圈进行初始化,使光圈先处于最大光圈值,再处于最佳光圈值,即使带电粒子先全部定向移动至最大光圈位置进行集中,再使带电粒子移动至最佳的光圈值对应的位置,减少未被电极吸引的游离带电粒子的数量,提高光圈的透光效果和光圈值的控制精度。
在一种可能的实现方式中,如图15所示,S200包括S2001、S2002、S2003三个具体的实现步骤:
S2001、根据预设的第二调节策略和预设的最大光圈值,对光圈中的第一电极和第二电极进行调节,使带电粒子聚集于容纳空间中最大光圈值对应的区域。
S2002、根据预设的第一调节策略和预设的最佳光圈值,对光圈中的第一电极和第二 电极进行调节,使带电粒子聚集于容纳空间中最佳光圈值对应的区域。
第二调节策略为调大光圈时的目标调节策略,根据第二调节策略,对光圈中第一电极和第二电极的状态进行控制,使带电粒子向光圈的容纳空间的边缘位置聚集,之后再通过第一调节策略,即缩小光圈时的调节策略,对对光圈中第一电极和第二电极的状态进行控制,使带电粒子向光圈的中心位置聚集,并停留至最佳光圈值对应的第一子电极和第二子电极位置,使光圈具有最佳光圈值。其中,通过对第一电极和第二电极进行控制的具体实现方式,在图11所示的实施例步骤S203-S204中已进行详细,此处不再赘述。
本申请中,通过对光圈进行初始化,使光圈依次处于最大光圈值和最佳光圈值处,由于在电子设备内的光圈在不工作时,出于省电方面的考虑,往往不对其进行通电,因此,光圈内的带电粒子,处于布朗运动状态,若摄像组件开始工作后,光圈直接进行光圈值的调节,会造成部分距离较远的带电粒子无法准确的移动至目标子电极位置,影响光圈的透光效果,而本申请通过对光圈进行初始化,使光圈先处于最大光圈值,再处于最佳光圈值,即使带电粒子先全部定向移动至最大光圈位置进行集中,再使带电粒子移动至最佳的光圈值对应的位置,减少未被电极吸引的游离带电粒子的数量,提高光圈的透光效果和光圈值的控制精度。
在一种可能的实现方式中,在步骤S2002之后,还包括:
S2003、获取初始化电压参数;根据初始化电压参数,对第一电极和第二电极的电压进行调节,使带电粒子聚集于容纳空间中最佳光圈值对应的区域。
示例性地,初始化电压参数可以为一个数组,数组中包括分别与各电极对应的多个电压值。根据该多个电压值,对第一电极中的多个第一子电极和第二电极的电压分别进行调节,使其具有不同的电压值,进而改变各电极对带电粒子的驱动能力。其中,初始化电压参数可以为用户根据具体的需要输入控制器的电压参数,也可以是控制器根据其他参数计算而获得的电压参数,此处不对确定初始化电压参数的方法进行具体限定。
其中,对第一电极和第二电极的电压进行调节的实现方式,在图11所示的实施例步骤S205中已进行详细,此处不再赘述。
本申请中,通过在初始化过程中,根据预设的初始化电压参数,对光圈初始化,使初始化后的第一电极和第二电极,具有不同的电压值,达到对电极的电压值进行修正的效果,提高光圈值的控制精度。
其中,需要说明的是,步骤S2003可以在步骤S2001、S2002之后执行,也可以单独执行;步骤S2001、S2002也可以脱离步骤S2003而单独执行,此处不对其进行限定。
图16为本申请实施例提供的一种摄像组件的结构示意性框图。如图16所示,该摄像组件10包括:第一镜头组200、第二镜头组210和如图2-图7任一实施例所对应的光圈100,示例性地,光圈100同心设置在第一镜头组200、第二镜头组210之间,用于调节摄像组件10的透光量。
图17为本申请实施例提供的一种电子设备的结构示意性框图。如图17所示,电子设备包括控制器3、直流电源2和如图16所对应实施例提供的摄像组件10。
其中,直流电源2分别与控制器3、摄像组件10电连接,用于为控制器3和摄像组件10供电;控制器3与摄像组件10电连接,用于获取摄像组件10内光圈100的状态并对光圈100进行控制。
本申请实施例还提供一种终端设备,包括光圈,处理器和存储器,存储器用于存储计算机程序和指令,处理器用于调用计算机程序和指令,使得处理器与光圈一起执行如图8-15所对应的任一实现方式提供的光圈控制方法。
本申请实施例还提供一种计算机可读存储介质,包括计算机代码,当其在计算机上运行时,使得计算机执行如图8-15所对应的任一实现方式提供的光圈控制方法。
