WO2021238567A1 - 一种考虑区间支流来水的干流水库生态调度方法 - Google Patents

一种考虑区间支流来水的干流水库生态调度方法 Download PDF

Info

Publication number
WO2021238567A1
WO2021238567A1 PCT/CN2021/090805 CN2021090805W WO2021238567A1 WO 2021238567 A1 WO2021238567 A1 WO 2021238567A1 CN 2021090805 W CN2021090805 W CN 2021090805W WO 2021238567 A1 WO2021238567 A1 WO 2021238567A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
spawning
ecological
inflow
tributary
Prior art date
Application number
PCT/CN2021/090805
Other languages
English (en)
French (fr)
Inventor
许继军
戴会超
杨春花
尹正杰
李清清
刘志武
蒋定国
赵汗青
Original Assignee
中国长江三峡集团有限公司
长江水利委员会长江科学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国长江三峡集团有限公司, 长江水利委员会长江科学院 filed Critical 中国长江三峡集团有限公司
Priority to US17/625,311 priority Critical patent/US11866897B2/en
Priority to JP2022530343A priority patent/JP7232451B2/ja
Priority to GB2201940.0A priority patent/GB2600368B/en
Publication of WO2021238567A1 publication Critical patent/WO2021238567A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/02Stream regulation, e.g. breaking up subaqueous rock, cleaning the beds of waterways, directing the water flow
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • E02B1/02Hydraulic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the invention relates to the technical field of water resources management and aquatic ecology, in particular to a method for ecological dispatching of main stream reservoirs in consideration of the inflow of water from inter-region tributaries.
  • the spawning of drifting egg fish during the spawning period is closely related to the high-flow pulse process in the river, and most of the spawning occurs during the high-flow pulse rise.
  • the reservoirs With the construction and operation of large-scale reservoirs on rivers, the reservoirs have undertaken comprehensive utilization tasks such as flood control and power grid peak shaving, and have changed the natural hydrological runoff laws of downstream rivers.
  • the original high-flow pulse duration, frequency, peak value and other parameters of the river have all been compared. The major changes have had a greater impact on the spawning of drifting spawning fish in the lower reaches of the river.
  • the purpose of the present invention is to solve the problem that the conventional reservoir operation method cannot realize the high-frequency and high-flow pulse process generated by the downstream river. Based on the natural high-flow pulse encounter law of the trunk and branch of the river for many years, it determines a mainstream reservoir ecology that considers the interval flooding.
  • the scheduling method is to maximize the high-flow pulse process of the downstream spawning field by optimizing the scheduling method of the main stream reservoir, improve the hydrological conditions required for the mass reproduction of floating spawning fish, and promote the natural reproduction of floating spawning spawning fish.
  • the present invention provides a method for ecological regulation of a main stream reservoir considering the inflow of water from the inter-area tributaries, which includes the following steps:
  • Step 1 Determine the contribution ratio of the inflow from the tributaries to the first day of the high-flow pulse process and the start time of the ecological scheduling of the spawning site section. The specific steps are as follows:
  • the IHA method is used to simulate the high-flow pulse generation process.
  • the first day of the high-flow pulse process at the spawning site is caused by the inflow of water from the tributary of the interval. If the water increase contribution ratio ⁇ is greater than the threshold ⁇ , then the interval tributary rising flow Q e , the average flow increase dQ and the water increase duration D are selected as the ecological dispatch start control indicators.
  • the start timing of the current dispatch start st is judged by the tributary's water rise ;
  • the contribution ratio ⁇ of the inflow from the tributaries to the first day of the high-flow pulse process at the spawning site is not greater than the threshold ⁇
  • the starting flow Q e , the average increase dQ and the increase duration D of the main stream are selected as the ecological dispatch start control indicators,
  • the start timing st of ecological dispatch is judged by the rising water of the main stream;
  • Step 2 Determine the channel evolution method and calibration parameters after the main stream merges
  • the Muskingen method is used to calculate the discharge of the upstream reservoir and the flow after the confluence of the inter-area tributaries. Taking into account the inflow of other small tributaries, the Muskingen method is adopted after the inflow of side branches is considered.
  • Method for calculation of river flow the schematic diagram of the locations of main and tributary streams and spawning grounds is shown in Figure 1;
  • Step 3 Determine the ecological regulation method of the main stream reservoir considering the inflow of the tributary water in the interval. The specific steps are as follows:
  • the ecological dispatching method of the mainstream reservoir is determined to maximize the artificial high-flow pulse frequency H, namely max
  • the outflow flow process of the main stream reservoir is calculated through optimization, and the outflow flow Qout st+j+1 of the main stream reservoir during st+j+1 period is deduced as the formula ( 3)
