WO2021239012A1 - 一种用于大尺寸非晶合金的超声摩擦焊接成型方法 - Google Patents

一种用于大尺寸非晶合金的超声摩擦焊接成型方法 Download PDF

Info

Publication number
WO2021239012A1
WO2021239012A1 PCT/CN2021/096179 CN2021096179W WO2021239012A1 WO 2021239012 A1 WO2021239012 A1 WO 2021239012A1 CN 2021096179 W CN2021096179 W CN 2021096179W WO 2021239012 A1 WO2021239012 A1 WO 2021239012A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous alloy
ultrasonic
amorphous
friction welding
parameters
Prior art date
Application number
PCT/CN2021/096179
Other languages
English (en)
French (fr)
Inventor
王成勇
唐梓敏
杨琮
郑李娟
杜策之
丁峰
陈伟专
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2021239012A1 publication Critical patent/WO2021239012A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding

Definitions

  • the invention relates to the technical field of amorphous alloy processing, in particular to an ultrasonic friction welding forming method for large-size amorphous alloys.
  • Amorphous alloys have both metal and amorphous, solid and liquid properties, and are a disruptive new generation of high-performance metal materials.
  • the formation size of amorphous alloys is limited.
  • most of the commercialized amorphous alloys are limited to the centimeter level, which severely limits their application in the industrial field; amorphous alloys have viscous flow behavior in their supercooled liquid phase region, and Working in this temperature range, the amorphous alloy can always remain amorphous.
  • Friction welding is to use the mutual friction movement of the workpieces to generate heat as a heat source, so that the temperature of the material contact interface increases, the material softens or melts, and the welding of the two materials is realized under the action of pressure. Friction welding is one of the commonly used processes in traditional metal welding, with simple process, low cost and high efficiency of equipment. Among them, rotary friction welding is one of the common friction welding methods.
  • Rotary friction welding is through the mutual rotation of two materials, which requires less movement stroke and high efficiency.
  • the linear velocity gradually increases, and the linear velocity of the workpiece at the center of the circle is zero .
  • different linear speeds will cause different heat generated by friction.
  • the purpose of the present invention is to avoid the deficiencies in the prior art and provide an ultrasonic friction welding forming method for large-size amorphous alloys.
  • the preparation method not only enables more heat generated during the processing of amorphous alloy materials, but also The welding efficiency is faster, and at the same time, the difference in linear velocity at different radii at the contact interface of the amorphous alloy material can be reduced, and the unevenness of heat generation can be greatly reduced.
  • An ultrasonic friction welding forming method for large-size amorphous alloys including the following steps:
  • Step 1 Take the amorphous alloy to be processed, and then process the welded surfaces of the first amorphous alloy and the second amorphous alloy into microstructures according to the welding requirements of the amorphous alloy;
  • Step 2 Fix the first amorphous alloy and the second amorphous alloy with microstructures in step one on the ultrasonic welding system, so that the welding surface of the first amorphous alloy and the second amorphous alloy are welded Face each other
  • Step 3 Set the parameters of the ultrasonic device, the main rotating motion device and the pressure device in the ultrasonic welding system, and turn on the ultrasonic welding system to complete the friction welding of the first amorphous alloy and the second amorphous alloy.
  • the microstructures at the surfaces to be welded of the first amorphous alloy and the second amorphous alloy include: micrometer-sized microstructures and/or nanometer-sized microstructures, the first amorphous alloy
  • the microstructure at the surface to be welded with the second amorphous alloy is an amorphous microstructure.
  • the microstructures at the surface to be welded of the first amorphous alloy and the microstructures at the surface to be welded of the second amorphous alloy are arranged to engage with each other.
  • the processing method of the microstructure includes any one of laser processing, ultrasonic processing, turning, planing, milling, drilling, and grinding.
  • the contact surface between the first amorphous alloy and the second amorphous alloy makes a relative rotational movement.
  • the friction welding of the first amorphous alloy and the second amorphous alloy is completed in the intersecting supercooled liquid phase region of the first amorphous alloy and the second amorphous alloy.
  • the parameter adjustment among the parameters of the ultrasonic device, the parameters of the main rotary motion device, and the parameters of the pressure device are set independently of each other.
  • the main rotational motion parameters of the first amorphous alloy and the main rotational motion parameters of the second amorphous alloy are set independently of each other, and the rotation range of the main rotational motion device is 0-360° , The rotation speed of the main rotating motion device is 0-500 rpm.
  • the parameters of the first amorphous alloy and the pressure device and the parameters of the pressure device between the second amorphous alloy are set independently of each other, and the pressure range of the pressure device is 0-5 MPa.
  • the ultrasonic device parameters of the first amorphous alloy and the ultrasonic device parameters of the second amorphous alloy are set independently of each other, and the power range of the ultrasonic device is 0-2kW.
  • the present invention has beneficial effects: because the microstructure provided on the surface of the amorphous alloy can increase the surface roughness of the material on the one hand, the same process can generate more heat and improve the welding efficiency; on the other hand, On the one hand, through the design of microstructures, the difference in linear velocity at different radii at the material contact interface can be reduced, and the non-uniformity of heat generation can be further reduced. At the same time, the ultrasonic vibration of the ultrasonic device can also promote the heat transfer and heat transfer at the material contact interface. Exchange, thereby promoting the uniformity of energy distribution and reducing defects during material welding.