本申请实施例还提供一种光圈控制装置,该装置包括:获取模块,用于获取控制信号,控制信号中包括目标光圈值;确定模块,用于比较目标光圈值与当前光圈值,确定目标调节策略;调节模块,用于根据目标调节策略,对光圈中的第一电极和第二电极进行调节,使带电粒子定向移动以对容纳空间的不同区域进行遮光,形成目标光圈,其中,目标光圈的光圈值为目标光圈值。
在一种可能的实现方式中,调节模块,具体用于:根据目标调节策略,对第一电极和第二电极的电性状态进行调节,以及,对第一电极的各第一子电极和各第二子电极的通断状态进行调节。
在一种可能的实现方式中,确定模块,具体用于:若目标光圈值大于当前光圈值,将预设的第一调节策略确定为目标调节策略,其中,第一调节策略用于表征当目标光圈值大于当前光圈值时,第一电极和第二电极的电性状态,以及各第一子电极和各第二子电极的通断状态;若目标光圈值小于当前光圈值,将预设的第二调节策略确定为目标调节策略,其中,第二调节策略用于表征当目标光圈值小于当前光圈值时,第一电极和第二电极的电性状态,以及各第一子电极和各第二子电极的通断状态。
在一种可能的实现方式中,调节模块在根据目标调节策略,对第一电极和第二电极的电性状态进行调节,以及,对第一电极的各第一子电极和各第二子电极的通断状态进行调节时,具体用于:根据目标调节策略,确定目标光圈值对应的子电极标识,并将与子电极标识对应的目标子电极设置为通电状态,目标子电极包括一个或多个第一子电极,和对应的一个或多个第二子电极;根据目标调节策略,确定第一电极的第一目标电性和第二电极的第二目标电性,并将第一电极设置为第一目标电性,将第二电极设置为第二目标电性。
在一种可能的实现方式中,调节模块在根据目标调节策略,对光圈中的第一电极和第二电极进行调节时,还用于:获取姿态参数,姿态参数用于表征光圈的姿态;根据目标调节策略,确定姿态参数对应的电压参数;根据电压参数,对第一电极和第二电极的电压进行调节。
在一种可能的实现方式中,获取模块在获取控制信号之前,还用于:获取预设的初始化调节策略;根据初始化调节策略,对光圈初始化。
在一种可能的实现方式中,获取模块在根据初始化调节策略,对光圈初始化时,具体用于:根据预设的第二调节策略和预设的最大光圈值,对光圈中的第一电极和第二电极进行调节,使带电粒子聚集于容纳空间中最大光圈值对应的区域;根据预设的第一调节策略和预设的最佳光圈值,对光圈中的第一电极和第二电极进行调节,使带电粒子聚集于容纳空间中最佳光圈值对应的区域。
在一种可能的实现方式中,初始化调节策略中还包括初始化电压参数,获取模块在根据初始化调节策略,对光圈初始化,使光圈形成预设的最佳光圈值对应的光圈时,还用于:获取初始化电压参数;根据初始化电压参数,对第一电极和第二电极的电压进行调节,使带电粒子聚集于容纳空间中最佳光圈值对应的区域。
其中,本实施例提供的光圈控制装置可用于执行上述方法中图8-图15所示实施例 中任一项的技术方案,其实现原理和技术效果类似,此处不再赘述。
本申请实施例还提供一种计算机程序产品,包括程序代码,当计算机运行计算机程序产品时,该程序代码执行如图8-图15所对应的任一实现方式提供的光圈控制方法。
本申请实施例还提供一种芯片,包括处理器,该处理器用于调用并运行存储器中存储的计算机程序,以执行如图8-图15所对应的任一实现方式提供的光圈控制方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如,同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如,红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种光圈,其特征在于,包括:
    相对设置的第一透光结构和第二透光结构,所述第一透光结构和所述第二透光结构之间形成容纳空间,所述容纳空间中填充有非导电的透明溶液以及分布在所述透明溶液中的遮光的带电粒子;
    第一电极,包括多个第一子电极以及与所述第一子电极相对的多个第二子电极,所述多个第一子电极间隔设置于所述第一透光结构朝向所述第二透光结构的一面,所述多个第二子电极间隔设置于所述第二透光结构朝向所述第一透光结构的一面;
