WO2021243602A1 - 一种车辆控制系统和子控制单元 - Google Patents

一种车辆控制系统和子控制单元 Download PDF

Info

Publication number
WO2021243602A1
WO2021243602A1 PCT/CN2020/094157 CN2020094157W WO2021243602A1 WO 2021243602 A1 WO2021243602 A1 WO 2021243602A1 CN 2020094157 W CN2020094157 W CN 2020094157W WO 2021243602 A1 WO2021243602 A1 WO 2021243602A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
data
sub
component
vehicle
Prior art date
Application number
PCT/CN2020/094157
Other languages
English (en)
French (fr)
Inventor
刘亚林
韩晓辉
蔡建永
陈效华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/094157 priority Critical patent/WO2021243602A1/zh
Priority to EP20938888.3A priority patent/EP4147915A4/en
Priority to CN202080004776.4A priority patent/CN113165586A/zh
Publication of WO2021243602A1 publication Critical patent/WO2021243602A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40273Bus for use in transportation systems the transportation system being a vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion

Definitions

  • This application relates to the field of intelligent driving, and in particular to a vehicle control system and sub-control unit.
  • the traditional electronic and electrical architecture (EEA) of the automotive industry uses a bus plus decentralized control architecture. With the increase in vehicle intelligence and electrification, the number of in-vehicle electronic control units (ECUs) has ushered in explosive growth. The original EEA is difficult to meet the needs of vehicle intelligent development. +Communication" computing and communication architecture (computing and communication architecture, CCA).
  • CCA architectures include three platforms: smart driving platform or mobile data center (MDC), smart cockpit platform or cockpit domain controller (CDC), vehicle control platform or It is called vehicle domain controller (VDC).
  • MDC mobile data center
  • CDC cockpit platform or cockpit domain controller
  • VDC vehicle control platform or It is called vehicle domain controller (VDC).
  • the above three can be collectively referred to as a domain controller and a data center (x Domain Controller/Data Center, xDC).
  • the embodiment of the present application provides a vehicle control system.
  • the length of the wire harness can be reduced, and the connection requirements of diversified components can be met.
  • a vehicle control system which is characterized by comprising: a control unit; a first sub-control unit; the first sub-control unit is connected to a first component that satisfies a first preset condition, and the first sub-control unit
  • the control unit is used to obtain the first data sent by the first component and send first control information to the first component.
  • the first component includes a sensor or an actuator; the first sub-control unit and the The control unit is connected, and the first sub-control unit is used to send second data to the control unit and obtain second control information sent from the control unit.
  • the vehicle control system introduces a sub-control unit, which is connected to the first component that meets the first preset condition through the sub-control unit, and is connected to the control unit upwards.
  • the sub-control unit can obtain the data sent by the component and send control information to the component . You can also send data to the control unit and receive control information sent by the control unit.
  • the topology structure of the vehicle control system is rationally laid out through the sub-control unit, and the vehicle electronic and electrical architecture is improved. It is a new type of computing and communication architecture.
  • the vehicle control system can further improve the system performance, reduce the length of the wiring harness, or meet the diverse connection requirements of components.
  • the first preset condition includes: the component and the first sub-control unit are set in a preset location area.
  • the distance between the component and the first sub-control unit is less than or equal to a first threshold.
  • the first component is physically close to the first sub-control unit, and the sub-control unit can be located in the same physical location area as the first. Therefore, the components in the vehicle control system
  • the wiring harness required to connect with the sub-control unit is short in length, low in cost, simple in wiring harness topology, and easy to install and maintain.
  • the first preset condition includes one or more of the following: the component is set in a preset location area; the function performed by the component is a preset function; the data interface type of the component Is the first preset type; the data transmission protocol type of the component is the second preset type; the security level of the component’s data is the first preset level; the service level of the component’s data is the second preset level; the manufacturer of the component Identified as the second preset value.
  • the components connected to the first sub-control unit meet the first preset condition, and the specific content based on the first preset condition can meet the diversified connection requirements of the components. For example, dividing component sets based on different functions and connecting different sub-control units to components with different functions facilitates coordination between components, enables rapid data processing, and improves system performance.
  • the first sub-control unit and the first component are connected through a wired network or a wireless network;
  • the wired network is based on a controller area network (controller area network, CAN). ), local interconnect network (LIN), FlexRay, Ethernet (Ethernet) or high-speed serial computer expansion bus standard network (peripheral component interconnect express, PCIe) in one protocol or a combination of multiple protocols
  • the network the wireless network is based on wireless fidelity (Wi-Fi), Bluetooth, or cellular mobile network in one protocol or a combination of multiple protocols.
  • the sub-control unit and the components can be interconnected through multiple types of networks.
  • the connection mode of each component and the sub-control unit can be the same or different, so that different component pairs can be satisfied. Different needs to connect to the network.
  • the first sub-control unit and the control unit are connected through a wired network, and the wired network includes Ethernet or PCIe.
  • the wired network includes CAN, LIN, FlexRay network, Ethernet or PCIe;
  • the wireless network includes: Wi-Fi, Bluetooth, or cellular mobile network.
  • the sub-control unit and the control unit can be interconnected through various types of networks.
  • the network transmission rate of Ethernet or PCIe is relatively high, which can meet the needs of high-speed data transmission between the sub-control unit and the control unit.
  • the vehicle control system further includes: a second sub-control unit, the second sub-control unit is connected to a second component that satisfies a second preset condition, and the first The second preset condition is different from the first preset condition, and the second sub-control unit is used to obtain the third data sent by the second component, and send third control information to the second component;
  • the second sub-control unit is connected to the control unit, and the second sub-control unit is configured to send fourth data to the control unit and obtain fourth control information sent from the control unit.
  • the vehicle control system also includes a second sub-control unit, which is connected to a second component that satisfies the second preset condition. Therefore, multiple sub-control units are set according to the connection requirements of the components, which increases the realization of the solution. Flexibility.
  • the first sub-control unit is used to implement part or all of the functions of the electronic control unit of the first component.
  • the first sub-control unit is used to realize all or part of the functions of the electronic control unit of the first component.
  • the data processing and computing capabilities of the first sub-control unit are stronger than those of the components, and the function of the electronic control unit is improved. Moving to the first sub-control unit can improve system performance and reduce component production costs.
  • the sub-control unit is used to implement all or part of the functions of the electronic control unit of each of the multiple components.
  • each component can move all or part of the function of the electronic control unit to the first sub-control unit, which can reduce the production cost of the components, and can also facilitate the coordination between the components and improve the system performance.
  • the first sub-control unit is further configured to convert the first data transmitted based on the first transmission protocol into the second data transmitted based on the second transmission protocol .
  • the first transmission protocol includes CAN, LIN, FlexRay network, Ethernet, PCIe, Wi-Fi, Bluetooth or cellular mobile network
  • the second transmission protocol includes Ethernet or PCIe
  • the first transmission protocol and the second transmission protocol Two transmission protocols are different.
  • the type of data transmission protocol between the components and the sub-control unit is usually different from the type of data transmission protocol between the sub-control unit and the control unit.
  • the sub-control unit can be used for transmission protocol conversion.
  • the data transmission between the component and the sub-control unit can adopt different transmission protocols according to specific requirements such as the data transmission rate to meet the diverse connection requirements of the components.
  • the vehicle control system further includes: at least one of a mobile data center, a cockpit domain controller, and a vehicle domain controller; the control unit and the mobile data center , At least one of the cockpit domain controller or the vehicle domain controller is connected.
  • the vehicle control system also includes at least one of a mobile data center, a cockpit domain controller, and a vehicle domain controller, and is connected to the control unit.
  • MDC is used for intelligent driving control
  • CDC is used for intelligent cockpit control
  • VDC is used for vehicle power control, which can meet the needs of intelligent vehicle development.
  • a second aspect provides a vehicle control method.
  • the vehicle includes a control unit, a first sub-control unit, and a first component.
  • the method includes: the first sub-control unit receives a first control sent by the control unit Information; the first sub-control unit controls the first component according to the control information.
  • the first control information sent by the control unit can be received through the first sub-control unit, and the first component can be controlled according to the first control information. It avoids that in the traditional vehicle control system, the electronic control unit in each component controls the components separately to simplify the function of the electronic control unit in the component, which is beneficial to reduce the cost of the electronic control unit in the component, and ultimately reduces the cost of the component.
  • the first sub-control unit can also control the components of the vehicle more flexibly and improve the performance of the vehicle control system.
  • the method further includes: the first sub-control unit obtains the first data sent by the first component; and the first sub-control unit sends the first data to the control unit Send the first data.
  • the first sub-control unit can realize the data forwarding function. It avoids that in the traditional vehicle control system, the electronic control unit in each component implements the data forwarding function separately to simplify the function of the electronic control unit in the component, which is beneficial to reduce the cost of the electronic control unit in the component, and ultimately reduces the cost of the component. cost.
  • the method further includes: the first sub-control unit obtains the second data sent by the first component; the first sub-control unit controls the second data The data is processed to obtain third data, and the processing includes one or more of the following operations: performing data processing on the second data, encapsulating the second data based on a transmission protocol, and encapsulating the second data Perform protocol conversion and perform data format conversion on the second data; the first sub-control unit sends the third data to the control unit.
  • the first sub-control unit can process data.
  • the first sub-control unit is closer to the vehicle component, that is, the edge of the system. It can quickly process data, take advantage of edge computing, and improve the vehicle. Control system performance.
  • the first sub-control unit is used to implement all or part of the functions of the electronic control unit of the first component.
  • the first sub-control unit is used to realize all or part of the functions of the electronic control unit of the first component, avoiding the traditional vehicle control system in which the electronic control unit in each component controls the components separately, In order to simplify the function of the electronic control unit in the component, it is beneficial to reduce the cost of the electronic control unit in the component, and ultimately reduce the cost of the component.
  • the vehicle includes at least one of a mobile data center, a cockpit domain controller, and a vehicle domain controller
  • the control unit is connected to the mobile data center and the cockpit.
  • At least one of the domain controller or the vehicle domain controller is connected; the first control information is at least one of the mobile data center, the cockpit domain controller, or the vehicle domain controller.
  • multiple components can be connected to a control unit through a sub-control unit, and connected to at least one of a mobile data center, a cockpit domain controller, and a vehicle domain controller through the control unit, avoiding traditional vehicle control
  • Each component in the system needs to be connected to at least one of the mobile data center, the cockpit domain controller, and the vehicle domain controller through its own wiring harness, which is beneficial to reduce the length of the wiring harness in the system that implements the vehicle control function.
  • a third method provides a vehicle control method.
  • the vehicle includes a control unit, a first sub-control unit, and a first component.
  • the method includes: the first sub-control unit obtains the first component sent by the first component. Data; the first sub-control unit sends second data to the control unit according to the first data.
  • the first sub-control unit can obtain the first data sent by the first component, and send the second data to the control unit. It avoids that each component in the traditional vehicle control system needs to be connected to the control unit through its own wiring harness and send data to the control unit, which can reduce the length of the wiring harness in the vehicle, reduce the weight of the wiring harness, and reduce the energy consumption of the vehicle.
  • the first sub-control unit sending second data to the control unit according to the first data includes: the first sub-control unit forwards to the control unit The first data, the first data and the second data are the same.
  • the first sub-control unit can realize the data forwarding function. It avoids that in the traditional vehicle control system, the electronic control unit in each component implements the data forwarding function separately to simplify the function of the electronic control unit in the component, which is beneficial to reduce the cost of the electronic control unit in the component, and ultimately reduces the cost of the component. cost.
  • the sub-control unit sending second data to the control unit according to the first data includes: the first sub-control unit processes the first data Obtain the second data, and send the second data to the control unit, and the processing includes one or more of the following operations: performing data processing on the first data, and performing data processing on the first data. Protocol conversion, encapsulating the first data based on a transmission protocol, and performing data format conversion on the first data.
  • the first sub-control unit can process data or protocol conversion or encapsulation. Compared with the control unit, the first sub-control unit is closer to the vehicle component, that is, the edge of the system. It can quickly process data and give full play to edge computing. The advantage of improving the performance of the vehicle control system.
  • the first sub-control unit is used to implement all or part of the functions of the electronic control unit of the first component.
  • the first sub-control unit is used to realize all or part of the functions of the electronic control unit of the first component, avoiding the traditional vehicle control system in which the electronic control unit in each component controls the components separately, In order to simplify the function of the electronic control unit in the component, it is beneficial to reduce the cost of the electronic control unit in the component, and ultimately reduce the cost of the component.
  • the method further includes: the first sub-control unit receives the first control information sent by the control unit; the first sub-control unit is based on the first control information The control information controls the first component.
  • the first control information sent by the control unit can be received through the first sub-control unit, and the first component can be controlled according to the first control information. It avoids that in the traditional vehicle control system, the electronic control unit in each component controls the components separately to simplify the function of the electronic control unit in the component, which is beneficial to reduce the cost of the electronic control unit in the component, and ultimately reduces the cost of the component.
  • the first sub-control unit can also control the components of the vehicle more flexibly and improve the performance of the vehicle control system.
  • the vehicle includes a mobile data center, a cockpit domain controller, and a vehicle domain controller
  • the control unit is connected to the mobile data center, the cockpit domain controller, or At least one of the vehicle domain controller is connected; the method further includes: the first control information is at least one of the mobile data center, the cockpit domain controller, or the vehicle domain controller Control information sent to the control unit.
  • multiple components can be connected to a control unit through a sub-control unit, and connected to at least one of a mobile data center, a cockpit domain controller, and a vehicle domain controller through the control unit, avoiding traditional vehicle control
  • Each component in the system needs to be connected to at least one of the mobile data center, the cockpit domain controller, and the vehicle domain controller through its own wiring harness, which is beneficial to reduce the length of the wiring harness in the system that implements the vehicle control function.
  • the fourth aspect provides a seed control unit, including a processor, a memory, and a network interface, the processor and the memory are connected to each other, wherein the memory is used to store a computer program, and the computer program includes program instructions.
  • the processor is used to call the program instructions, and the network interface is used to connect the components and control units in the vehicle control system according to any one of the foregoing first aspect and various possible implementation manners.
  • a fifth aspect provides a seed control unit, including a processor, a memory, and a network interface, the processor and the memory are connected to each other, wherein the memory is used to store a computer program, and the computer program includes program instructions.
