WO2021240909A1 - 給電装置、マイクロ波管装置、給電方法及び記録媒体 - Google Patents
給電装置、マイクロ波管装置、給電方法及び記録媒体 Download PDFInfo
- Publication number
- WO2021240909A1 WO2021240909A1 PCT/JP2021/005522 JP2021005522W WO2021240909A1 WO 2021240909 A1 WO2021240909 A1 WO 2021240909A1 JP 2021005522 W JP2021005522 W JP 2021005522W WO 2021240909 A1 WO2021240909 A1 WO 2021240909A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- voltage
- supplied
- supply
- microwave tube
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 230000007423 decrease Effects 0.000 abstract description 13
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000005611 electricity Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/34—Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/34—Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
Definitions
- the present invention relates to a device that amplifies microwaves.
- a microwave tube (also referred to as a "microwave electron tube” or “traveling wave tube”) is a device that amplifies the input microwave.
- Patent Document 1 discloses a microwave amplification device including a helix-type traveling wave tube, which is a kind of microwave tube.
- the output of the microwave amplification device becomes abnormal when the power supply voltage drops or the power supply is stopped due to a momentary interruption or the like. Therefore, in the microwave amplification device, the power supplied from the power source is stored by a mechanism for storing the power (charge) of a capacitor, a secondary battery, etc. (hereinafter referred to as “storage unit”), and the supply voltage drops or stops (hereinafter referred to as “storage unit”). , It may be simply called “decrease”), but the supply voltage should not be insufficient for a certain period of time.
- the power feeding device of the present invention has a power feeding unit that supplies power supplied from a power source to a microwave tube including a cathode, a heater for heating the cathode, an anode, and a collector, and stores the supplied power and supplies the power.
- a storage unit that supplies stored power which is the power stored in the microwave tube when the voltage of the power drops, and a storage unit that supplies the stored power to the anode when the voltage of the supplied power drops. Is provided, and a power supply switching unit is provided, which does not stop the supply of the stored power to the heater.
- the power supply device or the like of the present invention can suppress the time required for starting up the microwave tube when the supply voltage from the power source drops, without increasing the scale of the power storage unit.
- the microwave tube device of this embodiment monitors the voltage of the power storage unit, and when a decrease in the voltage is observed, the power supply to the anode is stopped. As a result, the electron flow from the cathode to the collector in the microwave tube is stopped, so that the power consumption is significantly suppressed. Therefore, when the supply voltage from the power supply drops, the period in which the voltage supplied from the storage unit to the heater that heats the cathode is maintained near the set value is lengthened, and the temperature drop of the heater is suppressed. As a result, the power supply device of the present embodiment shortens the time required for recovery when the supply voltage from the power supply is insufficient.
- FIG. 1 is a conceptual diagram showing the configuration of a microwave tube device 400, which is an example of the microwave tube device of the present embodiment.
- FIG. 2 is a conceptual diagram showing a configuration example of the power feeding device 100 of FIG.
- the microwave tube device 400 includes a power feeding device 100 and a microwave tube 300.
- the microwave tube 300 of FIG. 1 includes, for example, a collector, a heater, a cathode, an anode, and a helix (not shown), as in the microwave tube disclosed in Patent Document 1.
- the heater is a heater for heating the cathode so that electrons are emitted from the cathode provided in the electron gun of the microwave tube.
- the power feeding device 100 is a device for supplying electric power to the microwave tube 300.
- the power feeding device 100 supplies a predetermined DC voltage to each of the collector terminal, the heater / cathode terminal, the anode terminal, and the helix terminal. These terminals are terminals for supplying a voltage to each of the collector, the heater, the cathode, the anode and the helix of the microwave tube 300.
- the heater and the voltage supply terminal to the cathode are common.
- the power feeding device 100 includes DC conversion circuits 102, 111 and 112, a rectifying element 106, inverters 104, 107 and 108, coils 105, transformers 109 and 110, resistors 113 and 114, and a power storage unit 103. , A control unit 121 and a connection switching unit 122 are provided.
- the power feeding device 100 supplies electric power to the microwave tube 300 by the electric power supplied from the power source 101.
- the power supply 101 is, for example, a general AC power supply of 50 or 60 Hz.