  • Qsy st+j is the synthetic flow rate of the spawning field control section
  • Qmj st+j is the interval tributary flow
  • st is the starting period of ecological dispatch, which is determined by the rising water of the main stream or the interval tributary, that is, during the fish spawning period ⁇ > ⁇ , when the tributary of the prediction interval has continuous water increase not less than D days, the average increase is not less than dQ, and the corresponding rising flow is not less than Qe, the main stream reservoir starts to consider the ecology of the interval inflow on the first day of the interval increase.
  • the start timing st of ecological dispatch in step 1 is judged by the water rise of the tributaries, that is, when the interval tributaries have continuous rise of not less than D days, the average increase in flow rate is not less than d Q, and the rising flow rate is not less than Q e .
  • the main stream reservoir starts to start compensation scheduling to meet the requirements of the high-flow pulse process required for the spawning of spawning fish in the downstream spawning ground; the start time of ecological scheduling is judged by the main stream rising water, that is, when the main stream continues to increase, the water is not less than On D days, when the average increase in flow rate is not less than d Q and the rising flow rate is not less than Q e , the main stream reservoir starts to start compensation scheduling considering the interval tributaries to meet the high flow pulse required for the spawning of egg fish in the downstream spawning ground Process requirements.
  • the water rise duration D is based on the high flow pulse duration corresponding to 75% of the frequency of the high flow pulse required for fish spawning; the rise flow Qe and the average rise dQ are selected according to the frequency method and the maximum and minimum method.
  • the method is that the rising flow Qe and the average rising dQ are set at 75% of the high flow pulse of the main stream or interval during the spawning period; the maximum and minimum method is to select the largest average increase and the corresponding rising flow during the main stream or interval during each spawning period.
  • the average increase of the continuous increase and the corresponding minimum value of the rising flow are selected as the average increase of the continuous rising dQ and the corresponding value of the rising flow Qe.
  • step 3 according to the compensation dispatch of the main stream reservoir after the inflow of the interval is considered, calculate the high flow pulse frequency H of the spawning field control section calculated by the ecological dispatch method considering the inflow of the tributary section, when the combined flow rate of the spawning field section Qsy st+ j When the following conditions are met, it is counted as 1 pulse action:
  • the invention has the following advantages: (1) Considering the inflow of the tributaries of the interval, it can solve the problem of insufficient frequency of the high-flow pulse process in the downstream channel caused by conventional scheduling, can effectively improve the high-flow pulse process in the downstream channel, and meet the spawning ground to produce a large number of floating egg fish Hydrological conditions required for reproduction; (2) The established spawning field section high flow pulse frequency simulation model can quickly simulate the high flow pulse process of the downstream spawning field section under various scheduling schemes, and the optimal mainstream reservoir can be calculated through optimization. Ecological scheduling method.
  • Figure 1 is the topological relationship diagram of the main and tributary water systems of the river
  • Figure 2 shows the pulse flow process under three conditions at Zhutuo Station in 2000
  • FIG. 3 shows the pulse flow process under three conditions at Zhutuo Station in 2010
  • FIG. 4 shows the pulse flow process under three conditions at Zhutuo Station in 1986.
  • the present invention takes the ecological regulation of drifting spawned fish from the downstream of the Jinsha River from Xiangjiaba to Chongqing as an example, and uses the method determined by the present invention for detailed description, which also has guiding significance for the ecological regulation of other rivers.
  • the embodiment of the present invention provides a method for ecological dispatching of a main stream reservoir considering the inflow of water from an inter-area tributary, which includes the following steps:
  • Step 1 Determine the start-up index of the ecological regulation of the spawning site section and the contribution ratio of the tributary inflow
  • Zhutuo Station needs to generate a high-flow pulse process in May and mid-June to early July, respectively, to satisfy the spawning of egg fish .
  • the high-flow daily flow increase at Zhutuo Station on the main stream that is, the average flow increase dQ: 700 in May, and 760 from mid-June to July; high-flow pulses continue to increase water, that is, water increase Duration D: Value 2 in May, value 3 from mid-June to July; first-day increase, that is, the initial increase in water level Ze: value 900 in May, value 1200 from mid-June to July; starting flow Qe : The value is 3900 in May, 6500 from mid-June to July; peak flow Qm: 6200 in May, and 14,000 from mid-June to July.