  • the processor is used to call the program instructions to execute the vehicle control method according to any one of the foregoing second aspect, third aspect, and various possible implementation manners.
  • the sixth aspect provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the methods of the implementation manners provided in the foregoing second to third aspects.
  • a seventh aspect provides a computer-readable storage medium, which when running on a computer, causes the computer to execute the methods of the implementation manners provided in the foregoing second to third aspects.
  • An eighth aspect provides an intelligent vehicle, which is characterized by including the vehicle control system described in any one of the foregoing first aspect and various possible implementation manners.
  • the vehicle control system provided in this application adds a new sub-control unit for connecting components downwards and connecting the control unit upwards.
  • the sub-control unit rationally lays out the topology of the vehicle control system and improves the electrical and electronic architecture of the vehicle.
  • the vehicle control system can improve the system performance, reduce the length of the wiring harness and reduce the cost of the vehicle, as well as meet the diverse connection requirements of components.
  • Figure 1 is a schematic diagram of the electrical and electronic architecture of a vehicle
  • FIG. 2 is a schematic diagram of the vehicle's computing and communication architecture
  • Fig. 3 is a schematic diagram of an embodiment of a vehicle control system in an embodiment of the application.
  • Fig. 4 is a structural diagram of a vehicle control system in an embodiment of the application.
  • Figure 5a is an architecture diagram between components and S-VIU in an embodiment of the application.
  • Figure 5b is another structural diagram between components and S-VIU in an embodiment of the application.
  • Figure 5c is another structural diagram between components and S-VIU in an embodiment of the application.
  • Figure 5d is another structural diagram between components and S-VIU in an embodiment of the application.
  • Figure 5e is another structural diagram between components and S-VIU in an embodiment of the application.
  • Figure 5f is another structural diagram between components and S-VIU in an embodiment of the application.
  • Figure 5g is another structural diagram between components and S-VIU in an embodiment of the application.
  • Figure 6a is an architectural diagram between S-VIU and VIU in an embodiment of the application
  • Fig. 6b is another structural diagram between S-VIU and VIU in an embodiment of the application.
  • Fig. 6c is another structural diagram between S-VIU and VIU in an embodiment of the application.
  • Fig. 6d is another structural diagram between S-VIU and VIU in an embodiment of the application.
  • Fig. 6e is another structural diagram between S-VIU and VIU in an embodiment of the application.
  • FIG. 6f is another structural diagram between S-VIU and VIU in an embodiment of the application.
  • Fig. 6g is another structural diagram between S-VIU and VIU in an embodiment of the application.
  • FIG. 7a is a schematic diagram of the connection mode between the parts and the VIU in the embodiment of the application.
  • Figure 7b is another schematic diagram of the connection between the parts and the VIU in the embodiment of the application.
  • Figure 7c is another schematic diagram of the connection between the parts and the VIU in the embodiment of the application.
  • FIG. 7d is another schematic diagram of the connection mode between the parts and the VIU in the embodiment of the application.
  • Figure 7e is another schematic diagram of the connection between the parts and the VIU in the embodiment of the application.
  • FIG. 7f is another schematic diagram of the connection mode between the parts and the VIU in the embodiment of the application.
  • Figure 8a is a system architecture diagram of a vehicle control system provided by an embodiment of the application.
  • Fig. 8b is another system architecture diagram of the vehicle control system provided by an embodiment of the application.
  • FIG. 8c is another system architecture diagram of the vehicle control system provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of an embodiment of a vehicle control method in an embodiment of the application.
  • Fig. 10 is a schematic diagram of an embodiment of the S-VIU in the embodiment of the application.
  • the embodiment of the present application provides a vehicle control system that connects components and vehicle integration units through sub-vehicle integrated units, which can reduce the length of the wiring harness and reduce the cost of the vehicle, as well as meet the diversified connection requirements of components.
  • Domain controller and data center including mobile data center (MDC), or intelligent driving platform, used for intelligent driving control; cockpit domain controller (CDC), or intelligent cockpit platform, used for intelligent Cockpit control; vehicle domain controller (VDC), or vehicle control platform, used for vehicle power control.
  • MDC mobile data center
  • CDC cockpit domain controller
  • VDC vehicle domain controller
  • VIU Vehicle integrated/integration unit
  • VIU vehicle integrated/integration unit
  • VIU connects xDC upwards and connects components downwards.
  • VIU can realize part or all of the electronic control unit functions of multiple components. In this application, VIU is also referred to as a control unit.
  • Sub-vehicle integrated/integration unit S-VIU
  • Sub-VIU also known as satellite vehicle integrated/integration unit (VIU), referred to as Satellite VIU
  • Sub-automobile integration unit and sub-vehicle integration unit S-VIU
  • the S-VIU proposed in the embodiment of this application stands for Sub-VIU or Satellite VIU, and S-VIU is used to connect VIU upwards and connect components downwards.
  • VIU is also referred to as a sub-control unit.
  • Parts include: sensors or actuators. In this application, parts are also referred to as parts.
  • Sensors include: camera, millimeter wave radar, lidar, ultrasonic radar, global navigation satellite positioning system, inertial navigation system, etc.;
  • Actuators include: wipers, electric window regulators, steering devices, braking devices, etc.
  • the traditional electrical and electronic architecture (EEA) of the automotive industry uses a bus plus distributed control architecture.
  • ESA electrical and electronic architecture
  • the ECUs in parts such as the lidar 101, the millimeter wave radar 102, the camera 103, and the ultrasonic radar 104 are all connected to the MDC through a wire harness, and the total length of the wire harness is too long.
  • the original EEA architecture is difficult to meet the needs of the intelligent development of vehicles, so a computing and communication architecture (CCA) based on "computing + communication" is proposed.
  • CCA includes MDC for intelligent driving control, CDC for intelligent cockpit control, and VDC for vehicle power control.
  • wiring harnesses need to be arranged between each sensor and MDC, including CAN, LIN, FlexRay, Ethernet, LVDS, etc.
  • the ECUs in the vehicle parts need to be connected to the xDC through wiring harnesses.
  • the wiring harness system of a general vehicle has about 1200 contacts and 600 wiring harnesses, with a length of about 1500 meters and a weight of about 30 kilograms.
  • the wiring harness system of the vehicle has approximately 3,000 contacts, 1,500 wiring harnesses, a length of approximately 5,000 meters, and a weight of approximately 60 kg. It can be seen that the wiring harness of the whole vehicle is long, heavy, and the topology is complicated, and the layout is difficult.
  • VIU connects xDC upwards and connects components downwards.
  • Figure 2 shows a schematic diagram of a CCA.
  • the introduction of VIU in CCA reduces the production cost of parts on the one hand, and on the other hand, it can achieve coordination between multiple parts and improve the performance of the system.
  • the functions of the electronic control unit with multiple components in the VIU have higher storage and calculation capabilities, and correspondingly higher equipment costs.
  • components including sensors and actuators, are of various types and large numbers, and the applicable communication network types are different. Higher requirements are put forward for the number and types of VIU equipment interfaces, which is further improved. Cost of equipment. Therefore, the number of VIU devices installed in the vehicle is limited, for example, 3 to 4 units.
  • the position distribution of the parts in the vehicle is relatively scattered, and each part needs to be connected to the VIU upwards. Due to the limited number of VIU equipment and the fixed position, the length of the wiring harness between the parts and the VIU is still long.
  • different components have different requirements for safety or business delay, and when they are connected to the same VIU without distinction, it will cause high system complexity and reduced performance.
  • Figure 3 shows a vehicle control system provided by an embodiment of the present application.
  • S-VIU By introducing S-VIU into the vehicle control system, and rationally lay out the topology of the vehicle in the vehicle, the electrical and electronic architecture of the vehicle is improved.
  • the vehicle control system can further improve the performance of the CCA system, reduce the length of the wiring harness, and meet the diverse connection requirements of components.
  • the vehicle control system provided in this application is very suitable for application to intelligent networked vehicles with rich functions and a wide range of sensors.
  • the vehicle control system provided in this application can be applied to electric vehicles or other non-fuel vehicles, and can also be applied to fuel vehicles.
  • the S-VIU and the vehicle control system provided by the embodiments of the present application will be introduced through specific embodiments.
  • FIG. 4 is a structural diagram of a vehicle control system in an embodiment of this application.
  • the vehicle control system includes: VIU; S-VIU; multiple parts; among them, S-VIU is connected to multiple parts, and S-VIU is used to obtain data sent by parts and to send third parts to multiple parts.
  • One control information S-VIU is connected to VIU, VIU is used to obtain data sent by S-VIU, and send second control information to S-VIU.
  • the number of S-VIUs in the vehicle control system is not limited, nor is the number of VIUs.
  • the first control information can be control information generated by S-VIU; it can also be control information generated by VIU, which is forwarded to the component through S-VIU.
  • the second control information may be control information generated by the VIU, or control information generated by a forwarded xDC (not shown in FIG. 4).
  • the second control information can be used to control the S-VIU, and can also be used to control components, which is not specifically limited here.
  • an S-VIU also known as the first S-VIU
  • a VIU also known as the first VIU
  • the first S-VIU connects components such as sensors or actuators downwards, and connects the first VIU upwards.
  • the parts and S-VIU are connected through a wired network and/or a wireless network.
  • S-VIU obtains the data sent by the parts and sends control information to the parts.
  • the wired network can be a traditional bus, such as a CAN, LIN, or FlexRay network, and one or more of Ethernet and PCIe; one or more of Wi-Fi, Bluetooth, and cellular mobile networks.
  • S-VIU and VIU can also be connected through a wired or wireless network.
  • data transmission between S-VIU and VIU usually uses a communication protocol with a faster communication speed, such as Ethernet and/or PCIe, optional
  • a communication protocol with a faster communication speed such as Ethernet and/or PCIe
  • other types of networks such as cellular mobile networks, etc.
  • the specific protocol types of data transmission between the parts and S-VIU in the embodiments of this application and the specific protocol types of data transmission between S-VIU and VIU are not limited. For example, the following table 1 lists some possibilities Implementation mode:
  • S-VIU has a protocol conversion function. Normally, data transmission between parts and S-VIU uses low-speed transmission protocols such as CAN, LIN or FlexRay, and data transmission between S-VIU and VIU uses Ethernet, PCIe, etc. High-speed transmission protocol, S-VIU realizes the conversion between the above two types of protocols.
  • the S-VIU can also perform calculations and other processing on the data collected from the sensor, and send the processing results to the VIU.
  • S-VIU has ECU control function
  • S-VIU can realize the control of parts
  • this control function can be decentralized from VIU, or part or all of the electronic control unit functions of parts can be moved up
  • the functions of the electronic control unit of the parts include the software calculation part and the logic control part.
  • S-VIU also has the function of a gateway, specifically referring to the function of signal routing.
  • Example 1 S-VIU does not include ECU functions.
  • the S-VIU is connected with m parts, where m is the total number of parts connected with the S-VIU, and the value of m is a positive integer. ECU functions remain in the parts, S-VIU does not include ECU functions. In this scenario, the S-VIU can be set based on the physical location of the components, and the vehicle control system containing the S-VIU can save wiring harnesses.
  • Example 2 S-VIU has the function of ECU.
  • the S-VIU is connected with m parts, and part or all of the ECU functions in each part are moved to the S-VIU.
  • the upward movement of the ECU function of each component can be the same or different. There are many specific situations, please refer to Figure 5b to Figure 5g.
  • part of the ECU functions of all parts of the m parts are moved up to the S-VIU, and some of the ECU functions of all the parts of the m parts are retained in the parts.
  • the ECU functions of some of the m parts are retained in the parts or moved up to VIU (not shown in the figure), such as part 1, and all other parts ECU functions are moved up to S-VIU, such as part 2.
  • the ECU functions of some of the m parts are all moved up to S-VIU, such as Part 1, and some ECU functions of other parts are moved up to S-VIU, such as Part 2.
  • the ECU functions of some of the m parts remain in the parts or are moved up to VIU (not shown in the figure), for example, part 1, and the ECU functions of some parts are moved up to S- VIU, such as component 2; part of the ECU function of another component is retained in the component, such as component m.
  • S-VIU The specific functions of the S-VIU can be determined according to actual application requirements, which are not limited in the embodiments of the present application.
  • the vehicle control system includes multiple S-VIUs.
  • the S-VIUs are connected to the VIU upward, and the vehicle control system includes at least two VIU, optionally, the number of VIUs is 3, 4, 5 or 6.
  • Multiple VIUs may be connected in a ring or other forms.
  • the number of VIUs and the manner of connection between them are not limited, and multiple VIUs in the vehicle control system can be regarded as a whole.
  • the ECU functions of multiple S-VIUs in the vehicle control system can also be moved up to VIU or xDC.
  • VIU as an example to introduce the various possibilities between S-VIU and VIU in the vehicle control system provided by the embodiments of this application.
  • the vehicle control system includes n S-VIUs.
  • n is the total number of S-VIUs in the vehicle control system, and the value of n is a positive integer.
  • VIU can be used to send control information to the S-VIU.
  • part of the ECU function is moved up to S-VIU, and part is moved up to VIU. All n S-VIUs have some ECU functions.
  • some S-VIUs reserve all ECU functions, such as S-VIU1, and some S-VIUs reserve some ECU functions, such as S-VIU2.
  • some S-VIUs retain all ECU functions, such as S-VIU1, and some S-VIUs do not retain ECU functions, such as S-VIU2.
  • some S-VIUs retain some ECU functions, such as S-VIU1, and some S-VIUs do not retain ECU functions.
  • some S-VIUs reserve all ECU power, such as S-VIU1, some S-VIUs reserve some ECU functions, such as S-VIU2, and some S-VIUs do not reserve ECU functions. For example, S-VIUn.
  • a vehicle control system includes multiple S-VIUs.
  • Each S-VIU is connected to components that meet preset conditions.
  • the components connected to each S-VIU form a component set.
  • the component set includes one or more Parts.
  • the preset conditions that need to be met when connected to the same S-VIU in the vehicle can be flexibly determined according to actual usage requirements, that is, parts are grouped into parts collections according to preset conditions. The following specifically introduces the different methods of determining the assembly of parts.
  • the first preset condition includes: the component is set in a preset location area, and optionally, the first S-VIU is also located in the preset location area.
  • the space where the vehicle is located is divided into multiple non-overlapping physical location areas, each area is set up with an S-VIU, and the S-VIU in the area is connected to the components in the area.
  • the components belonging to the first physical location area have the same first physical location identifier, and if the first preset condition is that the physical location identifier of the component is the first preset value, the physical location is identified as the first preset value
  • the value component is connected to the first S-VIU.
  • the distance between the component and the first S-VIU is less than or equal to the first threshold.
  • the distance between the component and the S-VIU refers to the physical distance between the two, and the specific value of the first threshold is not limited, for example, 0.35 meters, 0.5 meters, 0.8 meters, or 1.0 meters.
  • the physical location of the component in the vehicle coordinate system can be associated according to the identification of the component, and the physical location of the S-VIU in the vehicle coordinate system can be associated according to the identification of the S-VIU, based on the physical location of the component and the physical location of the S-VIU.
  • the position obtains the distance between the component and the S-VIU, and then it can be judged whether the distance between the component and the S-VIU is less than or equal to the first threshold.
  • the connection relationship between the component and the S-VIU is determined based on the physical position of the component in the vehicle, and the components in the first component set and the first S-VIU The distance is less than or equal to the preset threshold, and the components in the first component set are connected to the first S-VIU, and then the first S-VIU is connected to the VIU.
  • the connection to the S-VIU with the smallest distance to the component can be determined according to the physical location of the component and the multiple S-VIUs.
  • FIG. 7a it is a schematic diagram of the connection mode between the component and the VIU in the embodiment of this application.
  • the vehicle control system includes n S-VIUs, and each S-VIU connects multiple components downwards and connects VIU upwards. It should be noted that, since multiple VIUs in the vehicle control system can be regarded as a whole, the VIU shown in FIG. 7a does not limit the number of VIUs in the vehicle control system.
  • the first set of components connected to the S-VIU1 specifically includes multiple sensors: S1, S2, S3, and S4, and multiple actuators: A1, A2, A3, and A4.
  • the physical distance between the components S1, S2, S3, S4, A1, A2, A3, and A4 in the first component set and the S-VIU1 is less than or equal to the preset threshold, that is, the physical positions in the vehicle are relatively close. Since the number of VIUs is small and their positions are fixed, they are usually not located near the components.
  • the vehicle control system provided in the embodiments of the present application can reduce the length of the wiring harness required for the components to be directly connected to the VIU. Similarly, multiple components located in the same location area are connected to the adjacent S-VIUn.