- the AC voltage input from the power supply 101 is converted into a DC voltage by the DC conversion circuit 102, and is supplied to the power storage unit 103 and the subsequent stage (right side).
- the DC electrification circuit 102 is a general one including, for example, a diode and a capacitor.
- the power storage unit 103 is configured to include a capacitor and a secondary battery, and is stored by the DC voltage.
- the inverter 104, the coil 105, and the rectifying element 106 are inserted to adjust the DC voltage.
- the DC voltage supplied to the subsequent stage is converted into an AC voltage by the inverters 107 and 108.
- the frequency of the alternating current is, for example, about 10 to 100 kHz.
- Each of the AC voltages is boosted to a predetermined voltage by the transformers 109 and 110, and then converted to DC by the DC conversion circuits 111 and 112.
- the DC electrification circuits 111 and 112 are general ones including, for example, a diode and a capacitor.
- the helix terminal connected to the helix of the microwave tube 300 is connected to the ground.
- the control unit 121 monitors the voltage VAB between the terminals A and B. When the voltage exceeds the threshold value Vth, the control unit 121 sends a signal to the connection switching unit 122 to connect both terminals included in the connection switching unit 122. On the other hand, when the voltage falls below the threshold value Vth, the control unit 121 sends a signal for disconnecting the connection to the connection switching unit 122.
- the threshold value Vth is set to a value that is still within the permissible range, although the amount of electricity stored in the electricity storage unit 103 has begun to be insufficient, for example.
- connection switching unit 122 is, for example, a mechanical switch or a semiconductor switch.
- the semiconductor switch may have a configuration in which field effect transistors are provided in multiple stages.
- the connection switching unit 122 connects the terminal C to the anode terminal and disconnects the connection by the signal sent from the control unit 121.
- the DC voltage set for both the collector terminal and the heater / cathode terminal is applied, and the DC voltage corresponding to the resistors 113 and 114 is supplied to the anode. Will be done.
- the resistance value of the resistor 113 may be set to a very small value or zero.
- the voltages applied to the collector terminal and the heater / cathode terminal are, for example, ⁇ 9 kV and 15 kV.
- the voltage V AB falls below the threshold value Vth. Then, in that case, it is assumed that the connection of the anode terminal to the terminal C is not disconnected. In that case, electric power is consumed by the electron flow from the cathode to the collector, the amount of electricity stored in the storage unit 103 rapidly decreases, and the supply voltage to the heater / cathode terminal rapidly decreases. Therefore, the temperature of the heater is significantly lowered. As described in the section of the problem to be solved by the invention, once the temperature of the heater drops significantly, it takes time to recover to the set temperature. This means that the time required to restore the operation of the microwave tube will be longer.
- the control unit 121 disconnects the anode terminal from the terminal C by the connection switching unit 122 while the voltage VAB is still within the allowable value. This stops the electron flow in the microwave tube. In that case, the microwave tube main body is in a state where a high voltage is applied without generating an electron flow, so that almost no electric power is consumed. As a whole microwave tube device, electric power is consumed in the heater, the control system, and the cooling system, but these are insignificant. Therefore, by disconnecting the anode terminal by the connection switching unit 122, the power consumption is reduced by about 80 to 90% from the rated power.
- the discharge from the power storage unit 103 and the decrease in the supply voltage from the power storage unit 103 due to the discharge can be significantly suppressed. Therefore, a state in which a desired DC voltage or a DC voltage close to (slightly lower) the desired DC voltage is supplied to the heater / cathode terminal is maintained for a longer period of time. In that case, it is possible that the voltage V AB when recovered above the threshold Vth, to significantly reduce the time required to recover the operation of the microwave tube.
- the control unit 121 stops supplying a large amount of power to the anode while it is still within the allowable value. As a result, the discharge from the power storage unit 103 and the decrease in the supply voltage from the power storage unit 103 due to the discharge can be significantly suppressed.
- the supply voltage to the anode terminal can be set to a value much smaller than the voltage supplied to the collector terminal and the heater / cathode terminal, and is set to zero or near zero as described above. You can also do it. In that case, the time required for switching is substantially equal to the switching speed (1 millisecond or less) of the connection switching unit 122.