    第二电极,所述第二电极围设在所述第一透光结构和所述第二透光结构的外周边缘处,所述第一电极与所述第二电极电性相反;所述带电粒子在所述第一电极和所述第二电极的作用下定向移动以对所述容纳空间的不同区域进行遮光。
  2. 根据权利要求1所述的光圈,其特征在于,还包括:
    贮存结构,所述贮存结构围设在所述第一透光结构和所述第二透光结构的外周边缘,且所述贮存结构的内腔与所述容纳空间相通,所述贮存结构用于存储所述带电粒子;所述贮存结构为导电材料制成的壳体,所述贮存结构作为所述第二电极。
  3. 根据权利要求1-2任一所述的光圈,其特征在于,所述多个第一子电极和所述多个第二子电极均为同心设置的多个环形电极,所述多个第一子电极与所述多个第二子电极一一对应设置,各所述第一子电极和各所述第二子电极分别与所述第二电极形成电势差,以驱动所述带电粒子聚集于所述容纳空间的不同区域。
  4. 根据权利要求1-3任一所述的光圈,其特征在于,还包括:
    第一控制电路,所述第一控制电路的第一端与直流电源电连接,所述第一控制电路的第二端与所述第一电极、所述第二电极电连接,所述第一控制电路用于控制所述第一电极和所述第二电极的电性,以及控制各所述第一子电极和各所述第二子电极的通断状态。
  5. 根据权利要求4所述的光圈,其特征在于,所述第一控制电路包括:
    第一控制支路,所述第一控制支路的第一端与所述直流电源的负极电连接,第二端与所述第二电极电连接;
    第二控制支路,所述第二控制支路的第一端与所述直流电源的负极电连接;
    第三控制支路,所述第三控制支路的第一端与所述直流电源的正极电连接,第二端与所述第二电极电连接;
    第四控制支路,所述第四控制支路的第一端与所述直流电源的正极电连接;
    多个并联支路,各所述并联支路的第一端分别与所述多个第一子电极和所述多个第二子电极电连接,各并联支路的第二端并联后分别与所述第二控制支路的第二端和所述第四控制支路的第二端电连接;
    所述第一控制支路、第二控制支路、第三控制支路、第四控制支路以及所述多个并联支路上分别设置有控制开关。
  6. 根据权利要求1-5任一项所述的光圈,其特征在于,所述光圈还包括第二控制电路,所述第二控制电路设置于所述第一电极与直流电源之间,所述第二控制电路用于调节各所述第一子电极和各所述第二子电极的电压。
  7. 根据权利要求6所述的光圈,其特征在于,所述第二控制电路具体用于:
    根据所述光圈的姿态,调节所述直流电源输出至各所述第一子电极和各所述第二子电极的电压,以使各所述第一子电极和各所述第二子电极的电压与所述光圈的姿态相匹配。
  8. 一种光圈控制方法,其特征在于,用于对如权利要求1-7任一项所述的光圈进行控制,所述方法包括:
    获取控制信号,所述控制信号中包括目标光圈值;
    比较所述目标光圈值与当前光圈值,确定目标调节策略;
    根据所述目标调节策略,对光圈中的第一电极和第二电极进行调节,使带电粒子定向移动以对容纳空间的不同区域进行遮光,形成目标光圈,其中,所述目标光圈的光圈值为目标光圈值。
  9. 根据权利要求8所述的方法,其特征在于,根据所述目标调节策略,对光圈中的第一电极和第二电极进行调节,包括:
    根据所述目标调节策略,对所述第一电极和所述第二电极的电性状态进行调节,以及,对所述第一电极的各第一子电极和各第二子电极的通断状态进行调节。
  10. 根据权利要求9所述的方法,其特征在于,比较所述目标光圈值与当前光圈值,确定目标调节策略,包括:
    若目标光圈值大于当前光圈值,将预设的第一调节策略确定为目标调节策略,其中,所述第一调节策略用于表征当目标光圈值大于当前光圈值时,所述第一电极和所述第二电极的电性状态,以及各所述第一子电极和各所述第二子电极的通断状态;
    若目标光圈值小于当前光圈值,将预设的第二调节策略确定为目标调节策略,其中,所述第二调节策略用于表征当目标光圈值小于当前光圈值时,所述第一电极和所述第二电极的电性状态,以及各所述第一子电极和各所述第二子电极的通断状态。
  11. 根据权利要求9或10所述的方法,其特征在于,根据所述目标调节策略,对所述第一电极和所述第二电极的电性状态进行调节,以及,对所述第一电极的各第一子电极和各第二子电极的通断状态进行调节,包括:
    根据所述目标调节策略,确定目标光圈值对应的子电极标识,并将与所述子电极标识对应的目标子电极设置为通电状态,所述目标子电极包括一个或多个第一子电极,和对应的一个或多个第二子电极;
    根据所述目标调节策略,确定第一电极的第一目标电性和第二电极的第二目标电性,并将所述第一电极设置为第一目标电性,将所述第二电极设置为第二目标电性。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,根据所述目标调节策略,对光圈中的第一电极和第二电极进行调节,还包括:
    获取姿态参数,所述姿态参数用于表征所述光圈的姿态;
    根据所述目标调节策略,确定所述姿态参数对应的电压参数;
    根据所述电压参数,对所述第一电极和所述第二电极的电压进行调节。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,在所述获取控制信号之前,还包括:
    获取预设的初始化调节策略;
    根据所述初始化调节策略,对所述光圈初始化。
  14. 根据权利要求13所述的方法,其特征在于,根据所述初始化调节策略,对所述光圈初始化,包括:
    根据预设的第二调节策略和预设的最大光圈值,对光圈中的第一电极和第二电极进行调节,使带电粒子聚集于容纳空间中最大光圈值对应的区域;
    根据预设的第一调节策略和预设的最佳光圈值,对光圈中的第一电极和第二电极进行调节,使带电粒子聚集于容纳空间中最佳光圈值对应的区域。
  15. 根据权利要求14所述的方法,其特征在于,所述初始化调节策略中还包括初始化电压参数,根据所述初始化调节策略,对所述光圈初始化,使所述光圈形成预设 的最佳光圈值对应的光圈,还包括:
    获取所述初始化电压参数;
    根据所述初始化电压参数,对所述第一电极和所述第二电极的电压进行调节,使带电粒子聚集于容纳空间中最佳光圈值对应的区域。
  16. 一种摄像组件,其特征在于,包括:第一镜头组、第二镜头组和如权利要求1-7任一项所述的光圈,其中,所述光圈同心设置在第一镜头组和第二镜头组之间,用于调节摄像组件的透光量。
  17. 一种电子设备,其特征在于,包括控制器、直流电源和如权利要求16所述的摄像组件,其中,所述直流电源分别与所述控制器和所述摄像组件电连接,用于为所述控制器和所述摄像组件供电;
    所述控制器与所述摄像组件电连接,用于获取所述摄像组件内光圈的状态并对所述光圈进行控制。
  18. 一种终端设备,其特征在于,所述终端设备包括光圈,处理器和存储器,所述存储器用于存储计算机程序和指令,所述处理器用于调用所述计算机程序和指令,使得所述处理器与所述光圈一起执行如权利要求8-15中任一项所述的光圈控制方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,以执行如权利要求8-15中任一项所述的方法。
  20. 一种光圈控制装置,其特征在于,用于对如权利要求1-7任一项所述的光圈进行控制,所述装置包括:
    获取模块,用于获取控制信号,所述控制信号中包括目标光圈值;
    确定模块,用于比较所述目标光圈值与当前光圈值,确定目标调节策略;
    调节模块,用于根据所述目标调节策略,对光圈中的第一电极和第二电极进行调节,使带电粒子定向移动以对容纳空间的不同区域进行遮光,形成目标光圈,其中,所述目标光圈的光圈值为目标光圈值。
  21. 一种计算机程序产品,其特征在于,包括程序代码,当计算机运行计算机程序产品时,该程序代码执行如权利要求8-15中任一项所述的方法。
  22. 一种芯片,其特征在于,包括处理器,该处理器用于调用并运行存储器中存储的计算机程序,以执行如权利要求8-15中任一项所述的方法。
PCT/CN2021/089412 2020-06-05 2021-04-23 光圈、光圈控制方法、摄像组件及电子设备 WO2021244181A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010510666.7 2020-06-05
CN202010510666.7A CN113766098B (zh) 2020-06-05 2020-06-05 光圈、光圈控制方法、摄像组件及电子设备