  • This component set includes sensors: S5, S6, S7...Si, and actuators: A5, A6, A7...Aj,
  • the number of sensors in the parts collection is not limited, and the number of actuators is also not limited.
  • the components are connected to the S-VIU through a network established by CAN, LIN, or FlexRay protocols, and the S-VIU and VIU are connected through a network established through the Ethernet protocol.
  • ком ⁇ онент set can have the same function or different functions. The specifics are not limited here.
  • a set of components connected to the same S-VIU can have both ADAS sensors and power. Actuator of system function.
  • the number of S-VIUs can be one or more, which is not specifically limited here. Exemplarily, considering that there are more sensors for observation and ranging in the front and rear of the vehicle, such as monocular cameras, binocular cameras and millimeter wave radars, etc., they can be installed in the front and rear of the vehicle respectively.
  • the first preset condition includes: the function performed by the component is a preset function.
  • the preset function may be, for example, one or more of thermal management function, seat management function, door and window management function, or audio-visual entertainment function.
  • components with the same function belong to one component Collection, the components in different component collections have different functions.
  • the first preset condition includes: components The function performed is the thermal management function, and the parts S3, A4, A5, A6 and A7 with thermal management function are connected to the first S-VIU responsible for the thermal management function.
  • all ECU functions of components with thermal management functions are moved up to the first S-VIU.
  • the data of all thermal management components are concentrated in the first S-VIU, which will facilitate coordination between components, quickly process data, and improve system performance.
  • the components are connected to the S-VIU through a network established by CAN, LIN, or FlexRay protocols, and the S-VIU and VIU are connected through a network established by the PCIe protocol.
  • components other than the first component set can be connected to the VIU through a network established by protocols such as CAN, LIN, or FlexRay.
  • the first preset condition includes: the manufacturer identification of the component is the second preset value.
  • components with the same manufacturer identification belong to the same component set and are connected to the same S-VIU.
  • the parts produced by the manufacturer include the matching ECU.
  • the parts connected under the same S-VIU come from the same manufacturer, as shown in Fig. 7c, which is exemplarily connected to
  • the first manufacturer can integrate S1, S2, S3, S4, A1, A2, A3, A4 and S-VIU1 into one product unit, which can improve the production efficiency of component manufacturers and reduce production costs.
  • the parts, the S-VIU and the VIU are all connected through a network established by the Ethernet protocol. It should be noted that the communication rate between components and S-VIU and the communication rate between S-VIU and VIU can be the same or different.
  • the first preset condition includes: the security level of the component data is the first preset level.
  • the security level of the component data is the first preset level.
  • the data of the parts connected under an S-VIU belong to the same security level.
  • the data of parts includes data obtained by sensors or control information received by actuators.
  • it is divided according to the automotive safety integration level (ASIL).
  • ASIL automotive safety integration level
  • the safety level includes: ASIL A, ASIL B, ASIL C, or ASIL D.
  • ASIL A is the lowest level
  • ASIL D is the highest level.
  • the first preset level can be ASIL A, ASIL B, ASIL C, or ASIL D, which is not specifically limited here.
  • the number of VIUs in the existing solution may be less than the number of security levels. At this time, it is impossible to classify and connect parts and components according to different security levels. For example, as shown in Figure 7d, it will correspond to businesses with higher security requirements.
  • the components S3, A4, A5, A6 and A7 are all connected to the same S-VIU, and the data obtained by the S-VIU is backed up to improve system security.
  • the network connection between S3, A4, A5, A6 and A7 and S-VIU is established through the PCIe protocol, and the network connection between S-VIU and VIU is also established through the PCIe protocol.
  • the same type of communication network connection, but the communication rate between the components and S-VIU, and the communication rate between S-VIU and VIU can be the same or different, usually, the communication rate between S-VIU and VIU is more quick.
  • components of the same safety level are connected through the S-VIU, which can facilitate system management and improve the safety of the system.
  • the first preset condition includes: the service level to which the data of the component belongs is the second preset level.
  • the business level to which the data of each component belongs can be associated with the identification of the component.
  • the parts corresponding to the same business level are divided into the same parts set and connected to the same S-VIU.
  • the connected S-VIU is determined according to the business level corresponding to the component data, and the connected components under the same S-VIU belong to the same business level.
  • the service level includes the level based on the delay requirement or the level based on the reliability requirement, etc., which are not specifically limited here.
  • the services corresponding to the components can be divided into: services with high delay requirements, that is, low-latency services, services with medium delay requirements, and services with low delay requirements.
  • the second preset level is this There is no limit.
  • the services corresponding to the parts can be divided into: services with high reliability requirements, services with medium reliability requirements, and services with low reliability requirements.
  • the second preset level is not limited here. It should be noted that there is no relationship between the second preset level and the first preset level, and it is only used to distinguish the preset condition of the security level of the component and the preset condition of the service level to which the data of the component belongs.
  • the first component set corresponding to the service with low reliability requirements is connected to S-VIU1
  • the component corresponding to the service with high reliability requirements is connected to S-VIUn
  • the connected S-VIU can perform redundant backup of data to improve safety.
  • the components are connected to the S-VIU through a network formed by the PCIe protocol, and the S-VIU is connected to the VIU through a network formed by the Ethernet protocol.
  • S-VIU components of the same service level are connected through S-VIU, which can facilitate system management.
  • S-VIU which handles high-delay services, can choose high speed between VIU and S-VIU.
  • S-VIU which is connected in data transmission mode and handles high-reliability services, can improve security through backup.
  • the first preset condition includes: the data transmission protocol type of the component is the second preset type
  • the component set is determined based on the data interface type or the transmission protocol type. Divide the parts connected to the S-VIU through the same type of data interface into a part set, or divide the parts that transmit data through the same transmission protocol into a part set, and all the parts in a part set are connected to The same S-VIU. The parts connected to the same S-VIU are all connected to the S-VIU through the same transmission protocol or through the same type of data interface.
  • the data interface type or transmission protocol type of each component can be associated with the component identification. It should be noted that there is no relationship between the second preset type and the first preset type, and it is only used to distinguish the preset condition of the data interface type of the component and the preset condition of the data transmission protocol type of the component.
  • Data interface types include: serial port, local area network (LAN) interface, USB interface or wireless interface, etc.
  • Transmission protocol types include: wired network transmission protocols: CAN, LIN, FlexRay, Ethernet, PCIe, etc.; and wireless network transmission protocols: wireless local area networks (for example, wireless fidelity (Wi-Fi), Bluetooth, etc.), cellular networks (3G, 4G, 5G, etc.).
  • wired network transmission protocols CAN, LIN, FlexRay, Ethernet, PCIe, etc.
  • wireless network transmission protocols wireless local area networks (for example, wireless fidelity (Wi-Fi), Bluetooth, etc.), cellular networks (3G, 4G, 5G, etc.).
  • S-VIU1 is connected to the first component assembly through a network established by the Ethernet protocol, and S-VIUn and the nth component assembly are connected through a network established by the PCIe protocol.
  • the components in the first component set are connected to S-VIU1 through a network established by the Ethernet protocol, and S-VIU1 is connected to VIU through a network established by the Ethernet protocol; the components in the second component set
  • the network established by the PCIe protocol is connected to S-VIU2, and the network established by the PCIe protocol is connected to the VIU.
  • the vehicle control system provided in the embodiments of the present application is determined based on the type of data interface or the type of transmission protocol.
  • the collection of parts can reduce the interface type of S-VIU and reduce the cost.
  • the first preset condition includes one or more of the following: the physical location of the component is identified as the first preset value; the function performed by the component is the preset function; the data interface type of the component is The first preset type; the data transmission protocol type of the component is the second preset type; the security level of the data of the component is the first preset level; the service level to which the data of the component belongs is the second preset level; the manufacturer identification of the component Is the second preset value.
  • the division method of the component set can be determined based on the combination of two or more of the following factors: the function performed by the component, the physical location identification of the component, the data interface type of the component, the data transmission protocol type of the component, and the data of the component.
  • the security level, the business level to which the data of the component belongs, the manufacturer's identification of the component, etc., for example, the components connected to the first S-VIU have the same manufacturer and data interface type.
  • the vehicle control system includes a first S-VIU and a second S-VIU
  • the first S-VIU is connected to the first component that meets the first preset condition
  • the second S-VIU is connected to the second
  • the second component of the condition is connected; here the first preset condition is different from the second preset condition, and the distance will be introduced below.
  • Example 1 The first preset condition is: the distance between the component and the first S-VIU is less than or equal to 0.5 meters; the second preset condition is: the distance between the component and the second S-VIU is less than or equal to 0.5 meters.
  • the first preset condition is: the physical location of the component is identified as the first preset value, the physical location indicated by the first preset value is the first area in the vehicle, and the function performed by the component is the seat management function;
  • the second preset condition is: the physical location identifier of the component is the first preset value, the physical location indicated by the first preset value is the first area in the vehicle, and the function performed by the component is the door and window management function.
  • vehicle control system may include more than two S-VIUs, and the components connected to each S-VIU need to meet different preset conditions, which will not be repeated here.
  • CCA Computing and Communication Architecture
  • MDC intelligent driving platform CDC intelligent cockpit platform
  • VDC intelligent electric platform Three vehicle-level platforms: MDC intelligent driving platform, CDC intelligent cockpit platform, and VDC intelligent electric platform.
  • S-VIUs in the vehicle control system and the connection mode of components can be set according to actual needs, and the specifics are not limited here.
  • the following examples are introduced:
  • Example 1 As shown in Figure 8a, the multiple S-VIUs in the vehicle control system include: S-VIU1 to S-VIU5, where S-VIU 1 is the front S-VIU, and is set in the front area 801 Parts connection; S-VIU2 is the center right S-VIU, responsible for the control of the right door and the right seat area, and is connected to the parts set in the center right area 802; S-VIU 3 is the center left S-VIU is responsible for the control of the left side door and the left seat area, and is connected to the parts set in the center right area 803; S-VIU 4 is the rear S-VIU, responsible for the control of the rear area, and The parts installed in the rear area 804 are connected; S-VIU 5 is the ceiling S-VIU, which is connected to the parts installed in the top area 805 of the vehicle.
  • S-VIU 1 is the front S-VIU, and is set in the front area 801 Parts connection
  • S-VIU2 is the center right S-VI
  • Figure 8a is a two-dimensional image
  • area 805 shown in 8a partially overlaps with areas 802 to 804.
  • area 805 is the roof area of the vehicle, and there is no overlap with areas 802 to 804.
  • the parts are arranged in different location areas in the vehicle.
  • the specific size of each location area is related to the actual size of the vehicle and the location of the parts. The specific values are not limited here.
  • the width of the area 801 in the vehicle length extension direction may be 1 meter, that is, the size of the area 801 in Figure 8a, that is, length * width It is 1 meter * 1.85 meters, and the height is the same as the height of the head of the vehicle.
  • Example 2 Please refer to Figure 8b.
  • the multiple S-VIUs in the vehicle control system include: S-VIU 1 and S-VIU 2, where S-VIU 1 is the front S-VIU, and is set in the front area 811 S-VIU 2 is the rear S-VIU, which is connected with the parts arranged in the rear area 812.
  • the vehicle control system includes: S-VIU 1 to S-VIU 7, where S-VIU 1 is the right front S-VIU, and the parts installed in the right front area 821 Connection; S-VIU 2 is the left front S-VIU, which is connected to the components installed in the left front area 822; S-VIU 3 is the right door S-VIU, responsible for the control of the right door area, and is connected to The parts in the right door area 823 are connected; S-VIU 4 is the left door S-VIU, which is connected to the parts arranged in the left door area 824; S-VIU 5 is the central area S-VIU, which is connected to the Connect the components in the seat area 825; S-VIU 6 is the ceiling S-VIU, which is connected to the components installed in the vehicle ceiling area 826; S-VIU 7 is the S-VIU at the rear of the vehicle, which is connected to the rear of the vehicle.
  • Fig. 8c is a two-dimensional image
  • the area 825 illustrated by Fig. 8c partially overlaps with the right door area 823, the left door area 824, and the ceiling area 826.
  • the parts are arranged in different location areas in the vehicle.
  • the specific size of each location area is related to the actual size of the vehicle and the location of the parts. The specific values are not limited here.
  • FIG. 9 is a schematic diagram of an embodiment of a vehicle control method in an embodiment of this application.
  • the vehicle control method includes:
  • the first S-VIU receives first control information sent by the first VIU.
  • the first S-VIU receives the first control information sent by the first VIU, and the first control information may be used to control the first S-VIU, or components, which is not specifically limited here.
  • the first control information is generated by the first VIU;
  • the vehicle includes at least one of a mobile data center, a cockpit domain controller, and a vehicle domain controller
  • the first VIU is connected to at least one of the mobile data center, the cockpit domain controller, or the vehicle domain controller;
  • the first control information is that at least one of the mobile data center, the cockpit domain controller, or the vehicle domain controller sends first control information to the first VIU, and the first VIU receives the first control information And forward it to the first S-VIU.
  • the first S-VIU controls the components according to the first control information.
  • the method further includes:
  • the first S-VIU is used to realize all or part of the functions of the electronic control unit of the components.
  • the first S-VIU receives the first data sent by the first component.
  • the component sends first data to the first S-VIU, and the first data may be data collected by a sensor or the like, for example.
  • the first S-VIU sends the first data to the first VIU.
  • the first S-VIU directly forwards the first data to the first VIU.
  • the first S-VIU processes the first data, and the processing includes one or more of the following operations: Perform data processing, encapsulate the first data based on the transmission protocol, perform protocol conversion on the first data, and perform data format conversion on the first data; the first S-VIU sends the processed first data to the first VIU data.
  • step 903 to step 904 are optional steps, which may or may not be performed, and are not limited here.
  • FIG. 10 is a schematic diagram of an embodiment of the S-VIU in the vehicle control system in the embodiment of the present application.
  • the specific device form of the S-VIU is not limited in the embodiments of this application.
  • the S-VIU may have relatively large differences due to different configurations or performances, and may include one or more processors 1001 and a memory 1002, and the memory 1002 stores programs and/or data.
  • the memory 1002 may be volatile storage or non-volatile storage.
  • the processor 1001 is one or more central processing units (CPU), and the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1001 may communicate with the memory 1002, and execute a series of instructions in the memory 1002 on the S-VIU 1000.
  • the S-VIU 1000 also includes one or more network interfaces 1003.
  • the type of network interface is not limited, such as CAN, LIN, or FlexRay network, and Ethernet or PCIe; it can also include wireless network interfaces, such as Wi-Fi, Bluetooth or cellular mobile network, etc.
  • the S-VIU 1000 can include one or more types of network interfaces, and the number of each type of network interface can be one or more, and the specific interface type and number of interfaces are not limited here.
  • the computing power of the processor 1001 of the S-VIU is less than the computing power of the VIU, and the storage capacity of the memory 1002 is less than the storage capacity of the VIU.
  • the S-VIU 1000 can also include one or more power supplies; one or more input and output interfaces, which can be used to connect displays, touch screen devices, or sensor devices, etc.
  • the input and output interfaces are optional components, which may or may not exist, and are not limited here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiment described above is only illustrative.
  • the division of the unit is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the unit described as a separate component may or may not be physically separate, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may also be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Small-Scale Networks (AREA)