  • FIG. 1 is a schematic diagram of ultrasonic friction welding forming of the first amorphous alloy and the second amorphous alloy in Example 1.
  • FIG. 1 is a schematic diagram of ultrasonic friction welding forming of the first amorphous alloy and the second amorphous alloy in Example 1.
  • FIG. 2 is a schematic diagram of ultrasonic friction welding forming of the first amorphous alloy and the second amorphous alloy in Example 2.
  • FIG. 2 is a schematic diagram of ultrasonic friction welding forming of the first amorphous alloy and the second amorphous alloy in Example 2.
  • FIG. 3 is a schematic diagram of ultrasonic friction welding forming of the first amorphous alloy and the second amorphous alloy in Example 3.
  • FIG. 3 is a schematic diagram of ultrasonic friction welding forming of the first amorphous alloy and the second amorphous alloy in Example 3.
  • FIG. 4 is a schematic diagram of ultrasonic friction welding forming of the first amorphous alloy and the second amorphous alloy in Example 4.
  • FIG. 4 is a schematic diagram of ultrasonic friction welding forming of the first amorphous alloy and the second amorphous alloy in Example 4.
  • the figure includes: the first amorphous alloy 1, the second amorphous alloy 2, and the microstructure 3.
  • An ultrasonic friction welding forming method for large-size amorphous alloys including the following steps:
  • Step 1 Take the amorphous alloy to be processed, and then process the welded surfaces of the first amorphous alloy 1 and the second amorphous alloy 2 into microstructures 3 according to the welding requirements of the amorphous alloy;
  • Step 2 Fix the first amorphous alloy 1 and the second amorphous alloy 2 with the microstructure 3 in step one on the ultrasonic welding system, so that the welding surface of the first amorphous alloy 1 and the second amorphous alloy 1 The welding surfaces of crystal alloy 2 are in contact with each other;
  • Step 3 Set the parameters of the ultrasonic device, the main rotating motion device and the pressure device in the ultrasonic welding system, and turn on the ultrasonic welding system to complete the friction welding of the first amorphous alloy 1 and the second amorphous alloy 2.
  • Ultrasonic vibration and surface microstructure can promote heat generation and uniform heat transfer and distribution. Because the microstructure set on the surface of the amorphous alloy can increase the surface roughness of the material on the one hand, so that the same process can generate more heat and improve the welding efficiency; on the other hand, through the design of the microstructure, it can be reduced The difference in linear velocity at different radii at the material contact interface further reduces the unevenness of heat generation. At the same time, the ultrasonic vibration of the ultrasonic device can also promote the transfer and exchange of heat at the material contact interface, thereby promoting the uniformity of energy distribution. Defects during welding of small materials.
  • the microstructures 3 at the surfaces to be welded of the first amorphous alloy 1 and the second amorphous alloy 2 include: micrometer-sized microstructures 3 and/or nanometer-sized microstructures 3 ,
  • the microstructure 3 at the surface to be welded of the first amorphous alloy 1 and the second amorphous alloy 2 is an amorphous microstructure 3, and further, the surface to be welded of the first amorphous alloy 1
  • the microstructure 3 at the position and the microstructure 3 at the surface to be welded of the second amorphous alloy 2 are arranged in mesh with each other to ensure the welding stability of the first amorphous alloy 1 and the second amorphous alloy 2.
  • the processing method of the microstructure 3 includes any one of laser processing, ultrasonic processing, turning, planing, milling, drilling, and grinding. Microstructure 3 is the best.
  • the contact surface between the first amorphous alloy 1 and the second amorphous alloy 2 makes a relative rotational movement, and further, the first amorphous alloy 1 and the second amorphous alloy
  • the friction welding of 2 is in the cross supercooled liquid zone of the first amorphous alloy 1 and the second amorphous alloy 2 (the amorphous supercooled liquid zone is a temperature range, in this range, the amorphous plasticity is large and the Keep the amorphous state, suitable for welding.
  • the supercooled liquid zone of different amorphous is different, for example, there are 300-400°C, and 350-420°C, then the cross supercooled liquid zone is 350-400°C, guarantee The two types of amorphous alloys are welded at this temperature to ensure the amorphous state after the welding is completed.
  • the work is completed in the supercooled liquid phase region of the amorphous alloy.
  • the amorphous alloy will not crystallize, ensuring the material before and after preparation. Amorphous, the performance of the amorphous alloy will not be affected, which overcomes the shortcomings of material performance degradation caused by traditional welding methods.
  • the parameters of the ultrasonic device, the parameters of the main rotary motion device, and the parameters of the pressure device are set independently of each other.
  • the main rotary motion parameters of the first amorphous alloy 1 and The main rotational motion parameters of the second amorphous alloy 2 are set independently of each other, the rotation range of the main rotational motion device is 0-360°, the rotational speed of the main rotational motion device is 0-500 rpm, and the first amorphous alloy
  • the alloy 1 and the pressure device parameters and the pressure device parameters between the second amorphous alloy 2 are set independently of each other, the pressure range of the pressure device is 0-5 MPa, the ultrasonic device parameters of the first amorphous alloy 1 and the second amorphous alloy
  • the parameters of the two ultrasonic devices are set independently of each other.
  • the power range of the ultrasonic device is 0-2kW.
  • the processing parameters under this coefficient have the best processing effect and ensure the welding stability of ultrasonic friction welding.
  • an ultrasonic friction welding forming method for large-size amorphous alloys includes the following steps:
  • Step 1 Take the two amorphous alloys to be processed, and according to the welding requirements of the amorphous alloy, use milling to process the microstructure 3 at the interface to be welded between the first amorphous alloy 1 and the second amorphous alloy 2.