  • the Minjiang River a tributary, has a relatively large catchment area, and the water inflow from April to July from 1954 to 2012 accounted for 34.93% of the Zhutuo Station. 247 high-flow pulses occurred at Zhutuo Station on the mainstream of the Yangtze River. There were 240 simultaneous high-flow pulses at the Minjiang High Field Station, accounting for 97.17% of the high-flow pulses at Zhutuo Station. According to calculations, from April to July, the average contribution ratio ⁇ of Minjiang River to Zhutuo Station's first day of high-flow impulse rise is 36.7%.
  • the measured data over the years show that at least one high-flow pulse of Minjiang River encounters the high-flow pulse of Zhutuo Station every year, and it contributes a lot to the first-day water increase rate of the high-flow pulse of Zhutuo Station.
  • the IHA method was used to simulate the high flow pulse generation process. Since the average contribution of Minjiang River to Zhutuo Station’s high-flow impulse first day rise from April to July is 36.7% greater than the threshold of 30%, the start period st for the start of ecological dispatch is determined by the rise of Minjiang River, that is: when the prediction interval Minjiang River continues in May The water rise is not less than 2 days, the average flow rate increase is not less than 290m 3 /s, and the corresponding rise flow rate is not less than 1413m 3 /s; there is a continuous water rise of not less than 2 days and the average increase rate from mid-June to early July It is not less than 495m 3 /s and the corresponding rising flow is not less than 2330m 3 /s. When the above-mentioned ecological dispatching timing conditions are met, the Xilu
  • Step 2 Channel evolution method and parameter calibration after the convergence of main and tributary streams
  • Step 3 Determine the ecological regulation method of the main stream reservoir considering the water from the tributaries of the interval
  • H is the determined high-flow pulse frequency of the spawning field control section calculated by the ecological dispatch method considering the inflow of the tributary Minjiang River.
  • the high-flow daily flow rate increase dQ of Zhutuo Station on the main stream value 700 in May, value 760 from mid-June to July; time of continuous high-flow pulse increase day: value 2 in May, value from mid-June to 7 Month value 3; first day increase Ze: May value 900, mid-June to July value 1200; starting flow Qe: May value 3900, mid-June to July value 6500; peak flow Qm : The value is 6200 in May and 14000 from mid-June to July.
  • the outflow flow process of the main stream reservoir is calculated through optimization, and the outflow flow Qout st+j+1 of the main stream reservoir during st+j+1 period is deduced as the formula ( 3)
  • Qsy st+j is the synthetic flow rate of the spawning field control section
  • Qmj st+j is the interval tributary Minjiang flow
  • st is the starting period of ecological dispatch, which is determined by the rising water of the Minjiang River, that is, when the forecast interval Minjiang River continues to rise in May
  • the water is not less than 2 days
  • the average increase is not less than 290m 3 /s
  • the corresponding rising flow is not less than 1413m 3 /s
  • the Xiluodu and Xiangjiaba Reservoirs on the main stream of the Jinsha River will start ecological compensation scheduling on the first day of the Minjiang River.
  • the years 2000, 2010 and 1986 of Zhutuo Station were selected as the typical years of high water, normal water and dry years. According to the above model, the process of calculating the outflow flow of the main stream reservoir was optimized and the ecological operation mode was obtained.
  • the composition law of incoming water from the control section of the spawning field under natural conditions is analyzed, and the high-flow pulse frequency H 0 of the control section of the spawning field under natural conditions is calculated; according to the conventional scheduling rules of the main stream reservoir, the conventional scheduling spawning is calculated Field control section high flow pulse frequency H 1 ; According to the compensation dispatch of the main stream reservoir after considering the inflow of water in the interval, calculate the high flow pulse frequency H of the spawning field control section considering the inflow of the interval.
  • Tables 1 to 3 the pulse process is shown in Figures 2 to 4.
  • the main stream reservoir ecological scheduling scheme determined by the present invention effectively increases the frequency of the high-flow pulse process, which is beneficial to the natural reproduction of the fish with floating eggs in the spawning ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Primary Health Care (AREA)
  • Quality & Reliability (AREA)
  • General Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Animal Husbandry (AREA)
  • Agronomy & Crop Science (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Water Supply & Treatment (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Artificial Fish Reefs (AREA)
  • Sewage (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种考虑区间支流来水的干流水库生态调度方法,通过调查研究明确下游干流产卵场处目标鱼类产卵的生态水文需求,开展干支流与鱼类产卵相关的高流量脉冲遭遇分析,整理统计鱼类产卵期间干支流历年高流量脉冲特征指标,识别干流水库配合支流开展生态调度启动条件关键指标,依据历时水文资料确定河道演算重要参数,构建水库生态调度模型,实现考虑区间支流来水水库生态调度方法。该方法考虑区间支流来水可以解决常规调度造成下游河道高流量脉冲过程频次不够的问题,可有效改善下游河道高流量脉冲过程,满足产卵场产漂流性卵鱼大量繁殖所需水文条件。