- the interruption time of the power source 101 which is one of the causes of decrease in the voltage V AB, is generally, 10 to 100 ms. Therefore, the switching speed of the connection switching section 122 not more than 10 ms, the effect of stopping the current supply to the anode terminal when the voltage V AB of less than the threshold Vth be obtained. Even with a mechanical switch, it is possible to achieve a switching speed of about 10 ms. Therefore, it is considered that the above-mentioned effect of the power feeding device of the embodiment is to some extent not only when the field effect transistor is used for the connection switching unit 122 as described above but also when the mechanical switch is used.
- the control unit 121 may be configured to include a computer.
- a program stored in the storage unit of the computer causes the central processing unit of the computer to execute the process of causing the connection switching unit 122 to switch the connection to the anode terminal and the disconnection thereof.
- the voltage supplied to the cathode and the heater is common, but it is not always necessary to be common, and individual voltages may be supplied to each of the cathode and the heater from the power feeding device.
- the voltage monitoring position of the control unit 121 is not limited to the terminals AB in FIG. 2, and may be assumed to be, for example, between the terminals DE and the terminals FG.
- the anode terminal is disconnected from the terminal of the power supply system.
- the electric power supplied from the power storage unit to the microwave tube device is significantly reduced, and the decrease in the voltage supplied from the power storage unit to the heater is alleviated. Therefore, the heater temperature is maintained at or near the required level for a longer period of time.
- the power feeding device of the present embodiment can suppress the time required for starting up the microwave tube when the supply voltage from the power source is lowered, without increasing the scale of the power storage unit.
- FIG. 3 is a block diagram showing the configuration of the power supply device 100x, which is the minimum configuration of the power supply device of the embodiment.
- the power feeding device 100x includes a power feeding unit 100ax, a power storage unit 103x, and a power feeding switching unit 122x.
- the power feeding unit 100ax supplies the power supplied from the power source to the microwave tube including the cathode, the heater for heating the cathode, the anode, and the collector.
- the storage unit 103x stores the supplied electric power, and supplies the stored electric power which is the electric power for storing the electric power to the microwave tube when the voltage of the supplied electric power drops.
- the power supply switching unit 122x stops the supply of the stored power to the anode and does not stop the supply of the stored power to the heater.
- the power feeding device 100x stops supplying the stored power to the anode when the voltage of the supplied power drops. As a result, the power feeding device 100x significantly suppresses the power consumption in the microwave tube device including the microwave tube. As a result, when the voltage of the supplied power decreases, the rate of decrease in the amount of electricity stored in the electricity storage unit 103x can be suppressed. Further, the power feeding device 100x does not stop the supply of the stored power to the heater. Therefore, the heater is not cooled, or the cooling rate thereof is suppressed. Therefore, the power feeding device 100x can suppress the time required for starting up the microwave tube when the supply voltage from the power source is lowered, without increasing the scale of the power storage unit.
- the power feeding device 100x exhibits the effects described in the section of [Effects of the Invention] according to the above configuration.
- a feeding unit that supplies power supplied from a power source to a microwave tube including a cathode, a heater for heating the cathode, an anode, and a collector.
- a storage unit that stores the supplied power and supplies the stored power, which is the power obtained by storing the stored power in the microwave tube when the voltage of the supplied power drops.
- a power supply switching unit that stops the supply of the stored power to the anode and does not stop the supply of the stored power to the heater when the voltage of the supplied power drops. Power supply device equipped with.
- the power supply switching unit stops supplying the stored power to the anode when the voltage of the stored power falls below the threshold value.
- the power feeding device described in Appendix 1. (Appendix 3) The power supply switching unit supplies the stored power to the anode when the voltage of the supplied power from the storage unit exceeds the threshold value.
- the power feeding device described in Appendix 2. (Appendix 4) The power supply switching unit is A connection switching unit that switches between connection to the anode and disconnection of the connection by a control signal, A control unit that sends the control signal for releasing the release to the connection switching unit when the voltage of the supply power from the power storage unit falls below the threshold value. To prepare The power feeding device according to Appendix 2 or Appendix 3.
- the control unit sends the control signal for making the connection to the connection switching unit when the voltage of the supply power from the power storage unit exceeds the threshold value.
- the power feeding device described in Appendix 4. (Appendix 6) The absolute value of the voltage supplied to the anode is significantly smaller than any of the absolute value of the voltage supplied to the collector, the absolute value of the voltage supplied to the cathode, and the absolute value of the voltage supplied to the collector.