  • the microstructure 3 is a rectangular structure
  • the composition of the first amorphous alloy 1 is Zr57Nb5Cu15.4Ni12.6Al10
  • the Tg is 405°C
  • the Tx is 470°C
  • the composition of the second amorphous alloy 2 is Zr58.5Nb2.8Cu15 .6Ni12.8Al10.3
  • Tg is 400°C
  • Tx is 480°C.
  • Step 2 Clamp the first amorphous alloy 1 and the second amorphous alloy 2 on the welding system so that the welding surface of the first amorphous alloy 1 and the welding surface of the second amorphous alloy 2 are in contact with each other.
  • Step 3 Set the main rotation parameter of the first amorphous alloy 1 to rotate in the reverse direction of a and the rotation speed is 200 rpm, and the main rotation parameter of the second amorphous alloy 2 to rotate in the direction a and the rotation speed to 200 rpm,
  • the pressure device works to make the first amorphous alloy 1 and the second amorphous alloy 2 squeeze in a relative translational motion in the X direction.
  • the ultrasonic device works with a power of 800W and oriented ultrasound in the X direction.
  • the cross supercooled liquid of the two The phase zone is 405-407°C, and the friction welding of the first amorphous alloy 1 and the second amorphous alloy 2 is completed.
  • an ultrasonic friction welding forming method for large-size amorphous alloys includes the following steps:
  • Step 1 Take two amorphous alloys to be processed, and according to the welding requirements of the amorphous alloy, use laser processing to process the microstructure 3 at the welding interface of the first amorphous alloy 1 and the second amorphous alloy 2, where ,
  • the microstructure is a triangular structure, the composition of the first amorphous alloy 1 and the second amorphous alloy 2 are both Ca65Li14.54Mg12.46Zn8, the Tg is 35°C, and the Tx is 105°C.
  • Step 2 Clamp the first amorphous alloy 1 and the second amorphous alloy 2 on the welding system so that the welding surface of the first amorphous alloy and the welding surface of the second amorphous alloy are in contact with each other.
  • Step 3 Set the main rotational motion parameter of the first amorphous alloy 1 to rotate in the reverse direction of a, and the rotation speed is 0rpm, and the main rotational motion parameter of the second amorphous alloy 2 to rotate in the reverse direction of a, and the rotation speed to be 100rpm ,
  • the pressure device works to make the first amorphous alloy 1 and the second amorphous alloy 2 squeeze in a relative translational motion in the X direction.
  • the ultrasonic device works with a power of 800W and oriented ultrasound in the X direction. The crossover of the two is supercooled.
  • the liquid phase zone is 35-105°C, and the friction welding of the first amorphous alloy 1 and the second amorphous alloy 2 is completed.
  • an ultrasonic friction welding forming method for large-size amorphous alloys includes the following steps:
  • Step 1 Take two amorphous alloys to be processed.
  • the composition of the first amorphous alloy 1 is Zr44Ti11Cu10Ni10Be25, the Tg is 350°C, the Tx is 471°C, and the composition of the second amorphous alloy 2 is Zr35Ti30Be27.5Cu7.5 , Tg is 301°C, Tx is 467°C.
  • Step 2 Clamp the first amorphous alloy 1 and the second amorphous alloy 2 on the welding system so that the welding surface of the first amorphous alloy 1 and the welding surface of the second amorphous alloy 2 are in contact with each other.
  • Step 3 Set the main rotational motion parameter of the first amorphous alloy 1 to rotate in the reverse direction of a, and the rotation speed is 300 rpm, and the main rotational motion parameter of the second amorphous alloy 2 to rotate in the direction a, and the rotation speed is 200 rpm,
  • the pressure device works to make the first amorphous alloy 1 and the second amorphous alloy 2 squeeze in a relative translational motion in the X direction.
  • the ultrasonic device works with a power of 800W and oriented ultrasound in the X direction.
  • the cross supercooled liquid of the two The phase zone is 350-467°C, and the friction welding of the first amorphous alloy 1 and the second amorphous alloy 2 is completed.
  • an ultrasonic friction welding forming method for large-size amorphous alloys includes the following steps:
  • Step 1 Take two amorphous alloys to be processed, and according to the welding requirements of the amorphous alloy, use ultrasonic processing to process the microstructure 3 at the welding interface of the first amorphous alloy 1 and the second amorphous alloy 2, where Microstructure 3 is a rectangular structure, the composition of the first amorphous alloy 1 is Zr41.2Ti13.8Cu12.5Ni10Be22.5, Tg is 349°C, Tx is 426°C, and the composition of the second amorphous alloy 2 is Zr44Ti11Cu10Ni10Be25, Tg It is 350°C and Tx is 471°C.
  • Step 2 Clamp the first amorphous alloy 1 and the second amorphous alloy 2 on the welding system so that the welding surface of the first amorphous alloy 1 and the welding surface of the second amorphous alloy 2 are in contact with each other.
  • Step 3 Set the main rotation parameter of the first amorphous alloy 1 to rotate in the reverse direction of a and the rotation speed is 200 rpm, and the main rotation parameter of the second amorphous alloy 2 to rotate in the direction a and the rotation speed to 200 rpm,
  • the pressure device works to make the first amorphous alloy 1 and the second amorphous alloy 2 squeeze in a relative translational motion in the X direction.
  • the ultrasonic device works with a power of 800W and oriented ultrasound in the X direction.
  • the cross supercooled liquid of the two The phase zone is 350-426°C, and the friction welding of the first amorphous alloy 1 and the second amorphous alloy 2 is completed.
  • the present invention has beneficial effects: because the microstructure provided on the surface of the amorphous alloy can increase the surface roughness of the material on the one hand, the same process can generate more heat and improve the welding efficiency; on the other hand, On the one hand, through the design of microstructures, the difference in linear velocity at different radii at the material contact interface can be reduced, and the unevenness of heat generation can be further reduced.
  • the ultrasonic vibration of the ultrasonic device can also promote the heat transfer and heat transfer at the material contact interface. Exchange, and then promote the uniformity of energy distribution, and reduce the defects of material welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