Abstract

一种车辆控制系统和子控制单元(1000),涉及智能车辆领域,其中的车辆控制系统包括控制单元和子控制单元(1000),其中的子控制单元(1000)用于向上连接控制单元,向下连接零部件。通过引入子控制单元,可以减少车辆线束长度,以及满足车辆零部件多样化的连接需求。

Description

一种车辆控制系统和子控制单元 技术领域
本申请涉及智能驾驶领域,尤其涉及一种车辆控制系统和子控制单元。
背景技术
汽车行业传统的电子电气架构(electronic and electrical architecture,EEA),采用的是总线加分散控制的架构。随着车辆智能化、电动化程度的增加,车内电子控制单元(electronic control unit,ECU)数量迎来爆发式的增长,原有的EEA难以满足车辆智能化发展的需求,于是提出基于“计算+通信”的计算与通信架构(computing and communication architecture,CCA)。
目前,一些CCA架构包括三个平台:智能驾驶平台或称为移动数据中心(mobile data center,MDC)、智能座舱平台或称为座舱域控制器(cockpit domain controller,CDC)、整车控制平台或称为整车域控制器(vehicle domain controller,VDC)。上述三者可以统称为域控制器和数据中心(x Domain Controller/Data Center,xDC)。
在汽车智能化过程中,零部件数量进一步增加,整车零部件需要连接到xDC,考虑到目前整车零部件数量较多,分别与xDC连接所需的总的线束较长,进一步地,较长的线束增加了车辆的重量,影响车辆的使用经济性。
发明内容
本申请实施例提供了一种车辆控制系统,通过本申请提出的子控制单元连接部件和控制单元,可以减少线束长度,以及满足部件多样化的连接需求。
一方面,提供一种车辆控制系统,其特征在于,包括:控制单元;第一子控制单元;所述第一子控制单元与满足第一预设条件的第一部件连接,所述第一子控制单元用于获取所述第一部件发送的第一数据,以及向所述第一部件发送第一控制信息,所述第一部件包括传感器或执行器;所述第一子控制单元与所述控制单元连接,所述第一子控制单元用于向所述控制单元发送第二数据,以及获取从所述控制单元发送的第二控制信息。
该车辆控制系统,引入了子控制单元,通过子控制单元与满足第一预设条件的第一部件连接,并向上连接控制单元,子控制单元可以获取部件发送的数据,并向部件发送控制信息,还可以向控制单元发送数据,并接受控制单元发送的控制信息。通过子控制单元对车辆控制系统的拓扑结构进行了合理布局,改进了车辆电子电气架构,是一种新型的计算与通信架构。该车辆控制系统可以进一步提升系统性能、降低线束长度或满足部件多样化的连接需求等。
在第一方面的一种可能的实现方式中,所述第一预设条件包括:部件和所述第一子控制单元设置于预设的位置区域。可选地,部件与所述第一子控制单元的距离小于或等于第一阈值。
该车辆控制系统,基于第一预设条件,第一部件与第一子控制单元在物理位置上较为邻近,子控制单元可以与第一设置在同一物理位置区域,因此,该车辆控制系统中部件与子控制单元连接所需的线束长度短、成本低,线束拓扑结构简单,易于安装和维修。
在第一方面的一种可能的实现方式中,所述第一预设条件包括以下一个或多个:部件设置于预设的位置区域;部件执行的功能为预设功能;部件的数据接口类型为第一预设类型;部件的数据传输协议类型为第二预设类型;部件的数据的安全等级为第一预设等级;部件的 数据所属业务等级为第二预设等级;部件的生产厂家标识为第二预设值。
该车辆控制系统,与第一子控制单元连接的零部件满足第一预设条件,基于第一预设条件的具体内容可以满足零部件多样化的连接需求。例如,基于功能不同划分部件集合,不同子控制单元与不同功能的部件连接,有利于部件之间的协调,能够快速处理数据,提高系统的性能。
在第一方面的一种可能的实现方式中,所述第一子控制单元与所述第一部件通过有线网络或无线网络连接;所述有线网络为根据控制器局域网络(controller area network,CAN)、局域互联网络(local interconnect network,LIN)、FlexRay、以太网(Ethernet)或高速串行计算机扩展总线标准网络(peripheral component interconnect express,PCIe)中的一种协议或多种协议的组合组建的网络;所述无线网络为根据无线保真(Wi-Fi)、蓝牙或蜂窝移动网络中的一种协议或多种协议的组合组建的网络。
该车辆控制系统中,子控制单元和部件之间可以通过多种类型的网络互联,具体地,每个部件与子控制单元的连接方式可以相同也可以不同,由此,可以满足不同的部件对连接网络的不同需求。
在第一方面的一种可能的实现方式中,所述第一子控制单元和所述控制单元之间通过有线网络连接,所述有线网络包括Ethernet或PCIe。可选地,所述有线网络包括CAN、LIN、FlexRay网络、Ethernet或PCIe;所述无线网络包括:Wi-Fi、蓝牙或蜂窝移动网络。
该车辆控制系统,子控制单元和控制单元之间可以通过多种类型的网络互联,以太网或PCIe的网络传输速率较高,可以满足子控制单元和控制单元之间高速数据传输的需求,此外,还可以根据子控制单元和控制单元之间的实际网络需要选用其他不同类型的网络连接。
在第一方面的一种可能的实现方式中,所述车辆控制系统还包括:第二子控制单元,所述第二子控制单元与满足第二预设条件的第二部件连接,所述第二预设条件与所述第一预设条件不同,所述第二子控制单元用于获取所述第二部件发送的第三数据,并向所述第二部件发送第三控制信息;所述第二子控制单元与所述控制单元连接,所述第二子控制单元用于向所述控制单元发送第四数据,以及获取从所述控制单元发送的第四控制信息。
该车辆控制系统,还包括第二子控制单元,第二子控制单元与满足第二预设条件的第二部件连接,由此,根据零部件的连接需求设置多个子控制单元,增加了方案实现的灵活性。
在第一方面的一种可能的实现方式中,所述第一子控制单元用于实现所述第一部件的部分或全部的电子控制单元的功能。
该车辆控制系统,第一子控制单元用于实现第一部件的全部或部分电子控制单元的功能,通常第一子控制单元的数据处理能力和运算能力比部件强,将电子控制单元的功能上移至第一子控制单元可以提高系统性能,并降低部件的生产成本。
在第一方面的一种可能的实现方式中,所述子控制单元用于实现所述多个部件中每个部件的全部或部分电子控制单元的功能。
该车辆控制系统,每个部件都可以将全部或部分电子控制单元的功能上移至第一子控制单元,可以降低部件的生产成本,还可以有利于部件之间的协调,提升系统性能。
在第一方面的一种可能的实现方式中,所述第一子控制单元还用于将基于第一传输协议传输的所述第一数据转换为基于第二传输协议传输的所述第二数据,所述第一传输协议包括 CAN、LIN、FlexRay网络、Ethernet、PCIe、Wi-Fi、蓝牙或蜂窝移动网络,所述第二传输协议包括Ethernet或PCIe,所述第一传输协议和所述第二传输协议不同。
该车辆控制系统,基于不同业务需求,部件与子控制单元之间的数据传输协议类型,和子控制单元与控制单元之间的数据传输协议类型通常不同,子控制单元可以用于传输协议的转换,部件与子控制单元之间的数据传输可以根据数据传输速率等具体需求采用不同的传输协议,满足部件多样化的连接需求。
在第一方面的一种可能的实现方式中,所述车辆控制系统还包括:移动数据中心、座舱域控制器和整车域控制器中的至少一个;所述控制单元与所述移动数据中心、所述座舱域控制器或所述整车域控制器中的至少一个连接。
该车辆控制系统,还包括移动数据中心、座舱域控制器和整车域控制器中的至少一个,并与控制单元连接。其中,MDC用于智能驾驶的控制的,CDC用于智能座舱的控制,VDC用于整车动力控制,可以满足车辆智能化发展的需求。
第二方面提供了一种车辆控制方法,所述车辆包括控制单元,第一子控制单元和第一部件,所述方法包括:所述第一子控制单元接收所述控制单元发送的第一控制信息;所述第一子控制单元根据所述控制信息控制所述第一部件。
该车辆控制方法,可以通过第一子控制单元接收控制单元发送的第一控制信息,并根据该第一控制信息控制第一部件。避免了传统的车辆控制系统中,由每个部件中的电子控制单元分别控制部件,以简化部件中电子控制单元的功能,有利于降低部件中的电子控制单元的成本,最终降低部件的成本。第一子控制单元还可以更灵活地控制车辆的部件,提升车辆控制系统性能。
在第二方面的一种可能的实现方式中,所述方法还包括:所述第一子控制单元获取所述第一部件发送的第一数据;所述第一子控制单元向所述控制单元发送所述第一数据。
该车辆控制方法,第一子控制单元可以实现数据转发功能。避免了传统的车辆控制系统中,由每个部件中的电子控制单元分别实现数据转发功能,以简化部件中电子控制单元的功能,有利于降低部件中的电子控制单元的成本,最终降低部件的成本。
在第二方面的一种可能的实现方式中,所述方法还包括:所述第一子控制单元获取所述第一部件发送的第二数据;所述第一子控制单元对所述第二数据进行处理得到第三数据,所述处理包括以下操作中的一种或多种:对所述第二数据进行数据处理,基于传输协议对所述第二数据进行封装,对所述第二数据进行协议转换,以及对所述第二数据进行数据格式转换;所述第一子控制单元向所述控制单元发送所述第三数据。
该车辆控制方法,第一子控制单元可以对数据进行处理,由于相较控制单元,第一子控制单元更靠近车辆部件,即系统边缘侧,可以快速处理数据,发挥边缘计算的优势,提升车辆控制系统性能。
在第二方面的一种可能的实现方式中,所述第一子控制单元用于实现所述第一部件的全部或部分电子控制单元的功能。
该车辆控制方法,第一子控制单元用于实现所述第一部件的全部或部分电子控制单元的功能,避免了传统的车辆控制系统中,由每个部件中的电子控制单元分别控制部件,以简化部件中电子控制单元的功能,有利于降低部件中的电子控制单元的成本,最终降低部件的成 本。
在第二方面的一种可能的实现方式中,所述车辆包括移动数据中心、座舱域控制器和整车域控制器中的至少一个,所述控制单元与所述移动数据中心、所述座舱域控制器或所述整车域控制器中的至少一个连接;所述第一控制信息为所述移动数据中心、所述座舱域控制器或所述整车域控制器中的至少一个向所述控制单元发送的控制信息。
该车辆控制方法,多个部件可以经子控制单元连接至一个控制单元,并通过控制单元连接至移动数据中心、座舱域控制器和整车域控制器中的至少一个,避免了传统的车辆控制系统中每个部件都需要通过各自的线束连接至移动数据中心、座舱域控制器和整车域控制器中的至少一个,有利于减少实现车辆控制功能的系统中的线束长度。
第三方法提供了一种车辆控制方法,所述车辆包括控制单元,第一子控制单元和第一部件,所述方法包括:所述第一子控制单元获取所述第一部件发送的第一数据;所述第一子控制单元根据所述第一数据向所述控制单元发送第二数据。
该车辆控制方法,第一子控制单元可以获取第一部件发送的第一数据,并向所述控制单元发送第二数据。避免了传统的车辆控制系统中每个部件都需要通过各自的线束连接控制单元,并向控制单元发送数据,可以减少车辆中的线束长度,减轻线束重量,降低车辆能耗。
在第三方面的一种可能的实现方式中,所述第一子控制单元根据所述第一数据向所述控制单元发送第二数据包括:所述第一子控制单元向所述控制单元转发所述第一数据,所述第一数据和所述第二数据相同。
该车辆控制方法,第一子控制单元可以实现数据转发功能。避免了传统的车辆控制系统中,由每个部件中的电子控制单元分别实现数据转发功能,以简化部件中电子控制单元的功能,有利于降低部件中的电子控制单元的成本,最终降低部件的成本。
在第三方面的一种可能的实现方式中,所述子控制单元根据所述第一数据向所述控制单元发送第二数据包括:所述第一子控制单元对所述第一数据进行处理得到所述第二数据,并向所述控制单元发送所述二数据,所述处理包括以下操作中的一种或多种:对所述第一数据进行数据处理,对所述第一数据进行协议转换,基于传输协议对所述第一数据进行封装,对所述第一数据进行数据格式转换。
该车辆控制方法,第一子控制单元可以对数据进行处理或协议转换或封装,由于相较控制单元,第一子控制单元更靠近车辆部件,即系统边缘侧,可以快速处理数据,发挥边缘计算的优势,提升车辆控制系统性能。
在第三方面的一种可能的实现方式中,所述第一子控制单元用于实现所述第一部件的全部或部分电子控制单元的功能。
该车辆控制方法,第一子控制单元用于实现所述第一部件的全部或部分电子控制单元的功能,避免了传统的车辆控制系统中,由每个部件中的电子控制单元分别控制部件,以简化部件中电子控制单元的功能,有利于降低部件中的电子控制单元的成本,最终降低部件的成本。
在第三方面的一种可能的实现方式中,所述方法还包括:所述第一子控制单元接收所述控制单元发送的第一控制信息;所述第一子控制单元根据所述第一控制信息控制所述第一部件。
该车辆控制方法,可以通过第一子控制单元接收控制单元发送的第一控制信息,并根据该第一控制信息控制第一部件。避免了传统的车辆控制系统中,由每个部件中的电子控制单元分别控制部件,以简化部件中电子控制单元的功能,有利于降低部件中的电子控制单元的成本,最终降低部件的成本。第一子控制单元还可以更灵活地控制车辆的部件,提升车辆控制系统性能。
在第三方面的一种可能的实现方式中,所述车辆包括移动数据中心、座舱域控制器和整车域控制器,所述控制单元与所述移动数据中心、所述座舱域控制器或所述整车域控制器中的至少一个连接;所述方法还包括:所述第一控制信息为所述移动数据中心、所述座舱域控制器或所述整车域控制器中的至少一个向所述控制单元发送的控制信息。
该车辆控制方法,多个部件可以经子控制单元连接至一个控制单元,并通过控制单元连接至移动数据中心、座舱域控制器和整车域控制器中的至少一个,避免了传统的车辆控制系统中每个部件都需要通过各自的线束连接至移动数据中心、座舱域控制器和整车域控制器中的至少一个,有利于减少实现车辆控制功能的系统中的线束长度。
第四方面提供了一种子控制单元,包括处理器、存储器和网络接口,所述处理器和所述存储器相互连接,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器用于调用所述程序指令,所述网络接口用于连接如上述第一方面及各种可能的实现方式中任一项所述的车辆控制系统中的部件和控制单元。
第五方面提供了一种子控制单元,包括处理器、存储器和网络接口,所述处理器和所述存储器相互连接,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器用于调用所述程序指令,执行如上述第二方面、第三方面以及各种可能的实现方式中任一项所述的车辆控制方法。
第六方面提供了包含指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行前述第二方面至第三方面提供的各实施方式的方法。
第七方面提供了计算机可读存储介质,当其在计算机上运行时,使得该计算机执行前述第二方面至第三方面提供的各实施方式的方法。
第八方面提供了一种智能车辆,其特征在于,包括如上述第一方面及各种可能的实现方式中任一项上述的车辆控制系统。
本申请提供的车辆控制系统,新增了子控制单元,用于向下连接部件,向上连接控制单元,通过子控制单元对车辆控制系统的拓扑结构进行合理布局,改进了车辆电子电气架构,是一种新型的计算与通信架构。该车辆控制系统可以提升系统性能、降低线束长度和降低车辆成本,以及满足部件多样化的连接需求。
附图说明
图1为车辆的电子电气架构的一个示意图;
图2为车辆的计算与通信架构的一个示意图;
图3为本申请实施例中一种车辆控制系统的一个实施例示意图;
图4为本申请实施例中车辆控制系统的架构图;
图5a为本申请实施例中零部件与S-VIU之间的一个架构图;
图5b为本申请实施例中零部件与S-VIU之间的另一个架构图;