- the power feeding device according to any one of Supplementary note 1 to Supplementary note 5. (Appendix 7)
- the voltage supplied to the anode is zero or near zero.
- the voltage supplied to the cathode is common to the voltage supplied to the heater.
- the power feeding device according to any one of Supplementary note 1 to Supplementary note 7. (Appendix 9) A microwave tube device including the power feeding device according to any one of Supplementary note 1 to Supplementary note 8 and the microwave tube. (Appendix 10) A feeding unit that supplies power supplied from a power source to a microwave tube including a cathode, a heater for heating the cathode, an anode, and a collector. A storage unit that stores the supplied power and supplies the stored power, which is the power obtained by storing the stored power in the microwave tube when the voltage of the supplied power drops.
- a feeding unit that supplies power supplied from a power source to a microwave tube including a cathode, a heater for heating the cathode, an anode, and a collector.
- a storage unit that stores the supplied power and supplies the stored power, which is the power obtained by storing the stored power in the microwave tube when the voltage of the supplied power drops.
- the microwave tube in the appendix is, for example, the microwave tube 300 in FIG.
- the "feeding unit” is, for example, an anode terminal, a collector terminal, and a heater / cathode terminal in the feeding device 100 of FIG.
- the “storage unit” is, for example, the electricity storage unit 103 in FIG.
- the "power supply switching unit” is, for example, a combination of the control unit 121 and the connection switching unit 122 in FIG. 2.
- the "power supply device” is, for example, the power supply device 100 of FIG.
- the "connection switching unit” is, for example, the connection switching unit 122 in FIG. 2.
- the "control unit” is, for example, the control unit 121 in FIG.
- the "microwave tube device” is, for example, the microwave tube device 400 of FIG.
- the "computer” is, for example, a computer included in the control unit 121 of FIG.
- the "power supply program” is, for example, a program for causing a computer included in the control unit 121 of FIG. 2 to execute a process.
- 100, 100x Power supply device 100ax Power supply unit 101 Power supply 102, 111, 112 DC conversion circuit 103, 103x Power storage unit 104, 107, 108 Inverter 105 Coil 106 Rectifier element 109, 110 Transformer 113, 114 Resistance 121 Control unit 122 Connection switching unit 122x Power supply switching unit 300 microwave tube 400 microwave tube device