Description

一种考虑区间支流来水的干流水库生态调度方法 技术领域
本发明涉及水资源管理和水生态技术领域,具体是一种考虑区间支流来水的干流水库生态调度方法。
背景技术
产漂流性卵鱼在产卵期产卵与否与河道内高流量脉冲过程息息相关,且产卵量大部分发生在高流量脉冲涨水过程中。随着河流上大规模水库的建成运行,水库承担了防洪、电网调峰等综合利用任务,改变了下游河道天然水文径流规律,河道原来的高流量脉冲持续时间、频率、峰值等参数均发生较大改变,对下游河段产漂流性卵鱼类产卵产生较大影响。同时,目前大多数水库生态调度研究与试验是基于干流水库入库流量与调度规则进行的,往往忽略区间支流来水作用,使水库下泄过程与区间涨水过程不匹配,导致下游河道产卵场断面不能产生理想高流量脉冲涨水过程,生态调度效果难以达到预期。为此,亟需确定一种为促进鱼类产卵期自然繁殖,在考虑区间来水过程基础上通过优化干流水库调度方式改善下游河道高流量脉冲过程,满足产卵场产漂流性卵鱼大量繁殖所需水文条件,维系河流健康。
发明内容
本发明的目的在于解决常规水库调度方式无法实现下游河道产生的高频次高流量脉冲过程的问题,其基于河道干支流多年天然高流量脉冲遭遇规律,确定一种考虑区间涨水的干流水库生态调度方法,通过优化干流水库调度方式最大程度提高下游产卵场高流量脉冲过程,改善产漂流性卵鱼大量繁殖所需水文条件,促进产漂流性卵鱼自然繁殖。
本发明提供一种考虑区间支流来水的干流水库生态调度方法,包括如下步骤:
步骤一:确定区间支流来水对高流量脉冲过程首日涨水贡献比及产卵场断面生态调度启动时机,具体步骤如下:
(1)确定产卵场断面目标鱼生态水文参数:根据产卵场目标鱼类产卵监测资料、水文资料,确定产卵场控制断面目标鱼类生态水文参数,即确定起涨流量Q e、水位起始涨幅Z e、峰值流量Q m、流量平均涨幅dQ、涨水历时D取值;
(2)计算区间支流来水对高流量脉冲过程首日涨水贡献比:根据还原后的长系列水文径流数据,计算下游产卵场高流量脉冲过程频次,分析上游干流、区间支流来水分别对下游产卵场高流量脉冲过程的影响,确定区间支流来水对产卵场处高流量脉冲过程首日涨水贡献比β;
(3)确定生态调度启动时机:根据干支流控制站水文径流数据,利用IHA法模拟高流量脉冲发生过程,在鱼类产卵期间当区间支流来水对产卵场处高流量脉冲过程首日涨水贡献比β大于阈值θ,则选取区间支流起涨流量Q e、流量平均涨幅dQ及涨水历时D作为生态调度启动控制指标,此时态调度启动开始时机st由支流来水涨水判断;当区间支流来水对产卵场处高流量脉冲过程首日涨水贡献比β不大于阈值θ,选取干流起涨流量Q e、平均涨幅dQ 及涨水历时D作为生态调度启动控制指标,此时生态调度启动开始时机st由干流涨水判断;
步骤二:确定干支流汇合后河道演进方法及率定参数
根据历时水文资料,采用马斯京根法对上游水库下泄水量及区间支流汇合后的流量进行河道流量演算,考虑到还有其他小支流的汇入,采用考虑旁支汇入后的马斯京根法进行河道流量演算,干支流及产卵场位置示意图见图1;
步骤三:确定考虑区间支流来水的干流水库生态调度方式,具体步骤如下:
(1)建立产卵场断面高流量脉冲频次模拟模型
根据产卵场断面高流量脉冲组成及区间支流来水对高流量脉冲过程首日涨水贡献比,确定干流水库生态调度方式,使人工高流量脉冲频次H最大,即max|H|,式中,H为确定的考虑支流区间来水的生态调度方法计算的产卵场控制断面高流量脉冲频次;
(2)确定干流水库配合区间来水的生态调度方式
为配合区间来水使控制断面高流量脉冲频次H尽量大,通过优化求解计算干流水库出库流量过程,反推出干流水库st+j+1时段出库流量Qout st+j+1,如式(3)
Qsy st+j+1=d 0(Qout st+j+1+Qmj st+j+1)+d 1(Qout st+j+Qmj st+j)+d 2Qsy st+j
Qout st+j+1=(Qsy st+j+1-d 1(Qout st+j+Qmj st+j)-d 2Qsy st+j)/d 0-Qmj st+j+1    (3)
式中,Qsy st+j为产卵场控制断面合成流量,Qmj st+j为区间支流流量,st为生态调度启动开始时段,由干流或区间支流涨水决定,即在鱼类产卵期间β>θ时,当预测区间支流出现持续涨水不小于D天、平均涨幅不小于dQ及对应起涨流量不小于Qe的涨水过程干流水库在区间涨水第一日启动考虑区间来水的生态补偿调度;β≤θ时,当预测干流出现持续涨水不小于D天、平均涨幅不小于dQ及对应起涨流量不小于Qe的涨水过程干流水库在干流涨水第一日启动考虑区间来水的生态补偿调度。
进一步的,步骤一中生态调度启动开始时机st由支流来水涨水判断,即当区间支流出现持续涨水不小于D天、流量平均涨幅不小于d Q及起涨流量不小于Q e的涨水过程时,干流水库开始启动补偿调度,满足下游产卵场卵鱼产卵所需的高流量脉冲过程要求;生态调度启动开始时机st由干流涨水判断,即当干流出现持续涨水不小于D天、流量平均涨幅不小于d Q及起涨流量不小于Q e的涨水过程时,干流水库开始启动考虑区间支流的补偿调度,满足下游产卵场卵鱼产卵所需的高流量脉冲过程要求。