一种用于大尺寸非晶合金的超声摩擦焊接成型方法,包括如下步骤:步骤一:将第一非晶合金(1)和第二非晶合金(2)的待焊接面处加工为微型结构(3);步骤二:将步骤一中带有微型结构(3)的第一非晶合金(1)和第二非晶合金(2)装夹固定在超声焊接系统上;步骤三:分别设定超声焊接系统中的超声装置的参数、主旋转运动装置参数和压力装置参数,并开启超声焊接系统,完成第一非晶合金(1)和第二非晶合金(2)的摩擦焊接。

Description

一种用于大尺寸非晶合金的超声摩擦焊接成型方法 技术领域
本发明涉及非晶合金加工技术领域,特别是涉及一种用于大尺寸非晶合金的超声摩擦焊接成型方法。
背景技术
非晶合金兼具金属和非晶、固体和液体特性,是颠覆性的新一代高性能金属材料。但是非晶合金的形成尺寸有限,目前商业化的非晶合金尺寸大部分限制于厘米级别,严重限制了其在工业领域的应用;非晶合金在其过冷液相区具有粘性流动行为,且在该温度范围内工作,非晶合金可以始终保持非晶态。
摩擦焊接是利用工件的相互摩擦运动产生热量作为热源,使得材料接触界面温度升高,材料软化或者熔化,在压力的作用下,实现两材料的焊接。摩擦焊接是传统金属焊接常用的工艺之一,工艺简单、装置等成本低且效率高。其中旋转摩擦焊是常见的摩擦焊接手段之一。
旋转摩擦焊通过两材料的相互旋转运动,所需运动行程少且效率高,但是当两工件进行旋转运动时,随着工件半径的增加,线速度逐渐增加,而圆心处工件的线速度为零。一方面,不同的线速度会导致摩擦产生的热量不同,另一方面,工件外表面的散热与内部散热效率存在差异,导致焊接时材料接触界面的热量分布不均衡,部分区域过烧而部分区域未达焊接温度点,进而导致焊接质量差。
发明内容
本发明的目的在于避免现有技术中的不足之处而提供一种用于大尺寸非晶合金的超声摩擦焊接成型方法,该制备方法不仅使得非晶合金材料加工时所产生的热量更多,焊接效率更快,同时还能减小非晶合金材料的接触界面处不同半径处线速度的差异,大幅降低热量产生的不均匀性。
本发明的目的通过以下技术方案实现:
一种用于大尺寸非晶合金的超声摩擦焊接成型方法,包括如下步骤:
步骤一:取需加工的非晶合金,然后根据非晶合金的焊接要求,将第一非晶合金和第二非晶合金的待焊接面处加工为微型结构;
步骤二:将步骤一中带有微型结构的第一非晶合金和第二非晶合金,装夹固定在超声焊接系统上,使得第一非晶合金的焊接面与第二非晶合金的焊接面相互接触;
步骤三:分别设定超声焊接系统中的超声装置的参数、主旋转运动装置参数和压力装置 参数,并开启超声焊接系统,完成第一非晶合金和第二非晶合金的摩擦焊接。
进一步的,所述步骤一中,第一非晶合金和第二非晶合金的待焊接面处的微型结构包括有:微米尺寸微型结构和/或纳米尺寸微型结构,所述第一非晶合金和第二非晶合金的待焊接面处的微型结构微型结构为非晶态微型结构。
进一步的,所述步骤一中,所述第一非晶合金待焊接面处的微型结构和第二非晶合金待焊接面处的微型结构之间相互啮合设置。
进一步的,所述步骤一中,微型结构的加工方法包括有激光加工、超声加工、车削、刨削、铣削、钻削和磨削中的任意一种。
进一步的,所述步骤三中,第一非晶合金和第二非晶合金之间的接触面做相对旋转运动。
进一步的,所述步骤三中,第一非晶合金和第二非晶合金的摩擦焊接在第一非晶合金和第二非晶合金的交叉过冷液相区内完成。
进一步的,所述步骤三中,超声装置的参数、主旋转运动装置参数和压力装置参数之间的参数调节相互独立设置。
进一步的,所述步骤三中,第一非晶合金的主旋转运动参数和第二非晶合金的主旋转运动参数之间相互独立设置,所述主旋转运动装置的转动范围为0~360°,所述主旋转运动装置的旋转速度为0~500rpm。
进一步的,所述步骤三中,第一非晶合金和压力装置参数和第二非晶合金间的压力装置参数相互独立设置,所述压力装置的压力范围为0~5MPa。
进一步的,所述步骤三中,第一非晶合金的超声装置参数和第二非晶合金的超声装置参数相互独立设置,所述超声装置的功率范围为0~2kW。
本发明相对比现有技术的有益效果:由于在非晶合金表面设置的微型结构一方面可以增加材料表面的粗糙度,使得同样的工艺下,所产生的热量更多,提升焊接效率;另一方面,通过微型结构的设计,可以减小材料接触界面处不同半径处线速度的差异,进一步降低热量产生的不均匀性,同时配合超声装置的超声振动还能促进材料接触界面处热量的传递与交换,进而促进能量分布的均匀性,减小材料焊接时的缺陷。
附图说明
利用附图对发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1为实施例1中第一非晶合金和第二非晶合金的超声摩擦焊接成型示意图。
图2为实施例2中第一非晶合金和第二非晶合金的超声摩擦焊接成型示意图。
图3为实施例3中第一非晶合金和第二非晶合金的超声摩擦焊接成型示意图。
图4为实施例4中第一非晶合金和第二非晶合金的超声摩擦焊接成型示意图。
图中包括有:第一非晶合金1、第二非晶合金2、微型结构3。
具体实施方式
结合以下实施例对本发明作进一步描述。
一种用于大尺寸非晶合金的超声摩擦焊接成型方法,包括如下步骤:
步骤一:取需加工的非晶合金,然后根据非晶合金的焊接要求,将第一非晶合金1和第二非晶合金2的待焊接面处加工为微型结构3;
步骤二:将步骤一中带有微型结构3的第一非晶合金1和第二非晶合金2,装夹固定在超声焊接系统上,使得第一非晶合金1的焊接面与第二非晶合金2的焊接面相互接触;