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Microwave Tubes (AREA)
Abstract
Description
[効果]
本実施形態の給電装置は、蓄電部からマイクロ波管装置への供給電圧に低下が生じた場合は、アノード端子を電力供給系統の端子から切り離す。これにより、蓄電部からマイクロ波管装置に供給される電力が大幅に削減され、蓄電部からヒータに供給される電圧の低下は緩和される。そのため、ヒータ温度はより長時間必要なレベル又はそれに近いレベルに維持される。発明が解決しようとする課題の項で説明したように、ヒータの温度が大幅に低下すると、ヒータはある程度の熱容量を持つものなので、その温度の回復に時間を要する。そのため、その後、電源電圧が回復したとしても、ヒータ温度を回復させる時間が必要なため、マイクロ波管が正常に稼働するまで時間を要する。ヒータ温度はより長時間必要なレベル又はそれに近いレベルに維持された場合は、この問題が解消又は緩和する。そのため、本実施形態の給電装置は、蓄電部の大規模化を行わなくても、電源からの供給電圧の低下が生じた際に行われるマイクロ波管の立ち上げに要する時間を抑え得る。
(付記1)
電源からの供給電力を、カソードと前記カソードを加熱するためのヒータとアノードとコレクタとを備えるマイクロ波管に給電する給電部と、
前記供給電力を蓄電し、前記供給電力の電圧が低下した場合に前記マイクロ波管に前記蓄電を行った電力である蓄電電力を供給する蓄電部と、
前記供給電力の電圧が低下した場合に、前記アノードへの前記蓄電電力の供給を停止し、前記ヒータへの前記蓄電電力の供給を停止しない、給電切替部と、
を備える給電装置。
(付記2)
前記給電切替部は、前記蓄電電力の電圧が閾値を下回った場合に、前記アノードへの前記蓄電電力の供給を停止する、
付記1に記載された給電装置。
(付記3)
前記給電切替部は、前記蓄電部からの前記供給電力の電圧が前記閾値を上回った場合に、前記アノードへの前記蓄電電力の供給を行う、
付記2に記載された給電装置。
(付記4)
前記給電切替部は、
制御信号により前記アノードへの接続と前記接続の解除とを切り替える接続切替部と、
前記蓄電部からの前記供給電力の電圧が前記閾値を下回った場合に、前記解除を行わせる前記制御信号を前記接続切替部に送付する制御部と、
を備える、
付記2又は付記3に記載された給電装置。
(付記5)
前記制御部は、前記蓄電部からの前記供給電力の電圧が前記閾値を上回った場合に、前記接続を行わせる前記制御信号を前記接続切替部に送付する、
付記4に記載された給電装置。
(付記6)
前記アノードに供給する電圧の絶対値は、前記コレクタに供給する電圧の絶対値、前記カソードに供給する電圧の絶対値及び前記コレクタに供給する電圧の絶対値、のいずれよりも有意に小さい、
付記1乃至付記5のうちのいずれか一に記載された給電装置。
(付記7)
前記アノードに供給する電圧は、ゼロ又はゼロ近傍である、
付記1乃至付記6のうちのいずれか一に記載された給電装置。
(付記8)
前記カソードに供給する電圧は前記ヒータに供給する電圧と共通である、
付記1乃至付記7のうちのいずれか一に記載された給電装置。
(付記9)
付記1乃至付記8のうちのいずれか一に記載された給電装置と前記マイクロ波管とを備えるマイクロ波管装置。
(付記10)
電源からの供給電力を、カソードと前記カソードを加熱するためのヒータとアノードとコレクタとを備えるマイクロ波管に給電する給電部と、
前記供給電力を蓄電し、前記供給電力の電圧が低下した場合に前記マイクロ波管に前記蓄電を行った電力である蓄電電力を供給する蓄電部と、
を備える給電装置において、
前記供給電力の電圧が低下した場合に、前記アノードへの前記蓄電電力の供給を停止し、前記ヒータへの前記蓄電電力の供給を停止しない、
給電方法。
(付記11)
電源からの供給電力を、カソードと前記カソードを加熱するためのヒータとアノードとコレクタとを備えるマイクロ波管に給電する給電部と、
前記供給電力を蓄電し、前記供給電力の電圧が低下した場合に前記マイクロ波管に前記蓄電を行った電力である蓄電電力を供給する蓄電部と、
を備える給電装置において、
前記供給電力の電圧が低下した場合に、前記アノードへの前記蓄電電力の供給を停止し、前記ヒータへの前記蓄電電力の供給を停止しない、処理をコンピュータに実行させる、
給電プログラム。
100ax 給電部
101 電源
102、111、112 直流化回路
103、103x 蓄電部
104、107、108 インバータ
105 コイル
106 整流素子
109、110 トランス
113、114 抵抗
121 制御部
122 接続切替部
122x 給電切替部
300 マイクロ波管
400 マイクロ波管装置
Claims (11)
- 電源からの供給電力を、カソードと前記カソードを加熱するためのヒータとアノードとコレクタとを備えるマイクロ波管に給電する給電手段と、
前記供給電力を蓄電し、前記供給電力の電圧が低下した場合に前記マイクロ波管に前記蓄電を行った電力である蓄電電力を供給する蓄電手段と、
前記供給電力の電圧が低下した場合に、前記アノードへの前記蓄電電力の供給を停止し、前記ヒータへの前記蓄電電力の供給を停止しない、給電切替手段と、
を備える給電装置。 - 前記給電切替手段は、前記蓄電電力の電圧が閾値を下回った場合に、前記アノードへの前記蓄電電力の供給を停止する、
請求項1に記載された給電装置。 - 前記給電切替手段は、前記蓄電手段からの前記供給電力の電圧が前記閾値を上回った場合に、前記アノードへの前記蓄電電力の供給を行う、
請求項2に記載された給電装置。 - 前記給電切替手段は、
制御信号により前記アノードへの接続と前記接続の解除とを切り替える接続切替手段と、
前記蓄電手段からの前記供給電力の電圧が前記閾値を下回った場合に、前記解除を行わせる前記制御信号を前記接続切替手段に送付する制御手段と、
を備える、