Publications (1)

Publication Number Publication Date
WO2021244181A1 true WO2021244181A1 (zh) 2021-12-09

Family

ID=78785275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089412 WO2021244181A1 (zh) 2020-06-05 2021-04-23 光圈、光圈控制方法、摄像组件及电子设备

Country Status (2)

Country Link
CN (1) CN113766098B (zh)
WO (1) WO2021244181A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012906A (ja) * 2002-06-07 2004-01-15 Sanyo Electric Co Ltd 調光素子及びその駆動方法及びこれを用いた撮像装置
JP2004061832A (ja) * 2002-07-29 2004-02-26 Canon Inc 光量調整素子とその駆動方法およびこれを用いた装置
CN101030011A (zh) * 2006-03-02 2007-09-05 汤姆森特许公司 使用带电的不透明粒子的可变光阑
CN101206377B (zh) * 2006-12-20 2010-05-26 鸿富锦精密工业(深圳)有限公司 光圈
CN102385210A (zh) * 2010-08-30 2012-03-21 鸿富锦精密工业(深圳)有限公司 光圈及采用该光圈的相机模组
CN110501828A (zh) * 2019-09-04 2019-11-26 Oppo广东移动通信有限公司 光圈、成像模组和电子装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214666A (ja) * 2001-01-15 2002-07-31 Sanyo Electric Co Ltd 調光素子及び撮像装置
JP4626697B2 (ja) * 2008-09-26 2011-02-09 ソニー株式会社 光学素子、撮像装置及び駆動方法
KR102100926B1 (ko) * 2013-02-26 2020-04-14 삼성전자주식회사 비균일한 채널을 갖는 가변 유체 소자 및 이를 포함한 장치
CN107807488B (zh) * 2017-10-18 2020-03-17 维沃移动通信有限公司 一种摄像头组件、光圈调整方法及移动终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012906A (ja) * 2002-06-07 2004-01-15 Sanyo Electric Co Ltd 調光素子及びその駆動方法及びこれを用いた撮像装置
JP2004061832A (ja) * 2002-07-29 2004-02-26 Canon Inc 光量調整素子とその駆動方法およびこれを用いた装置
CN101030011A (zh) * 2006-03-02 2007-09-05 汤姆森特许公司 使用带电的不透明粒子的可变光阑
CN101206377B (zh) * 2006-12-20 2010-05-26 鸿富锦精密工业(深圳)有限公司 光圈
CN102385210A (zh) * 2010-08-30 2012-03-21 鸿富锦精密工业(深圳)有限公司 光圈及采用该光圈的相机模组
CN110501828A (zh) * 2019-09-04 2019-11-26 Oppo广东移动通信有限公司 光圈、成像模组和电子装置

Also Published As

Publication number Publication date
CN113766098B (zh) 2022-12-27
CN113766098A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN102798959B (zh) 一种可实现镜头可控倾斜的音圈马达结构
WO2021238849A1 (zh) 拍摄装置、电子设备及拍摄装置的控制方法
CN108476283B (zh) 摄像单元、摄像头模组及移动终端
US12044946B2 (en) Applications of an electrokinetic device for an imaging system
KR20180022367A (ko) 자동 초점 조절 장치 및 자동 초점 조절 가능한 전자 장치
CN207895211U (zh) 光学防抖装置
EP4016176A1 (en) Meta-optical device having variable performance and electronic device including the same
US12022179B2 (en) Electronic device including structure that reduces vibration in camera module
WO2021244181A1 (zh) 光圈、光圈控制方法、摄像组件及电子设备
US20240219808A1 (en) Variable aperture, camera module, and electronic device
CN202904103U (zh) 一种可实现镜头可控倾斜的音圈马达结构
CN112379560A (zh) 薄膜光圈及光圈模组
CN102385210B (zh) 光圈及采用该光圈的相机模组
CN109151289A (zh) 补光模组及终端设备
US8223421B2 (en) Shutter and camera module having same
CN112995628A (zh) 投影控制方法、装置、存储介质及投影设备
CN210348153U (zh) 镜面显示装置及电子设备
CN110648587A (zh) 显示模组及电子设备
CN109194858A (zh) 补光模组及终端设备
CN112946973B (zh) 拍摄装置、电子设备以及拍摄防抖方法
CN204069134U (zh) 投影摄像装置
JP2020511697A (ja) 液体レンズを含むカメラモジュール及び液体レンズ制御方法
US12028614B2 (en) Camera module and electronic device including the same
CN111435963B (zh) 电子装置、照相装置及其驱动装置
CN118677976A (zh) 一种显示面板、调光方法及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21816968

Country of ref document: EP

Kind code of ref document: A1