步骤三:分别设定超声焊接系统中的超声装置的参数、主旋转运动装置参数和压力装置参数,并开启超声焊接系统,完成第一非晶合金1和第二非晶合金2的摩擦焊接,超声振动及表面微型结构可以促进热量的产生以及均匀传热、分布。因为在非晶合金表面设置的微型结构一方面可以增加材料表面的粗糙度,使得同样的工艺下,所产生的热量更多,提升焊接效率;另一方面,通过微型结构的设计,可以减小材料接触界面处不同半径处线速度的差异,进一步降低热量产生的不均匀性,同时配合超声装置的超声振动还能促进材料接触界面处热量的传递与交换,进而促进能量分布的均匀性,较小材料焊接时的缺陷。
在优选实施例中,所述步骤一中,第一非晶合金1和第二非晶合金2的待焊接面处的微型结构3包括有:微米尺寸微型结构3和/或纳米尺寸微型结构3,所述第一非晶合金1和第二非晶合金2的待焊接面处的微型结构3微型结构3为非晶态微型结构3,进一步的,所述第一非晶合金1待焊接面处的微型结构3和第二非晶合金2待焊接面处的微型结构3之间相互啮合设置,保证第一非晶合金1和第二非晶合金2的焊接稳定性。
在优选实施例中,所述步骤一中,微型结构3的加工方法包括有激光加工、超声加工、车削、刨削、铣削、钻削和磨削中的任意一种,该加工方式加工出来的微型结构3最佳。
在优选实施例中,所述步骤三中,第一非晶合金1和第二非晶合金2之间的接触面做相对旋转运动,进一步的,第一非晶合金1和第二非晶合金2的摩擦焊接在第一非晶合金1和第二非晶合金2的交叉过冷液相区(非晶的过冷液相区是一个温度范围,在这个范围里面,非晶塑性大且能保持非晶态,适用于焊接。然后不同非晶的过冷液相区是不同的,比如有300-400℃,和350-420℃,那么交叉过冷液相区就是350-400℃,保证两类非晶在该温度下焊接,以确保焊接完成后的非晶态)内完成,在非晶合金的过冷液相区完成工作,非晶合金不 会晶化,确保了制备前后材料的非晶态,非晶合金的性能不会受到影响,克服了传统的焊接方法带来的材料性能下降的缺点。
在优选实施例中,所述步骤三中,超声装置的参数、主旋转运动装置参数和压力装置参数之间的参数调节相互独立设置,进一步的,第一非晶合金1的主旋转运动参数和第二非晶合金2的主旋转运动参数之间相互独立设置,所述主旋转运动装置的转动范围为0~360°,所述主旋转运动装置的旋转速度为0~500rpm,第一非晶合金1和压力装置参数和第二非晶合金2间的压力装置参数相互独立设置,所述压力装置的压力范围为0~5MPa,第一非晶合金1的超声装置参数和第二非晶合金2间超声装置参数相互独立设置,所述超声装置的功率范围为0~2kW,该系数下的加工参数,加工效果最佳,保证超声摩擦焊接的焊接稳定性。
下面结合具体实施例对本发明做进一步的说明:
实施例1:
如图1所示,一种用于大尺寸非晶合金的超声摩擦焊接成型方法,包括如下步骤:
步骤一:取需加工的两块非晶合金,并根据非晶合金的焊接要求,采用铣削加工,在第一非晶合金1和第二非晶合金2的待焊接界面处加工微型结构3,其中,微型结构3为矩形结构,第一非晶合金1的组分为Zr57Nb5Cu15.4Ni12.6Al10,Tg为405℃,Tx为470℃,第二非晶合金2的组分为Zr58.5Nb2.8Cu15.6Ni12.8Al10.3,Tg为400℃,Tx为480℃。
步骤二:将第一非晶合金1和第二非晶合金2装夹在焊接系统上,使得第一非晶合金1的焊接面与第二非晶合金2的焊接面相互接触。
步骤三:设定第一非晶合金1的主旋转运动参数为沿a逆方向旋转,旋转速度为200rpm,第二非晶合金2的主旋转运动参数为沿a方向旋转,旋转速度为200rpm,压力装置工作,使第一非晶合金1和第二非晶合金2沿X方向相对平移运动挤压,同时,超声装置工作,功率为800W,沿X方向定向超声,两者的交叉过冷液相区为405-407℃,完成第一非晶合金1与第二非晶合金2的摩擦焊接。
实施例2:
如图2所示,一种用于大尺寸非晶合金的超声摩擦焊接成型方法,包括如下步骤:
步骤一:取需加工的两块非晶合金,并根据非晶合金的焊接要求,采用激光加工,在第一非晶合金1和第二非晶合金2待焊接界面处加工微型结构3,其中,微型结构为三角形结构,第一非晶合金1和第二非晶合金2的组分均为Ca65Li14.54Mg12.46Zn8,Tg为35℃,Tx为105℃。
步骤二:将第一非晶合金1和第二非晶合金2装夹在焊接系统上,使得第一非晶合金的 焊接面与第二非晶合金的焊接面相互接触。
步骤三:设定第一非晶合金1的主旋转运动参数为沿a逆方向旋转,旋转速度为0rpm,第二非晶合金2的主旋转运动参数为沿a逆方向旋转,旋转速度为100rpm,压力装置工作,使第一非晶合金1和第二非晶合金2沿X方向相对平移运动挤压,同时,超声装置工作,功率为800W,沿X方向定向超声,两者的交叉过冷液相区为35-105℃,完成第一非晶合金1与第二非晶合金2的摩擦焊接。
实施例3:
如图3所示,一种用于大尺寸非晶合金的超声摩擦焊接成型方法,包括如下步骤:
步骤一:取需加工的两块非晶合金,第一非晶合金1的组分为Zr44Ti11Cu10Ni10Be25,Tg为350℃,Tx为471℃,第二非晶合金2的组分为Zr35Ti30Be27.5Cu7.5,Tg为301℃,Tx为467℃。
步骤二:将第一非晶合金1和第二非晶合金2装夹在焊接系统上,使得第一非晶合金1的焊接面与第二非晶合金2的焊接面相互接触。