請求項2又は請求項3に記載された給電装置。 - 前記制御手段は、前記蓄電手段からの前記供給電力の電圧が前記閾値を上回った場合に、前記接続を行わせる前記制御信号を前記接続切替手段に送付する、
請求項4に記載された給電装置。 - 前記アノードに供給する電圧の絶対値は、前記コレクタに供給する電圧の絶対値、前記カソードに供給する電圧の絶対値及び前記コレクタに供給する電圧の絶対値、のいずれよりも有意に小さい、
請求項1乃至請求項5のうちのいずれか一に記載された給電装置。 - 前記アノードに供給する電圧は、ゼロ又はゼロ近傍である、
請求項1乃至請求項6のうちのいずれか一に記載された給電装置。 - 前記カソードに供給する電圧は前記ヒータに供給する電圧と共通である、
請求項1乃至請求項7のうちのいずれか一に記載された給電装置。 - 請求項1乃至請求項8のうちのいずれか一に記載された給電装置と前記マイクロ波管とを備えるマイクロ波管装置。
- 電源からの供給電力を、カソードと前記カソードを加熱するためのヒータとアノードとコレクタとを備えるマイクロ波管に給電する給電手段と、
前記供給電力を蓄電し、前記供給電力の電圧が低下した場合に前記マイクロ波管に前記蓄電を行った電力である蓄電電力を供給する蓄電手段と、
を備える給電装置において、
前記供給電力の電圧が低下した場合に、前記アノードへの前記蓄電電力の供給を停止し、前記ヒータへの前記蓄電電力の供給を停止しない、
給電方法。 - 電源からの供給電力を、カソードと前記カソードを加熱するためのヒータとアノードとコレクタとを備えるマイクロ波管に給電する給電手段と、
前記供給電力を蓄電し、前記供給電力の電圧が低下した場合に前記マイクロ波管に前記蓄電を行った電力である蓄電電力を供給する蓄電手段と、
を備える給電装置において、
前記供給電力の電圧が低下した場合に、前記アノードへの前記蓄電電力の供給を停止し、前記ヒータへの前記蓄電電力の供給を停止しない、処理をコンピュータに実行させる、
給電プログラムを記録した記録媒体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022527510A JP7335442B2 (ja) | 2020-05-28 | 2021-02-15 | 給電装置、マイクロ波管装置、給電方法及び給電プログラム |
EP21814258.6A EP4160650A4 (en) | 2020-05-28 | 2021-02-15 | POWER SUPPLY DEVICE, MICROWAVE TUBE DEVICE, POWER SUPPLY METHOD, AND RECORDING MEDIUM |
CA3184915A CA3184915A1 (en) | 2020-05-28 | 2021-02-15 | Power supply device, microwave tube device, power supply method, and recording medium |
CN202180037838.6A CN115668428A (zh) | 2020-05-28 | 2021-02-15 | 供电设备、微波管设备、供电方法和记录介质 |
US17/927,214 US12100570B2 (en) | 2020-05-28 | 2021-02-15 | Power supply device, microwave tube device, power supply method, and recording medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020093062 | 2020-05-28 | ||
JP2020-093062 | 2020-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021240909A1 true WO2021240909A1 (ja) | 2021-12-02 |
Family
ID=78744265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/005522 WO2021240909A1 (ja) | 2020-05-28 | 2021-02-15 | 給電装置、マイクロ波管装置、給電方法及び記録媒体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US12100570B2 (ja) |
EP (1) | EP4160650A4 (ja) |
JP (1) | JP7335442B2 (ja) |
CN (1) | CN115668428A (ja) |
CA (1) | CA3184915A1 (ja) |
WO (1) | WO2021240909A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08111183A (ja) * | 1994-10-13 | 1996-04-30 | Nec Eng Ltd | 進行波管の電源装置 |
JP2008234907A (ja) * | 2007-03-19 | 2008-10-02 | Nec Microwave Inc | 電源装置、高周波回路システム及びヒータ電圧制御方法 |
JP2020093062A (ja) | 2018-11-28 | 2020-06-18 | 株式会社ナカショウ | 額縁 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000294156A (ja) * | 1999-04-02 | 2000-10-20 | Nec Eng Ltd | 進行波管用電源 |
JP3970658B2 (ja) * | 2002-03-29 | 2007-09-05 | Necマイクロ波管株式会社 | マイクロ波管用電源装置 |
JP2005116355A (ja) * | 2003-10-08 | 2005-04-28 | Nec Microwave Inc | マイクロ波管システム及びマイクロ波管 |