进一步的,步骤一中涨水历时D按鱼类产卵所需高流量脉冲中75%频率对应的高流量脉冲历时;起涨流量Qe、平均涨幅dQ按频率法与最大最小法取值,频率法是起涨流量Qe、平均涨幅dQ按产卵期间干流或区间高流量脉冲的75%定值;最大最小法是选出每年产卵期间干流或区间最大的平均涨幅及对应的起涨流量,选取持续涨水平均涨幅及对应的起涨流量最小值作为持续涨水平均涨幅值dQ及对应的起涨流量值Qe。
进一步的,步骤二中河道流量演算的计算公式如下:
Figure PCTCN2021090805-appb-000001
式中,Q 下,2为下游产卵场控制断面时段末流量,Q 上,2为上游干支流汇合断
面时段末流量,Q 上,1上游干支流汇合断面时段初流量,Q 下,1下游产卵场控制断面时 段初流量,Δt为计算时段,k为蓄流流量关系曲线,x为流量比重因素,α为区间支流来水对汇合断面贡献比,河道流量演算系数d 0、d 1、d 2根据多年长系列实测流量用最小二乘法率定。
进一步的,步骤三中根据考虑区间来水后干流水库补偿调度,计算考虑支流区间来水的生态调度方法计算的产卵场控制断面高流量脉冲频次H,当产卵场断面合成流量Qsy st+j满足下式条件时,计为1次脉冲动作:
Figure PCTCN2021090805-appb-000002
式中,起涨流量Q e、水位起始涨幅Z e、峰值流量Q m、流量平均涨幅dQ、涨水历时D取值来自步骤一。
本发明具有以下优点:(1)考虑区间支流来水可以解决常规调度造成下游河道高流量脉冲过程频次不够的问题,可有效改善下游河道高流量脉冲过程,满足产卵场产漂流性卵鱼大量繁殖所需水文条件;(2)建立的产卵场断面高流量脉冲频次模拟模型,可快速模拟各种调度方案下下游产卵场断面高流量脉冲过程,并通过优化求解计算出干流水库最佳生态调度方式。
附图说明
图1为河流干支流水系拓扑关系图;
图2为朱沱站2000年三种情形下脉冲流量过程;
图3为朱沱站2010年三种情形下脉冲流量过程;
图4为朱沱站1986年三种情形下脉冲流量过程。
具体实施方式
下面结合附图详细说明本发明的实施情况,对本发明中的技术方案进行清楚、完整地描述。但它们并不构成对本发明的限定,仅作举例而已,同时通过说明使本发明的优点更加清楚和容易理解。
本发明以金沙江下游向家坝至重庆河段产漂流性卵鱼类生态调度为例,采用本发明确定的方法来进行详细说明,对于其它河流生态调度同样具有指导意义。
位于金沙江宜宾至重庆的川渝河段,是长江上游珍稀特有鱼类国家级自然保护区,该河段全长约387km,上游建有溪洛渡、向家坝等水电站,区间有岷江、赤水河、沱江等较大支流。该河段产漂流性代表性鱼类有鲖鱼、长薄鳅,其产卵场在该河段下游朱沱站附近。随着向家坝和溪洛渡水电站2012年相继建成投入运用,很大程度改变了下游川渝河段径流规律,特别是对保护区河段产卵期5-7月生态水文过程影响大,不利于产漂流性卵鱼自然繁殖。
本发明实施例提供一种考虑区间支流来水的干流水库生态调度方法,包括如下步骤:
步骤一:确定产卵场断面生态调度启动指标及支流来水贡献比
1.确定产卵场断面生态水文参数。
根据目前掌握的2009-2015产卵场鱼类产卵监测资料及水文资料,朱沱站需分别在5月份及6月中旬至7月上旬各产生一次高流量脉冲过程,才能满足卵鱼产卵。具体的生态水文需求:干流朱沱站高流量日流量增幅,即流量平均涨幅dQ:5月份取值700,6月中旬至7月取值760;高流量脉冲持续涨水的时间,即涨水历时D:5月份取值2,6月中旬至7月取值3;首日涨幅,即水位起始涨幅Ze:5月份取值900,6月中旬至7月取值1200;起涨流量Qe:5月份取值3900,6月中旬至7月取值6500;峰值流量Qm:5月份取值6200,6月中旬至7月取值14000。
2.计算区间支流来水对高流量脉冲过程首日涨水贡献比
支流中岷江控制流域面积较大,1954-2012年4-7月来水量占朱沱站的34.93%。在长江干流朱沱站发生高流量脉冲247次中岷江高场站处同时发生高流量脉冲的次数有240次,占朱沱站高流量脉冲次数的97.17%。经计算,4~7月岷江对朱沱站高流量脉冲首日涨水平均贡献比β为36.7%。历年实测资料显示岷江每年至少有一次高流量脉冲与朱沱站高流量脉冲发生遭遇,且对朱沱站高流量脉冲首日涨水率贡献较大。
3.确定生态调度启动时机。
对1954年~2012年金沙江屏山站(现向家坝站)、岷江高场站水文径流过程,利用IHA方法模拟出高流量脉冲发生过程。因4~7月岷江对朱沱站高流量脉冲首日涨水平均贡献比36.7%大于阈值30%,生态调度启动开始时段st由岷江出涨水判断,即:当预测区间岷江5月份出现持续涨水不小于2天、流量平均涨幅不小于290m 3/s及对应起涨流量不小于1413m 3/s的涨水过程;6月中旬至7月上旬出现持续涨水不小于2天、平均涨幅不小于495m 3/s及对应起涨流量不小于2330m 3/s的涨水过程。当满足上述生态调度启动时机条件时,金沙江干流溪洛渡、向家坝水库在岷江涨水第一日启动生态补偿调度。