步骤三:设定第一非晶合金1的主旋转运动参数为沿a逆方向旋转,旋转速度为300rpm,第二非晶合金2的主旋转运动参数为沿a方向旋转,旋转速度为200rpm,压力装置工作,使第一非晶合金1和第二非晶合金2沿X方向相对平移运动挤压,同时,超声装置工作,功率为800W,沿X方向定向超声,两者的交叉过冷液相区为350-467℃,完成第一非晶合金1与第二非晶合金2的摩擦焊接。
实施例4:
如图4所示,一种用于大尺寸非晶合金的超声摩擦焊接成型方法,包括如下步骤:
步骤一:取需加工的两块非晶合金,并根据非晶合金的焊接要求,采用超声加工,在第一非晶合金1和第二非晶合金2待焊接界面处加工微型结构3,其中微型结构3为矩形结构,第一非晶合金1的组分为Zr41.2Ti13.8Cu12.5Ni10Be22.5,Tg为349℃,Tx为426℃,第二非晶合金2的组分为Zr44Ti11Cu10Ni10Be25,Tg为350℃,Tx为471℃。
步骤二:将第一非晶合金1和第二非晶合金2装夹在焊接系统上,使得第一非晶合金1的焊接面与第二非晶合金2的焊接面相互接触。
步骤三:设定第一非晶合金1的主旋转运动参数为沿a逆方向旋转,旋转速度为200rpm,第二非晶合金2的主旋转运动参数为沿a方向旋转,旋转速度为200rpm,压力装置工作,使第一非晶合金1和第二非晶合金2沿X方向相对平移运动挤压,同时,超声装置工作,功率为800W,沿X方向定向超声,两者的交叉过冷液相区为350-426℃,完成第一非晶合金1与 第二非晶合金2的摩擦焊接。
本发明相对比现有技术的有益效果:由于在非晶合金表面设置的微型结构一方面可以增加材料表面的粗糙度,使得同样的工艺下,所产生的热量更多,提升焊接效率;另一方面,通过微型结构的设计,可以减小材料接触界面处不同半径处线速度的差异,进一步降低热量产生的不均匀性,同时配合超声装置的超声振动还能促进材料接触界面处热量的传递与交换,进而促进能量分布的均匀性,较小材料焊接时的缺陷。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种用于大尺寸非晶合金的超声摩擦焊接成型方法,其特征在于:包括如下步骤:
    步骤一:取需加工的非晶合金,然后根据非晶合金的焊接要求,将第一非晶合金和第二非晶合金的待焊接面处加工为微型结构;
    步骤二:将步骤一中带有微型结构的第一非晶合金和第二非晶合金,装夹固定在超声焊接系统上,使得第一非晶合金的焊接面与第二非晶合金的焊接面相互接触;
    步骤三:分别设定超声焊接系统中的超声装置的参数、主旋转运动装置参数和压力装置参数,并开启超声焊接系统,完成第一非晶合金和第二非晶合金的摩擦焊接。
  2. 如权利要求1所述的一种用于大尺寸非晶合金的超声摩擦焊接成型方法,其特征在于:所述步骤一中,第一非晶合金和第二非晶合金的待焊接面处的微型结构包括有:微米尺寸微型结构和/或纳米尺寸微型结构,所述第一非晶合金和第二非晶合金的待焊接面处的微型结构为非晶态微型结构。
  3. 如权利要求1所述的一种用于大尺寸非晶合金的超声摩擦焊接成型方法,其特征在于:所述步骤一中,所述第一非晶合金待焊接面处的微型结构和第二非晶合金待焊接面处的微型结构之间相互啮合设置。
  4. 如权利要求1所述的一种用于大尺寸非晶合金的超声摩擦焊接成型方法,其特征在于:所述步骤一中,微型结构的加工方法包括有激光加工、超声加工、车削、刨削、铣削、钻削和磨削中的任意一种。
  5. 如权利要求6所述的一种用于大尺寸非晶合金的超声摩擦焊接成型方法,其特征在于:所述步骤三中,第一非晶合金和第二非晶合金之间的接触面做相对旋转运动。
  6. 如权利要求1所述的一种用于大尺寸非晶合金的超声摩擦焊接成型方法,其特征在于:所述上述步骤三中,第一非晶合金和第二非晶合金的摩擦焊接在第一非晶合金和第二非晶合金的交叉过冷液相区内完成。
  7. 如权利要求1所述的一种用于大尺寸非晶合金的超声摩擦焊接成型方法,其特征在于:所述步骤三中,超声装置的参数、主旋转运动装置参数和压力装置参数之间的参数调节相互独立设置。
  8. 如权利要求1所述的一种用于大尺寸非晶合金的超声摩擦焊接成型方法,其特征在于:所述步骤三中,第一非晶合金的主旋转运动参数和第二非晶合金的主旋转运动参数之间相互独立设置,所述主旋转运动装置的转动范围为0~360°,所述主旋转运动装置的旋转速度为0~500rpm。
  9. 如权利要求1所述的一种用于大尺寸非晶合金的超声摩擦焊接成型方法,其特征在于:所述步骤三中,第一非晶合金和压力装置参数和第二非晶合金间的压力装置参数相互独立设置,所述压力装置的压力范围为0~5MPa。
  10. 如权利要求1所述的一种用于大尺寸非晶合金的超声摩擦焊接成型方法,其特征在于:所述步骤三中,第一非晶合金的超声装置参数和第二非晶合金的超声装置参数相互独立设置,所述超声装置的功率范围为0~2kW。
PCT/CN2021/096179 2020-05-28 2021-05-26 一种用于大尺寸非晶合金的超声摩擦焊接成型方法 WO2021239012A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010469406.X 2020-05-28
CN202010469406.XA CN111590190B (zh) 2020-05-28 2020-05-28 一种用于大尺寸非晶合金的超声摩擦焊接成型方法