CN202997689U (zh) * | 2012-12-21 | 2013-06-12 | 西安电子工程研究所 | 一种行波管灯丝双通道无缝自动切换供电电路 |
JP6904986B2 (ja) | 2017-02-20 | 2021-07-21 | Necネットワーク・センサ株式会社 | マイクロ波電子管及びマイクロ波増幅装置 |
-
2021
- 2021-02-15 WO PCT/JP2021/005522 patent/WO2021240909A1/ja unknown
- 2021-02-15 EP EP21814258.6A patent/EP4160650A4/en active Pending
- 2021-02-15 JP JP2022527510A patent/JP7335442B2/ja active Active
- 2021-02-15 CA CA3184915A patent/CA3184915A1/en active Pending
- 2021-02-15 US US17/927,214 patent/US12100570B2/en active Active
- 2021-02-15 CN CN202180037838.6A patent/CN115668428A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08111183A (ja) * | 1994-10-13 | 1996-04-30 | Nec Eng Ltd | 進行波管の電源装置 |
JP2008234907A (ja) * | 2007-03-19 | 2008-10-02 | Nec Microwave Inc | 電源装置、高周波回路システム及びヒータ電圧制御方法 |
JP2020093062A (ja) | 2018-11-28 | 2020-06-18 | 株式会社ナカショウ | 額縁 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4160650A4 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021240909A1 (ja) | 2021-12-02 |
CN115668428A (zh) | 2023-01-31 |
EP4160650A4 (en) | 2024-06-12 |
US20230207246A1 (en) | 2023-06-29 |
CA3184915A1 (en) | 2021-12-02 |
JP7335442B2 (ja) | 2023-08-29 |
EP4160650A1 (en) | 2023-04-05 |
US12100570B2 (en) | 2024-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6366820B2 (ja) | 電源装置及び空気調和装置 | |
US20220045512A1 (en) | Inverter of grid-connected photovoltaic power generation system, startup apparatus, method, and system | |
JP6462969B2 (ja) | 電力変換装置及びその運転方法 | |
CN111162599B (zh) | 电源供应装置及电源供应方法 | |
WO2016006329A1 (ja) | 無停電電源装置 | |
WO2021240909A1 (ja) | 給電装置、マイクロ波管装置、給電方法及び記録媒体 | |
WO2024174456A1 (zh) | 磁控管的驱动电路和加热设备 | |
WO2019016857A1 (ja) | 荷電粒子ビーム装置 | |
CN110518789B (zh) | 一种软开关电路及电力电子设备 | |
CN102332812A (zh) | 一种变频微波炉电源自适应起动方法 | |
JP3682912B2 (ja) | マグネトロン駆動電源回路 | |
CN115051325A (zh) | 继电器保护电路和ups | |
CN209813731U (zh) | 轨道车辆辅助供电系统及轨道车辆 | |
JP2002369408A (ja) | 電力管理システム | |
KR102073697B1 (ko) | 플라즈마 펄스 전원 장치 | |
WO2024174458A1 (zh) | 控制回路和微波发生设备 | |
CN105763113A (zh) | 一种低压水电机组免起励双电源励磁调节电路 | |
CN113873704B (zh) | 一种磁控管的起动方法和变频电源 | |
KR100726710B1 (ko) | 아크 용접용 전력변환장치 | |
CN117082663B (zh) | 一种磁控管微波发生源保持高压恒定的控制装置及方法 | |
JP2730732B2 (ja) | 高周波発生器 | |
KR200426036Y1 (ko) | 순간정전보상기 | |
CN116193660A (zh) | 磁控管的驱动电路和烹饪设备 | |
JP4147350B2 (ja) | 無停電電源装置 | |
CN116403856A (zh) | 接触器驱动电路及接触器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21814258 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022527510 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3184915 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021814258 Country of ref document: EP Effective date: 20230102 |