步骤二:干支流汇合后河道演进方法及参数率定
以1954~2012年4月至7月向家坝站(原屏山站)、高场站、朱沱站日径流资料为依据,因向家坝站与高场站至金沙江、岷江汇合点距离相差不大,故在用马斯京根模型演算下断面朱沱站处流量时,将向家坝站(原屏山站)、高场站处径流直接相加后作为上断面流量。因除金沙江、岷江外,朱沱站上游还有赤水河、沱江、横江等支流,对考虑旁支汇入后的马斯京根模型采用最小二乘法计算演算参数d 0,d 1,d 2,得到d 0=0.150,d 1=0.495,d 2=0.437,拟合相关系数R=0.994,拟合效果较好。
步骤三:确定考虑区间支流来水的干流水库生态调度方式
1.建立产卵场断面高流量脉冲频次模拟模型
为使产卵场朱沱站处人工高流量脉冲频次H最大,即max|H|。式中,H为确定的考虑支流岷江来水的生态调度方法计算的产卵场控制断面高流量脉冲频次。当产卵场断面合成流量Qsy st+j满足下式条件时,计为1次脉冲动作。
Figure PCTCN2021090805-appb-000003
式中干流朱沱站高流量日流量增幅dQ:5月份取值700,6月中旬至7月取值760;高流量脉冲持续涨水的时间day:5月份取值2,6月中旬至7月取值3;首日涨幅Ze:5月份取值900,6月中旬至7月取值1200;起涨流量Qe:5月份取值3900,6月中旬至7月取值6500;峰值流 量Qm:5月份取值6200,6月中旬至7月取值14000。
2.确定干流水库配合区间来水的生态调度方式
为配合区间来水使控制断面高流量脉冲频次H尽量大,通过优化求解计算干流水库出库流量过程,反推出干流水库st+j+1时段出库流量Qout st+j+1,如式(3)
Qsy st+j+1=0.15*(Qout st+j+1+Qmj st+j+1)+0.495*(Qout st+j+Qmj st+j)+0.437*Qsy st+j
Qout st+j+1=(Qsy st+j+1-0.495*(Qout st+j+Qmj st+j)-0.437*Qsy st+j)/0.15-Qmj st++1j     (3)
式中,Qsy st+j为产卵场控制断面合成流量,Qmj st+j为区间支流岷江流量,st为生态调度启动开始时段,由岷江涨水决定,即当预测区间岷江5月份出现持续涨水不小于2天、平均涨幅不小于290m 3/s及对应起涨流量不小于1413m 3/s的涨水过程;6月中旬至7月上旬出现持续涨水不小于2天、平均涨幅不小于495m 3/s及对应起涨流量不小于2330m 3/s的涨水过程时,金沙江干流溪洛渡、向家坝水库在岷江涨水第一日启动生态补偿调度。
选择朱沱站2000年、2010年及1986年作为典型丰水年、平水年及枯水年,根据上述模型,通过优化求解计算干流水库出库流量过程,得出生态调度方式。
对天然情形下、常规调度和考虑区间支流来水的生态调度方式3种情形,依次计算朱沱站产卵场控制断面高流量脉冲频次H 0、H 1和H。具体的,根据长系列水文资料分析天然情形下产卵场控制断面来水组成规律,计算天然情形下产卵场控制断面高流量脉冲频次H 0;根据干流水库常规调度规则,计算常规调度产卵场控制断面高流量脉冲频次H 1;根据考虑区间来水后干流水库补偿调度,计算考虑区间来水的产卵场控制断面高流量脉冲频次H。计算结果见表1~3,脉冲过程见图2~4。
2000年:天然情况下朱沱站处有2次高流量脉冲发生,常规调度方案未出现高流量脉冲,而生态调度方案保障了2次高流量脉冲的发生,且高流量脉冲的各项指标满足鱼类产卵的连续涨水过程要求,保留住了朱沱站高流量脉冲发生频次。即,H 0=2,H 1=0,H=2。
2010年:天然情况下朱沱站处有3次高流量脉冲发生;常规调度方案在5月至7月上旬期间未发生高流量脉冲;生态调度方案保障了2次高流量脉冲的发生,且高流量脉冲的各项指标满足鱼类产卵的连续涨水过程要求,朱沱站高流量日均涨幅整体上高于天然情况下的高流量日均涨幅。即,H 0=3,H 1=0,H=2。
1986年:天然情况下朱沱站处有4次高流量脉冲发生;常规调度方案出现1次高流量脉冲;生态调度方案启动了2次生态调度,产生了朱沱站4次高流量脉冲过程,且高流量脉冲的各项指标基本满足鱼类产卵的连续涨水过程要求。即,H 0=4,H 1=1,H=4。
综上述所,与常规调度相比,本发明确定的干流水库生态调度方案有效提高了高流量脉冲过程频次,有利于产卵场产漂流性卵鱼类自然繁殖。
表1 2000年朱沱站高流量脉冲特征指标统计表(丰水年)
Figure PCTCN2021090805-appb-000004
表2 2010年朱沱站高流量脉冲情况统计表(平水年)
Figure PCTCN2021090805-appb-000005
表3 1986年朱沱站高流量脉冲情况统计表(枯水年)
Figure PCTCN2021090805-appb-000006
Figure PCTCN2021090805-appb-000007
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (5)