Publications (1)

Publication Number Publication Date
WO2021239012A1 true WO2021239012A1 (zh) 2021-12-02

Family

ID=72184188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096179 WO2021239012A1 (zh) 2020-05-28 2021-05-26 一种用于大尺寸非晶合金的超声摩擦焊接成型方法

Country Status (2)

Country Link
CN (1) CN111590190B (zh)
WO (1) WO2021239012A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114571080A (zh) * 2022-04-14 2022-06-03 常州世竟液态金属有限公司 块体非晶合金用斜角双面激光焊接方法及板材

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111590190B (zh) * 2020-05-28 2021-08-03 广东工业大学 一种用于大尺寸非晶合金的超声摩擦焊接成型方法
CN112342410B (zh) * 2020-10-30 2021-12-03 深圳大学 一种非晶合金的制备方法
CN113618222B (zh) * 2021-07-30 2023-04-21 广东工业大学 一种非晶合金的焊接工艺和块体非晶合金
CN113664361A (zh) * 2021-08-04 2021-11-19 广东工业大学 一种提高大块非晶合金摩擦焊接效果的方法和块体非晶合金
CN113798499A (zh) * 2021-08-04 2021-12-17 广东工业大学 一种块体非晶合金的制造方法和块体非晶合金
CN113798654B (zh) * 2021-08-04 2023-05-16 广东工业大学 一种非晶合金的摩擦连接方法和块体非晶合金
CN114192778B (zh) * 2022-01-24 2024-02-09 东莞市逸昊金属材料科技有限公司 一种非晶产品的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203379A (ja) * 1984-03-27 1985-10-14 Res Dev Corp Of Japan アモルフアス合金の接合方法
CN101829844A (zh) * 2009-03-11 2010-09-15 中国科学院金属研究所 非晶合金与异质金属材料搅拌摩擦连接方法
CN102248275A (zh) * 2011-06-20 2011-11-23 南昌大学 块体非晶合金材料超声波焊接方法
CN104353930A (zh) * 2014-09-26 2015-02-18 东莞台一盈拓科技股份有限公司 一种非晶合金的超声波焊接方法
CN105522272A (zh) * 2014-09-29 2016-04-27 江苏嘉盟电力设备有限公司 铜铝端面的摩擦焊接方法
US9610650B2 (en) * 2013-04-23 2017-04-04 California Institute Of Technology Systems and methods for fabricating structures including metallic glass-based materials using ultrasonic welding
CN109226956A (zh) * 2018-11-19 2019-01-18 西北工业大学 超声振动辅助摩擦焊接方法
CN110076441A (zh) * 2019-04-25 2019-08-02 大连理工大学 一种超声振动辅助的异质金属旋转摩擦焊接装置与方法
CN111590190A (zh) * 2020-05-28 2020-08-28 广东工业大学 一种用于大尺寸非晶合金的超声摩擦焊接成型方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1312236A (en) * 1969-06-04 1973-04-04 Int Harvester Co Method of forming and testing a friction welded joint
CN104307906A (zh) * 2014-10-17 2015-01-28 深圳市锆安材料科技有限公司 非晶合金与非非晶合金材料的复合体成型方法
CN105364314B (zh) * 2015-09-15 2017-04-05 南昌航空大学 一种对于FeSiB非晶带材获得非晶接头的焊接方法
CN108085632B (zh) * 2017-12-11 2019-07-23 华中科技大学 一种基于超声振动的塑性成形及增韧工艺方法及其装置
CN110026750B (zh) * 2019-06-04 2021-08-17 中国科学院金属研究所 一种非晶合金构件的加工方法