图5c为本申请实施例中零部件与S-VIU之间的另一个架构图;
图5d为本申请实施例中零部件与S-VIU之间的另一个架构图;
图5e为本申请实施例中零部件与S-VIU之间的另一个架构图;
图5f为本申请实施例中零部件与S-VIU之间的另一个架构图;
图5g为本申请实施例中零部件与S-VIU之间的另一个架构图;
图6a为本申请实施例中S-VIU与VIU之间的一个架构图;
图6b为本申请实施例中S-VIU与VIU之间的另一个架构图;
图6c为本申请实施例中S-VIU与VIU之间的另一个架构图;
图6d为本申请实施例中S-VIU与VIU之间的另一个架构图;
图6e为本申请实施例中S-VIU与VIU之间的另一个架构图;
图6f为本申请实施例中S-VIU与VIU之间的另一个架构图;
图6g为本申请实施例中S-VIU与VIU之间的另一个架构图;
图7a为本申请实施例中零部件与VIU之间连接方式的一个示意图;
图7b为本申请实施例中零部件与VIU之间连接方式的另一个示意图;
图7c为本申请实施例中零部件与VIU之间连接方式的另一个示意图;
图7d为本申请实施例中零部件与VIU之间连接方式的另一个示意图;
图7e为本申请实施例中零部件与VIU之间连接方式的另一个示意图;
图7f为本申请实施例中零部件与VIU之间连接方式的另一个示意图;
图8a为本申请实施例提供的车辆控制系统的一个系统架构图;
图8b为本申请实施例提供的车辆控制系统的另一个系统架构图;
图8c为本申请实施例提供的车辆控制系统的另一个系统架构图;
图9为本申请实施例中一种车辆控制方法的实施例示意图;
图10为本申请实施例中S-VIU的一个实施例示意图。
具体实施方式
本申请实施例提供了一种车辆控制系统,通过子车辆集成单元连接零部件和车辆集成单元,可以减少线束长度和降低车辆成本,以及满足零部件多样化的连接需求。
为了便于理解,下面对本申请实施例涉及的部分技术术语进行简要介绍:
1、域控制器和数据中心(xDC):包括移动数据中心(MDC),或称智能驾驶平台,用于智能驾驶的控制;座舱域控制器(CDC),或称智能座舱平台,用于智能座舱的控制;整车域控制器(VDC),或称整车控制平台,用于整车动力控制。
2、车辆集成单元(VIU,vehicle integrated/integration unit):也被称为汽车集成单元,或整车集成单元,VIU向上连接xDC,向下连接零部件。VIU可以实现多个零部件的部分或全部电子控制单元的功能。本申请中,VIU也被称为控制单元。
3、子车辆集成单元(sub-vehicle integrated/integration unit,S-VIU),简称Sub-VIU,也称为卫星车辆集成单元(Satellite vehicle integrated/integration unit,VIU),简称Satellite VIU、或称为子汽车集成单元、子整车集成单元,本申请实施例提出的S-VIU代表Sub-VIU或Satellite VIU,S-VIU用于向上连接VIU,向下连接零部件。本申请中,VIU也被称为子控制单元。
4、零部件包括:传感器或执行器。本申请中,零部件也称为部件。
传感器包括:摄像头、毫米波雷达、激光雷达、超声波雷达、全球导航卫星定位系统、惯导系统等;
执行器包括:雨刮器、电动玻璃升降器、转向装置、制动装置等。
如图1所示,汽车行业传统的电子电气架构(EEA),采用的是总线加分散控制的架构。随着车辆电子化程度增加,车内ECU数量迎来爆发式的增长。图1所示的架构中,激光雷达101、毫米波雷达102、摄像头103和超声波雷达104等零部件中的ECU均通过线束与MDC连接,线束总长度过长。原有的EEA架构难以满足车辆智能化发展的需求,于是提出了基于“计算+通信”的计算与通信架构(CCA)。CCA包括用于智能驾驶的控制的MDC,用于智能座舱的控制的CDC,以及用于整车动力控制的VDC。为了实现零部件和域控制器之间的数据传输,需要在每个传感器与MDC之间布置线束,包括CAN、LIN、FlexRay、Ethernet、LVDS等。车辆零部件中的ECU需要分别与xDC通过线束连接,目前,一般的车辆的线束系统大约有1200个接点、600根线束,长度大约1500米、重量大约30公斤。在某些车辆类型中,车辆的线束系统大约有3000个接点、1500根线束,长度大约5000米、重量大约60公斤。可见,整车线束长度长,重量大且拓扑结构复杂,布置困难。
为减少车辆内线束长度,提升车辆系统性能,提出了VIU的概念、装置和功能,VIU向上连接xDC,向下连接零部件。把部分或全部电子控制单元的功能从零部件本身集中/上移到VIU中,请参见图2,其示出了一种CCA的示意图。在CCA中引入VIU,一方面降低了零部件的生产成本,另一方面能够实现多个零部件之间的协调,提升系统的性能。
但是,VIU集中多个零部件的电子控制单元的功能,其存储能力和计算能力较高,相应地,设备成本较高。而随着车辆智能化发展,零部件,包括传感器和执行器,种类繁多且数量较大,适用的通信网络类型不一,对于VIU设备的接口数量和类型都提出了较高的要求,进一步提升了设备成本。因此,车辆中设置的VIU设备的数量有限,例如3至4台。另一方面,零部件在车辆中的位置分布较为分散,每个零部件均需向上连接VIU,由于VIU设备的数量有限且位置固定,零部件与VIU之间的线束长度依然较长。此外,不同零部件对于安全性或业务时延等的需求不同,不加以区分地连接至同一VIU时会导致系统复杂度高,性能降低。
图3示出一种本申请实施例提供的车辆控制系统,通过在车辆控制系统中引入S-VIU,并对其在车内的拓扑结构进行了合理的布局,改进了车辆电子电气架构,是一种新型的计算与通信架构。该车辆控制系统可以进一步提升CCA系统性能、降低线束长度、满足零部件多样化的连接需求等。本申请提供的车辆控制系统非常适合应用于功能丰富、传感器繁多的智能网联汽车。本申请提供的车辆控制系统可以应用于电动汽车或其它非燃油汽车,也可应用于燃油车。下面,通过具体实施例对本申请实施例提供的S-VIU和车辆控制系统进行介绍。
请参见图4,为本申请实施例中车辆控制系统的架构图;
该车辆控制系统,包括:VIU;S-VIU;多个零部件;其中,S-VIU与多个零部件连接,S-VIU用于获取零部件发送的数据,以及向多个零部件发送第一控制信息;S-VIU与VIU连接,VIU用于获取S-VIU发送的数据,以及向S-VIU发送第二控制信息。车辆控制系统中S-VIU 的数量不做限定,VIU的数量也不做限定。需要说明的是,第一控制信息可以是S-VIU生成的控制信息;也可以是VIU生成的控制信息,通过S-VIU转发至零部件。第二控制信息,可以是VIU生成控制信息,也可以是转发的xDC(图4中未示出)生成的控制信息。该第二控制信息可以用于控制S-VIU,也可以用于控制零部件,具体此处不做限定。
如图4所示,以一个S-VIU,也称第一S-VIU,一个VIU,也称第一VIU,和零部件之间的连接为例进行介绍。第一S-VIU向下连接传感器或执行器等零部件,向上连接第一VIU。
其中,零部件与S-VIU之间通过有线网络和/或无线网络连接,S-VIU获取零部件发送的数据,并向零部件发送控制信息。其中有线网络可以是传统总线,如CAN、LIN或FlexRay网络等,以及Ethernet、PCIe中的一种或多种;Wi-Fi、蓝牙、蜂窝移动网络等中的一种或多种。
S-VIU与VIU之间也可以通过有线网络或无线网络连接,可选地,S-VIU与VIU之间的数据传输通常使用通信速度较快的通信协议,例如Ethernet和/或PCIe,可选地,尽管图中未示出,也可以使用其他类型的网络,例如蜂窝移动网络等。对于本申请实施例中零部件与S-VIU之间数据传输的具体协议类型,以及S-VIU与VIU之间数据传输的具体协议类型不做限定,示例性的,下表1列举了一些可能的实施方式:
表1、车辆控制系统架构中的通信协议
  零部件与S-VIU S-VIU与VIU
CAN/LIN/FlexRay等传统总线 Ethernet
CAN/LIN/FlexRay等传统总线 PCIe
Ethernet Ethernet
PCIe PCIe
PCIe Ethernet
Ethernet PCIe
S-VIU具有协议转换功能,通常情况下,零部件与S-VIU之间的数据传输使用CAN、LIN或FlexRay等低速的传输协议,S-VIU与VIU之间的数据传输使用Ethernet、PCIe等高速的传输协议,S-VIU实现了上述两类协议之间转换。
可选地,S-VIU还可以对从传感器收集到的数据进行计算等处理,并将处理结果发送给VIU。
可选地,S-VIU具有ECU控制功能,S-VIU可以实现对零部件的控制,该控制功能可以来自VIU的控制权下放,也可以来自零部件的部分或全部电子控制单元的功能上移,目前零部件的电子控制单元的功能包括软件计算部分和逻辑控制部分。
可选地,S-VIU还具有网关的功能,具体是指信号路由的功能。
示例性的,下面对S-VIU具有ECU控制功能的多种可能情况进行介绍:
示例1:S-VIU不包括ECU功能。
如图5a所示,S-VIU与m个零部件连接,m为与该S-VIU连接的零部件的总数量,m的取值为正整数。ECU功能保留在零部件中,S-VIU不包括ECU功能。该场景下,S-VIU可以基于零部件的物理位置设置,包含该S-VIU的车辆控制系统可以节约线束。
示例2:S-VIU具有ECU的功能。
S-VIU与m个零部件连接,每个零部件中的部分或全部ECU功能上移到S-VIU中。每个零部件的ECU功能上移情况可以相同或不同,具体情况有多种,请参见图5b至图5g。
如图5b所示,m个零部件中所有零部件的ECU功能全部上移至S-VIU。
如图5c所示,m个零部件中所有零部件的部分ECU功能上移至S-VIU,m个零部件中所有零部件的部分ECU功能保留在零部件中。
如图5d所示,m个零部件中部分零部件的ECU功能保留在零部件或上移至VIU(图中未示出)中,例如零部件1,其它零部件ECU功能则全部上移至S-VIU,例如零部件2。
如图5e所示,m个零部件中部分零部件的部分ECU功能上移至S-VIU,例如零部件2,其它零部件ECU功能则保留在零部件或VIU中,例如零部件1。
如图5f所示,m个零部件中部分零部件的ECU功能全部上移至S-VIU,例如零部件1,其它零部件部分ECU功能上移至S-VIU,例如零部件2。
如图5g所示,m个零部件中一部分零部件的ECU功能保留在零部件或上移至VIU(图中未示出),例如零部件1,一部分零部件的ECU功能上移至S-VIU,例如零部件2;另一部分零部件的部分ECU功能保留在零部件中,例如零部件m。
S-VIU的具体功能可以根据实际应用需求确定,本申请实施例中对此不做限定。
上面示例2介绍了车辆控制系统中任意一个S-VIU具有ECU功能的各种具体情况,通常,车辆控制系统包括多个S-VIU,S-VIU向上连接VIU,车辆控制系统中包括至少两个VIU,可选地,VIU的数量为3个、4个、5个或6个。多个VIU可以通过环状连接或其他形式连接,本申请实施例中对于VIU的数量及其之间的连接方式不做限定,可将车辆控制系统中的多个VIU视为一个整体。
车辆控制系统中多个S-VIU的ECU功能还可以上移至VIU或xDC,下面以VIU为例,介绍在本申请实施例提供的车辆控制系统中,S-VIU与VIU之间多种可能的ECU功能分布情况。请参见图6a-图6g。车辆控制系统包括n个S-VIU。
如图6a所示,VIU不具有ECU功能,n个S-VIU中每个S-VIU保留零部件上移的ECU功能。n为车辆控制系统中S-VIU的总数量,n的取值为正整数,VIU可以用于向S-VIU发送控制信息。
如图6b所示,ECU功能全部上移至VIU,n个S-VIU均不具有ECU功能。
如图6c所示,ECU功能部分上移至S-VIU,部分上移至VIU,n个S-VIU中均具有部分ECU功能。
如图6d所示,n个S-VIU中,部分S-VIU保留全部ECU功能,例如S-VIU1,部分S-VIU保留部分ECU功能,例如S-VIU2。
如图6e所示,n个S-VIU中,部分S-VIU保留全部ECU功能,例如S-VIU1,部分S-VIU不保留ECU功能,例如S-VIU2。
如图6f所示,n个S-VIU中,部分S-VIU保留部分ECU功能,例如S-VIU1,部分S-VIU不保留ECU功能。
如图6g所示,n个S-VIU中,部分S-VIU保留全部ECU功率,例如S-VIU1,部分S-VIU保留部分ECU功能,例如S-VIU2,部分S-VIU不保留ECU功能,例如S-VIUn。
通常,车辆控制系统包括多个S-VIU,每个S-VIU与满足预设条件的零部件连接,与每个S-VIU连接的零部件组成零部件集合,零部件集合包括一个或多个零部件。在不同的场景下,可以根据实际使用需求灵活确定车辆中连接至同一个S-VIU需要满足的预设条件,即将零部件按照预设条件分组至零部件集合。下面具体进行介绍确定零部件集合的不同方法。
一、基于零部件的物理位置。
第一预设条件包括:部件设置于预设的位置区域,可选地,第一S-VIU也位于所述预设的位置区域。将车辆所处的空间划分为多个互不不重叠的物理位置区域,每个区域中设置一个S-VIU,该区域的S-VIU与该区域内的零部件连接。在一些实施例中,可参阅图8a-图8c中预设的位置区域的划分方法。可选地,属于第一物理位置区域的部件具有相同的第一物理位置标识,若第一预设条件为部件的物理位置标识为第一预设值,则将物理位置标识为第一预设值的部件与第一S-VIU连接。
可选地,部件与第一S-VIU之间的距离小于或等于第一阈值。部件与S-VIU之间的距离是指两者之间的物理距离,第一阈值的具体数值不做限定,例如为0.35米、0.5米、0.8米或1.0米等。可选地,可以根据部件的标识关联部件在车辆坐标系下的物理位置,根据S-VIU的标识关联S-VIU在车辆坐标系下的物理位置,基于部件的物理位置和S-VIU的物理位置得到部件和S-VIU之间的距离,即可判断部件与S-VIU之间的距离是否小于或等于第一阈值。本申请实施例的车辆控制系统中,基于零部件在车辆中所处的物理位置确定零部件与S-VIU之间的连接关系,第一零部件集合中的零部件与第一S-VIU的距离小于或等于预设阈值,第一零部件集合中的零部件连接到第一S-VIU,然后再由第一S-VIU连接到VIU。
可选地,若零部件满足多个S-VIU的连接条件,可以根据该零部件与多个S-VIU的物理位置,确定和与该零部件距离最小的S-VIU连接。如图7a所示,为本申请实施例中零部件与VIU之间连接方式的一个示意图。车辆控制系统中包括n个S-VIU,每个S-VIU向下连接多个零部件,向上连接VIU。需要说明的是,由于可以将车辆控制系统中的多个VIU视为一个整体,图7a中示出的VIU并不对车辆控制系统中的VIU数量造成限定。
示例性的,与S-VIU1连接的第一零部件集合,具体包括多个传感器:S1、S2、S3和S4,以及多个执行器:A1、A2、A3和A4。第一零部件集合中的零部件S1、S2、S3、S4、A1、A2、A3和A4与S-VIU1的物理距离小于或等于预设阈值,即在车辆中的物理位置较为接近。由于VIU的数量较少且位置固定,通常不会设置在零部件邻近位置,本申请实施例提供的车辆控制系统可以减少零部件直接连接VIU所需的线束长度。类似地,位于同一位置区域的多个零部件与邻近设置的S-VIUn连接,该零部件集合包括传感器:S5、S6、S7……Si,和执行器:A5、A6、A7……Aj,零部件集合中传感器数量不做限定,执行器的数量也不做限定。本实施例中,零部件与S-VIU通过CAN、LIN或FlexRay等协议组建的网络连接,S-VIU与VIU之间通过Ethernet协议组建的网络连接。
零部件集合中的多个零部件可以具有相同功能,也可以具有不同功能,具体此处不做限定,例如,连接到同一S-VIU中的零部件集合,可以既有ADAS的传感器,也有动力系统功能的执行器。