  1. 一种考虑区间支流来水的干流水库生态调度方法,其特征在于包括如下步骤:
    步骤一:确定区间支流来水对高流量脉冲过程首日涨水贡献比及产卵场断面生态调度启动时机,具体步骤如下:
    (1)确定产卵场断面目标鱼生态水文参数:根据产卵场目标鱼类产卵监测资料、水文资料,确定产卵场控制断面目标鱼类生态水文参数,即确定起涨流量Q e、水位起始涨幅Z e、峰值流量Q m、流量平均涨幅dQ、涨水历时D取值;
    (2)计算区间支流来水对高流量脉冲过程首日涨水贡献比:根据还原后的长系列水文径流数据,计算下游产卵场高流量脉冲过程频次,分析上游干流、区间支流来水分别对下游产卵场高流量脉冲过程的影响,确定区间支流来水对产卵场处高流量脉冲过程首日涨水贡献比β;
    (3)确定生态调度启动时机:根据干支流控制站水文径流数据,利用IHA法模拟高流量脉冲发生过程,在鱼类产卵期间当区间支流来水对产卵场处高流量脉冲过程首日涨水贡献比β大于阈值θ,则选取区间支流起涨流量Q e、流量平均涨幅dQ及涨水历时D作为生态调度启动控制指标,此时态调度启动开始时机st由支流来水涨水判断;当区间支流来水对产卵场处高流量脉冲过程首日涨水贡献比β不大于阈值θ,选取干流起涨流量Q e、平均涨幅dQ及涨水历时D作为生态调度启动控制指标,此时生态调度启动开始时机st由干流涨水判断;
    步骤二:确定干支流汇合后河道演进方法及率定参数
    根据历时水文资料,采用马斯京根法对上游水库下泄水量及区间支流汇合后的流量进行河道流量演算,考虑到还有其他小支流的汇入,采用考虑旁支汇入后的马斯京根法进行河道流量演算;
    步骤三:确定考虑区间支流来水的干流水库生态调度方式,具体步骤如下:
    (1)建立产卵场断面高流量脉冲频次模拟模型
    根据产卵场断面高流量脉冲组成及区间支流来水对高流量脉冲过程首日涨水贡献比,确定干流水库生态调度方式,使人工高流量脉冲频次H最大,即max|H|,式中,H为确定的考虑支流区间来水的生态调度方法计算的产卵场控制断面高流量脉冲频次;
    (2)确定干流水库配合区间来水的生态调度方式
    为配合区间来水使控制断面高流量脉冲频次H尽量大,通过优化求解计算干流水库出库流量过程,反推出干流水库st+j+1时段出库流量Qout st+j+1,如式(3)
    Qsy st+j+1=d 0(Qout st+j+1+Qmj st+j+1)+d 1(Qout st+j+Qmj st+j)+d 2Qsy st+j
    Qout st+j+1=(Qsy st+j+1-d 1(Qout st+j+Qmj st+j)-d 2Qsy st+j)/d 0-Qmj st+j+1  (3)
    式中,Qsy st+j为产卵场控制断面合成流量,Qmj st+j为区间支流流量,st为生态调度启动开始时段,由干流或区间支流涨水决定,即在鱼类产卵期间β>θ时,当预测区间支流出现持续涨水不小于D天、平均涨幅不小于dQ及对应起涨流量不小于Qe的涨水过程干流水库在区间涨水第一日启动考虑区间来水的生态补偿调度;β≤θ时,当预测干流出现持续涨水不小于D天、平均涨幅不小于dQ及对应起涨流量不小于Qe的涨水过程干流水库在干流涨水第一日启动考虑区间来水的生态补偿调度。
  2. 如权利要求1所述的考虑区间支流来水的干流水库生态调度方法,其特征在于:步骤一中生态调度启动开始时机st由支流来水涨水判断,即当区间支流出现持续涨水不小于D天、流量平均涨幅不小于d Q及起涨流量不小于Q e的涨水过程时,干流水库开始启动补偿调 度,满足下游产卵场卵鱼产卵所需的高流量脉冲过程要求;生态调度启动开始时机st由干流涨水判断,即当干流出现持续涨水不小于D天、流量平均涨幅不小于d Q及起涨流量不小于Q e的涨水过程时,干流水库开始启动考虑区间支流的补偿调度,满足下游产卵场卵鱼产卵所需的高流量脉冲过程要求。
  3. 如权利要求1所述的考虑区间支流来水的干流水库生态调度方法,其特征在于:步骤一中涨水历时D按鱼类产卵所需高流量脉冲中75%频率对应的高流量脉冲历时;起涨流量Qe、平均涨幅dQ按频率法与最大最小法取值,频率法是起涨流量Qe、平均涨幅dQ按产卵期间干流或区间高流量脉冲的75%定值;最大最小法是选出每年产卵期间干流或区间最大的平均涨幅及对应的起涨流量,选取持续涨水平均涨幅及对应的起涨流量最小值作为持续涨水平均涨幅值dQ及对应的起涨流量值Qe。
  4. 如权利要求1所述的考虑区间支流来水的干流水库生态调度方法,其特征在于:步骤二中河道流量演算的计算公式如下:
    Figure PCTCN2021090805-appb-100001
    式中,Q 下,2为下游产卵场控制断面时段末流量,Q 上,2为上游干支流汇合断面时段末流量,Q 上,1上游干支流汇合断面时段初流量,Q 下,1下游产卵场控制断面时段初流量,Δt为计算时段,k为蓄流流量关系曲线,x为流量比重因素,α为区间支流来水对汇合断面贡献比,河道流量演算系数d 0、d 1、d 2根据多年长系列实测流量用最小二乘法率定。
  5. 如权利要求1所述的考虑区间支流来水的干流水库生态调度方法,其特征在于:步骤三中根据考虑区间来水后干流水库补偿调度,计算考虑支流区间来水的生态调度方法计算的产卵场控制断面高流量脉冲频次H,当产卵场断面合成流量Qsy st+j满足下式条件时,计为1次脉冲动作:
    Figure PCTCN2021090805-appb-100002
    式中,起涨流量Q e、水位起始涨幅Z e、峰值流量Q m、流量平均涨幅dQ、涨水历时D取值来自步骤一。
PCT/CN2021/090805 2020-05-27 2021-04-29 一种考虑区间支流来水的干流水库生态调度方法 WO2021238567A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/625,311 US11866897B2 (en) 2020-05-27 2021-04-29 Main stream reservoir ecological modulation method considering incoming water from interval tributaries
JP2022530343A JP7232451B2 (ja) 2020-05-27 2021-04-29 区間支流からの流入水を勘案した本流貯水池の生態学的調節方法
GB2201940.0A GB2600368B (en) 2020-05-27 2021-04-29 Main stream reservoir ecological modulation method considering incoming water from interval tributaries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010460654.8A CN111733759B (zh) 2020-05-27 2020-05-27 一种考虑区间支流来水的干流水库生态调度方法
CN202010460654.8 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021238567A1 true WO2021238567A1 (zh) 2021-12-02