CN110681979A (zh) * 2019-10-25 2020-01-14 江苏理工学院 一种超声同轴辅助双轴肩搅拌摩擦焊接方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203379A (ja) * 1984-03-27 1985-10-14 Res Dev Corp Of Japan アモルフアス合金の接合方法
CN101829844A (zh) * 2009-03-11 2010-09-15 中国科学院金属研究所 非晶合金与异质金属材料搅拌摩擦连接方法
CN102248275A (zh) * 2011-06-20 2011-11-23 南昌大学 块体非晶合金材料超声波焊接方法
US9610650B2 (en) * 2013-04-23 2017-04-04 California Institute Of Technology Systems and methods for fabricating structures including metallic glass-based materials using ultrasonic welding
CN104353930A (zh) * 2014-09-26 2015-02-18 东莞台一盈拓科技股份有限公司 一种非晶合金的超声波焊接方法
CN105522272A (zh) * 2014-09-29 2016-04-27 江苏嘉盟电力设备有限公司 铜铝端面的摩擦焊接方法
CN109226956A (zh) * 2018-11-19 2019-01-18 西北工业大学 超声振动辅助摩擦焊接方法
CN110076441A (zh) * 2019-04-25 2019-08-02 大连理工大学 一种超声振动辅助的异质金属旋转摩擦焊接装置与方法
CN111590190A (zh) * 2020-05-28 2020-08-28 广东工业大学 一种用于大尺寸非晶合金的超声摩擦焊接成型方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114571080A (zh) * 2022-04-14 2022-06-03 常州世竟液态金属有限公司 块体非晶合金用斜角双面激光焊接方法及板材
CN114571080B (zh) * 2022-04-14 2024-03-22 常州世竟液态金属有限公司 块体非晶合金用斜角双面激光焊接方法及板材

Also Published As

Publication number Publication date
CN111590190A (zh) 2020-08-28
CN111590190B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2021239012A1 (zh) 一种用于大尺寸非晶合金的超声摩擦焊接成型方法
CN213196184U (zh) 一种双光源复合激光加工装置
CN105436710A (zh) 一种硅晶圆的激光剥离方法
CN105252146B (zh) 一种实现电池极耳变距切割的差速装置
WO2020258859A1 (zh) 超声定点聚焦辅助金属表面激光熔覆纳米陶瓷涂层的方法
JP7068392B2 (ja) スパッタリングターゲットの溶接方法
CN105728807A (zh) 薄壁零件的加工方法
CN108866546B (zh) 一种用于激光熔覆修复齿轮的装置
CN108544379A (zh) 一种固液两相磨料流抛光变口径管内孔的加工装置
CN111590224B (zh) 一种激光辅助制备大块非晶合金的系统及方法
WO2020168994A1 (zh) 一种针对于大型薄壁件的冰冻支撑装置及方法
CN105483694A (zh) 一种针对大型阀门的斜锥台型阀板密封面的激光熔覆装置
CN206204424U (zh) 一种基于偏振补偿器调制预热加工缓冷功率的激光熔覆设备
CN102091889A (zh) 一种堆焊方法及其装置
CN112404712A (zh) 一种用于热塑复合材料与金属激光连接的气体冷却装置与方法
CN102152420A (zh) 大尺寸蓝宝石晶体毛坯的低损耗定向切割方法
JPH09216075A (ja) 金属部材の表面仕上方法及びそれにより得られる金属部材
CN104400210B (zh) 一种航空发动机涡轮盘与轴的惯性摩擦焊接方法
CN105108359A (zh) 一种锂电池电极搅拌摩擦和超声波复合焊接的方法
CN207464835U (zh) 一种基于磁流变效应的线性抛光加工装置
CN111805780A (zh) 一种单晶金刚石曲面精密加工方法及系统
CN110682015A (zh) 一种改善镀锌板激光搭接焊焊缝外观质量及性能的方法
CN103358022A (zh) 一种涡轮增压器壳体的激光焊接方法
CN206244640U (zh) 一种真空玻璃制作设备
Wang et al. Study on optical polishing of optical glass by means of ultrasonic-magnetorheological compound finishing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813561

Country of ref document: EP

Kind code of ref document: A1