根据智能车的实际需求,S-VIU的数量可以是一个或多个,具体此处不做限定。示例性的,考虑到车头部位和车尾部位的用于观察和测距的传感器较多,如单目摄像头、双目摄像头和毫米波雷达等,因此,可以在车头部位和车尾部分分别设置一个S-VIU。
由于本申请实施例提供的车辆控制系统中,位于同一物理位置区域的零部件与同一个S-VIU相连,再由S-VIU连接VIU,由于S-VIU的物理位置较VIU更接近零部件,相比由零部件直接与VIU相连,可以节省线束。
二、基于零部件的功能。
第一预设条件包括:部件执行的功能为预设功能。预设功能例如可以是热管理功能、坐椅管理功能、门窗管理功能或影音娱乐功能等中的一个或多个,本申请实施例的车辆控制系统中,具有相同功能的零部件属于一个零部件集合,不同零部件集合中的零部件具有不同的功能。
将车辆中实现相同功能的零部件先连接到同一个S-VIU上,然后,再由该S-VIU连接到VIU上,如图7b所示,示例性地:第一预设条件包括:部件执行的功能为热管理功能,则将具有热管理功能的零部件S3、A4、A5、A6和A7连接到负责热管理功能的第一S-VIU。可选地,将具有热管理功能的零部件的ECU功能全部上移至该第一S-VIU中。由此,所有热管理零部件的数据集中在第一S-VIU,这将有利于零部件之间的协调,能够快速处理数据,提高系统的性能。可选地,该实施例中,零部件与S-VIU通过CAN、LIN或FlexRay等协议组建的网络连接,S-VIU与VIU之间通过PCIe协议组建的网络连接。可选地,除第一零部件集合之外的其他零部件可以通过CAN、LIN或FlexRay等协议组建的网络连接VIU。
三、基于零部件生产厂家。
第一预设条件包括:部件的生产厂家标识为第二预设值。本申请实施例的车辆控制系统中,生产厂家标识相同的零部件属于同一个零部件集合,连接到同一个S-VIU上。
现有方案中,生产厂家生产的零部件中包括了配套的ECU,在本实施例中,同一S-VIU下连接的零部件来自同一生产厂家,如图7c所示,示例性的,连接至S-VIU1的第一零部件集合中的多个零部件,包括多个传感器:S1、S2、S3和S4,以及多个执行器:A1、A2、A3和A4,为第一生产厂家生产的零部件,可选地,将零部件的ECU的功能全部或部分上移至S-VIU1,通过将多个零部件的ECU功能整合到一起。第一生产厂家可以将S1、S2、S3、S4、A1、A2、A3、A4和S-VIU1整合为一个产品单元,可以提高零部件生产厂家的生产效率,降低生产成本。可选地,该实施例中,零部件、S-VIU与VIU之间均通过Ethernet协议组建的网络连接。需要说明的是,零部件与S-VIU之间通信速率,和S-VIU与VIU之间的通信速率可以相同也可以不同。
四、基于零部件的数据的安全等级。
第一预设条件包括:部件的数据的安全等级为第一预设等级。本申请实施例的车辆控制系统中,基于零部件的数据的安全等级,将同一安全等级的零部件划分至同一个零部件集合, 连接到同一个S-VIU上。
一个S-VIU下连接的零部件的数据属于同一个安全等级。零部件的数据包括传感器获取的数据,或执行器接收的控制信息等。安全等级的划分方式有多种,可选地,根据车辆安全完整性等级(automotive safety integration level,ASIL)划分,安全等级包括:ASIL A、ASIL B、ASIL C或ASIL D。其中,ASIL A是最低的等级,ASIL D是最高的等级。第一预设等级可以是ASIL A、ASIL B、ASIL C或ASIL D,具体此处不做限定。
现有方案中VIU的数量可能小于安全等级的分级数量,此时,无法将零部件按照不同的安全等级进行分类连接,示例性的,如图7d所示,将对于安全要求较高的业务对应的零部件S3、A4、A5、A6和A7都连接到同一S-VIU,对该S-VIU获取的数据进行备份,可以提高系统安全性。可选地,S3、A4、A5、A6和A7和S-VIU之间通过PCIe协议组建的网络连接,S-VIU与VIU之间也通过PCIe协议组建的网络连接,需要说明的是,尽管通过同样类型的通信网络连接,但是,零部件与S-VIU之间通信速率,和S-VIU与VIU之间的通信速率可以相同也可以不同,通常,S-VIU与VIU之间的通信速率更快。
本申请实施例提供的车辆控制系统中,通过S-VIU连接同一安全等级的零部件,可以便于系统管理,提高系统的安全性。
五、基于零部件的数据所属业务等级。
第一预设条件包括:部件的数据所属业务等级为第二预设等级。每个零部件的数据所属业务等级可以与零部件的标识关联。本申请实施例的车辆控制系统中,基于零部件的数据所属业务等级,将同一业务等级对应的零部件划分至同一零部件集合,连接到同一个S-VIU。
根据零部件的数据对应的业务的等级确定连接的S-VIU,同一个S-VIU下连接的零部件属于同一个业务等级。业务等级包括基于时延要求的等级或基于可靠性要求的等级等,具体此处不做限定。基于时延要求,可以将零部件对应的业务划分为:对时延要求高的业务即低时延业务、对时延要求中等的业务、对时延要求低的业务,第二预设等级此处不做限定。基于可靠性要求,可以将零部件对应的业务划分为:对可靠性要求高的业务、对可靠性要求中等的业务、对可靠性要求低的业务,第二预设等级此处不做限定。需要说明的是,第二预设等级与第一预设等级之间没有关系,仅用于区分部件的安全等级的预设条件和部件的数据所属业务等级的预设条件。
可选地,如图7e所示,对可靠性要求低的业务对应的第一零部件集合连接至S-VIU1,对可靠性要求高的业务对应的零部件连接至S-VIUn,可选地,连接的S-VIU可以对数据进行冗余备份,以提高安全性。可选地,该实施例中,零部件通过PCIe协议组建的网络连接S-VIU,S-VIU通过Ethernet协议组建的网络连接VIU。
本申请实施例提供的车辆控制系统中,通过S-VIU连接同一业务等级的零部件,可以便于系统管理,例如,处理对时延要求高的业务的S-VIU,与VIU之间可以选用高速数据传输方式连接,处理高可靠性业务的S-VIU,可以通过备份提高安全性。
六、基于数据接口类型或传输协议类型。
第一预设条件包括:部件的数据传输协议类型为第二预设类型本申请实施例提供的车辆控制系统中,基于数据接口类型或传输协议类型确定零部件集合。将通过相同类型数据接口 连接S-VIU的零部件划分为一个零部件集合,或者,将通过相同传输协议传输数据的零部件划分为一个零部件集合,一个零部件集合中的所有零部件连接到同一个S-VIU。与同一个S-VIU连接的零部件,均通过同样的传输协议,或通过相同类型的数据接口连接到S-VIU。每个零部件的数据接口类型或传输协议类型可以与零部件的标识关联。需要说明的是,第二预设类型与第一预设类型之间没有关系,仅用于区分部件的数据接口类型的预设条件和部件的数据传输协议类型的预设条件。
数据接口类型包括:串口、局域网(LAN)接口、USB接口或无线接口等。
传输协议类型包括:有线网络传输协议:CAN、LIN、FlexRay、Ethernet、PCIe等;以及无线网络传输协议:无线局域网(例如,无线保真(wireless fidelity,Wi-Fi)、Bluetooth等)、蜂窝网络(3G、4G、5G等)。
如图7f所示,S-VIU1与第一零部件集合通过Ethernet协议组建的网络连接,S-VIUn与第n零部件集合通过PCIe协议组建的网络连接。可选地,该实施例中,第一零部件集合中的零部件通过Ethernet协议组建的网络连接S-VIU1,S-VIU1通过Ethernet协议组建的网络连接VIU;第二零部件集合中的零部件通过PCIe协议组建的网络连接S-VIU2,S-VIU2通过PCIe协议组建的网络连接VIU。
由于车辆零部件数量较多,各零部件用于传输数据的数据接口类型不同,或者传输数据的传输协议类型不同,本申请实施例提供的车辆控制系统中,基于数据接口类型或传输协议类型确定零部件集合,可以减少S-VIU的接口类型,成本降低。
七、多种方式组合。
本申请实施例提供的车辆控制系统中,第一预设条件包括以下一个或多个:部件的物理位置标识为第一预设值;部件执行的功能为预设功能;部件的数据接口类型为第一预设类型;部件的数据传输协议类型为第二预设类型;部件的数据的安全等级为第一预设等级;部件的数据所属业务等级为第二预设等级;部件的生产厂家标识为第二预设值。即零部件集合的划分方式可以基于下述因素的两种或多种的组合确定:部件执行的功能、部件的物理位置标识、部件的数据接口类型、部件的数据传输协议类型、部件的数据的安全等级、部件的数据所属业务等级、部件的生产厂家标识等,比如,与第一S-VIU连接的零部件均具有相同的生产厂家和数据接口类型。
可选地,若车辆控制系统中包括第一S-VIU和第二S-VIU,第一S-VIU与满足第一预设条件的第一部件连接;第二S-VIU与满足第二预设条件的第二部件连接;这里第一预设条件和第二预设条件不同,下面距离进行介绍。
示例1:第一预设条件为:部件与第一S-VIU的距离小于或等于0.5米;第二预设条件为:部件与第二S-VIU的距离小于或等于0.5米。
示例2:第一预设条件为:部件的物理位置标识为第一预设值,第一预设值指示的物理位置为车辆中的第一区域,且部件执行的功能为坐椅管理功能;第二预设条件为:部件的物理位置标识为第一预设值,第一预设值指示的物理位置为车辆中的第一区域,且部件执行的功能为门窗管理功能。
可以理解的是,车辆控制系统中可能包括两个以上的S-VIU,与每个S-VIU连接的部件需满足不同的预设条件,此处不再赘述。
如图8a至8c所示,本申请实施例提供的几种车辆控制系统的系统架构图,由于该系统架构的计算和通信功能显著增强,又称为计算与通信架构(CCA)。该CCA架构由下述三部分组成:
(1)三个整车级平台:MDC智能驾驶平台、CDC智能座舱平台、VDC智能电动平台。
(2)四个VIU:负责数据处理和传输等功能。
(3)多个S-VIU。
车辆控制系统中S-VIU的数量和零部件连接方式可以根据实际需要设置,具体此处不做限定。下面举例进行介绍:
示例1:如图8a所示,该车辆控制系统中的多个S-VIU包括:S-VIU1至S-VIU5,其中,S-VIU 1为车头S-VIU,与设置于车头区域801内的零部件连接;S-VIU2为中央右侧S-VIU,负责右侧车门及右侧座椅区域的控制,与设置于中央右侧区域802内的零部件连接;S-VIU 3为中央左侧S-VIU,负责左侧车门及左侧座椅区域的控制,与设置于中央右侧区域803内的零部件连接;S-VIU 4为车尾S-VIU,负责车尾区域的控制,与设置于车尾区域804内的零部件连接;S-VIU 5为顶棚S-VIU,与设置于车辆顶部区域805内的零部件连接,需要说明的是,由于图8a为二维图像,由图8a示意的805区域与802至804存在部分重叠,在三维空间中,805区域为车辆顶棚区域,与802至804区域不存在重叠。零部件设置于车辆中不同的位置区域,每个位置区域的具体尺寸,与车辆的实际尺寸以及零部件的位置分别相关,具体数值此处不做限定。示例性地,以长宽高为4.85米*1.85米*1.75米的车辆为例,区域801在车辆长度延伸方向上的宽度可以为1米,即图8a中区域801的尺寸,即长*宽为1米*1.85米,高度则与车辆头部的高度尺寸一致。
示例2:请参考图8b,该车辆控制系统中的多个S-VIU包括:S-VIU 1和S-VIU 2,其中,S-VIU 1为车头S-VIU,与设置于车头区域811内的零部件连接;S-VIU 2为车尾S-VIU,与设置于车尾区域812内的零部件连接。
示例3:如图8c所示,该车辆控制系统包括:S-VIU 1至S-VIU 7,其中,S-VIU 1为右车头S-VIU,与设置于右侧车头区域821内的零部件连接;S-VIU 2为左车头S-VIU,与设置于左侧车头区域822内的零部件连接;S-VIU 3为右侧车门S-VIU,负责右侧车门区域的控制,与设置于右侧车门区域823内的零部件连接;S-VIU 4为左侧车门S-VIU,与设置于左侧车门区域824内的零部件连接;S-VIU 5为中央区域S-VIU,与设置于座椅区域825内的零部件连接;S-VIU 6为顶棚S-VIU,与设置于车辆顶棚区域826内的零部件连接;S-VIU 7为车尾S-VIU,与设置于车尾区域827内的零部件连接;类似地,由于图8c为二维图像,由图8c示意的区域825与右侧车门区域823、左侧车门区域824和顶棚区域826存在部分重叠,在实际三维空间场景中不存在重叠。零部件设置于车辆中不同的位置区域,每个位置区域的具体尺寸,与车辆的实际尺寸以及零部件的位置分别相关,具体数值此处不做限定。
请参阅图9,为本申请实施例中一种车辆控制方法的实施例示意图;
该车辆控制方法包括:
901、第一S-VIU接收第一VIU发送的第一控制信息;
第一S-VIU接收第一VIU发送的第一控制信息,该第一控制信息可以用于控制第一S-VIU,或者零部件,具体此处不做限定。
可选地,第一控制信息由第一VIU生成;
可选地,该车辆包括移动数据中心、座舱域控制器和整车域控制器中的至少一个,第一VIU与移动数据中心、座舱域控制器或整车域控制器中的至少一个连接;所述第一控制信息为所述移动数据中心、所述座舱域控制器或整车域控制器中的至少一个向所述第一VIU发送第一控制信息,该第一VIU接收第一控制信息并向第一S-VIU转发。
902、第一S-VIU根据第一控制信息控制零部件。
可选地,该方法还包括:
所述第一S-VIU用于实现零部件的全部或部分电子控制单元的功能。
903、第一S-VIU接收第一部件发送的第一数据;
零部件向第一S-VIU发送第一数据,第一数据例如可以是传感器等采集的数据。
904、所述第一S-VIU向所述第一VIU发送所述第一数据。
可选地,第一S-VIU将第一数据直接转发给第一VIU。
可选的,第一S-VIU获取零部件发送的第一数据之后,第一S-VIU对第一数据进行处理,所述处理包括以下操作中的一种或多种:对该第一数据进行数据处理,基于传输协议对该第一数据进行封装,对该第一数据进行协议转换,以及对该第一数据进行数据格式转换;第一S-VIU向第一VIU发送经过处理的第一数据。
需要说明的是,步骤903至步骤904为可选步骤,可以执行,也可以不执行,此处不做限定。
请参见图10,下面对本申请实施例中车辆控制系统中的S-VIU的一个实施例示意图。
本申请实施例中对S-VIU的具体设备形态不做限定。
该S-VIU可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器1001和存储器1002,该存储器1002中存储有程序和/或数据。
其中,存储器1002可以是易失性存储或非易失性存储。可选地,处理器1001是一个或多个中央处理器(central processing unit,CPU),该CPU可以是单核CPU,也可以是多核CPU。处理器1001可以与存储器1002通信,在S-VIU 1000上执行存储器1002中的一系列指令。
该S-VIU 1000还包括一个或一个以上网络接口1003,网络接口的类型不做限定,例如CAN、LIN或FlexRay网络等,以及Ethernet或PCIe;还可以包括无线网络接口,例如:Wi-Fi、蓝牙或蜂窝移动网络等。S-VIU 1000可以包括一种或多种类型的网络接口,每种类型的网络接口数量可以为一个或多个,具体接口类型和接口数量此处不做限定。
通常,S-VIU的处理器1001的计算能力小于VIU的计算能力,存储器1002的存储能力小于VIU的存储能力。
可选地,尽管图10中未示出,S-VIU 1000还可以包括一个或一个以上电源;一个或一个以上输入输出接口,输入输出接口可以用于连接显示器、触摸屏设备或传感设备等,输入输出接口为可选部件,可以存在也可以不存在,此处不做限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结 合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (23)