Family

ID=72647788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090805 WO2021238567A1 (zh) 2020-05-27 2021-04-29 一种考虑区间支流来水的干流水库生态调度方法

Country Status (5)

Country Link
US (1) US11866897B2 (zh)
JP (1) JP7232451B2 (zh)
CN (1) CN111733759B (zh)
GB (1) GB2600368B (zh)
WO (1) WO2021238567A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4212016A1 (en) * 2022-01-18 2023-07-19 China Three Gorges Corporation Precise regulation-and-control system for propagation of drifting egg fishes
CN116821609A (zh) * 2023-08-28 2023-09-29 长江水利委员会长江科学院 支流入汇顶托作用转换点识别与强度分区方法及系统
US20230340742A1 (en) * 2020-05-27 2023-10-26 China Three Gorges Corporation Main stream reservoir ecological modulation method considering incoming water from interval tributaries
CN117973706A (zh) * 2024-04-02 2024-05-03 水利部交通运输部国家能源局南京水利科学研究院 融合鱼类生态流量过程水温过程需求的水库生态调度方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103065033A (zh) * 2012-01-11 2013-04-24 戴会超 一种兼顾中华鲟繁殖需求的水库生态调度方法
CN106777959A (zh) * 2016-12-12 2017-05-31 郑州大学 人工干扰无水文资料地区河流环境流量分区界定计算方法
US20180347133A1 (en) * 2017-08-14 2018-12-06 Nanjing Hydraulic Research Institute Method for controlling the gate based on the habitat requirement for fish overwintering in rives
CN110348083A (zh) * 2019-06-26 2019-10-18 长江水利委员会长江科学院 一种基流加脉冲的鱼类产卵期生态流量设计方法
CN111733759A (zh) * 2020-05-27 2020-10-02 长江水利委员会长江科学院 一种考虑区间支流来水的干流水库生态调度方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214424A (ja) 2000-02-03 2001-08-07 Norio Takei ダム施工方法、水力発電方法
WO2002099202A1 (fr) 2001-06-04 2002-12-12 Nagai Kosho Co., Ltd. Production hydroelectrique
JP2012082646A (ja) 2010-10-14 2012-04-26 Chugoku Electric Power Co Inc:The 調整池ダム水位制御システム
CN105869070B (zh) * 2016-04-06 2020-09-11 大连理工大学 一种跨流域梯级水电站群效益均衡的合作优化调度方法
CN105951660B (zh) * 2016-06-20 2018-04-06 中国电建集团贵阳勘测设计研究院有限公司 一种水库上下游及干支流鱼类栖息地综合保护系统
CN107103188B (zh) * 2017-04-11 2020-05-08 山东大学 一种城市河道生态流量阈值的确定方法
CN107165136B (zh) * 2017-06-05 2018-04-03 云南大学 针对土著鱼类保护的库尾反调节方法
CN107273645A (zh) * 2017-07-25 2017-10-20 中国水利水电科学研究院 一种鱼类产卵期河流生态需水过程的计算方法
AU2021103039A4 (en) * 2021-06-02 2021-07-22 Institute of Hydroecology, MWR&CAS an ecological dispatch method and apparatus for complex ecosystem of lakes and rivers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103065033A (zh) * 2012-01-11 2013-04-24 戴会超 一种兼顾中华鲟繁殖需求的水库生态调度方法
CN106777959A (zh) * 2016-12-12 2017-05-31 郑州大学 人工干扰无水文资料地区河流环境流量分区界定计算方法
US20180347133A1 (en) * 2017-08-14 2018-12-06 Nanjing Hydraulic Research Institute Method for controlling the gate based on the habitat requirement for fish overwintering in rives
CN110348083A (zh) * 2019-06-26 2019-10-18 长江水利委员会长江科学院 一种基流加脉冲的鱼类产卵期生态流量设计方法
CN111733759A (zh) * 2020-05-27 2020-10-02 长江水利委员会长江科学院 一种考虑区间支流来水的干流水库生态调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DANG, LI ET AL.: "Effects of Reservoir Regulation on Downstream Fish Habitat Suitability", JOURNAL OF TIANJIN UNIVERSITY(SCIENCE AND TECHNOLOGY), vol. 51, no. 6, 30 June 2018 (2018-06-30), pages 566 - 574, XP055871957 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230340742A1 (en) * 2020-05-27 2023-10-26 China Three Gorges Corporation Main stream reservoir ecological modulation method considering incoming water from interval tributaries
US11866897B2 (en) * 2020-05-27 2024-01-09 China Three Gorges Corporation Main stream reservoir ecological modulation method considering incoming water from interval tributaries
EP4212016A1 (en) * 2022-01-18 2023-07-19 China Three Gorges Corporation Precise regulation-and-control system for propagation of drifting egg fishes
CN116821609A (zh) * 2023-08-28 2023-09-29 长江水利委员会长江科学院 支流入汇顶托作用转换点识别与强度分区方法及系统
CN116821609B (zh) * 2023-08-28 2023-11-21 长江水利委员会长江科学院 支流入汇顶托作用转换点识别与强度分区方法及系统
CN117973706A (zh) * 2024-04-02 2024-05-03 水利部交通运输部国家能源局南京水利科学研究院 融合鱼类生态流量过程水温过程需求的水库生态调度方法

Also Published As

Publication number Publication date
CN111733759A (zh) 2020-10-02
CN111733759B (zh) 2021-03-19
GB2600368A (en) 2022-04-27
GB202201940D0 (en) 2022-03-30
JP7232451B2 (ja) 2023-03-03
US11866897B2 (en) 2024-01-09
JP2022541956A (ja) 2022-09-28
US20230340742A1 (en) 2023-10-26
GB2600368B (en) 2022-10-19

Similar Documents

Publication Publication Date Title
WO2021238567A1 (zh) 一种考虑区间支流来水的干流水库生态调度方法
CN106951985B (zh) 一种基于改进人工蜂群算法的梯级水库多目标优化调度方法
CN109447848B (zh) 适用于产漂流性卵鱼类的梯级电站生态调度系统及方法
CN103106625A (zh) 水库、闸泵群联合抑咸调度方法
CN101714186B (zh) 兼顾人类和生态需求的供水型水库调度图优化确定方法
CN103065033B (zh) 一种兼顾中华鲟繁殖需求的水库生态调度方法
CN111080157B (zh) 一种梯级水电站排磷量的调度方法和系统
Guo et al. Ecological operation for three gorges reservoir
CN111079086A (zh) 一种基于多元联合分布的水资源系统多重风险评估方法
CN114819753B (zh) 一种促进鱼类产卵的梯级水库生态调度方法
CN101714193B (zh) 面向河流生态系统保护的发电型水库调度函数优化方法
CN101899820B (zh) 面向河流生态系统保护的流域地表水可利用量确定方法
CN112766593A (zh) 一种水利水电工程生态调度方案的优化方法
CN103088783B (zh) 一种面向生态的水库调度方案生成方法
Deng et al. Ecological optimal operation of hydropower stations to maximize total phosphorus export
CN112580230B (zh) 一种水库水温结构分析方法
CN102776872B (zh) 水电站高效防洪发电的优化方法
Chen et al. Ecologically-friendly operation scheme for the Jinping cascaded reservoirs in the Yalongjiang River, China
Zhao et al. Multi-objective optimization of the Three Gorges cascaded reservoirs operation with emphasis on electricity generation and ecological requirements
CN111027825A (zh) 基于典型枯水年和出力系数优选的蓄能调度图绘制方法
CN112884605B (zh) 一种反季相湖泊生态需水确定方法
Hlaing et al. Hydropower generation considering the environmental flow in Myitnge river basin, Myanmar
CN113006231B (zh) 基于模型的区域排水提标控污运行调度模式的确定方法
Ampitiyawatta Application of HEC-ResSim In Qingjiang Cascade Reservoirs
Wang et al. Ecology and water supply based multi-objective optimal dispatch model and its case study in Yangtze basin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530343

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202201940

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210429

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814489

Country of ref document: EP

Kind code of ref document: A1