  1. 一种车辆控制系统,其特征在于,包括:
    控制单元;
    第一子控制单元;
    所述第一子控制单元与满足第一预设条件的第一部件连接,所述第一子控制单元用于获取所述第一部件发送的第一数据,以及向所述第一部件发送第一控制信息,所述第一部件包括传感器或执行器;
    所述第一子控制单元与所述控制单元连接,所述第一子控制单元用于向所述控制单元发送第二数据,以及获取从所述控制单元发送的第二控制信息。
  2. 根据权利要求1所述的系统,其特征在于,所述第一预设条件包括以下一个或多个:
    部件设置于预设的位置区域;
    部件执行的功能为预设功能;
    部件的数据接口类型为第一预设类型;
    部件的数据传输协议类型为第二预设类型;
    部件的数据的安全等级为第一预设等级;
    部件的数据所属业务等级为第二预设等级;
    部件的生产厂家标识为第二预设值。
  3. 根据权利要求1或2所述的系统,其特征在于,
    所述第一子控制单元与所述第一部件通过有线网络或无线网络连接;
    其中,所述有线网络为根据控制器局域网络协议、局域互联网络协议、FlexRay网络协议、以太网协议或高速串行计算机扩展总线标准网络协议中的一种协议或多种协议的组合组建的网络;
    所述无线网络为根据无线保真协议、蓝牙协议或蜂窝移动网络协议中的一种协议或多种协议的组合组建的网络。
  4. 根据权利要求1至3中任一项所述的系统,其特征在于,所述第一子控制单元与所述控制单元连接包括:
    所述第一子控制单元和所述控制单元之间通过以太网协议或高速串行计算机扩展总线标准网络协议中的一种协议或多种协议的组合组建的网络连接。
  5. 根据权利要求1至4中任一项所述的系统,其特征在于,所述车辆控制系统还包括:
    第二子控制单元,所述第二子控制单元与满足第二预设条件的第二部件连接,所述第二预设条件与所述第一预设条件不同,所述第二子控制单元用于获取所述第二部件发送的第三数据,并向所述第二部件发送第三控制信息;
    所述第二子控制单元与所述控制单元连接,所述第二子控制单元用于向所述控制单元发送第四数据,以及获取从所述控制单元发送的第四控制信息。
  6. 根据权利要求1至5中任一项所述的系统,其特征在于,
    所述第一子控制单元用于实现所述第一部件的部分或全部的电子控制单元的功能。
  7. 根据权利要求1至6中任一项所述的系统,其特征在于,
    所述第一子控制单元还用于将基于第一传输协议传输的所述第一数据转换为基于第二传 输协议传输的所述第二数据,所述第一传输协议包括控制器局域网络协议、局域互联网络协议、FlexRay网络协议、以太网协议、高速串行计算机扩展总线标准网络协议、无线保真协议、蓝牙协议或蜂窝移动网络协议,所述第二传输协议包括以太网协议或高速串行计算机扩展总线标准网络协议,所述第一传输协议和所述第二传输协议不同。
  8. 根据权利要求1至7中任一项所述的系统,其特征在于,所述车辆控制系统还包括:移动数据中心、座舱域控制器和整车域控制器中的至少一个;
    所述控制单元与所述移动数据中心、所述座舱域控制器或所述整车域控制器中的至少一个连接。
  9. 一种车辆控制方法,其特征在于,所述车辆包括控制单元,第一子控制单元和第一部件,所述方法包括:
    所述第一子控制单元接收所述控制单元发送的第一控制信息;
    所述第一子控制单元根据所述控制信息控制所述第一部件。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一子控制单元获取所述第一部件发送的第一数据;
    所述第一子控制单元向所述控制单元发送所述第一数据。
  11. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一子控制单元获取所述第一部件发送的第二数据;
    所述第一子控制单元对所述第二数据进行处理得到第三数据,所述处理包括以下操作中的一种或多种:对所述第二数据进行数据处理,基于传输协议对所述第二数据进行封装,对所述第二数据进行协议转换,以及对所述第二数据进行数据格式转换;
    所述第一子控制单元向所述控制单元发送所述第三数据。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述第一子控制单元用于实现所述第一部件的全部或部分电子控制单元的功能。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述车辆包括移动数据中心、座舱域控制器和整车域控制器中的至少一个,所述控制单元与所述移动数据中心、所述座舱域控制器或所述整车域控制器中的至少一个连接;
    所述第一控制信息为所述移动数据中心、所述座舱域控制器或所述整车域控制器中的至少一个向所述控制单元发送的控制信息。
  14. 一种车辆控制方法,其特征在于,所述车辆包括控制单元,第一子控制单元和第一部件,所述方法包括:
    所述第一子控制单元获取所述第一部件发送的第一数据;
    所述第一子控制单元根据所述第一数据向所述控制单元发送第二数据。
  15. 根据权利要求14所述的方法,其特征在于,所述第一子控制单元根据所述第一数据向所述控制单元发送第二数据包括:
    所述第一子控制单元向所述控制单元转发所述第一数据,所述第一数据和所述第二数据相同。
  16. 根据权利要求14所述的方法,其特征在于,所述子控制单元根据所述第一数据向所述控制单元发送第二数据包括:
    所述第一子控制单元对所述第一数据进行处理得到所述第二数据,并向所述控制单元发送所述二数据,所述处理包括以下操作中的一种或多种:对所述第一数据进行数据处理,对所述第一数据进行协议转换,基于传输协议对所述第一数据进行封装,对所述第一数据进行数据格式转换。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述第一子控制单元用于实现所述第一部件的全部或部分电子控制单元的功能。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一子控制单元接收所述控制单元发送的第一控制信息;
    所述第一子控制单元根据所述第一控制信息控制所述第一部件。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述车辆包括移动数据中心、座舱域控制器和整车域控制器,所述控制单元与所述移动数据中心、所述座舱域控制器或所述整车域控制器中的至少一个连接;
    所述方法还包括:
    所述第一控制信息为所述移动数据中心、所述座舱域控制器或所述整车域控制器中的至少一个向所述控制单元发送的控制信息。
  20. 一种子控制单元,其特征在于,包括处理器、存储器和网络接口,所述处理器和所述存储器相连接,其中,所述网络接口用于连接如权利要求1至8中任一项所述的车辆控制系统中的部件和控制单元,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器用于运行所述程序指令,执行如权利要求9至19中任一项所述的方法。
  21. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行如权利要求9至19中任一项所述的方法。
  22. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在计算机上运行时,使得计算机执行如权利要求9至19中任一项所述的方法。
  23. 一种智能车辆,其特征在于,包括如权利要求1至8中任一项所述的车辆控制系统。
PCT/CN2020/094157 2020-06-03 2020-06-03 一种车辆控制系统和子控制单元 WO2021243602A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/094157 WO2021243602A1 (zh) 2020-06-03 2020-06-03 一种车辆控制系统和子控制单元
EP20938888.3A EP4147915A4 (en) 2020-06-03 2020-06-03 VEHICLE CONTROL SYSTEM AND CONTROL SUB-UNIT
CN202080004776.4A CN113165586A (zh) 2020-06-03 2020-06-03 一种车辆控制系统和子控制单元

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094157 WO2021243602A1 (zh) 2020-06-03 2020-06-03 一种车辆控制系统和子控制单元

Publications (1)

Publication Number Publication Date
WO2021243602A1 true WO2021243602A1 (zh) 2021-12-09

Family

ID=76879191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094157 WO2021243602A1 (zh) 2020-06-03 2020-06-03 一种车辆控制系统和子控制单元

Country Status (3)

Country Link
EP (1) EP4147915A4 (zh)
CN (1) CN113165586A (zh)
WO (1) WO2021243602A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116061774A (zh) * 2022-10-24 2023-05-05 中国第一汽车股份有限公司 一种区域化座椅控制系统及车辆

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113859143A (zh) * 2021-10-20 2021-12-31 浙江吉利控股集团有限公司 车辆的核心控制系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104554747A (zh) * 2013-10-11 2015-04-29 波音公司 模块化装备中心分布式装备包装桁架
CN104724007A (zh) * 2015-01-28 2015-06-24 长城汽车股份有限公司 汽车网络系统及汽车
CN105752000A (zh) * 2016-01-11 2016-07-13 苏州恒美电子科技有限公司 汽车总控制系统
US20170008466A1 (en) * 2015-07-08 2017-01-12 Yazaki Corporation Wire harness
CN106828139A (zh) * 2016-12-14 2017-06-13 华晨汽车集团控股有限公司 基于CAN和ZigBee异构网络拓扑的纯电动汽车电气系统架构
CN108177612A (zh) * 2017-12-27 2018-06-19 威马智慧出行科技(上海)有限公司 车载控制系统及其布置方法和汽车
CN110562171A (zh) * 2019-10-11 2019-12-13 北京新能源汽车技术创新中心有限公司 汽车电控系统及汽车
US10632942B1 (en) * 2019-09-30 2020-04-28 Aurora Innovation, Inc. Autonomous vehicle sensor interface
CN210578605U (zh) * 2019-12-10 2020-05-19 上海怿星电子科技有限公司 一种基于区域控制器的汽车电子电气架构拓扑结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206932240U (zh) * 2017-08-01 2018-01-26 风度(常州)汽车研发院有限公司 车载以太网通信系统和智能汽车
US11333810B2 (en) * 2017-08-25 2022-05-17 Solutia Canada Inc. System of networked controllers, and method of operating a system of networked controllers
CN108566439A (zh) * 2018-06-22 2018-09-21 上海牛仁汽车有限公司 适用于车辆的分布式通讯网络拓扑结构
JP7433815B2 (ja) * 2019-08-30 2024-02-20 マツダ株式会社 車載ネットワークシステム
CN110727264A (zh) * 2019-11-27 2020-01-24 华人运通(江苏)技术有限公司 汽车控制系统
CN111131463B (zh) * 2019-12-26 2020-12-04 北京国科天迅科技有限公司 一种兼容tsn并引入fc协议的车载以太网络架构
CN111216660A (zh) * 2020-01-10 2020-06-02 上海掇联电子科技有限公司 新能源汽车通用电子电气架构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104554747A (zh) * 2013-10-11 2015-04-29 波音公司 模块化装备中心分布式装备包装桁架
CN104724007A (zh) * 2015-01-28 2015-06-24 长城汽车股份有限公司 汽车网络系统及汽车
US20170008466A1 (en) * 2015-07-08 2017-01-12 Yazaki Corporation Wire harness
CN105752000A (zh) * 2016-01-11 2016-07-13 苏州恒美电子科技有限公司 汽车总控制系统
CN106828139A (zh) * 2016-12-14 2017-06-13 华晨汽车集团控股有限公司 基于CAN和ZigBee异构网络拓扑的纯电动汽车电气系统架构
CN108177612A (zh) * 2017-12-27 2018-06-19 威马智慧出行科技(上海)有限公司 车载控制系统及其布置方法和汽车
US10632942B1 (en) * 2019-09-30 2020-04-28 Aurora Innovation, Inc. Autonomous vehicle sensor interface
CN110562171A (zh) * 2019-10-11 2019-12-13 北京新能源汽车技术创新中心有限公司 汽车电控系统及汽车
CN210578605U (zh) * 2019-12-10 2020-05-19 上海怿星电子科技有限公司 一种基于区域控制器的汽车电子电气架构拓扑结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4147915A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116061774A (zh) * 2022-10-24 2023-05-05 中国第一汽车股份有限公司 一种区域化座椅控制系统及车辆

Also Published As

Publication number Publication date
EP4147915A1 (en) 2023-03-15
CN113165586A (zh) 2021-07-23
EP4147915A4 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2023023975A1 (zh) 一种芯片、芯片制造方法、以及相关装置
CN210578605U (zh) 一种基于区域控制器的汽车电子电气架构拓扑结构
US11418935B2 (en) System and method for implementing automobile electronic control function, and automobile
WO2021243602A1 (zh) 一种车辆控制系统和子控制单元
US11975664B2 (en) System and method for implementing automobile electronic control function
EP3854638A1 (en) System and method for realizing electronic control function in vehicle, and vehicle
CN113325780A (zh) 一种车辆通信系统以及车辆
JP2023531044A (ja) 車両制御装置、車両統合型/統合ユニット、および車両
WO2023039804A1 (zh) 信号连接方法、信号连接装置及测试系统
US9485139B2 (en) Communication node, communication system, and method for performing a communication
CN206004686U (zh) 车载系统的lin总线主从节点结构
CN217279314U (zh) 一种车载数据处理系统
WO2024146242A1 (zh) 摄像头共用方法、系统、设备及计算机可读存储介质
CN219761329U (zh) 车辆通信系统及车辆
WO2024026592A1 (zh) 一种数据存储方法及相关装置
WO2024026593A1 (zh) 一种协同控车方法及相关装置
CN218570302U (zh) 一种基于区域控制器的摄像头共享系统及车辆
WO2021073501A1 (zh) 车内业务切片的资源配置方法及装置、系统
WO2023082199A1 (zh) 资源分配方法、hil测试设备及相关装置
US20240217342A1 (en) Vehicle display apparatus
CN116033265A (zh) 摄像头共用方法、系统、设备及计算机可读存储介质
CN117130788A (zh) 一种数据处理方法、域控制器、设备及存储介质
CN117406640A (zh) 一种车辆中央超算控制单元及车辆系统
CN117749565A (zh) 组网数据传输方法、芯片和通信系统
CN117076379A (zh) 一种域控制器、数据处理器方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020938888

Country of ref document: EP

Effective date: 20221209

NENP Non-entry into the national phase

Ref country code: DE